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Figure 1. InterMimic enables physically simulated humans to perform interactions with dynamic and diverse objects. It supports highly-
dynamic, multi-object interactions and scalable skill learning (Top), making it adaptable for versatile downstream applications (Bottom): it
can translate whole-body loco-manipulation skills to a humanoid robot [24, 81], perfect interaction MoCap data, and bridge kinematic gen-
eration, e.g., predicting future interactions from past (InterDiff [101]) or generating interactions given text prompts (InterDreamer [102]).

Abstract

Achieving realistic simulations of humans interacting with
a wide range of objects has long been a fundamental
goal. Extending physics-based motion imitation to complex
human-object interactions (HOIs) is challenging due to in-
tricate human-object coupling, variability in object geome-
tries, and artifacts in motion capture data, such as inaccu-
rate contacts and limited hand detail. We introduce Inter-
Mimic, a framework that enables a single policy to robustly
learn from hours of imperfect MoCap data covering diverse
full-body interactions with dynamic and varied objects. Our
key insight is to employ a curriculum strategy – perfect first,
then scale up. We first train subject-specific teacher policies
to mimic, retarget, and refine motion capture data. Next, we
distill these teachers into a student policy, with the teach-
ers acting as online experts providing direct supervision,

as well as high-quality references. Notably, we incorpo-
rate RL fine-tuning on the student policy to surpass mere
demonstration replication and achieve higher-quality solu-
tions. Our experiments demonstrate that InterMimic pro-
duces realistic and diverse interactions across multiple HOI
datasets. The learned policy generalizes in a zero-shot man-
ner and seamlessly integrates with kinematic generators,
elevating the framework from mere imitation to generative
modeling of complex human-object interactions.

1. Introduction

Animating human-object interactions is a challenging and
time-consuming task even for skilled animators. It requires
a deep understanding of physics and meticulous attention to
detail to create natural and convincing interactions. While
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Motion Capture (MoCap) data provides references, anima-
tors often need to correct contact errors caused by sen-
sor limitations and occlusions between humans and objects.
However, this process remains unscalable, as refining a sin-
gle motion demands a delicate balance between preserving
the captured data and ensuring its physical plausibility.

Physics-based human motion imitation [38, 63] offers an
alternative approach to improving motion fidelity, by train-
ing control policies to mimic reference MoCap data within
a physics simulator. However, scaling up human-object in-
teraction imitation presents significant challenges: (i) Mo-
Cap Imperfection: Contact artifacts are common, causing
expected contacts to fluctuate instead of maintaining con-
sistent zero distance, often due to MoCap limitations or
missing hand capture [3, 39]. Accurately imitating Mo-
Cap kinematics can result in unrealistic dynamics in simu-
lation. Moreover, HOI datasets often include diverse human
shapes, requiring motion retargeting to adapt movements
across different human models while preserving interaction
dynamics. This retargeting process is imperfect and can in-
troduce new contact artifacts or exacerbate existing ones.
(ii) Scaling-up: Although large-scale motion imitation has
been explored in previous works [50, 79, 92, 106], it re-
mains largely underexplored for whole-body interactions
involving dynamic and diverse objects.

In this paper, we aim to utilize rich yet imperfect mo-
tion capture interaction datasets to train a control policy ca-
pable of learning diverse motor skills while enhancing the
plausibility of these actions by correcting errors, such as in-
accurate hand motions and faulty contacts. Our approach
is grounded on the key insight of tackling the challenges
of skill perfection and skill integration progressively. We
implement a curriculum-based teacher-student distillation
framework, where multiple teacher policies focus on imitat-
ing and refining small subsets of interactions, and a student
policy integrates these skills from the teachers.

Instead of relying on curated data that covers a limited
range of actions [4, 51], we employ multiple teacher poli-
cies trained on a diverse set of imperfect interaction data
and address two key challenges: retargeting and recover-
ing. First, we unify all training policies to a canonical hu-
man model, by embedding HOI retargeting directly into the
imitation. This is achieved by reframing the policy learning
to optimize both imitation and retargeting objectives. Sec-
ond, our teacher policies refine interaction motion through
learning from it, as accurate contact dynamics enforced by a
physics simulator inherently correct inaccuracies in the ref-
erence kinematics. To support this, we introduce tailored
contact-guided reward and optimize trajectory collection,
enabling effective skill imitation despite MoCap errors.

Introducing teacher policies offers several key benefits.
By leveraging teacher rollouts, we effectively distill raw
MoCap data into refined HOI references with a unified em-

bodiment and enhanced physical fidelity. These refined ref-
erences guide the subsequent student policy training, reduc-
ing the negative impact of errors in the original MoCap data.
A major hurdle in scaling motion imitation is the sample in-
efficiency of Reinforcement Learning (RL), which can lead
to prohibitively long training times. Our teacher-student ap-
proach mitigates this through a space-time trade-off : multi-
ple teacher policies are trained in parallel on smaller, more
manageable data subsets, and their expertise is then distilled
into a single student policy. We begin with demonstration-
based distillation to bootstrap PPO [71] updates, reducing
reliance on pure trial and error and enabling more effec-
tive scaling. As training progresses, the student gradually
shifts from heavy demonstration guidance to increased RL
updates, ultimately surpassing simple demonstration mem-
orization. This mirrors alignment strategies in Large Lan-
guage Models (LLMs), where demonstration-based pre-
training is refined through RL fine-tuning [56].

To summarize, our contributions are as follows: (i) We
introduce InterMimic, which, to the best of our knowledge,
is the first framework designed to train physically simulated
humans to develop a wide range of whole-bodymotor skills
for interacting with diverse and dynamic objects, extending
beyond traditional grasping tasks. (ii) We develop a teacher-
student training strategy, where teacher policies provide a
unified solution to address the challenges of retargeting and
refining in HOI imitation. The student distillation intro-
duces a scalable solution by leveraging a space-time trade-
off. (iii) We demonstrate that our unified framework, In-
terMimic, as illustrated in Figure 1, effectively handles ver-
satile physics-based interaction animation, recovering mo-
tions with realistic and physically plausible details. No-
tably, by combining kinematic generators with InterMimic,
we enable a physics-based agent to achieve tasks such as
interaction prediction and text-to-interaction generation.

2. Related Work

Significant progress has been made in physics-based hu-
man interaction animation and control, with advancements
in areas such as human-human interactions [45, 90], hand-
object interactions [60, 86, 100, 104], human interactions
with static scenes [5, 36, 57, 79, 96], and real-world hu-
manoid control for object manipulation [2, 11, 16, 19, 20,
28, 41, 43, 72, 107]. Among these areas, we are the first
to achieve universal whole-body loco-manipulation simula-
tion with diverse dynamic objects, beyond pick-and-place
and grasping actions – a novel achievement in animation
and an idealized reference for real-world humanoid control.
Below, we elaborate on recent studies on whole-body inter-
action animation, particularly involving dynamic objects.
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2.1. Kinematic Interaction Animation
Generating human interactions has been a long-standing
topic in animation and computer graphics [15, 37]. Sig-
nificant advances in character animation have emerged
with the advent of deep learning, e.g., including phase-
function-based methods [22] that enable object interactions
like carrying a box [74] or playing basketball [75]. This
is extended to more diverse but static objects approach-
ing [35, 77, 94, 111]. Subsequent efforts [14, 26, 27, 40,
42, 49, 66, 95] integrate object motion into interactions but
remain constrained by assuming that interactions occur pri-
marily through the hands. To address this, recent develop-
ments [7, 10, 12, 21, 30, 62, 73, 84, 93, 101, 102] introduce
interactions in a fashion of whole-body loco-manipulation
that engages multiple body parts in contact. However, these
methods often suffer from physical inaccuracies, such as
floating contacts and penetrations, while they generate only
body motion without considering hand dexterity. In this
work, we address physical inaccuracies by refining imper-
fect kinematic generation through physics simulation, with
InterDiff [101] and HOI-Diff [62] serving as motion plan-
ning for loco-manipulation that bridges high-level decision-
making (e.g., text instruction) with low-level execution.

2.2. Physics-based Interaction Animation
Physics-based methods generate motion through motor con-
trol policies within a physics simulator, e.g., achieved
via deep reinforcement learning to track reference mo-
tions [63]. These policies are directly applicable for ex-
ecuting simple interactions, such as punching or striking
an object [8, 65, 78, 80]. To achieve more complex inter-
actions, early studies focus on specific scenarios, includ-
ing notable sports-related [52] examples such as basket-
ball [88], skating [44], soccer [98], tennis [108], table ten-
nis [85], and more proposed in [1]. Research also demon-
strates flexibility in more general but simpler box carry-
ing tasks [58, 87, 113]. These advancements are achieved
through the integration of multiple control policies [55],
the use of adversarial motion priors [13, 18, 64], and im-
itating diverse kinematic generations [95, 99]. However,
these methods train their policies in a non-scalable man-
ner, with each policy handling only specific object types or
actions. In pursuit of a single, scalable policy to enable mul-
tiple interaction skills, existing methods either rely on fixed
interaction patterns, such as approaching and grasping ob-
jects [4, 51], or extend single-object skills, e.g., interactions
involving a basketball [89]. Additionally, they mostly de-
pend on highly curated data from the GRAB dataset [76],
which, despite its high quality, primarily features low-
dynamic full-body motion and only small-sized objects.
More recent datasets [3, 23, 25, 31, 39, 46–48, 53, 97, 103,
109, 110, 112, 114] offer richer full-body interactions with
diverse objects but contain noticeable artifacts that chal-
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Figure 2. Our two-stage pipeline: (i) training each teacher pol-
icy (MLP) on a small data subset with initialization corrected via
Physical State Initialization (PSI), and (ii) freezing the teacher
policies to provide refined references for training a student pol-
icy (Transformer). The student leverages teacher supervision for
effective scaling and is fine-tuned through RL.

lenge existing motion imitation approaches. We process
data from OMOMO [39], BEHAVE [3], HODome [109],
and IMHD [114] collected in the InterAct [103] dataset,
and the multi-object dataset HIMO [53], highlighting In-
terMimic’s scalability to diverse interactions and its robust-
ness against MoCap artifacts.

3. Methodology
Task Formulation. The goal of human-object interac-
tion (HOI) imitation is to learn a policy ω that produces
simulated human-object motion {qt}Tt=1 closely matching
a ground-truth reference {q̂t}Tt=1 derived from large-scale
MoCap data. Given the geometries of the human and ob-
jects, the policy should also compensate for missing or in-
accurate details in the dataset. Each pose qt has two compo-
nents: the human pose qh

t and the object pose qo
t . The hu-

man pose is defined as qh
t = {ωh

t ,p
h
t }, where ω

h
t → R52→3

represents the joint rotations, and ph
t → R52→3 specifies

the joint positions. Specifically, our human model includes
30 hand joints and 22 joints for the rest of the body, with
one root joint’s rotation and position specified in global co-
ordinates, whereas the rotations and positions of all other
joints are defined relative to their respective parent joints’
coordinate systems. The object pose qo

t is represented as
{ωo

t ,p
o
t}, where ωo

t → R3 denotes the object’s orientation
and po

t → R3 the position. All simulation states have cor-
responding ground-truth values, denoted by the hat symbol.
For instance, the reference object rotation is {ω̂

o

t}Tt=1. The
environmental setup for the simulation is detailed in Sec. B.
Overview. We formulate interaction imitation as a
Markov Decision Process (MDP), defined by states, actions,
simulator-provided transition dynamics, and a reward func-
tion. Figure 2 illustrates our two-stage framework: (i) train-
ing teacher policies ω(T ) on small skill subsets, and (ii) dis-
tilling these teachers into a scalable student policy ω

(S) for
large-scale skill learning. In Sec. 3.1, we define the states st
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and actions at, applicable to both teacher ω(T ) and student
ω
(S) policies. In Sec. 3.2, we describe how teacher policies

are trained via RL, focusing on reward designs that facilitate
retargeting, as well as techniques that mitigate the impact of
imperfections in the reference data. Sec. 3.3 details the sub-
sequent distillation of teachers into a scalable student pol-
icy, leveraging both RL and learning from demonstration.

3.1. Policy Representation

State. The state st, which serves as input to the policy, com-
prises two components st = {sst , s

g
t }. The first part, sst ,

contains human proprioception and object observations, ex-
pressed as, {{ωh

t ,p
h
t ,ε

h
t ,v

h
t }, {ω

o
t ,p

o
t ,ε

o
t ,v

o
t}, {dt, ct}},

where {ωh
t ,p

h
t ,ε

h
t ,v

h
t } represent the rotation, position, an-

gular velocity, and velocity of all joints, respectively, while
{ωo

t ,p
o
t ,ε

o
t ,v

o
t} represent the orientation, location, veloc-

ity, and angular velocity of the object, respectively. Moti-
vated by [6], we include object geometry and whole-body
haptic sensing from two elements: (i) dt, vectors from hu-
man joints to their nearest points on each object surface;
and (ii) ct, contact markers indicating whether the human’s
rigid body parts experience applied forces; this serves as
simplified tactile or force sensing – an important multi-
modal input in robot manipulation tasks [9]. The goal
state sgt = {sgt,t+k}k↑K integrates reference poses from the
ground truth motion, where sgt,t+k is defined as,

{{ω̂
h

t+k ↑ ωh
t , p̂

h
t+k ↓ ph

t }, {ω̂
o

t+k ↑ ωo
t , p̂

o
t+k ↓ po

t},

{d̂t+k ↓ dt, ĉt+k ↓ ct}, {ω̂
h

t+k, p̂
h
t+k, ω̂

o

t+k, p̂
o
t+k}},

(1)

where ω̂
h

t+k, p̂
h
t+k, d̂t+k, ĉt+k represent the reference infor-

mation at time step t+ k, ↑ denotes the calculation of rota-
tion difference. All continuous elements of st are normal-
ized relative to the current direction of view of the human
and the position of the root [63].

Given that most MoCap data does not provide reference
contact or tactile information, we extract reference contact
markers ĉt+k by inferring dynamic information, beyond re-
lying solely on inaccurate contact distances, specifically by
analyzing the object’s acceleration to detect human-induced
forces. To accommodate the variability in contact distances
observed in reference motion, we discretize reference con-
tact markers using varying distance thresholds, as illustrated
in Fig. 3(i). The neutral areas serve as buffer zones, avoid-
ing the penalization or enforcement of strict contact. See
Sec. C of supplementary for details.
Action. Our human model has 51 actuated joints, defining
an action space of at → R51→3. These actions are speci-
fied as joint PD targets using the exponential map and are
converted into torques applied to each of the human joints.

3.2. Imitation as Perfecting
The teacher policy ω

(T) is trained via RL to maximize the
expected discounted reward by comparing simulated states
against potentially erroneous reference states. The training
involves: (i) trajectory collection, where we explain how
trajectories are initialized and terminated. (ii) policy up-
dating, where collected trajectories and their associated re-
wards are used to refine the policy. In this section, we elab-
orate on our reward design and how we optimize trajectory
collection to mitigate the impact of reference inaccuracies.
Imitation as Retargeting. We tailor teacher policies to
each human subject, while all policies share the same base
human model. This serves the retargeting purpose by con-
verting HOIs from different human shapes into a unified
base shape. Although motion imitation does not necessarily
require a unified human model [50, 91], our approach offers
two benefits: (i) It enhances integration with kinematic gen-
eration methods, which generally perform better on a single,
unified shape [17]. (ii) It demonstrates possible integration
with real-world humanoid deployment, which requires re-
targeting to a consistent physical embodiment. In Figure 1,
our method translates MoCap data into motor skills on a
Unitree G1 [81] with two Inspire hands [24], all without
external retargeting in complex contact-rich scenarios. See
Sec. F of the supplementary for additional details.

Human [83] or HOI [32] retargeting can be formulated
as an optimization problem. Inverse Kinematics (IK) meth-
ods, such as those based on quadratic programming [34],
demonstrate effectiveness in simplified scenarios but re-
main underexplored for motions featuring intricate object
interactions. RL, by contrast, solves the optimization by
maximizing an expected cumulative reward, prompting us
to investigate whether RL-driven HOI imitation can be used
for HOI retargeting. This extends existing physics-based
retargeting approaches, which either omit object interac-
tions [67] or are non-scalable with a single reference [113].

While the kinematics should differ due to the embodi-
ment gap, we argue that the dynamics between human and
object should remain invariant. Thus, we define rewards
to include an embodiment-aware component that loosely
aligns the simulated kinematics with the reference interac-
tion, and an embodiment-agnostic reward component that
encourages dynamics to be close to the reference.
Embodiment-Aware Reward. When the human and ob-
ject are far apart, retargeting should prioritize capturing ro-
tational motion, whereas when they are close, accurate po-
sition tracking becomes crucial for achieving contact. To
reflect this, we define the weights wd that are inversely
proportional to the distances between joints and the ob-
ject [113]. The reward thus includes cost functions for joint
position E

h
p = ↔!h

p ,wd↗, rotation E
h
ω = ↔!h

ω ,1 ↓ wd↗,
and interaction tracking Ed = ↔!d,wd↗, where ↔·, ·↗ is
the inner product, !h

p [i] = ↘p̂h[i] ↓ ph[i]↘, !h
ω [i] =
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(i) Reference contact markers (ii) RSI vs. PSI

Figure 3. (i) Visualization of reference contact markers that ac-
commodate varied contact distances: red to promote contact, green
for neutral areas where contact is neither promoted nor penalized,
and blue to penalize contact. (ii) Initializing the rollout with refer-
ence (RSI) or reference corrected via simulation (PSI).

↘ω̂
h
[i]↑ωh[i]↘, and!d[i] = ↘d̂[i]↓d[i]↘ represent the dis-

placement for the variables defined in Sec. 3.1 with timestep
t omitted. The formulation of wd is provided in Sec. D of
supplementary. The reward to be maximized can be formu-
lated as exp(↓εE) for each cost function E with a specific
hyperparameter ε. Details can be found in Sec. D.
Embodiment-Agnostic Reward. The reward includes
components for object tracking and contact tracking. The
object tracking cost is defined for position Eo

p = ↘p̂o↓po↘
and rotation E

o
ω = ↘ω̂

o
↓ ωo↘, with all values normalized

to the human’s current position and direction. The contact
tracking reward comprises two cost functions: body con-
tact promotion E

c
b and penalty E

c
p, both aligning the simu-

lated contact c with reference markers ĉ, as shown in Fig-
ure 3. We define three contact levels – promotion, penalty,
and neutral – to accommodate potential inaccuracies in ref-
erence contact distances. The detailed formulation can be
found in Sec. D of the supplementary. Since the physics en-
gine does not differentiate between object, ground, and self-
contact, we adopt two strategies: (i) we model foot-ground
contact promotion and penalty. This ensures proper foot
lifting during cyclic walking and mitigates foot hobbling.
(ii) We allow self-collision to avoid self-contact promotion
but to promote object interaction. This poses minimal risk
as the policy is guided by MoCap reference, which, al-
though lacking perfect contact accuracy, rarely shows self-
penetration. For humanoid robots with embodiments that
differ from the MoCap reference and require real-world ap-
plicability, we disable self-collision, as discussed in Sec. F.

We introduce energy consumption rewards [105] to pe-
nalize large human or object jitters, with a proposed contact
energy penalizing abrupt contact to promote compliant in-
teractions. See Sec. D of supplementary for more details.
Hand Interaction Discovery. We use data with average or
flattened hand poses [3, 39], which makes accurate object
manipulation imitation challenging. To address this, we ac-
tivate a reference contact marker for any hand part when a
fingertip or palm is near an object. Given tasks that do not
demand high dexterity, employing a contact-promoting re-
ward with this marker enables policies to develop effective

hand interaction strategies, leveraging the exploratory na-
ture of RL. Additionally, we constrain the range of motion
(RoM) of the hands to ensure natural movement. See Sec. D
and Sec. B of the supplementary for further details.
Policy Learning. Following [63], the control policy ω is
trained using PPO [71] with the policy gradient L(ϑ) =
Et[min(rt(ϑ)At, clip(rt(ϑ), 1↓ ϖ, 1+ ϖ)At). ϑ are the pa-
rameters of ω and rt(ϑ) quantifies the difference in action
likelihoods between updated and old policies. ϖ is a small
constant, andAt is the advantage estimate given by the gen-
eralized advantage estimator GAE(ε) [70].
Physical State Initialization. Learning later-phase mo-
tion can be essential for policies to achieve high rewards
during earlier phases, compared to incrementally learning
from the starting phase. Thus, Reference State Initialization
(RSI) [63] sets the current pose qt to a reference pose q̂t at
a random timestep t, for initializing the rollout. However,
initializing with the imperfect reference can introduce criti-
cal artifacts, such as contact floating or incorrect hand mo-
tion, leading to unrecoverable failures, e.g., object falling,
as depicted in Figure 3(ii). These issues render many ini-
tializations ineffective, limiting training on certain interac-
tion phases since successful rollouts may not reach them
before the maximum length. The problem is exacerbated
by the use of prioritized sampling [79, 91], which favors
high-failure-rate initializations.

To address the need for higher-quality reference initial-
ization, we propose Physical State Initialization (PSI). As
illustrated in Figure 2, PSI begins by creating an initial-
ization buffer that stores reference states from MoCap and
simulation states from prior rollouts. For each new rollout,
an initial state is randomly selected from this buffer, which
increases the likelihood of starting from advantageous posi-
tions. Once a rollout is completed, trajectories are evaluated
based on their expected discounted rewards; those above a
certain threshold are added to the buffer using a first-in-first-
out (FIFO) strategy, while older or lower-quality trajectories
are discarded. This selective reintroduction of high-value
states for initialization helps maintain stable policy updates.
We apply PSI in a sparse manner to ensure training effi-
ciency. As shown in Figure 3(ii), PSI can collect trajecto-
ries for policy update that RSI does not effectively utilize.
Further details are provided in Sec. E of the supplementary.
Interaction Early Termination. Early Termination
(ET) [63] is commonly used in motion imitation, ending an
episode when a body part makes unplanned ground contact
or when the character deviates significantly from the ref-
erence [50], thus stopping the policy from overvaluing in-
valid transitions. However, additional conditions should be
considered for human-object interactions. We propose In-
teraction Early Termination (IET), which supplements ET
with three extra checks: (i) Object points deviate from their
references by more than 0.5m on average. (ii) Weighted av-
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erage distances between the character’s joints and the object
surface exceed 0.5m from the reference. (iii) Any required
body-object contact is lost for over 10 consecutive frames.
Full conditions are detailed in Sec. E of the supplementary.

3.3. Imitation with Distillation
As shown in Figure 2, after training the teacher policies on
data from each subject (Sec. 3.2), we aggregate them to train
a student policy ω

(S) to master all skills. As outlined in Al-
gorithm 1, the combined teacher policies, denoted by ω

(T)

for brevity, serves dual roles by providing state-action tra-
jectories (s(T),a(T)): (i) the state s(T) for reference distilla-
tion, and (ii) the action a(T) for policy distillation.
Reference Distillation. Noisy MoCap data can hinder pol-
icy learning, especially at larger scales. In contrast, teacher
policies trained on smaller-scale data effectively address
these issues by correcting contact artifacts, refining hand
placements, and recovering missing details (see Figures 1
and 5). To fully leverage teacher policies, we use their roll-
outs as references for defining the student policy’s goal state
and reward functions, distinguishing our approach from dis-
tillation based on only action output.
Policy Distillation. We apply distillation on action out-
puts, which we view as crucial for scaling policies to large
datasets. In essence, we trade space for time: teacher poli-
cies are trained in parallel on smaller data subsets, allowing
the student policy to scale through distillation. Following
Algorithm 1, we begin with Behavior Cloning (BC) [29]
and use RL fine-tuning to go beyond demonstration memo-
rization, an approach common in LLM alignment [56]. We
integrate BC into online policy updates with a staged sched-
ule: we start with DAgger [69] and gradually transition to
PPO. Throughout, the critic is continuously trained with the
reward from Sec. 3.2. This RL fine-tuning phase is crucial
as teacher policies may behave differently when performing
similar skills, and simple BC can lead to suboptimal “av-
eraging” behavior, where RL fine-tuning helps the student
converge on optimal solutions.

3.4. Architecture
We set the keyframe indices K (Sec. 3.1, Eq. 1) to {1, 16}
for the teacher policies and {1, 2, 4, 16} for the student pol-
icy. The broader observation window for the student pol-
icy helps it better distinguish different skills with larger-
scale data. Teacher policies employ MLPs, common in
physics-based animation [63], while the student policy han-
dles higher-dimensional observations, for which MLPs are
less effective. Thus, we use a transformer [82] architecture
for sequential modeling [79], as shown in Figure 2.

4. Experiments
We evaluate teacher policies on their ability to imitate
imperfect HOI references, and assess the entire teacher-

Algorithm 1 Distillation with RL Fine-tuning

1: Input: A composite policy ω
(T) integrated from indi-

vidual teacher policies, student policy parameters ϑ,
student value function parameters ϖ, schedule hyper-
parameter ϱ for DAgger, horizon length H for PPO

2: for t = 0, 1, 2, . . . do
3: for h from 1 to H do
4: Sample a variable u ≃ Uniform(0, 1)
5: Collect s(T),a(T) from teacher ω(T)

6: Obtain the refined reference from s(T) to define
s(S) and r(·), obtain a(S) from ω

(S)
ω (a(S)|s(S)).

7: if u ⇐ t
ε then ς Use the teacher

8: Given s(S), execute a(S), observe s↓(S), r
9: else ς Use the student
10: Given s(S), execute a(T), observe s↓(S), r
11: end if
12: Store the transition (s(S), s↓(S),a(S)

,a(T)
, r)

13: end for
14: Update ϖ with TD(ε)
15: Compute PPO objective: L(ϑ)
16: Compute J(ϑ) = ↘a(S) ↓ a(T)↘
17: Compute the weight: w = min( t

ε , 1)

18: Update ϑ by gradient: ⇒ϑ(wL(ϑ)+ (1↓w)J(ϑ))
19: end for

student framework for scalability to large-scale data and
zero-shot generalization across various scenarios. Addi-
tional experiments are provided in Sec. G of supplementary.
Datasets. We use the following datasets from Inter-
Act [103]: OMOMO [39], BEHAVE [3], HODome [109],
IMHD [114], and HIMO [53]. OMOMO, containing 15 ob-
jects and approximately 10 hours of data, is our primary
dataset for evaluating the full teacher-student distillation
framework for its scale. We train 17 teacher policies, one
per subject, with subject 14 reserved as the test set and the
remaining data used for training the student policy. A small
portion of data is discarded after teacher imitation due to
severe MoCap errors that could not be corrected (see Sec. F
and Sec. H of the supplementary). Additional datasets are
used to evaluate teacher policies in various MoCap scenar-
ios with different error levels and interaction types. We fo-
cus on highly dynamic motions (Figure 1) and interactions
involving multiple body parts (Figure 4), while excluding
scenarios such as carrying a bag with a strap, since the sim-
ulator [54] used lacks full support for soft bodies.
Metrics. We use the following metrics: (i) Success Rate
is defined as the proportion of references that the policy
successfully imitates at least once, averaged across all ref-
erences, while (ii) Duration is the time (in seconds) that
the imitation is maintained without triggering the interac-
tion early termination conditions introduced in Sec. 3.2. (iii)
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Figure 4. Qualitative comparison between PhysHOI [88] (top),
the reference motion (middle) from the BEHAVE [3] dataset, and
the interaction refined by our teacher trained on it (bottom). Inter-
Mimic faithfully imitates the interactions involving multiple body
parts while correcting errors in the original reference.

Human Tracking Error (Eh) measures the per-joint position
error (cm) between the simulated and reference human (ex-
cluding hand joints for BEHAVE [3] and OMOMO [39] due
to inaccuracy). (iv) Object Tracking Error (Eo) measures
the per-point position error (cm) between the simulated and
reference object. Both errors are averaged over the duration
of the imitation in the best-performing trial.
Baselines. To facilitate fair comparisons, we downgrade
our method for teacher policy evaluation to imitate either
a single MoCap clip (Figure 4) or multiple clips with a
single object (Table 1), enabling direct comparison with
PhysHOI [88] and SkillMimic [89] (Sec. 4.1 and 4.2). Due
to the lack of established baselines for large-scale HOI imi-
tation, we adapt the following variants for comparison with
our student policy (Sec. 4.3): (i) PPO [71] trains an imi-
tation policy from scratch, following [63]. We experiment
with both versions, with and without reference distillation;
(ii) DAgger [69] distills the student without RL fine-tuning,
a process we refer to as policy distillation.
Implementation Details. The control policies operate at
30 Hz and are trained using the Isaac Gym simulator [54].
Teacher policies are implemented as MLPs with hidden lay-
ers of sizes 1024, 1024, and 512. The student policy is
implemented as a three-layer Transformer encoder with 4
heads, a hidden size of 256, and a feed-forward layer of
512. The critics are also modeled as MLPs with the same
architecture as the teacher policies. To integrate the stu-
dent policy with kinematic generators, including text-to-
HOI [62] and future interaction prediction [101], we train
these models using reference data distilled by the teacher
policies from the OMOMO [39] dataset, following the same
train-test split as the student policy training. For the text-to-

Figure 5. We recover plausible object rotations (bottom) that are
challenging for motion capture due to the equivariant geometries
of objects, which result in the object sliding on the ground (top).

Method Time↔ Eh
↗

Eo
↗

SkillMimic [89] 12.2 7.2 13.4
InterMimic (Ours) w/o IET 40.3 6.7 9.9
InterMimic (Ours) w/o PSI 36.1 6.6 10.2

InterMimic (Ours) 42.6 6.4 9.2

Table 1. Quantitative comparison between the teacher policy from
InterMimic and SkillMimic [89] to imitate data extracted from the
BEHAVE [3] dataset involving a single subject interacting with
yogamat. We ablate our proposed approach by removing interac-
tion early termination and physical state initialization.

HOI model, we train it to generate 10 seconds of motion
and use 24 generated samples for evaluation, while for fu-
ture interaction prediction, the model generates 25 future
frames given 10 past frames and we use 60 generated sam-
ples for evaluation. See Sec. F of the supplementary.

4.1. Quantitative Evaluation
Table 1 shows that the baseline struggles with MoCap im-
perfections, e.g., incorrect hand positioning, and thus re-
sults in clearly shorter tracking durations. In contrast,
our method maintains reference tracking for longer dura-
tions and produces interactions that closely match the ref-
erence. Table 2 shows that our method consistently outper-
forms baselines in both training data imitation and out-of-
distribution generalization, including interactions from the
test set and from kinematic generations. We discuss the ef-
fectiveness of specific design choices in Sec. 4.3.

4.2. Qualitative Evaluation
Figure 4 shows a representative sequence from the experi-
ment in Table 1, illustrating how our teacher policy corrects
interactions that PhysHOI [88] fails to track robustly – our
method effectively withstands and corrects incorrect hand
positioning and floating contacts in the reference. Beyond
obvious errors, our method also rectifies the rotation of
symmetric objects that MoCap inaccurately depicts as slid-
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PPO Reference
Distillation

Policy
Distillation Architecture OMOMO-Train [39] OMOMO [39]-Test OMOMO [39]-Test (w ⇑10) HOI-Diff [62] InterDiff [101]

Succ.↔ Time↔ Eh
↗

Eo
↗ Succ.↔ Time↔ Eh

↗
Eo

↗ Succ.↔ Time↔ Eh
↗

Eo
↗ Succ.↔ Time↔ Eh

↗
Eo

↗ Succ.↔ Time↔ Eh
↗

Eo
↗

↭ ⇑ ⇑

MLP

23.9 101.6 7.2 15.6 9.6 85.3 7.5 16.2 3.9 71.2 7.5 17.9 0.0 0.0 - - 6.7 11.7 6.2 16.4
⇑ ↭ ↭ 54.5 139.9 7.1 11.0 54.3 140.2 7.1 11.2 15.5 91.7 9.3 13.7 4.2 84.8 10.1 9.7 65.0 27.4 7.5 13.4
↭ ↭ ⇑ 71.7 152.8 8.9 12.7 91.6 173.7 8.5 13.2 45.8 127.6 9.1 14.9 8.3 130.9 10.1 13.8 73.3 28.9 6.9 14.4
↭ ↭ ↭ 90.7 168.0 5.5 9.7 95.5 173.9 5.4 11.9 62.6 140.9 6.6 14.5 12.5 121.4 8.6 12.1 75.0 29.1 6.2 13.5

↭ ↭ ↭ Transformer 88.8 167.0 6.0 10.2 98.1 176.5 5.9 11.3 56.8 134.7 6.6 13.2 12.5 119.0 8.5 12.6 76.7 29.3 6.4 13.3

Table 2. Quantitative evaluation of large-scale interaction imitation using OMOMO [39], kinematic generations from HOI-Diff [62], and
InterDiff [101]. Additionally, we evaluate on test set when objects with weights ten times greater than those used during training.

Figure 6. Zero-shot integration with a text-to-HOI model HOI-
Diff [62] (Top), using ‘Kick the large box’ as the prompt, and an
interaction prediction model InterDiff [101] (Bottom), where gray
meshes are past states and colored illustrate future generations.

ing along the ground, shown in Figure 5. Figure 6 presents
additional examples that complement Figure 1, demonstrat-
ing how our approach integrates with kinematic generators
for future interaction prediction and text-to-interaction syn-
thesis. This zero-shot generalization extends to novel ob-
jects unseen during training (Figure 7), highlighting the
effectiveness of our object geometry and contact-encoded
representation, as well as the large-scale training.

4.3. Ablation Study
Effectiveness of PSI and IET. We conduct an ablation
study, as demonstrated in Table 1, comparing the full ap-
proach to “Ours w/o PSI”. The results validate that Physical
State Initialization (PSI) is effective by mitigating inaccu-
racies in the motion capture data. We also observe reduced
effectiveness without our interaction early termination, as
training often spends rollouts on irrelevant periods.
Effectiveness of Reference Distillation. Compared to di-
rectly scaling imitation from MoCap with potential imper-
fections (line 1 in Table 2), using references refined by the
teacher policy (line 3) achieves consistently better perfor-
mance on all metrics. The improvement is even more pro-
nounced on the test set, where, without reference distilla-
tion, the policy struggles with unseen shapes, while retar-
geting by reference distillation eliminates the difficulty.
Effectiveness of Joint PPO and DAgger Updates. As
shown in Table 2, training a policy from scratch (line 3) or
relying solely on policy distillation (DAgger, line 2) fails to

Figure 7. Zero-shot generalization of our student policy on novel
objects from BEHAVE [3] and HODome [109].

achieve optimal performance. While supervised skill learn-
ing lays the groundwork, additional PPO fine-tuning is cru-
cial for resolving conflicts among teacher policies. This is
important because our subject-based clustering may not ef-
fectively distinguish between different interaction patterns,
and ambiguity arises when multiple teachers produce dif-
ferent actions for similar motions.
Effectiveness of Transformer for Policy Learning. From
Table 2, we see that using a Transformer policy (line 5) out-
performs MLP-based approaches, particularly on the test
set and out-of-distribution cases generated by the kinematic
model. We attribute this to the Transformer’s inductive
bias in sequential modeling and its capacity to incorpo-
rate longer-term observations, enabling it to handle complex
spatio-temporal dependencies more effectively.

5. Conclusion
In this work, we introduce a framework for synthesizing
realistic human-object interactions that are both physically
grounded and generalizable. Unlike previous methods, our
approach leverages a rich repository of imperfect MoCap
data to facilitate the learning of various interaction skills
across a wide variety of objects. To address inaccuracies
in the MoCap data, we propose contact-guided rewards and
optimize trajectory collection, enabling teacher policies to
recover missing physical details in the original data. These
teacher policies are used to train student policies within a
distillation framework that combines policy distillation and
reference distillation, thus enabling efficient skill scaling.
Our approach shows zero-shot generalizability, which ef-
fectively bridges the gap between imitation and generative
capabilities by integrating with kinematic generation. We
believe that this framework can be adapted for whole-body
loco-manipulation for real-world robots, enabling them to
handle objects with human-like dexterity and nuance.
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