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Abstract

We propose a spectral clustering algorithm for analyzing the dependence structure of multi-
variate extremes. More specifically, we focus on the asymptotic dependence of multivariate
extremes characterized by the angular or spectral measure in extreme value theory. Our
work studies the theoretical performance of spectral clustering based on a random k-nearest
neighbor graph constructed from an extremal sample, i.e., the angular part of random vec-
tors for which the radius exceeds a large threshold. In particular, we derive the asymptotic
distribution of extremes arising from a linear factor model and prove that, under certain
conditions, spectral clustering can consistently identify the clusters of extremes arising in
this model. Leveraging this result we propose a simple consistent estimation strategy for
learning the angular measure. Our theoretical findings are complemented with numerical
experiments illustrating the finite sample performance of our methods.

Keywords: Angular measure, heavy tails, Laplacian, nearest neighbor graphs, regular
variation, spectral clustering

1. Introduction

Multivariate extremes arise when one or more of rare extreme events occur simultaneously.
They are of paramount importance for understanding environmental risks such as fires or
droughts since they are driven by joint extremes of a number of meteorological variables.
Similarly, catastrophic financial events are also of a multivariate nature in financial systems
driven by core institutions that are connected. In the above examples one is precisely inter-
ested in modeling the dependence between rare individual extremes. Multivariate extreme
value theory is an active research area that provides tools for modeling such events.

The dependence structure between extreme observations can be complex and typically
characterized by different notions of dependence from the ones arising in the non-extreme
world. For this reason recent work has sought to rethink various notions of sparsity for
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extremes (Goix et al., 2017; Meyer and Wintenberger, 2021; Simpson et al., 2020), concen-
tration inequalities (Goix et al., 2015; Clémencon et al., 2023), conditional independence
(Belkin and Niyogi, 2003) and unsupervised learning (Chautru, 2015; Cooley and Thibaud,
2019; Janflen and Wan, 2020; Drees and Sabourin, 2021). See also Engelke and Ivanovs
(2021) for a review of recent developments in the literature of multivariate extremes. Much
of this line of research tries to connect important ideas from modern statistics and machine
learning to the context of multivariate extremes. Our work falls in this category as we
propose spectral clustering as a tool for learning the dependence structure of multivariate
extremes.

Spectral clustering (Von Luxburg, 2007) and related techniques are very popular and
have found success in various applications such as parallel computing (Hendrickson and
Leland, 1995; Van Driessche and Roose, 1995), image segmentation (Shi and Malik, 2000)
and community detection (Rohe et al., 2011; Lei and Rinaldo, 2015; Zhou and Amini, 2019).
The central idea of spectral clustering is to use the eigenvectors of the graph Laplacian
matrix constructed from an affinity graph between sample points in order to find clusters
in the data. Typically these are obtained by a K-means algorithm that take these graph
Laplacian eigenvectors as input. We follow this same principle but use as input to our
algorithm the angular parts of the observations whose norms exceed a certain large threshold
i.e., a standard spectral clustering algorithm is applied to the graph built over the angular
parts of these extreme observations.

Because of the nature of the extreme events that we study, we leverage tools from
multivariate extreme value theory for analyzing the theoretical properties of our spectral
clustering algorithm. In particular, we use multivariate regular variation as a modeling
tool since it is closely connected to asymptotic characterizations of multivariate extreme
value distributions (Resnick, 2007, 2018). While a precise definition of regular variation
is provided in Section 2, the basic idea is that a d-dimensional random vector X is reg-
ularly varying if the distribution of the angular part X/||X]|| stabilizes (i.e., converges in
distribution) as the radial part ||X|| becomes large and that the radial part has Pareto-like
tails. The dependence structure is then governed by the asymptotic distribution of the
limiting angular part. In this paper, we consider clustering of the angular parts, which
live on a d-dimensional unit sphere, of observations with large radii. Learning this measure
is challenging because of its multivariate nature and because only a small fraction of the
data is considered to be extremes, i.e., those observations whose radii are sufficiently large,
are retained for estimation. In contrast, standard modeling approaches built on paramet-
ric models are hard to extend to larger dimensions because of their lack of flexibility and
computational complexity Davison and Huser (2015).

We will explore the use of spectral clustering for learning the angular measure. The
performance of the algorithm critically depends on the properties of the random graph that
it takes as input. We will focus on k-nearest neighbor graphs and hence a decision has to
be made about the size of k for constructing the random graph. In this work we study this
question by focusing on a linear factor model. We characterize the asymptotic distribution
of the multivariate extremes generated from this model and show that their dependence
structure is captured by a discrete angular measure in the limit. We establish a rate of
convergence for the angular components of the extremes to their discrete limits. This is
a key step in deriving a theoretically valid range of numbers of k-nearest neighbors for
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constructing a nearest neighbor graph that one should consider in order to guarantee that
spectral clustering can be successfully used to learn the asymptotic angular measure.

From a methodological perspective, the work of Janflen and Wan (2020) is perhaps
the closest to our approach since they also provide a clustering algorithm for extremes.
Their method is however very different as it is based on spherical k-means (Dhillon and
Modha, 2001), a variant of k-means that replaces the usual square loss minimization by
an angular dissimilarity measure minimization. The data-generating model we consider
is a natural factor model that can be viewed as a generalization of the max-linear model
considered in Janflen and Wan (2020). We characterize the limiting distribution of the
extremes in this model. We rigorously study the extremal nearest neighbor graphs and
show that their connected components can identify the clusters of extremes of our factor
model. By construction our algorithm is computationally tractable and model agnostic, so
it has a potential of working well beyond the setting covered by our theory.

The rest of the paper is organized as follows. Section 2 provides some background
notions from multivariate regular variation necessary for our analysis. Section 3 introduces
the proposed spectral clustering algorithm for extremes. In Section 4 we introduce our
linear factor model (LFM) and derive the asymptotic distribution of the angular components
X/|1X]| of observations with high threshold exceedances i.e., observations X with very large
|IX]|. In Section 5 we study the behavior of k-nearest neighbor graphs constructed using
a sample of extremes. Section 6 contains a number of numerical examples that illustrate
our proposed method. We show in Section 6.1 that for a large range of values of k the
connected components of the nearest neighbor graph consistently identify the clusters of
extremes arising from the linear factor model. This includes an examination of LEM with
added noise. The spectral clustering method is still able to estimate the signal reasonably
well. The good numerical performance of the method in the LFM plus noise context suggests
that it might work well in more general settings. The spectral clustering method is also
applied to an environmental data set consisting of daily measurements of five air pollutants
over both winter and summer seasons. The analysis suggests that in modeling the extremes,
a LFM model with 5 clusters seems appropriate. Moreover, viewed as a time series, the
extremal dependence for O3 and NO2 does not extend beyond a second-day time lag. Proofs
of the technical results in the body of the paper and their complements are contained in
the appendix.

2. Background on multivariate regular variation

Regular variation is often the starting point in modeling heavy-tailed data. We will make
regular use of this assumption throughout this work. A random vector X = (X1,...,Xy)"
is said to be regularly varying with exponent a > 0 if for some norm || - || on R% and some
probability measure I' on the unit sphere S in R¢, the following limits hold:

Jim B(X/|X] € - | [X] >r) = I() 1)

and
IP’(HXH > rm)

=@ 2
AR BRI >) S
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for all z > 0, where = denotes weak convergence on S*!. In other words, the law of the
angular component X /|| X|| stabilizes as the radial component becomes large, and the radial
component is regularly varying (equation (2)) with index . The limit probability measure
I is called the angular measure (or spectral measure) and describes how likely the extremal
observations are to point in different directions. In other words, the angular measure de-
scribes the limiting extremal angle for high threshold exceedances that correspond to large
|| X||. The support of this measure is particularly important since it shows which directions
of the extremes are feasible and which are not feasible. Throughout the rest of paper we
will take || - || to be the Euclidean norm.

For example, if X has a spherically symmetric distribution and the radius ||X| has a
Pareto distribution with index «, then X is regularly varying with angular measure that
is uniform on S?* . In this case, the random vector is equally likely to have extremes in
any direction so we do not expect extremes to be clustered. On the other hand, consider
observations generated from a univariate MA(3) process given by Y; = Z;+.5Z;_1—.6Z; o+
1.5Z;_3, where {Z;} is an iid sequence of symmetric stable random variables with index
a = 1.8. The bivariate vector X; = (Y%, Y;_l)T is regularly varying and the scatter plot
of Y; vs Y;_1 is displayed in the left panel of Figure 1. Notice that for large values of
| X¢|[, the points align themselves on rays. In the right panel is a plot of X;/||X;|| for those
values of || X¢|| that exceed the 99.8% empirical quantile of the radii and are grouped in
10 clusters. In this particular case, the spectral distribution consists of 10 point masses (5
pairs of symmetric point masses, indicated by arrows emanating from the origin).
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Figure 1: Scatter plot of (Yz,Y;—1) for an MA(3) process (left); spectral measure on S!
(right)

This simple example illustrates the challenge in finding meaningful low dimensional
regions supporting the extremes. In a series of papers (see Meyer and Wintenberger (2021),
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Drees and Sabourin (2021), Cooley and Thibaud (2019)), PCA-like analyses have been
applied to finding low-dimensional subspaces that contain the bulk of the support of the
spectral measure. As seen in this MA(3) example, such strategies might not be well suited
for extracting the key features in the extremes which do not necessarily live neatly on a
small number of subspaces. The approach taken here will be to use spectral clustering to
learn the angular measure. While machine learning ideas provide guidance for thinking
about and addressing multivariate extremes, the very nature of rare events will require us
to borrow ideas from the theory of multivariate regular variation to analyze the extremal
nearest neighbor graphs used by our algorithm.

3. Spectral clustering

In this section we describe how to construct random graphs based on a sample of extremes
and how to use such graphs to find clusters of extremes via a simple spectral clustering
algorithm.

3.1 Constructing random graphs

Starting with a sample of d-dimensional observations X;, ¢ = 1,...,n, one first needs to
identify the extremal part of the sample, on which the extremal estimation will be per-
formed. This is often done by selecting a high threshold u,, and assigning to the extremal
part of the sample the observations X; satisfying ||X;|| > .

Assume that N,, observations X; (with ¢ in some set V, of cardinality NN,) are in the
extremal part of the sample. Associated with each i € V,, is the angular component of the
observation X;/||X;|| that lives on the unit sphere. This allows us to think of the points
in V, as points on the unit sphere, forming nodes in a simple graph. We connect nodes iy
and 79 by an edge according to a certain rule. One possible rule chooses ¢ > 0 and connects
1,13 € Vp, by an edge if

p(Xn/HXuHaXm/HXWH) <e€. (3)

One often uses the usual Euclidean distance p on the unit sphere S¥~! in (3); but another
distance function on the unit sphere could also be used. The random set of edges &, created
in this fashion define an e-neighborhood graph.

In what follows, we will focus on a different rule, leading to the k-Nearest Neighbor
graphs (k-NN graphs). This rule asserts that a node i1 € V, is connected to a node iz € V),
if the point on the unit sphere corresponding to i is among the k-nearest neighbors of the
point corresponding to i1, according to some distance function. This definition leads to
a directed graph because the neighborhood relationship is not symmetric. There are two
natural ways of making this graph undirected. The first one is to connect i; and io with
an undirected edge if either i; is among the k-nearest neighbors of is or iy is among the
k-nearest neighbors of i;. The second one connects 77 and i only if both conditions are
met, i.e., when i; and is are mutual nearest neighbors (hence the resulting graph is usually
called mutual k-nearest neighbor graph). Our main results apply to both constructions.
We work with weighted graphs, where we assign to the edges a weight equal to the distance
between the points on the unit sphere defining the nodes. More specifically, we will take as



AVELLA MEDINA, DAVIS AND SAMORODNITSKY

input to our algorithm the weighted adjacency matric W = [wj, i, )i, iney, and

(4)

d(Xi, /X |l, Xiy /[ X, |[) if 41 and iy are connected,
i1i2 — e .
0, if 41 and i are not connected.

When defining the weights in (4) d is a certain kernel; a typical example of such a kernel e.g.,
d(x,y) = exp(—||x —y]|), is used in the examples of Section 6. In the following subsections,
we describe our algorithm and highlight the theoretical challenges.

3.2 The algorithm

The degree of a node ¢ € V,, is defined as

The degree matrix D is defined as the diagonal matrix with diagonal elements [d;];cy, and
the normalized symmetric graph Laplacian matrix is defined as

L=I-D'?2wD™ /2 (5)

where I is the identity matrix. The spectral clustering algorithm of Ng et al. (2002) proceeds
as follows:

1. Compute the first m eigenvectors uy, ..., u,, of L (i.e., the eigenvectors corresponding
to the m smallest eigenvalues of L) and define an N,, X m matrix U using these
eigenvectors.

2. Form an N,, x m matrix V by normalizing the rows of U to have unit norm.

3. Treating each of the N, rows of V as a vector in R™, cluster them into m clusters
Ci,...,Cp using the K-means algorithm.

4. Assign the original points X; to cluster C; if and only if row ¢ of the matrix V was
assigned to cluster C}.

The motivation for this algorithm is described below.

3.3 Connected components, Laplacian and k-nearest neighbor graph.

We say that a subset A C V,, of the vertices of a graph is connected if any two vertices
in A can be joined by a path of edges such that all intermediate vertices also lie in A.
If A is connected and there are no connections between A and V,, \ A, then A is called
a connected component. It is well known that the number of connected components of a
graph G is related to the spectrum of its symmetric graph Laplacian. This is formalized in
the following proposition (Von Luxburg, 2007, Proposition 2).

Proposition 1 Let G = (V,&) be an undirected graph with non-negative weights. Then
the multiplicity m of the eigenvalue 0 of L equals the number of connected components
A1, ..., Am in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors
OAys---504,, of those components.

m
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It follows from this result that if the spectral clustering algorithm is applied to a graph
with the number of connected components equal to the parameter m in the algorithm, then
the algorithm will identify the connected components. In Sections 4 and 5 we derive the
asymptotic angular distribution of multivariate extremes arising from a linear factor model
and provide the relevant asymptotic theory for the connected components of the k,-nearest
neighbor graph constructed using the angular components of the extremes. Specifically, it
will be rigorously established that under certain conditions the spectral clustering of the
resulting graph consistently estimates the support of the spectral measure of multivariate
extremes arising from this model.

4. Linear factor model and convergence of the angular components

We now introduce the generative model that we will be studying in this paper. Let X be a
d-dimensional random vector defined by the following linear factor model (LFM)

X = AZ, (6)

where A = [aij]izly_..d;jzl’mp is a d X p matrix of nonnegative elements and Z is a p-
dimensional random vector of factors consisting of independent and identically distributed
random variables, that are either nonnegative or symmetric, and have asymptotically Pareto
tails, i.e.,

P(Zy >2)~cz™® asz = 0 (7)

for some o« > 0 and ¢ > 0. Note that we write f(x) ~ g(x) as * — oo to mean that
lim, o0 f(2)/g(x) = 1. In the examples section, we will add noise to the model in (6)
in which case, the model corresponds to a standard heavy-tailed linear factor model. One
can think of (6) as a linear version of the max-linear model studied in Janfilen and Wan
(2020), which has the same spectral distribution. We will also relax the assumption that
the matrix A is non-negative and will allow the noise to be symmetric. In this case, the
spectral distribution of the model is no longer constrained to the positive quadrant of S¢1.
Related max-linear models have also been considered in the context of time series models
for extremes (Davis and Resnick, 1989; Hall et al., 2002) and more recently in the context
of structural equation models (Gissibl and Kliippelberg, 2018; Kliippelberg and Lauritzen,
2019). The asymptotic Pareto assumption in (7) can be weakened to regular variation, at
least for the main results in this section. However, this comes at the expense of assuming
a more intrinsically complex set of conditions on the choice of thresholding sequences.
Additional conditions, such as existence and properties of the density function of the noise,
are required for the proofs of the results in Section 5.

It follows immediately from (6) and (7) (see, for example, Basrak et al. (2002), Propo-
sition A.1) that X is a multivariate regularly varying random vector satisfying (1); namely,

T—r00

. X
11mIP’<HXHG-|HX||>:L‘,>:>F(-), 8)

where = denotes weak convergence on the unit sphere S¢~!, T' is a discrete probability
measure on S%! that, in the nonnegative case, puts mass |[a®|*/w at a® /||a®)| for
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k=1,...,p, where a®) = (a1, asp, ..., aqs) " , is the k" column of the matrix A and

p
w=7) [[a®". (9)
k=1

In other words, I' has the representation

L) =w 'Y I1a®)% w (), (10)
k=1

_alk)
latE)
where 6,(+) is the Dirac measure that puts unit mass at . On the other hand, in the
symmetric case, T' puts mass [|a®||®/2w at +a®)/||a®)| for &k = 1,...,p. That is, the
number of point masses in the symmetric case is double of that number in the nonnegative
case. !

Based on a random sample of iid copies of Xy, ..., X, of X as above, we construct an

estimate of the location of the point masses that comprise I', i.e.,

a® k=1 11
Cr = m B =1,...,p ( )
in the nonnegative case, and
+a(k)
= k=1,..., 12
Skt = ] p (12)

in the symmetric case. Note that these c; are not necessarily distinct. Intuitively, for large
n, the angular parts X; /|| X;|| of the sample for which || X;|| is large, will cluster around these
ci. In fact, we formalize this intuition and provide a rate of convergence for the limiting
extremal angles with high threshold exceedances in the next theorem. This will be a key
ingredient in our convergence analysis of extremal k-NN graphs. For the ease of notation
we will prove the following result in the nonnegative case; the symmetric case follows by
simply doubling the number of points on the sphere.

Theorem 2 If (uy,) is a sequence converging to infinity as n — oo, then, in the nonnegative
case, for any j =1,...,p, the conditional law of

un (X/[IX]] = ¢5)

given || X|| > un, Z; > un/w'®, (w defined in (9)) converges weakly to the law of

1 . « T
[a0) |2, (ST Sa—5)

1. Without much additional effort, one could consider the case that the tails of Z; are balanced in the sense
that lim,— oo P(Z1 > z)/P(|Z1] > ) — p* € [0,1]. The location of the point masses for I' would be
exactly the same as in the symmetric case, but with mass p*||a®™||®/w at cg + defined in (12), where
p=1-p".
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where Wy, has a Pareto distribution (i.e. P(W, > x) = =%, x > 1) that is independent of
Z,.. .\ 2y,

d
St = Z (a3, X1—j — ajjai Xi—j) (13)
i=1
and
p
Xi,-j = XZ' - CLiij = Z aimZm . (14)
m=1

m#j
Proof We start by observing that the conditional law of
.
(Zla"')ijlaZj/uTLaZ]#*l,'"aZp) (15)
given ||X||? > u2, Z; > u,/w'/®, converges in distribution, as n — oo, to the law of
T
(Zl,...,Zj_l,Wa/wj,Zj_H,...,Zp) 5 (16)
where w; = ||a)|| The main ingredients in establishing this result is to note that Z]2 is
regularly varying with index «/2 while for ¢ # j, Z;Z; is regularly varying with index o

(see Embrechts and Goldie (1980); Theorem 3). Moreover, from the convolution closure
property for sums of independent regularly varying random variables, it follows easily that

d p p
P(Z; > un:L',Z(Z ariZi)? >ut) ~ P(Z; > unx,Zw?ZiQ > u?)
k=1 i=1 i=1
p
~ ZIP’(ZJ- > Upz, w2 Z? > u)
i=1
~ P(Z; > upx).

Now to finish the proof of (16), we use these relations and note that for z > 1/w; (and
hence z > 1/w'/?®),

P(Z; > upw, > b wiZ2 > u?, Z]2 > u? Jw?@)

P(Z; > upz ||| X]|? > u2, 22 > u? Jw?/®
( J n ’H H n 7 n/ ) IP( €:1w32i2>uglyzj2>u%/w2/a)

P(Z; > upx)
P(Zj > un/wj)
— wj_o‘afo‘
= P(Wy > wjx).
We have
(Zp =1 A1mZmy - - - Zp =1 admZm)T aly)
n (/X = ) =y 12 ms -
( 2 B Gl

= (Vvlu"'avd)—ru
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say. For [ =1,...,d,

wy anzl aim Zm — ag;|| X]|
w;|| X||
2
w3 (3oh—1 @mZm)” — aj;|| X]?

J
=u . (17)
w1 X[ (ws Yoy aim Zm + ai|| X))

W:un

We note that the numerator of (17) reduces to the following expression where the Z]2 terms
cancel out

d d
Numy: = 2a;Z; (IIa(J)IIQXz,—j - azJ‘Zai,in,j> +[aD|PXE —af; > X7
i=1 =1

d d
= 2a;;Z; ( (a?le,_j — aljdini,j)) + Ha(”||2X12,,j — ale ZX%_j, (18)
i—1 i=1

)

where X; _; is as defined in (14). The denominator of (17) is handled in a similar way, but
this time the ij terms do not cancel. Indeed, since

M=

X = (a3, 237 + 2a1; 2 Xy~ + Xi ;)

kji=j

i

1
d
_ zd:az 2 |14 Zk:1(X13,_j + 2a1; 2 Xy, —5)
- ki< d

k=1 D k=1 a%jZ?

d
Dkt (X7 + 201525 X, )

2r72 )
wiZ;

= wj|Zj|\ |1+

we can write
Deny = w3| Z;|(1+ 0p(1)) (wjar; Zj + R+ ajw;| Zi|(1 + 0p(1))) ,

where R is a linear function in the variables Z1,...,Z, in which Z; does not appear, and
0p(1) goes to zero in probability given Z; > u, /w'/®. We view

v Num;  Numy/uy,
= U =
T Deny Deny/u2

as a ratio of two continuous real-valued functions of the random vector in (15) (plus a
vanishing term in Den;), so that the random vector (Vi,...,Vy)T becomes a d-dimensional
vector of such ratios. By the continuous mapping theorem the random vector (Vi,...,Vy) "
converges weakly to the d-dimensional vector of the ratios of the corresponding functions
applied to the random vector in (16). These result in

2a1;(Wa /w;)S] _;

10
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in the case of Num; and in
2
W3 2a;w;

in the case of Den;. Putting everything together produces the claim. |

As explained above, the following corollary is an immediate consequence of Theorem 2.

Corollary 3 Let a sequence of levels (uy,) converging to infinity. Then, in the symmetric
case, in the notation of Theorem 2, for any j = 1,...,p, the conditional law of

un (X/|IX]| = £¢;)

given || X|| > wn, +7; > u,/w'/®, converges weakly to the law of

+1 x « T
W (Sl,—j""’sd7—j) .

Remark 4 In the nonnegative case, Theorem 2 addresses the conditional convergence of
X/|IX]|, given | X| > un, Z; > un/w'/®, to the location c; of the corresponding atom of
the spectral measure. It is also possible to address a conditional convergence to the mass
wHaW)||* of this atom. Indeed,

P(Zj > up/w" ||| X]| > up) — wHaW) | (19)
as n — o0o. To see this, write

uSP(Z; > up wl/a, X|| > up
P(Zs > o X > ) = "5 O )

9

and the numerator converges to c||a)||*, while the denominator converges to cw. If one
strengthens the asymptotic Pareto tails assumption (7) to include the rate of convergence
to the limit, then one would able to establish the rate of convergence in (19) as well. The
situation is similar in the symmetric case. We do not pursue this in the present paper.

We now explore the connection between large values of the underlying factors Z;1, ..., Z;,
and large values of || X;||. We will see that under certain conditions, high threshold ex-
ceedances of || X;|| are generated by only one underlying factor Z;;, j = 1,...,p. This will
be important for our analysis of extremal k-NN graphs which will require additional as-

sumptions on the rate of growth of u,. Since a(o‘a‘*f?)) < a~ !, we can further impose that the
sequence (uy) satisfies the growth conditions
n~V%, — 0 and n~ @2/ 0 (20)

as n — 00. Also note that we may choose a further sequence (h,,) such that
hyp — 00, hy = o(uy), hy = 0(u7(1°‘+1)/2n_1/2), n~ Y%y — 00 (21)
as n — 0o. Indeed, the choice

Ty = @D/ (2=0) /(1)

11
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works for this purpose.
For n =1,2,..., we define the set of indexes corresponding to extreme observations

Lo={i=1,...,n: |Xi| > un}, (22)

and denote its cardinality by N,, =card(Z,,). From (7) and (20), we see that the mean and
variance of N,,/(nu, %) converge to cw and 0, respectively and hence that

Ny, /(nu,*) 5 cw, as n — oco. (23)

The following lemma connects exceedances of u, by || X;|| with exceedances of h,, by
ZZ]?] = 17"'7p'

Lemma 5 Let (hy) be a sequence satisfying (21) and consider the event
B, = {for any i € I, at most one of Zym, m=1,...,p exceeds hn}.
Then P(By) — 1 as n — oo.

Proof Note that (6) implies that the m** component of the i*" observation is of the form

p
Xim =3 amjZijym=1,...,d; i=1,...,n, (24)
j=1
where Z;1, ..., Z;, are iid random variables with asymptotic Pareto tails (7). Denote
a* = d"?max{amj, m=1,...,d; j=1,...,p} (25)

Since u, > h, for n large, we have

n d
P(B;,) < Z]P’ (Z(X’k’)2 > u2, Zim > hy, for two or more of m=1,... ,p)
i=1  \k=1

<nP (a*kmax Zg > Up, Zim > hy for two or more of m=1,... ,p>
:17"'7p

< kz; <Z> nP(Zy > hp)P(Z1 > up/a*) — 0

by the last property in (21) and (7). This proves the lemma.
|

Equipped with Lemma 5 we can now proceed to bound the distance between the observed
angular parts of the multivariate extremes and their corresponding theoretical asymptotic
atoms. Assume, for a moment, that we are in the nonnegative case. We already know that
for large n, we have that for every ¢ € Z,, one of the values of Z;,,,, m = 1,..., p must exceed
up/a* and all other values of these variables cannot exceed h,. We now define the sets of

12
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indexes corresponding to extremes generated by each of the individual factors i.e. we define
forj=1,...,p

IV ={i=1,....,n: |Xi|| > un, Zij > un/a’}. (26)
Consequently,
P
j=1

and by Lemma 5 for large n this is a disjoint union with probability tending to one. Let
NY be the cardinality ofI,(I]), j=1,...,p. Using the fact that a* > |[a)|| for j = 1,...,p,
the same argument as in (23) shows that j =1,...p,

N,(Lj)/(nugo‘) £ c||a(j)||c“7 as n — 0o. (28)

We enumerate X;/||X;||, i € Z, as Y;, i =1,..., N, a sample on S*! of random size N,,.
For each j = 1,...,p, we enumerate X;/||X;|, 7 € L(LJ) as ng), 1= 1,...,N,SJ), a sample
on S%1 of random size N,(L] ) Tt is straightforward (if a bit tedious) to check the following
result.

Lemma 6 For large n, on the event By, fori=1,... ,N,(Lj),
2
() _ H < 8@)” by
[Y9 ¢ < OO A (29)

where the c; are as defined in (12).

The situation in the symmetric case is, of course, completely analogous. It follows from
the definition of h, in (21) and (29) that the angular components of the extremes are
clustered around the centers c;. The results in the next section build on Lemma 6 and
provide sufficient conditions for our extremal spectral clustering algorithm to be consistent.
For this, we provide a careful asymptotic analysis of the extremal k-NN graph used by the
algorithm.

5. Asymptotic analysis of the connected components of the extremal
k-NN graph

Our analysis consists of two main components. The first one is to show that the extremes
generated by different factors will belong to different components of the extremal k-NN
graph as long as the cluster centers corresponding to the underlying factors are different.
The second part will be to argue that all the extremes generated by an underlying factor
will also belong to the same component of the extremal k-NN graph. This second step turns
out to be the more technical one in our analysis and we will only establish this result for
d = 2. Along the way we derive a few intermediate results that we also highlight in order
to better explain the key ingredients of our argument. Going forward, in our proofs, ¢ > 0
represents a finite and non-zero constant whose value may change from line-to-line. In the
sequel we will assume, without further comments, that the sequence (u,,) satisfies (20). The
first step of our program is covered by the following proposition.

13
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Proposition 7 Suppose that k,, = o(nuga) as n — oo. Then there is a sequence (By 1) of
events with P(By 1) — 1 as n — oo such that, for all n large enough, on the event By, 1, any

two points Y(fl) and YgQ), i1=1,.. .,N;le), g =1,... ,Ny(LjQ) will belong to two different

7

connected components of the k,-NN graph if c;, # cj,.

Proof Define
Bni=B,N{NY >k, forj=1,...,p}. (30)

By Lemma 5, (28) and the assumption on k,, , P(B,1) — 1 as n — oo. By (29) and the
(41)
Yz(m, 1=1,..., N,(le), i # i1, that are within distance of ¢ - hy,/u, from it. On the other
(42)
12

triangle inequality, on the events B,, 1, any point Y~ has at least k,, neighbours of the type

hand, by (29) and the triangle inequality, its distance from any point Y
cannot be smaller than

with cj, # cj,

chl - csz — ¢ hp/up.

Therefore, for large n, the latter point cannot be among the k,,-nearest neighbours of Yl(f 1)

We now embark on the second step of our program and establish that, at least in the
case d = 2, under appropriate conditions, the points Yl(j ), 1=1,.. .,N,(L] ), belong, with
high probability, to the same connected component in the k,-NN graph. We start by

investigating the deviations of these points from the center of the cluster, c;, defined in

(12). Since the points ng ), i=1,... ,Néj ) are treated as independent, the following result
is essentially immediate from Theorem 2.

Lemma 8 In the nonnegative case, for any j = 1,...,p, the conditional law of
un (YY)~ ¢))

)

given ngj > 1, converges weakly to the law of

1

[ad 2w, (51,

e Si)T

that is specified in the statement of Theorem 2. An analogous statement holds in the sym-
metric case.

Remark 9 It is a straightforward calculation to check that, if j =1,...,d,

d d d
* 2 2
doaSi =) (wja X — afjaiXi-;) =0. (31)
=1 1=1 i=1
Therefore, the normalized deviations of the points Yz(j), 1=1,... ,Nr(Lj) from the center of

the jth cluster are, in the limit, supported by a (d — 1)-dimensional subspace.

14
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Using the information in Lemma 8 we now proceed to prove that under appropriate
conditions, the points YEJ ), i =1,... ,NT(LJ ), belong, with high probability, to the same

connected component of the k,-NN graph. We will need some additional notation in order

to state the result. For a fixed j =1,...,d we write for m =1,...,d,
Y =N auzi? i=1,... N (32)
=1

the notation should be compared with (24). That is, {(Zi(f’J), e ZZ-(;J))T,Z' =1,... ,N,gj)}
are iid random vectors distributed according to the conditional distribution of (Z1, ..., Z,)"
given || X|| > uy,, Z; > up/ w'/?. Since the connectivity of any nearest neighbor graph is not
affected by shifting and scaling, it is sufficient to consider the k,-NN graph constructed on
the deviations of the points ng), 1=1,..., N,(Zj) from the cluster center.

Continuing with the notation used in the proof of Theorem 2 we isolate the main term

in the deviations from the cluster center by writing
. y i T y
wn (Y =) = (809, 859)) ) (wdZ5 ) fun) (33)
) (+.5) (=) " *.3)
n [un(YZ(J o) (S0, ) w2 )
=MD +DO =1, NV,

where S\") = Yigj) _ alng’j) _ NP

1 1, almZi(:;L’j) is analogous to (14). In the case d = 2,

m#j
it follows from (31) that for some nonzero deterministic vector b in R?,

For notational simplicity we continue the discussion with j = 1, and in this case these are
essentially univariate iid random variables with the distribution of
anZy + -+ axyZ,

wiZy Juy,

T, = (34)

given
((IHZl —+ e+ a17pr)2 + ((Lngl 4+ -+ angp)2 > u%, 1 > un/wl/a . (35)

Finally, we let Fr;, denote the conditional law of T,, in (34) given the conditions in (35).
For technical reasons we require further conditions on the latent factors in our subsequent
results. We assume that the generic noise variable Z in (6) and (7) is positive or symmetric,
and has a probability density function f; such that

fz(z) is bounded away from 0 on compact intervals and bounded from above,  (36)
and

B~z < fy(2) < Bz~ (FD, (37)

15
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a > 1, for all z > 2y, some B > 1.
The following lemma shows that the conditional density function fr, (t) = 0Fr, (t)/0t
enjoys some useful regularity properties.

Lemma 10 Assume (36) and (37). For a > 1 the conditional density function fr, is such
that:

(i) There exists an G € (0,00) such that for all n large enough, fr,(t) < G for allt.
(ii) fr, is uniformly bounded from below on compact intervals, uniformly in n.

(iii) There is a constant D > 1 and a number to > 0 such that D=t~ < fr (t) <
Dt=(@+D) yniformly for all n large enough and all t > t.

It is clear that an analogous result holds for the appropriate conditional densities in the
symmetric case.

The following intermediate result is the key ingredient for completing our analysis of the
connected component of the extremal k,-NN graph, at least in the case d = 2, assuming
certain regularity conditions on the noise variables.

Lemma 11 Assume (36), (37) and let d =2, 7 > 1 and consider the random variable my,
defined by

mn = N /[71og N\V, so that by (23) my, ~ M, n — oo. (38)
7 log(nu, )

Define the intervals
Lim = (Fp' (0= 1) /my), Fr M (i/mn)), i=1,...,my (39)
as well as intervals along vector b by
Jin=1ILizb, i=1,...,my.

Then, on an event with probability tending to one, there is a finite positive integer Kgy such
that for all n large enough and all i = 2,...,m, — Ko, every point in J;, is closer to
every point in the intervals J;—1, and Jiy1, than to any point in an interval J;, , with
‘Z' — i1’ > Kj.

The proofs of these two lemmas are contained in the Appendix.

We are now ready to state the main result showing that the extremes generated from the
same underlying factor will also belong to the same connected component of the extremal
k,-NN graph with probability tending to one, under appropriate regularity conditions. This
time, for simplicity, we only consider the symmetric case.

Theorem 12 Assume (36), (37) and let d = 2. Then, if k, > Glogn with large enough

G > 0, there is a sequence (By2) of events with P(By,2) — 1 as n — oo such that, for
all n large enough, on the event B, 2, any two points Yg) and Yg), i1 = 1,...,N,§J),
o =1,... ,Ny(bj) will belong to the same connected component of the k,-NN graph for any
i=1...,p.
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The proof of the theorem has been relegated to the appendix.

It follows from Proposition 7 and Theorem 12 that, with probability tending to one
as n — oo, the extremal k,-NN graph obtained from a sample drawn from (6) will have
exactly m < p connected components corresponding to the m distinct asymptotic point
masses (12) of the model. In other words, the extremal k,-NN graph consistently identifies
the underlying clusters through its connected components. This in turn implies that spectral
clustering will be consistent by Proposition 1. We have therefore shown the following main
practical result.

Corollary 13 Assume (36), (37), d =2, k, = o(nu,®) and k, > Glogn. Then, spectral
clustering will consistently identify the clusters of extremes arising from the linear factor
model.

Remark 14 In practice consistent clustering can be achieved by taking k, > Gglog N, for

: oy P .
some Go > 0 and ky, = o(Ny,) since Ny /(nu,*) — cw, as n — oo. In our experiments we

chose k, = [Tl(i\énNn—‘ + 1 for some 7 > 1.

Corollary 13 suggests a simple strategy for estimating the asymptotic angular measure of
the extremes generated from the linear factor model (6). Assume we run spectral clustering
on the extremal k,-NN graph. Then we can denote by ZA}(@J ) the set of indices corresponding
to the jth cluster found by the algorithm for j = 1,...,m. With these sets we can define
N = card(l}(f )) and estimate the centers of the spectral measure and their respective

masses as )
~ 1 Xz ~ NnJ .
¢ = W Z X and 7 = N ji=1,...,p. (40)
ez

The following result is an inmediate consequence of the main results of this section.

Corollary 15 Suppose m = p and that the conditions of Proposition 7 and Theorem 12
hold. Then, ¢; 5 c; and 7 L wHaD || for all j=1,...,p.

Note that in practice one can also normalize the estimates ¢; to ensure that they lie in the
unit sphere for all n. Clearly the resulting estimators remain consistent under the conditions
of Corollary 15.

Even though the theoretical results of this section use the assumption « > 1 in (37),
we believe they should also hold when « € (0, 1]. The numerical experiments shown in the
next section supports this assertion.

6. Numerical illustrations

In all the examples considered below we compute weighted adjacency matrices using the
exponential kernel d(x,y) = exp(—s||x — y||) with s = 1 and select the number of clusters
as suggested by the screeplots of the fully connected weighted adjacency matrices W. It
matched nicely the correct number of clusters, when known. We consider sample sizes n =
{1000, 5000, 25000, 125000} and take a sample of extremes corresponding to observations
whose Euclidean norm is larger or equal to the following vector of corresponding sample
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quantiles: 8 = {0.9,0.96,0.984,0.9968}, respectively. These quantiles were chosen to lead to
samples of extremes of sizes N,, = {100, 200, 400, 800}, correspondingly. For these extremes
we define k,,-nearest neighbors graphs with k,, = (#&VJ + 1, the corresponding values of
the constants are in the vector C' = {3,5,7,9} .

6.1 Linear factor model with and without noise

As a first example, consider d—dimensional vectors that follow the p—dimensional linear
factor model
X = AZ +oe, (41)

where A € RP is a matrix of factor loadings, Z = (Z1,...,Z,)" is a p-dimensional vector
consisting of iid standard Fréchet distributed components (o = 1), ¢ > 0 regulates the
signal to noise ratio and € is a noise vector obtained by multiplying a univariate independent
standard Fréchet with an independent p-dimensional random vector of iid standard normals,
ie.,

e =N, (42)

where 7 is standard Fréchet, N = (Ny,.. .,Np)T is a p—random vector consisting of iid
standard normals, and Z,n, and N are independent. Now using computations similar to
those given in Section 4, it can be shown that

P(||X][| > =) P30 [1a®* 27 + o® N[>y > 2?)
P(Zy >z) P(Z, > x)
i P(la® 227 > 2?) + P(o?|N|*y* > a?)
P(Z > )

P
= Y _[a?] + oE[N|, asz — oo, (43)
i=1
where the last line follows from an application of Breiman’s lemma, see Breiman (1965).

Taking this calculation one step further, we find that the angular measure associated with
the model (41) is (see (10)),

L()=w™ (Z la” 6 X () +0EHNH5g|(')> : (44)
i=1 Il

llaC®
al®

with probability [|a®||/w, i = 1,...,p and a uniform distribution N/|N|| on S ! with
probability oE||N||/w. This latter piece corresponds to the noise component oe. So the
goal here is to identify the discrete components of I' using our method when the model does
not strictly follow the LEM. Figure 2 shows pairwise scatter plots of the angular components
of extremes generated from a pure signal and a noisy LFM with ¢ > 0.

We note that if o = 0, then model (41) is approximately equal to the max-linear model
X = (\/;?Zlalij, e \/;?Zlaijj)T and will in fact have the same asymptotic spectral mea-
sure. Intuitively, this model generates p clusters of extremes since the noise term is only
adding uniform noise to the angular measure.

where w = Y0, [|a®)|| + oE|N||. In other words, T' has discrete mass points at
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Figure 2: Pairwise scatterplots of the angular part of the extremes generated from (41) with factor
loading matrix (45), n = 125000, N,, = 400 and ¢ = {0,1}. In both cases there are
two clear clusters corresponding to the signal. The red points in subfigure (b) denote
extremes attributed to the signal ATZ;.

As part of a simulation study, we consider o = {0,1, 3,5} and choose

0.1 0.9
0.2 0.8

A= 03 0.7|° (4)
0.4 0.6

This model is similar to one of the max-linear models considered in the simulations of
Janflen and Wan (2020) where our factor loading matrix A can be viewed as a deterministic
version of their random factor loadings. In the simulations we took two clusters for the
pure signal model where ¢ = 0 and three clusters for the noisy model when o > 0 as these
values are suggested by the typical screeplots we observed; see Figure 3.
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We compute the normalized columns of the A matrix which correspond to the location
of the point masses of the spectral distribution (these are the ci, k = 1,2 in (12)). After
applying our method to a single realization of size n = 125000 with N, = 400, k, =
[ 51(?;2001 + 1 = 15, visualized in the pairwise scatter plots of Figure 2, we obtained the
estimates of the c represented in Figure 4. These masses on the sphere are estimated by
taking the mean of all members in each of the identified clusters, seen in Figure 5, and
then normalizing it to lie on the unit sphere. The two panels in Figure 4 correspond to
the cases of 2 clusters and no noise and two clusters with uniform noise. In the first plot,
the heat map does a good job in recreating the relatives size of the mass locations. In the
second panel, the first two columns of the matrix, also reproduce the relative sizes of the
columns (increasing in the first and decreasing in the second) of the A matrix. The third
column corresponds to the cluster of points that have not been assigned to either of the first
two clusters. As such they are essentially scattered uniformly around the unit sphere but
away from the locations of the point masses corresponding to the first two columns. This
is reflected in the third cluster having more negative values as indicated by the softer (red
colors) in the heat map.

pure signal signal + noise
o 3 o
o
S
[%2] [} o
(] (] o
=} — > -~
IS I
g o g
o S [0)
o =2 o
T T B
8 1o Oo
o —  000c0000000000000000000000000 o
1T T T T 1 T T T T 1T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Index Index

Figure 3: Screeplots of fully connected kernel matrix of pure signal and noisy linear factor models
noise models.
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Figure 4: The heat maps show the estimated cluster centers based on the cluster assign-
ments displayed in Figure 5. The extremal sample corresponds to four dimen-
sional extremes generated from LEM given by (41) with loading matrix (45) and
o =0 and o = 1 respectively. In both cases we took n = 125000, N,, = 400 and

k, = 15.
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Figure 5: Cluster assignments output of spectral clustering applied to data generated from
(41) with n = 125000, N,, = 400 and o = {0,1}. In both cases spectral clustering
used an extremal 15-NN graph.

A small simulation study was conducted for this LEFM model with and without noise.
Based on the screeplots, we used 2 clusters in the noiseless case and 3 clusters in the case
with noise. The two normalized columns of the A were estimated and the boxplot of the
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estimation error measured in Frobenius norm are displayed in Figure 6 for ¢ = 0 and in
Figure 7 for the case ¢ > 0. The succession of boxplots in each row correspond to an
increasing N, with the centers and width becoming smaller. Note that the scales on the
plots change across the row. The boxplots in blue correspond to our method with difference
choices of nearest neighbors as a function of C, and the yellow boxplot is based on the
spherical k-means approach considered in Janlen and Wan (2020). In the o = 0 case, our
method performs about the same or slightly better than the spherical k-means method.
However, as one adds noise to the model, our method generally outperforms spherical k-
means. In models with larger noise, it can be more difficult to estimate the LFM signal. So
to compare performance across difference sample sizes and level of noise, we can calibrate
by calculating a notion of signal to noise ratio. In this context we consider the part of the
mass in the angular measure associated to the signal in (41), which as a function of o is
given by

SNR(o) = 2=t [27]
- X Al + o B[N

In the absence of any noise, i.e., ¢ = 0, then SNR is 1 while as ¢ — 0o, SNR converges to 0.
For the simulation example above for which d = 4, p = 2, we have E||N|| = v/2I'(5/2)/T'(2) =
1.880. Hence SNR(o) = 2.065/(2.065 + 01.880). In looking at the various plots in Figure 7,
it is instructive to compute the effective sample size given by ESS= SNR x N,,. This number
essentially gives the expected sample size of the number of observations, from the total IV,
that come from the signal. With this index in mind, plots that have the same ESS values
(reported in the caption of Figure 7) generally show similar results since the procedures are
applied to the roughly the same number of extreme observations attributed to the signal
component in the model. We finally note that in this simulation a = 1 which is not currently
covered by our LFM theory but is the setting proposed in the simulations of Janflen and
Wan (2020). We carried out simulations with o = 0.5 and a = 2 and obtained qualitatively
the same type of results as the ones reported here. The only noticeable difference was that
spherical k-means seems to work better with larger « in the noisy model, but is much worse
for small a.. In both cases spectral clustering outperformed spherical k-means.
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0.04

1
1
8e-04

Spectral clustering
Spherical k-means

0.03
I

—_

[l
o °
e ] &+

H ° 3
J,L -

Frobenius norm

0.000 0.001 0.002 0.003 0.004 0.005

0.0000 0.0005 0.0010  0.0015  0.0020

0e+00 2e-04 4e-04 6e-04

i
H l
- ° E E 8 ' 8 °
g ° i 8 . - 1 T -
P g LQE gi E *
; — = E
g | = 44 o00= | ==L ,+?=E+ i QQQ
°© T T T T T T T T T T T T T T T
C=3 C=5 C=7 C=9 C=3 C=5 C=7 C=9 C=3 C=5 C=7 C=9 03 05 C7 Cg

Figure 6: Estimation error measured in Frobenius norm when o = 0.
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Figure 7: Estimation error of cluster centers measured in Frobenius norm. data was gener-
ated from the noisy LFM (41). The sample sizes increases from left to right as
n = {1000, 5000, 25000, 125000} and N,, = {100,200, 400, 800}, and from noise level in-
creases from the top down as o = {1,3,5}. Across rows the ESS are: {52,105, 209,418},
{27,54,107, 214}, {18, 36,72, 144}

6.2 Bivariate extremes from MA(3)

We consider the model discussed in the introduction and represented in Figure 1. More
specifically, the model is Y; = Z;+.52;_1 —.6Z;_2+1.5Z;_3, where {Z;} is an iid symmetric
stable random variables with index oo = 1.8. We analyze the extremal dependence structure
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Figure 8: Screeplot of kernel matrix and clustering performance of 2 dimensional MA(3) extremes
when n = 25000 and N,, = 400.

of the bivariate vector X; = (Y3, Y;_1)T by looking for clusters in the extremes of X;. This
model can be written in the form (6) since we can define Z; = (Zy, Z1—1, Z1—2, Zi—3, Z1—4)

and hence
1 05 —-06 1.5 0
Xf"Q) 1 05 —0.6 L5>Z’

Note that even though in this case the sample {X;} is not independent, the asymptotic
distribution obtained in Theorem 2 still holds. In particular, the angular distribution is
supported in the points (12) i.e.

Ci+ = ZlZ(L 0)7 C2+ = :l:(5’ 1)/\/ﬁ’ C3,+ = i(_06’05)/m’
ci+ = +(1.5,—0.6)/v2.61 and c5+ = £(0,1).

Figure 8 illustrates the behavior of spectral clustering for this model when N,, = 400 and
kn = [21;12200] 4+ 1 = 35. The screeplot suggests 5 clusters corresponding to the 5 columns
in the factor loading matrix. However, due to the symmetry of the actual factors in Z;,
each column and its negative value constitute a cluster. So the 10 clusters actually reflect
the 5 factors since each is paired with its negative counterpart. It is worth noting that in
Figure 1 we had a larger sample size of 100,000 and stricter quantile threshold of 0.998
resulting in smaller number of observations considered as extremes, but with an empirical
distribution visibly closer to the prescribed asymptotic discrete distribution. Therefore the
simulation scenario considered here is more difficult. Figure 9 illustrates the convergence
of the method. While the spectral k-means method of Janlen and Wan (2020) performs
slightly better than our spectral clustering for N, < 200, our proposed method appears
better with much smaller variability for a larger number of extremes. The choice k, of
nearest neighbors did not appreciably impact the performance of spectral clustering across
the different sample sizes.
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Figure 9: Estimation error of the matrix of atoms of the spectral measure of the symmetric MA(3)
model. The sample sample sizes were n = {1000, 5000, 25000, 125000} giving N,, =
{100, 200, 400, 800}. We used k,, = [%1 + 1 nearest neighbor graphs.

6.3 Air pollution data

We revisit the data analyzed by Heffernan and Tawn (2004) and Janflen and Wan (2020). It
is available in the R package texmex and consists of daily measurements of five air pollutants
in the city of Leeds, UK. It was collected between 1994 and 1998, and split into summer and
winter months yielding a total of 578 and 532 observations respectively. Following standard
practice in multivariate extremes data analysis we standardize the marginal distribution of
the data to focus on the extremal dependence. More specifically, we transform the marginals
of the original observations X; as in JanBen and Wan (2020) i.e., we let
Yij = 1/{1 = Fpj(Xij)},

where F,j(z) = 1 37 | 1(X; < z) denotes the jth marginal empirical cumulative distribu-
tion function, x € R and j = 1,...,d. We then proceed to define the extremal observations
as the 10% of the transformed observations {Y;} with largest Euclidean norm and analyze
their angular components with our algorithm. We analyze this data using spectral clus-
tering with the exponential kernel and s = 1 as in the simulated data. The screeplots in
Figure 10 suggest that one should consider 5 clusters for this data.

Figure 11 shows the estimated cluster centers c; for j = 1,...,5. We note that the
“elbow plot” considered by Janflien and Wan (2020) suggested the authors to use 4 or 5
clusters in their article. Our results for 5 clusters is consistent with their analysis. Specifi-
cally, the normalized cluster centers in the heat map of Figure 11 show that the extremes
of the five air pollutants act mostly independent. Looking a bit more closely, both NO
and NO2 share common strength in clusters 2 and 3, which is much stronger in winter
than in summer. PM10 also shares a common source (cluster 2) with NO and NO2, which
is more pronounced in winter than summer. For the O3 and NO2 pollutants, we exam-
ined time lagged dependence by applying the spectral clustering algorithm to the vector
Xy = (X¢, Xio1, Xi—2, Xt_g)T, where X; represents either the measured value of O3 or NO2
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Figure 10: Screeplots of the kernel matrix of the air pollution data extremes obtained with the
exponential kernel and bandwidth parameter s =1 .

on day t. The resulting heat plots for the cluster centers (4) are displayed in Figures 12
(03) and 13 (NO2). The super and sub diagonals reflect some extremal dependence at time
lag 1 for O3 in both summer and winter. This dependence mostly dissipates after one day.
The situation for NO2 is a bit more complex. One still discerns some extremal dependence
at a one day lag as indicated by the high-temperature in the heat maps along the diagonal
and subdiagonal. However, some clusters have similar shading for its center of mass, e.g.,
clusters 1 and 4 for winter, which suggests poor delineation between the clusters. In addi-
tion, there is a stronger day effect in the summer than winter for NO2 and the dependence
does not necessarily die out after one day lag as in the O3 case.

N

0.75

NO

Pollutants
z
[}
Pollutants

PM10 - PM10

4 5

3 4 5 1 2 3
Clusters 8 Clusters

(a) summer (b) winter
Figure 11: Five dimensional extremes from air pollution summer and winter data. The

heat maps show the estimated cluster centers using spectral clustering with 5
clusters and 9-nearest neighbors.
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lagd 1.00 lago

lag1 lagt

03
o
8
o3

lag2 lag2

lag3 lag3

Clusters : : Clusters
(a) summer (b) winter
Figure 12: Four dimensional time series data constructed with lags 0-3 of O3 for summer

and winter data respectively. The heat maps show the estimated cluster centers
using spectral clustering with 5 clusters and 9-nearest neighbors.
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Figure 13: Four dimensional time series data constructed with lags 0-3 of NO2 for summer

and winter data respectively. The heat maps show the estimated cluster centers
using spectral clustering with 5 clusters and 9-nearest neighbors.
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7. Discussion

In this work we introduced a spectral clustering approach for learning the angular measure
of multivariate extremes. We proved that this approach leads to consistent clustering for a
natural linear factor model and showed the good finite sample performance of our methods
in numerical experiments. The encouraging results suggest the method might be applied in
more general contexts. We are particularly interested in exploring two type of extensions.
First, high dimensional scenarios where the dimension of the extremes d might be larger
than the number of observed extremes N,. This would require introducing appropriate
notions of sparsity and regularization. Second, it seems natural to investigate generative
models that lead to continuous angular measures in the limit. This scenario implies one
would need to carefully introduce more general definitions of extremal clusters and different
analysis of the convergence of k-nearest neighbor graphs.
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Appendix

Before proving Lemmas 10 and 11 we will give a result regarding random partitions of
uniform random variables that we will leverage as the continuity of F7, implies that
Fr, (T},) ~ Unif(0,1). We remind the reader that in our proofs ¢ > 0 represents a finite and
non-zero constant whose value may change from line-to-line.

Lemma 16 Let Uy,...,Uyn u Unif(0,1) and consider the random partition of the unit

interval I; N = [%;7JN)f where my = %(N)’ T>1and j =1,...,my. Then, with
. 1—7
probability at least 1 — ‘I'JIVT(IV)(l + N7027)
(i) Every I; N contains at least one of the variables Uy, ..., Uy.

(it) No I N contains more than 37log(N) of the variables Uy,...,Un.

Proof Consider the event E 1 = {Every I; y contains at least one of the variables Uy,...,Un}
and note that a union bound gives

mN

P(Eng)>1-Y P(Uy ¢ iy, Vk=1,...,N)
j=1
N
=1- my (1 — 1)
my
> 1 — mye N/
Nl*T

=l=="x" 46

7log(NV) (46)
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Now consider the event Ex 2 = {No I; y contains more than 37log(NN) of the variables Uy,...,Un}.
It follows again from a union bound that yields

my
P(Eng2) >1— ZP(Ij,N has more than 37log(N) of the Uy,...,Uy)
j=1
=1- mNIP)(SN > 3T10gN),

where Sy ~ Bin(N, ﬁ) Invoking Bernstein’s inequality we see that

]P) E 1 1 (37 log N—7 log N)2 1 N7(1'2T71) 47
> _ 2 Tlog N+27log N/3 — -

(En2) 2 mye ) ) Tlog N (47)

Combining (46) and (47) shows that (¢) and (i¢) hold with the desired probability. [ ]

Proof of Lemma 10

We prove the lemma for positive Z. The same type of arguments work in the symmetric
case and are therefore omitted. Note that we can write for ¢ > 0,

wi

fr,(t) =

/_OO .. ./_Oo {Z1fz(21) fz(z2) - fZ(zp,l)fZ[(tzlw%/un — (cozo + -+ + Cp,12p71))/cp}

1 - -
-1 (21 > un/wl/a, (a1121 + aigzg + - -+ + a1p2’p)2 + (a2121 + ageza - - + a2p2p)2 > Ui)]

dzy - --dzp_

(48)
- [IP’((@11Z1 + -4 alpr)2 + (a1 Z1 + -+ + angp)2 > ui, Z1 > un/w}/aﬂ
== M, (t)/D,,,
where Z, = (tz1w? Jup — (coz + - - - +cp_1zp_1))/cp, ¢ = a9, i =1,...,p. We already know
that
D, ~ cu,*, n — oco. (49)
Next, from (36), sup, fz(z) = M < oo, we conclude by (37) that
M 2 00
M,(t) < Y1 / z21fz(z1)dz1 ~ cu,®, asn— oco.
Cpln un/w}/a
Hence there exists an G € (0, 00) such that for all n large enough,
fr,(t) <G for all . (50)

This shows (i). Let us now turn to claim (i7) for concreteness consider 0 < ¢ < 1. Note
that, for large n, the indicator in (48) is bounded from below by the indicator of the set
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E ={C'u, <2 < Cuy, |2 <1,i=2,...,p— 1} for some large C. Then, on E, the
argument of the last function fz in (48) is within a compact interval, so we obtain

M 2 Cun
M, (t) >c i / z1fz(z1)dz1 ~ cu,

T Cpln c-1u,

where the last relation follows from a direct application of (37). Along with (49) this
establishes (7).
Finally, note that

Moty < (7 agaten) [ [ gt dnt)|

n/w
fz[(tz10f fup — (c222 + - + cp_lzp_l))/cp]]dzl cedzy
2 oo

:wi:n /uﬂ/wi/"‘ Zlfz(unzl) /R . /]R fZ(ZZ) - fZ(Zp—l)[

fz [(tzlw% — (coz9 + -+ + cp,lzp,l))/cpﬂ dzy---dzp_1 .

Using the upper bound in (37) it is easy to see that for some ¢ > 0 and sufficiently large ¢,

/”'/fZ(Z2>'”fZ(Zp—1)|:fZ[(t_(0222+"'+Cp—1zp—1))/cp]:|d22"'de_l (51)
R R

S Ct—(a-‘rl) .

Indeed, the integral is, up to a constant, equal to the density of a linear combination of
Z1,...,Zp—1. Therefore, for all y large enough, uniformly in n,

oo

Mi(t) Scun/ / Zle(Unzl)(tm)*(aH) dz < cugat*(‘”l),

1/w} «

where once again we have used the upper bound in (37). Together with (49) this shows the
upper bound in (éi7). The lower bound in (éi7) can be established in an identical way using
the lower bound in (37). [ |

Proof of Lemma 11

It follows from Lemma 16 and Lemma 10 (i7) that, outside of an event QY with IP’(QS)) — 0,
each one of the intervals I; ,, contains at least one of the points

T a21Z§Ti’1) + ap1ZI(:Z.’1) . N
ni — 5 (1) 3 1=1,..., Ny,
wlzl,i [un

and none of the intervals contains more than 37 log Nél) of these points. Note that (50)
implies that
0 4 1

o' = T ©

, Vtel0,1]

Ql =
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and hence by the fundamental theorem of calculus

1 1—1 1
Fl— ) -E:! >
Tn (mn) In ( mpy > - Gmn

This shows that the length of the intervals I;,, satisfies

|Il,n’ 2 ln/Gu 1= 17"'amn7 (52)

where [,, = min Since the conditional law of (Z1 /uy, Za, ..., Z,) given (35) converges weakly,
as n — oo, to the law of
(Wa/wi, Za, ..., Zp)

as defined in Theorem 2, we see that

oo+ -+ Cpr
We ’

Fr, = G := the law of

It follows that the values Fr, (tg) converge, as n — 0o, to a finite limit. Therefore, there is
0 < 4 < 1 such that FT:} ((i —1)/ms) > to for all n large enough and all i > (1 —§)m,,. We
conclude by Lemma 10 (i77) that for such n and 1,

b =Fr, (F5}(i/mn)) = Fr, (Pt (G = 1)/ma)) (53)
e(D7', D) / FT"((i/m") ) ¢+ gy,
Fp ! ((=1)/ma

Furthermore,

Tn

/Fl(i/mn) ) g > (Fil (z’/mn))f(aﬂ) (Fjjnl(i/mn) — Fp (i - 1)/mn))? (54)

Fp 1 ((i-1)/mn )

while leveraging again Lemma 10 (7i7) we see that

My, — 1 > > D a
——— = fr,(t)dt < D et g = Z(F (ifma)) . (55)
My, /FTl(i/mn) F;nl (i/mn) a ( Ty ( ))

n

Combining (54) and (55), we conclude that

/FTl(i/mn) O gt > ¢ (mn . Z) o (PR Gi/ma) = PRt (G =1)/mn) ),

Pt ((i-1)/mn ) Mn

and so by (53),

_ A\ (etD)/a
I zc(m" Z) i)

mp
Since an upper bound can be obtained in the same way, we conclude that for some Dy > 1,
for all n large enough and all ¢ > (1 — §)m,,,

_ o\ —(atl)/a _ i\ ~(atD)/a
D, (mn Z) < |lin| < Daly <m;:1 Z> . (56)

mn n
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It follows from (56) that for Ky fixed , |i — j| < K and all (1 — §)m,, <1i,57 < m, — Ky,

|I | o _(at]) K _ (a+1)

|I',n - Mp —J - +K0 = ( )
where the second to last inequality holds for sufficiently large m,,. A similar argument can
be used to get the upper bound

i KT
in <D2(1—> T <o 58
L =PTR) =G o
It follows that for K fixed and large enough n,
| Lin|
¢ < < (. (59)
| Zjn

Therefore, using (59), |i — j| < K and choosing K > 2Cy/C},
Lin| + [ix1n] < 2C2llian| < K|lignl, (60)

where the last inequality holds for all £ = 1,..., K. Therefore dividing (60) by K and

summing over k yields
K

|Iz,n| + |Ii+1,n| < Z ‘Ii—k,n
k=1

(61)

Note that (61) is sufficient to guarantee that any point in I;, is closer to any point in
I; 11, that to any point in an interval I}, with j < i — K. A similar argument shows that
any point in I; , is closer to any point in I;_1, that to any point in an interval I;, with

7 > 1+ K. We conclude that, outside of the the event Qg), in a k,-NN graph with
kn > 3(K +1)7log NV, (62)

then all points (Ty;, j = 1,... ,ngl)) within I; , for some i in the range (1 — d0)m, < i <
my — Ko will be connected both to each other and to such a point in each I;_;, and
Ii11,,. The next observation to make is that, as long as J is small enough, the sequence
(FT_n ! (1—0)) is bounded from above. Therefore, by Lemma 10 (44), uniformly in large enough

n, the density fr, is bounded from below by, say, a > 0 on the interval (0, FT_nl(l — 5))
Therefore, for all large enough n,

in] < ln/a, 1<i<(1—0)my,. (63)
To see this, note that
0 1

1
8tFT” (t) = m < 2 vt € [0,1]

and hence by the fundamental theorem of calculus

] 1—1 1 l
I | =1 ) g1 < ==,
| z’n| In (mn) In < My, ) - amy a
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It follows from (52) and (63) that if X > 2¢ then any point in I, is closer to any point
in I,_1,, and in ;11 , than to any point in an interval I;,, with j < i — K or with j >
i + K. Therefore, on the event Qg), in a k,-NN graph satisfying (62), all points (Tnj, j=
1,... ,N,gl)) within 7; , in the range 1 <i < (1 —§)m,, will be connected both to each other
and to such a point in each I;_1, and I;11,. Indeed, to show this it suffices to show again
that (61) holds true in the range 1 < i < (1 — 0)my,. It is easy to see that (52), (63) and
K> % entail

K
21 Kl
[ Lin| + [Liv1,n] < Tn < ?n < Z [ Li—knl-
k=1

Finally, it is obvious that if K > Kj, then on the same event Qg), in a k,-NN graph

satisfying (62), all points (Tnj, j=1,..., Nél)) within I; ,, in the range m,, — Ko <1i < m,,
will be connected both to each other and to a such a point in each ;1 , and I .

Summarizing the above discussion we conclude that on the event Qg), in a k,-NN graph
satisfying (62) with K large enough, all points (15, j = 1,..., N7(11)) within J; , in the entire
range 1 <4 < m,, will be connected both to each other and to a such a point in each I;_1 ,
and [; 1. In particular, the k,-NN graph will be connected.

We now translate this discussion to the random vectors M®, 4 =1,. .., NT(LU. We define
intervals along vector b by

Then, outside of the event Qg,,l), each one of these intervals contains at least one of the

points (M(i), 1=1,..., NT(LU) and none of the intervals contains more than 37 log Ny(Ll) of
these points. By (52) the lengths of these intervals satisfy for some G; > 0,

‘Jz,n’ Zln/Gl, 1= 1,...,mn.

We finally note that by (23), with probability tending to one N,, ~ Cnu,,*, and therefore

n

G > 0 and n large enough ensure that (62) holds provided k,, > Glogn. This concludes
the proof. |

Proof of Theorem 12

Lemma 11 gives us the connectivity of the extremal k,-NN graph for k, satisfying (62)
with K large enough. The next step is to understand by how much the points (M(i), i =
1,... ,Nfll)) are shifted by adding to them (D(i), i=1,..., Nq(zl)) in (33). Denote Qg) = B¢
as defined in Lemma 5. Then P(Qg)) — 0 as n — oo and it is elementary to check that

outside of Q{2 we have ID@|| < ch? Ju, for all i =1,... ,N,gl). Recall that by the choice
of h,, we have
h2 Ju, = o(l,) as n — oo.

If we define new sets by
Jin={MY 4+ DO MO e g} i=1,...,m,,
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then it follows immediately that for large n, outside of the event Qslz), the new sets have

the property described by Lemma 11, perhaps with a larger Ky. We already know that this
means that for large n, outside of (27(11) U Q,(f), the extremal k,-NN graph with k, satisfying

(62) with K large enough, is connected. [
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