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Abstract: Learning to plan for multi-step, multi-manipulator tasks is notoriously

difficult because of the large search space and the complex constraint satisfaction

problems. We present Generative Factor Chaining (GFC), a composable genera-

tive model for planning. GFC represents a planning problem as a spatial-temporal

factor graph, where nodes represent objects and robots in the scene, spatial factors

capture the distributions of valid relationships among nodes, and temporal factors

represent the distributions of skill transitions. Each factor is implemented as a

modular diffusion model, which are composed during inference to generate feasi-

ble long-horizon plans through bi-directional message passing. We show that GFC

can solve complex bimanual manipulation tasks and exhibits strong generalization

to unseen planning tasks with novel combinations of objects and constraints. More

details can be found at: generative-fc.github.com

Keywords: Manipulation Planning, Bimanual Manipulation, Generative Models

1 Introduction

Solving real-world sequential manipulation tasks requires reasoning about sequential dependencies

among manipulation steps. For example, a robot needs to grip the center or the tail of a hammer,

instead of its head, in order to subsequently hammer a nail. The complexity of planning problems

increases when multiple manipulators are involved, where spatial coordination constraints among

manipulators need to be satisfied. In the example shown in Figure 1, the robot has to reason about

the optimal pose to grasp the hammer with the left arm, such that the right arm can coordinate to

re-grasp. Subsequently, the two arms must coordinate to hammer the nail. While classical Task

and Motion Planning (TAMP) methods have shown to be effective at solving such problems by

hierarchical decomposition [1], they require accurate system state and kinodynamic model. Further,

searching in such a large solution space to satisfy numerous constraints poses a severe scalability

challenge. In this work, we aim to develop a learning-based planning framework to tackle complex

manipulation tasks with both sequential and spatial coordination constraints.

To solve complex sequential manipulation problems, prior learning-to-plan methods have largely

adopted the options framework and modeled the preconditions and effect of the options or primitive

skills [2, 3, 4, 5, 6, 7]. Key to their successes are skill chaining functions that determine whether

executing a skill can satisfy the precondition of the next skill in the plan, and eventually the success

condition of the overall task. However, the use of vectorized states and the assumption of a linear

chain of sequential dependencies limits the expressiveness of these methods. Consider a task where

a robot fetches two items from a box. Intuitively, the skills for fetching one object should not

influence the other. However, due to vectorized states and the linear dependency assumption, the

skill-chaining methods are forced to model such sequential dependencies. Similarly, a skill intended

to satisfy a future skill’s condition will be forced to influence the steps in between. Finally, the skill

chain representation forbids these methods from effectively modeling multiple-arm manipulation

tasks, where concurrent skills must be planned to jointly satisfy a constraint.
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Figure 1: Factor graph for a multi-arm coordination task. Our factor graph-based planning
formulation solves for a sequence of spatial factor graphs from the initial state to a goal factor
by chaining them using temporal skill factors. Task: The task objective is to place the hammer
inside the box. However, since the left arm cannot reach the box, the hammer is handed over to
the right arm such that the right arm can complete the task. (a) Inputs: The initial scene and a
symbolically feasible spatial-temporal factor graph plan to complete the goal objective. (b) GFC:
We formulate all factors as distributions of the nodes connected to them. GFC represents spatial
factors as classifier-distributions and temporal factors as diffusion model learned distributions. We
leverage compositionality of diffusion models to compose spatial-temporal distributions and find
the joint distribution of the complete plan directly at inference. (c) Output: Finally, samples drawn
from such a joint distribution are symbolically and geometrically feasible solutions of the whole
plan.

To move beyond the linear chain and model complex coordinated manipulation, we introduce Gener-

ative Factor Chaining (GFC), a learning-to-plan framework built on flexible composable generative

models. For a given symbolically feasible plan graph, GFC adopts a spatial-temporal factor graph [8]

representation, where nodes are objects and robot states, and spatial factors represent the relationship

constraints between these nodes. Skills are temporal factors that connect these state-factor graphs

via transition distributions. A single skill factor can simultaneously connect to multiple object and

robot nodes, allowing for natural representation of complex multi-object interactions and steps that

necessitate coordination between multiple manipulators. During inference, this factor graph can

be treated as a probabilistic graphical model, where the learned skill factor and spatial constraint

factor distributions are composed to form a joint distribution of complete plans. Through 13 long-

horizon manipulation tasks in simulation and the real world, we show that GFC can solve complex

bimanual manipulation tasks and exhibits strong generalization to unseen planning tasks with novel

combinations of objects and constraints.

2 Related Work

Task and Motion Planning (TAMP). TAMP frameworks decompose a complex planning problem

into constraint satisfaction problems at task and motion levels [9, 2, 10, 11, 12]. Notably, Garret et

al. [1] drew connections between TAMP and factor graphs [8], representing constraints as factors

and objects/robots as nodes. This formalism naturally allows reusing per-constraint solvers across

tasks. While classical TAMP relies on accurate perception and system dynamics, limiting scalability,

we take a learning approach, though our compositional factor graph representation remains inspired

by classical TAMP.

Generative models for planning. Modern generative models have been applied to offline imita-

tion [13, 14, 15, 16, 17, 18, 19, 20] and reinforcement learning [21, 22]. In addition to modeling

complex state and action distributions, generative models have also been shown to encourage com-

positional generalization [23, 6, 24] by combining data across tasks [22, 21]. Most relevant to us are

Generative Skill Chaining (GSC) [6] and Diffusion-CCSP [25], both designed to achieve systematic

compositional generalization. GSC composes skill chains through a guided diffusion process but

fail to solve non-sequential dependencies similar to other skill-chaining methods [4, 5]. Diffusion-

CCSP trains diffusion models to generate configurations to satisfy spatial constraints and use exter-
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nal solvers to plan the manipulation sequence. Our method is a unified framework and generates

motion plans to satisfy both spatial and temporal constraints represented in a factor graph.

Learning for coordinated manipulation. Coordinating two or more arms for manipulation

presents numerous planning challenges [26, 27, 28], including the combinatorial search space

complex constraints for coordinated motion. Recent works have utilized learning-based frame-

works [29, 30, 31, 32, 33] in both Reinforcement Learning [29, 31] and offline Imitation Learn-

ing [33, 32]. However, most existing works have focused on learning task-specific policies [29, 32]

or require multi-arm demonstration data collected through a specialized teleoperation device [33].

In contrast, our factor graph-based representation enables solving multi-arm tasks by composing

multiple single-arm skills through inference-time optimization.

3 Background

Diffusion Models. A core component of our method is based on distributions learned using diffusion

models. A diffusion model learns an unknown distribution p(x(0)) from its samples by approximat-

ing the score function ∇ log p. It consists of two processes: a forward diffusion or noising process

that progressively injects noise and a reverse diffusion or denoising process that iteratively removes

noise to recover clean data. The forward process simply adds Gaussian noise ϵ to clean data as

x(t) = x(0) + Ãtϵ for a monotonically increasing Ãt. The reverse process relies on the score func-

tion ∇x log pt(x
(t)) where pt is the distribution of noised data x(t). In practice, the unknown score

function is estimated using a neural network ϵϕ(x
(t), t) by minimizing the denoising score match-

ing [34] objective Et,ϵ,x(0) [¼(t)∥ϵ − ϵϕ(x
(t), t)∥2] where ¼(t) is a time-dependent weight. Several

recent works have explored the advantages of diffusion models like scalability [35, 36, 37, 38] and

the ability to learn multi-modal distributions [39, 40, 41, 22]. We are particularly interested in the

compositional ability [23, 13, 24, 25, 6] of these models for the proposed method.

Problem setup. We assume access to a library of parameterized skills [42] Ã ∼ Π such as primitive

actions like Pick and Place. Each skill Ã requires a pre-condition to be fulfilled and is parame-

terized by a continuous parameter a ∈ AÃ governing the desired motion while executing the skill

in a state s. For a given symbolically feasible task plan from a starting state s0 to reach a specified

goal condition sgoal, generated by a task planner or given by an oracle, the problem is to obtain

the sequence of continuous parameters to make the plan geometrically feasible. For example, given

a nail at a target location and a hammer on a table, the symbolic plan is to Pick the hammer and

Reach the nail. A geometrically-feasible plan requires suitable Pick and Reach parameters such

that the hammer’s head can strike the nail.

Learning for skill chaining. Existing works along this direction model the planning problem as
a “chaining” problem: They first model the pre-conditions and effect state distributions for every
skill Ã ∼ Π from the available data and a symbolic plan skeleton ΦK = {Ã1, Ã2, ..., ÃK} consisting
of K-skills is constructed. With this model, they search for the given skill sequence (plan) such
that each skill satisfies the pre-conditions of the next skill in the plan. STAP [5] used learned pri-
ors to perform data-driven optimization with the cross-entropy maximization method. In GSC [6],
the policy and transition model is formulated as a diffusion model based distribution pÃ(s, aÃ, s

′)
which allows for flexible chaining. While the forward chain ensures dynamics consistency in the
plan, backward chain ensures that the goal is reachable from the intermediate states. For a forward
rollout trajectory Ä = {s0, aÃ1 , s1, aÃ2 , sgoal} associated with skeleton Φ2 = {Ã1, Ã2}, the resulting
forward-backward combination based on GSC [6] can be represented as

pτ (Ä |s0, sgoal) ∝
pπ1(s0, aπ1 , s1)pπ2(s1, aπ2 , sgoal)

√

pπ1(s1)pπ2(s1)
(1)

4 Method

We aim to solve unseen long-horizon planning problems by exploiting the inter-dependencies be-
tween the objects relevant for the task at hand. Our method adopts factor graphs to represent states
and realize their temporal evolution by the application of skills. While previous works have consid-
ered vectorized state representations making it difficult to decouple spatial-independence, we focus
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on factorized state representations such that the state of the environment is entirely modular, con-
taining information about all the objects in the scenario and the task-specific constraints between
them. We use a spatial-temporal factor graph [8] that is transformed into a probabilistic graphical
model by representing temporal factors as skill-level transition distributions and spatial factors as
constraint-satisfaction distributions. A composition of all the factors jointly represents sequential
and coordinated manipulation plans directly at inference and can be solved by sampling optimal
node variables using reverse diffusion sampling.

4.1 Representing States, Skills, and Plans in Factor Graphs

States as factor graphs. We define a factor graph {V ,F} of a state s consisting of the decision
variable V and factor F nodes. Every robot and object is represented as a decision variable node
v ∈ V containing their respective state. Factors f ∈ F between nodes in a given state are spatial
constraints. For example, a Grasped spatial factor specifies admissible rigid transforms between a
gripper and an object. When we construct a probabilistic graphical model from the representation
described above, an intuitive way of calculating the distribution of a state, p(s), is the composition
of all the factor distributions. Mathematically:

p(s) ∝
∏

f∈F

pf (Sf ) where s ≡
⋃

f∈F

Sf (2)

where pf (Sf ) represents the joint factor potential of nodes v ∈ Sf ¦ V , i.e. all nodes involved in a

factor 1 and s is the joint distribution of all such nodes. This indicates that the joint distribution of
all the nodes must satisfy each of the factors, also explored by Diffusion-CCSP [25].

Skills as temporal factors. To represent transitions between states, we adapt parameterized
skills [42] for a factor graph formulation. We define the preconditions of a skill as a set of nodes
and factors, thus considering a skill feasible iff the precondition factors are satisfied. For example,
for state s0 illustrated in Figure 1, the nodes of a factor graph are {L0, H0, R0, B0} and the factors
existing in this scene are {Grasped(L0, H0)=True}. Now, since this factor is a precondition of the
skill Move(L0, H0) that moves the hammer in hand to align with the box, it must be satisfied for the
skill to be feasible. The effect of executing a skill creates a new factor graph s′ by changing the state
of the nodes involved and, optionally, adding or removing their factors. This results in a temporal
factor between the transitioned nodes of s and s′ with the continuous action parameter of the skill
aÃ . The skill definitions can be extracted from standard PDDL symbolic skill operator with minor
adaptations, following the duality of factor graphs and plan skeletons [1]. Eventually, we solve an
optimization problem: satisfying the Aligned, Grasped, and the transition dynamics constraints by
finding the correct Move parameters aÃ1

. Each skill in a plan introduces additional nodes and factors
to the factor graph, with added complexity for optimization.

Mathematically, we can use the distribution p(s) as established in Equation 2 with all the spatial

factors, and represent the temporal skill factor distribution of kth-skill Ãk as the joint distribution:
pÃk

(s, a, s′) ≡ pÃk
(SÃk

, a, S′

Ãk
), SÃk

¦ VÃk
pre which is executable iff the skill’s pre-condition

sÃk
pre ≡ {VÃk

pre,F
Ãk
pre} is satisfied by the current state i.e. VÃk

pre ¦ V and FÃk
pre ¦ F . Once executed,

it leads to the transitioned state S′

Ãk
. Based on the above formulation of a short-horizon transition

distribution, we extend to construct a plan-level distribution as already established by GSC [6] and
shown in Equation 1. We leverage the modularity of factored states by replacing states s with a set
of decision variables SÃk

in the interest of skill Ãk. This allows us to chain multiple skills in series
and parallel. In such a scenario, the denominator term exists only for certain decision nodes iff they
are common in two consecutive skills. We can indeed rewrite Equation 1 as:

p(Ä) ∝

∏

πk∈Φ pπk
(vk ∈ V

πk
pre, ak, v

′
k ∈ V

πk
effect)

√

∏

vi∈Vi
pπi−(vi)pπi+(vi)

(3)

if we consider that some set of intermediate nodes Vi are connected by two sequential skills Ãi− and
Ãi+.

Representing coordination. A key advantage of the factor graph representation is the ability to
model multi-arm coordination tasks by connecting the temporal chains of each arm using spatial
constraints. Such tasks often require skills to be simultaneously executed on each arm to operate

1i.e. a factor f is included iff there is an edge between f and some v ∈ V which also implies v ∈ Sf ⊆ V .
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Figure 2: (Left) Parallel independent chaining The figure shows the execution of two skills (Ã1

and Ã2) in-parallel on two independent sets of nodes (L, C and R, M) to modify their ex-
isting factors (Grasped). The two independent executions can be connected via external fac-
tors µ1 (FixedTransform) introducing spatial dependencies between nodes C and M. (Right) Par-
allel dependent chaining The figure shows overlapping nodes of interest while parallel execution of
two skills. The pot is to be picked by using both arms simultaneously. The effect of this is resulting
factors (Grasped) between (L, P and R, P) and external factor µ2 (FixedTransform) between L
and R. Overlapping nodes satisfy both skill’s temporal effects.

on different or the same objects. We consider two cases for parallel skill execution, where multiple
robots are operating on: (1) independent objects and (2) the same object, leading to independent and
dependent temporal chains respectively. With our factorized state representation, we can indepen-
dently control the execution of individual skills correlated with the nodes of interest and calculate the
cumulative effect by applying the union of the effects of all the skills to the current factor graph. We
consider a scenario shown in Figure 2 (Left). The left and right gripper arm L0 are holding the pink
C0 and green M0 cup ({Grasped(L0, C0)=True} and {Grasped(R0,M0)=True}) respectively.
While both the grippers can independently execute the skill Move to modify separate factors (fÃ1

1
and fÃ2

2 ), one can add a constrained relationship factor (µ1) between the two mugs representing
a set of transforms that satisfy the precondition of Pour. Such an ability to augment constraints
flexibly allows zero-shot coordination planning for unseen tasks at test time even with parallel skill
executions on the same object as shown in Figure 2 (Right).

4.2 Generative Factor Chaining

Now we have a formulation to construct a symbolic spatial-temporal factor graph plan for a task
and chain them using spatial factor and temporal skill factors sequentially or in parallel. To make
this plan geometrically feasible, we must find the optimal node variable values. We leverage the
expressive generative model to capture the transition dynamics and exploit the compositionality of
diffusion models. Given a symbolically feasible factor graph plan, our method, termed Generative
Factor Chaining (GFC), can flexibly compose spatial-temporal factor distributions to sample optimal
node variable values for the complete plan.

Probabilistic model for trajectory plan as spatial-temporal factor graphs. Now, we again con-
sider the spatial graph for representing the state, where the probability of finding a state s is the joint
distribution of all the nodes in the factor graph. We will now integrate the spatial factors with the
temporal factors considering the compensation term introduced in Equation 2 and Equation 3 along
with the constraint factors across the chain µ ∈ M as:

p(Ä) ∝

∏

πk∈Φ pπk
(vk ∈ V

πk
pre, ak, vk+1 ∈ V

πk
effect)

∏K

k=0

∏

f∈Fk
pf (Sf )

√

∏

vi∈Vi
pπi−(vi)pπi+(vi)

ΠMfµ(Sµ) (4)

This completes the joint distribution of all the nodes in the spatial-temporal factor graph plan con-
sidering the temporal factors for all skills with their pre-condition and effect nodes, all spatial factors
for all states in the plan, and all intermediate nodes in the temporal chain. It is worth noting that the
augmented constraint factors fµ work as a weighing function and can be more precisely represented
by fµ(Sµ) ≡ fµ(y = 1|Sµ) for some constraint-satisfaction index y.

We align towards diffusion model-based learned distributions to represent the probabilities in the
formulated probabilistic graphical model. We transform the probabilities into their respective score

functions ϵ(x(t), t) for a particular reverse diffusion sampling step t and train it using score matching
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Figure 3: Evaluation tasks: (a) Hook reach: Hook is used to pull an object in the robot’s workspace
followed by other skills. (b) Constrained packing: Multiple objects must be placed on a rack
without collisions. (c) Rearrangement push: Hook is used to push objects to a desired arrangement
followed by other skills. (d) Hammer place: A hammer must be handed over to another manipulator
and placed in a target box. (e) Hammer nail: A hammer must be handed over to another manipulator
and a configuration must be achieved to strike a nail. (f) Pour cup: Cups must be brought in a
configuration that allows successful pouring from one to another.

loss. Hence, for sampling a scene-graph for Equation 4, we have

ϵ(Ä (t)
, t) =

∑

πk∈Φ

ϵπk
(v

(t)
k ∈ Vπk

pre, a
(t)
k , v

(t)
k+1 ∈ V

πk
effect, t) +

K
∑

k=0

∑

f∈Fk

ϵf (S
(t)
f , t)

−
1

2

∑

vi∈Vi

[

ϵπi−(v
(t)
i , t)ϵπi+(v

(t)
i , t)

]

+
∑

M

ϵfµ(S
(t)
µ , t)

Such a representation leads to a cumulative score calculation of the joint distribution of all the nodes
of interest to the factor using linear addition and subtraction. We can realize from Equation 4.2
that the final score function depends on the composition of all the factors in the spatial-temporal
factor graph. While factors f ∈ F are mostly modeled implicitly by the temporal skills, the external
factors can be any arbitrary spatial constraints that ensure the satisfaction of the pre-condition of the
subsequent skills. Hence, with new additions to the set of external factors µ′ ∈ M′, one can reuse
the same temporal skills with added new spatial constraints. The proposed approach is modular as
the individual skill factors and constraints can be flexibly connected to form new graphs. We have
provided additional details in algorithm 1.

5 Experiment

In this section, we seek to validate the following hypotheses: (1) GFC relaxes strict temporal depen-
dency to allow spatial-temporal reasoning, performing better or on par with prior works in single-
arm long-horizon sequential manipulation tasks, (2) GFC can effectively solve unseen coordination
tasks, and (3) GFC is adept in reasoning about long-horizon action dependency while being robust
to increasing task horizons. We systematically evaluated our method on 9 long-horizon single-arm
manipulation tasks from prior works and 4 complex multi-arm coordination tasks in simulation. We
also demonstrate deploying GFC on a bimanual Franka Panda setup in the real world.

Relevant baselines and metrics: Our proposed method is based on factorized states and supports
long-horizon planning for collaborative tasks directly at inference via probabilistic chaining. In this
context, we consider prior methods based on probabilistic chaining with vectorized states (GSC [6])
and discriminative search-based approaches for solving long-horizon planning by skill chaining:
with uniform priors (Random CEM or RCEM) or learned policy priors (STAP [5]). Since all
prior works use sequential planning, we compare the performance of the proposed method on the
sequential version of the parallel skeleton. Further information on data collection, training of skill
diffusion models and real robot setup is provided in Supp. S4, Supp. S5 and Supp. S6 respectively.

GFC relaxes strict linear dependency assumptions. We first evaluate GFC on single-manipulator
long-horizon tasks introduced by STAP [5] and also used by GSC [6]. These tasks consider ma-
nipulation by reasoning about the usage of a tool (a hook) to manipulate blocks out of or into the
robot workspace (sample initial states shown in Figure 3(a-c)). While these tasks are originally
designed to highlight linear sequential dependencies, there are steps with indirect dependencies or
independence that only GFC can effectively model because of the factorized states. For example, in
Rearrangement Push, the picking pose of the cube should not affect the tool use steps. As shown
in Table 1, we observe that the performance of GFC is consistently on-par with the baseline for tasks
with strict linear dependencies such as Hook Reach and on-par or better for tasks with more complex
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Table 1: We show performance comparison of our method with relevant baselines on 9 single ma-
nipulator tasks and 3 two-manipulator tasks based on 100 trials for each of them. The task length
shows the relative difficulty of solving them. We also conduct evaluation on 3 extended tasks to
show robustness of GFC to task length (|T |) and efficient reasoning about interstep dependencies.

Evaluation Tasks RCEM DAF [4] STAP [5] GSC [6] GFC |T |

Single
Manipulator

Hook Reach
T1 0.54 0.32 0.88 0.84 0.82 4
T2 0.40 0.05 0.82 0.84 0.82 5
T3 0.30 0.00 0.76 0.76 0.80 5

Rearrangement
Push

T1 0.30 0.0 0.40 0.68 0.68 4
T2 0.10 0.08 0.52 0.60 0.65 6
T3 0.02 0.0 0.18 0.18 0.25 8

Constrained
Packing

T1 0.45 0.45 0.65 0.75 0.75 6
T2 0.45 0.70 0.68 1.0 1.0 6
T3 0.10 0.0 0.20 1.0 1.0 8

Bimanual
Manipulation

Hammer Place 0.05 - 0.28 0.41 0.63 8
Pour Cup 0.10 - 0.18 0.15 0.41 4

Hammer Nail 0.02 - 0.15 0.15 0.34 11
Longer Horizon Evaluation Tasks

Handback Hammer Nail 0.24 16
Handback Hammer Nail w/ auxilliary tasks 0.25 18

Handback Hammer Nail w/ extended auxilliary tasks 0.21 20

dependency structures such as Rearrangement Push. This validates our hypothesis that GFC effec-
tively models sequential dependencies, in addition to independence and skipped-step dependencies
in long-horizon tasks.

(Pick Pot)

(Pick Pot)

(Move Pot)

(Move Pot)

Figure 4: Evaluating GFC on
bimanual reorientation where
two arms simultaneously pick
and reorient a pot.

GFC can solve complex coordinated manipulation tasks. Here,
we aim to validate that GFC can effectively plan and solve different
types of coordinated manipulation tasks. We present results on tasks
with increased collaboration challenges. First, we consider tasks
that require coordination but can be serialized into interleaved skill
chains and solved by prior skill-chaining methods. Hammer Place,
as shown in Figure S16, is for one arm to pick a hammer, hand it
over to another arm for placemement into a target box. Hammer
Nail is an extension where, after hammer handover, first arm picks
up a nail and both arms coordinate to move to positions such that the
hammer’s head is aligned with the nail for the subsequent striking
step. The task is illustrated in Figure S16. As evident from Table 1,
GFC significantly outperforms all baselines in both tasks. The gap
is larger in the more challenging Hammer Nail task, which includes
additional spatial and temporal constraints as shown in Supp. S7.
This demonstrates that GFC can effectively model and resolve both
spatial and temporal constraints in complex tasks.

GFC can zero-shot generalize to new bimanual tasks by com-
posing single-arm skill chains. The Pour Cup (Figure S11) task is to Pick a cup with each arm,
Move to position the two cups, and Pour the content of one into the other. GFC can directly reuse
Pick and Move skill models and adapt the Strike skill model for the Pour step by adding a new
spatial constraint. The constraint that “the cups can only be poured using the open top and not the
closed bottom” can be directly added as a factor and optimized globally through guided diffusion
process. A quantitative comparison is shown in Table 1. Finally, we consider the Bimanual Re-
orientation (Figure S12) task where two arms must simultaneously operate on the same object of
interest (a pot), lift it up, and rotate it to a target reorientation angle (about z-axis) as illustrated
in Figure 4 (Top) for a 45-deg angle. The tasks must be solved via parallel skill chaining with
spatial constraints and hence none of the prior baselines can be used. The factor graph ( Figure 2
Right) includes a spatial fixed transform constraint between both the arms and hence the subsequent
skills operate while satisfying the constraint. Figure 4 (Bottom) shows a detailed task success rate
breakdown given different orientation goals.

GFC can handle independence and inconsistent skill chains. Here, we analyze how independent
steps in a sequential manipulation chain affects the performance of each method. We consider Ham-
mer Place, where the order of transporting the cube and handing over hammer is interchangeable.
As illustrated in Figure 5, we consider a consistent plan skeleton where sequentially-dependent steps
for the two main objectives, i.e., (1) opening lid then transporting cube and (2) picking, handing over,
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Figure 5: Linear chaining has limitations. Baseline methods with linear chain assumption suffers
from performance drop when given inconsistent skill chains, where steps with sequential dependen-
cies are swapped. GFC retains high success rate using the parallel skeleton.

Figure 6: Analysis of coordination. We show that the planner is able to reason about the long-
horizon action dependency of Pick and Grasp skills. (Left) While we see that Hammer Place
can be solved by pick/grasp at head/tail and vice versa, to satisfy the precondition of Strike in
Hammer Nail, the hammer must be grasped near tail so must be picked near head. (Right) We show
orientation reasoning, where the hammer can either be grasped on the same side or the flip side.

and placing hammers, are completely sequentially. We also consider an inconsistent plan skeleton
where the steps are interleaved. We show the handover success and overall task success in Fig-
ure 5 (Right). A successful handover requires choosing compatible parameters for Pick, Regrasp,
and Move skills. While this increases the difficulty leading to lower scores in the handover success
rate, the previous approaches failed to account for minor distraction and propagate the skipped-step
dependencies as evident from the task success rate.

GFC can reason about action dependency while being robust to increasing task horizons. We
observe in Figure 6 (left) that while Hammer Place task can be solved by picking or grasping on
any end of the hammer handle, Hammer Nail requires more constrained parameter sampling. Fur-
ther, in addition to the parameter selection along the handle axis, the method also samples suitable
orientation (same or flip side) for grasping as shown by two examples in Figure 6 (right). We further
give an example of the capability of our method in handling longer horizon inter-step dependencies
in Figure S17 and simultaneously being robust with respect to the task length as shown in Table 1.

6 Limitations

First, our method does not generate high-level task plans. Solving the full TAMP problem with a
unified generative model is an important future direction. Second, our method operates in a low-
dimensional state space and hence requires a state estimator. We plan to extend GFC to work with
high-dimensional observations. Finally, similar to prior works [4, 5, 6], our approach operates on
parameterized skills.

7 Conclusion

We presented GFC, a learning-to-plan method for complex coordinated manipulation tasks. GFC
can flexibly represent multi-arm manipulation with one or more objects with a spatial-temporal
factor graph. During inference, GFC composes factor graphs where each factor is a diffusion model
and samples long-horizon plans with reverse denoising. GFC is shown to solve sequential and
coordinated tasks directly at inference and reason about long-horizon action dependency across
multiple temporal chains. Our framework generalizes well to unseen multiple-manipulator tasks.
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