
Diffusion Policy Attacker: Crafting Adversarial

Attacks for Diffusion-based Policies

Yipu Chen*
Georgia Institute of Technology

ychen3302@gatech.edu

Haotian Xue*
Georgia Institute of Technology

htxue.ai@gatech.edu

Yongxin Chen
Georgia Institute of Technology

yongchen@gatech.edu

Abstract

Diffusion models (DMs) have emerged as a promising approach for behavior
cloning (BC). Diffusion policies (DP) based on DMs have elevated BC perfor-
mance to new heights, demonstrating robust efficacy across diverse tasks, coupled
with their inherent flexibility and ease of implementation. Despite the increas-
ing adoption of DP as a foundation for policy generation, the critical issue of
safety remains largely unexplored. While previous attack attempts have targeted
deep policy networks, DP used diffusion models as the policy network, mak-
ing it ineffective to be attacked using previous methods because of its chained
structure and randomness injected. In this paper, we undertake a comprehen-
sive examination of DP safety concerns by introducing adversarial scenarios,
encompassing offline and online attacks, and global and patch-based attacks. We
propose DP-Attacker, a suite of algorithms that can craft effective adversarial
attacks across all aforementioned scenarios. We conduct attacks on pre-trained
diffusion policies across various manipulation tasks. Through extensive experi-
ments, we demonstrate that DP-Attacker has the capability to significantly decrease
the performance of DP for all scenarios. Particularly in offline scenarios, DP-
Attacker can generate highly transferable perturbations applicable to all frames.
Furthermore, we illustrate the creation of adversarial physical patches that, when
applied to the environment, effectively deceive the model. Video results are put in:
https://sites.google.com/view/diffusion-policy-attacker.

1 Introduction

Behavior Cloning (BC) [40] is a pivotal area in robot learning: given an expert demonstration dataset,
it aims to train a policy network in a supervised approach. Recently, diffusion models [16, 49]
have become dominant in BC, primarily due to their strong capability in modeling multi-modal
distribution. The resulting policy learner, termed Diffusion Policy (DP) [9, 18], can generate the
action trajectory from a pure Gaussian noise conditioned on the input image(s). An increasing
number of works are adopting DP as an action decoder for BC across various domains such as robot
manipulation [12, 58, 7], long-horizon planning [35, 26] and autonomous driving [29].

Adversarial attack [31, 14] has been haunting deep neural networks (DNN) for a long time: a
small perturbation on the input image will fool the DNN into making wrong decisions. Despite the
remarkable success of diffusion policies in BC, their robustness under adversarial attacks [31, 14]
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Figure 1: Adversarial Attacks against Diffusion Policy: We aim to attack robots controlled with
visual-based DP, unveiling hidden threats to the safe application of diffusion-based policies. (a) By
hacking the visual inputs, we can fool the diffusion process into generating wrong actions Ä (in red).
We propose Diffusion Policy Attacker(DP-Attacker), which can effectively attack the DP by (b)
hacking the global camera inputs I using small visual perturbations under both online and offline
settings or (c) attaching an adversarial patch into the environment. The online settings use current
visual inputs at t-th timestep It to generate time-variant perturbations ¶t, while the offline settings
use only offline data ID to generate time-invariant perturbations ¶.

remains largely unexplored, posing a potential barrier and risk to their broader application. While it is
straightforward to attack an end-to-end DNN by applying gradient ascent over the loss function [31,
14], it is non-trivial to craft attacks against a DP, due to its concatenated denoising structure and high
randomness. Prior research [25, 24, 56, 55, 45] has focused on attacking the diffusion process of the
text-to-image (T2I) diffusion models [42]. However, there are distinct differences between attacking
a T2I diffusion model and attacking a Diffusion Policy. Firstly, they concentrate on attacking the
diffused value while we aim at attacking the conditional image. In addition, they try to fool the
editing process over the clean images (e.g. SDEdit [34]), while we are trying to fool the robot to
make wrong actions step by step, each action is generated from the pure gaussian noise. Diffusion
policies are also more interactive with the environment. A successful attack not only needs to fool a
single inference output but also needs to continuously fool the model to decrease model performance.

In this paper, we focus on crafting adversarial attacks against DP. Specifically, we propose Diffusion
Policy Attacker (DP-Attacker), the first suite of white-box-attack algorithms that can effectively
deceive the visual-based diffusion policies. We investigate two hacking scenarios as illustrated in
Figure 1: (1) digital attack–hacking the scene camera, which means that we can add imperceptible
digital perturbations to the visual inputs of DP, and (2) physical attack–hacking the scene by attaching
small adversarial patches [4] to the environments (e.g. table). Furthermore, we consider both offline
and online settings, for online settings, we can generate time-variant perturbations based on the
current visual inputs, on the opposite, for the offline settings we can only add one fixed perturbation
across all the frames.

We conducted extensive experiments on DP pre-trained on six robotic manipulation tasks and
demonstrated that DP-Attacker can effectively craft adversarial attacks against DP. For digital
attacks, DP-Attacker can generate both online and offline attacks that significantly degrade the DP
system’s performance. For physical attacks, DP-Attacker is capable of creating adversarial patches
tailored for each task, which can be put into the physical environment to disrupt the system. Also, we
reveal that the non-robust image encoder makes the DP easy to attack.

2 Related Works

Diffusion-based Policy Generation Diffusion models [49, 16, 48] exhibit superior performance
in multiple domains like high-fidelity image generation, video generation and 3D generation [42,
39, 44, 47, 53, 41, 27]. Due to its strong expressiveness in modeling multi-modal distribution,
diffusion models have also been successfully applied to robot learning areas such as reinforcement
learning [54, 2], imitation learning [9, 58, 20, 38], and motion planning [43, 30, 18]. Among them,
Diffusion policy (DP) [9, 58, 23] has gained significant attention due to its straightforward training

2



methodology and consistent, reliable performance. In this paper, we focus on crafting adversarial
attacks against visual-based DP, a technology already integrated into various indoor robot prototypes
like Mobile Aloha [12].

Adversarial Examples for Deep Systems Adversarial attacks have been widely studied for deep
neural networks (DNNs): given a small perturbation, the DNN will be fooled to make wrong
predictions [51, 14]. For DNN-based visual recognition models, crafting adversarial samples is
a relatively easy task using gradient-based budget-limited attacks [31, 57, 14, 5, 10, 3]. However,
attacking diffusion models consisting of a cascade of DNNs injected with noise, poses a more complex
challenge. Recent studies have demonstrated the feasibility of effectively crafting adversarial samples
for latent diffusion models using meticulously designed surrogate losses [25, 59, 24, 46, 45, 56, 6].
However, these efforts have primarily focused on image editing or imitation tasks and are limited to
working solely in latent space [55]. Here we hope to explore the adversarial attacks against DP under
various settings.

Adversarial Threats against Robot Learning Previous research has highlighted adversarial
attacks as a significant threat to robot learning systems [8], where small perturbations can cause chaos
in applications such as deep reinforcement learning [22, 13, 28, 37, 50, 36], imitation learning [15],
robot navigation [21], robot manipulation [19, 33], and multi-agent robot swarms [1]. Despite the
rising popularity of policies generated by diffusion models, to the best of our knowledge, there have
been no prior efforts aimed at attacking these models in the field of robotics.

3 Preliminaries

3.1 Diffusion Models for Behaviour Cloning

Diffusion models [49, 16] are one type of generative model that can fit a distribution q(x0), using a
diffusion process and a denoising process. Starting from xK , a pure Gaussian noise, the denoising
process can generate samples from the target distribution by K iterations of denoising steps (Here we
use K, k to represent steps in diffusion and T, t for running timesteps of the robot scenarios):

xk = ³k(xk+1 − ¼kϵθ(xk, k) +N (0, Ã2
kI)), k = 0, 2, ...,K − 1 (1)

where ³k, ¼k, Ãk are hyper-parameters for the noise scheduler. ϵθ is a learned denoiser parameterized
by ¹, which can be trained by optimizing the denoising loss termed L = Ex,k∥ϵθ(x+ ϵk, k)− ϵk∥

2.

We define the reverse process in Equation 1 as xk = Rk
θ(xk+1) for simplicity.

Diffusion policies [18, 9] noted Ãθ apply the diffusion models mentioned above, resulting in Ä t ∼
Ãθ(s

t), where Ä t ∈ R
Da×La is the planned action sequences at timestep t in the continuous space, st

is the current states, and Da, La are the action dimension and action length respectively. Accordingly,
the learnable denoiser becomes ϵθ(Äk, k, s), and the denoised diffusion process remains the same.
For visual DP, the states st are usually images captured by the scene or wrist cameras, so we use It

throughout to represent the visual inputs at timestep t. Finally, the policy can be formulated as

Ä t ∼ Ãθ(I
t) = R0

θ(R
1
θ...R

K−2
θ (RK−1

θ (xK , It)...It), It). (2)

The equation above shows that the predicted action Ä t is the output of chained denoiser models
residually conditioned on the current observation It. In practice, while DP outputs a long sequence
of actions Ä , we only execute the first few actions of it in a receding horizon manner to improve
temporal action consistency [9].

3.2 Adversarial Attacks Against Diffusion Models

Adversarial samples [14, 31, 5] have been widely studied as a threat to the AI system: for a DNN-
based image classifier y = fθ(x), one can easily craft imperceptible perturbations P to fool the
classifier to make wrong predictions over P(x). In digital attack settings [51, 14], the perturbation
should be small and always invisible to humans, which can be formulated by the ℓ∞-norm as
|P(x)− x|∞ < Ã where Ã is a small value (e.g. 8/255 for pixel value). Methods like FGSM [14]
and PGD [31] can be easily applied to craft such kinds of adversarial attacks. For physical-world
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adversarial patches [4, 11, 57, 17], P(x) is always crafted as attaching a small adversarial patch to
the environments, and the patch should be robust to physical-world transformations such as position,
camera view, and lighting condition.

Recent works [25, 45] show that it is also possible to craft such kind of adversarial examples to fool
latent diffusion models [42] with an encoder E and a decoder D: adding small perturbation to a clean
image, the denoising process will be fooled to generate bad editing or imitation results. The following
Monte-Carlo-based adversarial loss to attack a latent diffusion model:

Ladv(x) = Ek∥ϵθ(E(x) + ϵk, k)− ϵk∥
2
2 (3)

the mechanism behind attacking latent diffusion models [56] turns out to be the vulnerability of the
autoencoder and works only for the diffusion model in the latent space [55]. Also, the settings above
differs from our settings of attacking a DP which targets on attacking the conditional image without
the ground-truth clean action to get the diffused input of ϵθ in Equation 3. In the following section,
we show that we can still effectively craft different kinds of adversarial samples based on Equation 3
with some modification.

4 Methods

4.1 Problem Settings

Figure 2: Design Space of DP-Attacker: the tree
above shows the design space of DP-Attacker,
which can be adapted to various kinds of attack
scenarios, including global attacks (hacking and
cameras) vs patched attacks (hacking the physical
environment); offline vs online; targeted vs untar-
geted.

Threat Model In this paper, we assume that
we have white-box access to some diffusion pol-
icy network. That is, we have access to its pa-
rameters and also the data used to train it. Given
this trained network, we wish to find adversarial
perturbations that, when added to the observa-
tion I , will cause the trained diffusion policy
to generate unwanted actions (either random or
targeted) that impede task completion (lower the
task score or success rate). We consider two
types of perturbations detailed in Sec. 4.2 and
Sec. 4.3.

The most straightforward way to measure the
quality of the attack is to use the difference be-
tween generated actions from the original ac-
tions in an end-to-end manner:

Luntar
end2end(I, t) = −||Ãθ(P(I))− Ä t,∗||2 (3)

where Ä t,∗ is a known good solution sampled by Ãθ given the observation image I , and P(·) is some
perturbation on the observation image. It could be generated either from the trained policy for online
attacks or from the training dataset for offline attacks. One can minimize the negative L-2 distance
between a generated action and a good action for untargeted attacks. For targeted attacks, the action
loss becomes

Ltar
end2end(I, t) = ||Ãθ(P(I))− Ä ttarget||

2 (4)

where Ä ttarget is some target bad action we wish the policy to execute (e.g. always move to left). We
can use PGD [31] to optimize for the best perturbation that minimizes this loss. However, due to the
inherent long-denoising chain of the diffusion policy Ãθ, the calculation of this gradient could be
quite costly [45].

In practice, running the end-to-end attacks above is not effective especially when the model is large
and when we need to hack the camera at a high frequency. Instead, borrowing ideas from recent
works [25, 24, 56] on adv-samples for diffusion models, we propose to use the following optimization
objectives:

Luntar
adv (I, t) = −Ek∥ϵθ(Ä

t,∗ + ϵk, k,P(I))− ϵk∥
2 (5)

where k is the timestep of the diffusion process and t is the timestep of the action runner. We add
noise to the good solution Ä t,∗ and then calculate the L-2 distance between the predicted noise of the
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denoise network and the added noise. Minimizing this loss leads to inaccurate noise prediction of the
denoising network and, in turn, leads to bad generated action of the diffusion policy. For targeted
attacks, the noise prediction loss is:

Ltar
adv(I, t) = Ek∥ϵθ(Ä

t
target + ϵk, k,P(I))− ϵk∥

2 (6)

Minimizing this loss would allow the denoising net to favor the generation of the target action. The
gradient of the noise prediction loss is easier to calculate compared to the action loss because of the
short one-step chain. This makes it more favorable for conducting attacks.

4.2 Global Attacks

A global attack injects adversarial perturbation ¶ into the observation image I by adding it on top
of the observation image, i.e. P(I) = I + ¶. The adversarial noise ¶ is of the same shape as the
original image. To make the attack imperceptible, the adversarial noise’s absolute value is limited
by some Ã. To find such an adversarial noise, we use PGD [31], an optimization-based method to
search for an adversarial noise. The adversarial noise can be constructed online during inference
or offline using the training dataset. The algorithm for conducting an online global attack is shown
in Algorithm 1. The algorithm optimizes for loss in Equation 5 or Equation 6. The algorithm can
be modified easily to construct an offline attack. Given the training dataset DT = {(Ä t, It)|t ∈ T}
we can optimize for the loss Luntar

adv (I, t) = −Ek,(τt,It)∥ϵθ(Ä
t + ϵk, k,P(I))− ϵk∥

2 or Ltar
adv(I, t) =

Ek,(τt,It)∥ϵθ(Ä
t
target + ϵk, k,P(I))− ϵk∥

2. This algorithm is provided in the appendix.

Algorithm 1 Global Adversarial Attack (Online)

Input: given observation image I , diffusion policy Ãθ, noise prediction net ϵθ, attack budget Ã, step
size ³, number of steps N

Output: adversarial noise ¶
¶ ← 0 ▷ initialize adversarial noise
for i = 1 to N do
ϵk, k ∼ N (0, I), randint(1,K) ▷ sample forward noise and timestep
if targeted attack then
Ä t ← Ä ttarget + ϵk ▷ forward sample, Ä ttarget should be given
s← 1

else if untargeted attack then
Ä t ∼ Ãθ(I) ▷ use diffusion policy to generate a good solution
Ä t ← Ä t + ϵk ▷ forward sample
s← −1

end if
ϵp ← ϵθ(Ä

t, k, clip(I + ¶, 0, 1))
L ← s · ||ϵk − ϵp||

2

¶ ← clip(¶ − ³ · sign(∇Iadv
L),−Ã, Ã) ▷ Projected-Gradient Descent

end for
return ¶

4.3 Patched Attacks

A patched attack directly puts a specifically designed image patch x ∈ R
c×h×w into the environment.

The camera later captures it and causes undesirable motion from the diffusion policy. The patch
should be active under different scales, orientations, and observation views. During training, we
apply some random affine transform (shift, rotation, scale, and shear) T ∈ T. The affine transform
uses the center of the image as the origin of the coordinate system. The resulting patch replaces the
original observation image using the replacement operator: replace(I, x) again using the image’s
center as the origin of the coordinate system. To search for such a patch, we use the training dataset
and optimize for the best patch using PGD. The algorithm is illustrated in Algorithm 2.
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Algorithm 2 Patch Adversarial Attack

Input: training dataset DT = {(Ä t, It)|t ∈ T}, diffusion policy Ãθ, noise prediction net ϵθ, set of
affine transforms T, step size ³

Output: adversarial patch x
x ∼ N (0, I)
x← clip(x+ 0.5, 0, 1) ▷ initialize a patch
repeat
(Ä t, It), T , ϵk, k ∼ DT ,T,N (0, I), randint(1,K)

▷ sample from dataset, transform, forward noise, and time step
if targeted attack then
Ä t ← Ä ttarget + ϵk ▷ forward sample, Ä ttarget should be given
s← 1

else if untargeted attack then
Ä t ← Ä t + ϵk ▷ forward sample, use dataset entry
s← −1

end if
ϵp ← ϵθ(Ä

t, k, replace(It, T (x)))
L ← s · ||ϵk − ϵp||

2

x← clip(x− ³ · sign(∇xL), 0, 1) ▷ Projected-Gradient Descent
until satisfied
return x

5 Experiments

We test the effectiveness of DP-Attacker with various strengths and configurations on different
diffusion policies. Our target models are vision-based diffusion policy models introduced by Chi et
al. [9]. We aim to manipulate the visual input so that the generated trajectory will not lead to task
completion. We quantitatively evaluate the effectiveness of our attack methods by recording the result
task completion scores/successful rate. We also provide scores without attacks for reference and
random noise attacks (adding some Gaussian noise to the observation images) as a baseline attack
method. We foucus on the models released by Chi et al. [9]. However, our attack algorithm applies
to other variants of diffusion policies as well.

Environment Setup Our benchmark contains 6 tasks: PushT, Can, Lift, Square, Transport, and
Toolhang. These tasks are illustrated in Figure 7 in the Appendix. Robosuite provides all the
simulation of these tasks except for PushT [52, 32, 60]. For evaluation, we attack the released
checkpoints of diffusion policies trained by Chi et al. [9]. For tasks Can, Lift, Square, and Transport,
each has two demonstration datasets: Multi-Human (MH) and Proficient Human (PH). The other
two tasks (PushT and Toolhang) has only one PH dataset, respectively. This gives us a total of 10
datasets. In [9], each dataset is used to train two diffusion policies with different diffusion backbone
architectures: CNN-based and Transformer-based. We take the best performing checkpoints for these
20 different scenarios released by Chi et. al [9] as our attack targets. For each attack method, we run
50 rollouts and collect the average score or calculate the success rate of the tasks. The rollout length
uses the same length as the demonstration dataset [9, 32]. Besides our attack methods, we also run
the rollout using clean images for reference and with random noise added as a baseline attack method.
The evaluation is done using a single machine with an RTX 3090 GPU and AMD Ryzen 9 5950X to
calculate rollouts and run our attack algorithms.

5.1 Global Attack

We first present the results of global attacks. We evaluate both our online attack algorithm (creating
adversarial noise on the fly per inference) and offline algorithm (pre-generating a fixed noise that is
used for every inference).

Online Attack For online attacks, we use attack parameters Ã = 0.03, ³ = 0.001875, N = 50.
For targeted attacks, we use a normalized target action vector of all ones. We report the performance
of the transformer-based models before and after the attack in Table 1. The results of global attacks
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Figure 3: Global Attack (Online): We visualize the global attacks in Algorithm 1 within both the
PushT and Can environments. Specifically, we present action rollouts for four types of observations:
clean observations, observations perturbed with random Gaussian noise, and our optimized perturba-
tions (both untargeted and targeted). While the DPs show robustness to random perturbations, they
are vulnerable to adversarial samples generated using DP-Attacker.

Patch-Can

Patch-Square

Patch-Toolhang

Figure 4: Physical Adversarial Patches: we show the patches optimized by Algorithm 2, attaching
it to the physical scene will effectively lower the success rate of the target diffusion policy.
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Tasks PushT Can Lift Square Transport Toolhang
Demonstration Type PH PH MH PH MH PH MH PH MH PH

Clean 0.75 0.92 0.92 1 1 0.92 0.72 0.86 0.46 0.86
Random Noise 0.66 0.88 0.98 1 1 0.82 0.74 0.84 0.48 0.82

Targeted-Offline 0.46 0.08 0.08 0.94 0.7 0 0 0 0.02 0
Untargeted-Offline 0.39 0.1 0.46 0.8 0.62 0.04 0 0 0 0

Targeted-Online 0.10 0 0 0.02 0 0 0 0 0 0
Untargeted-Online 0.19 0.02 0.02 0.62 0.62 0 0 0 0 0

Table 1: Quantitative Results on Global Attacks: The table includes the attack result for all
transformer based diffusion policy networks. Our DP-Attack can significantly lower the performance
of the diffusion models.

Can Lift Square Toolhang
Backbone Arch CNN Transformer CNN Transformer CNN Transformer CNN Transformer

Clean 0.98 0.92 1 1 0.94 0.92 0.8 0.86
Random Noise Patch 0.9 0.94 1 0.9 0.8 0.54 0.56 0.12

Untargeted-Offline 0.16 0.44 1 0.82 0.72 0.34 0.48 0.02

Table 2: Quantitative Results on Patched Attacks

on all models are given in the appendix. Example rollouts and images used in the rollouts are shown
in Figure 3.

Offline Attack For offline global attacks, we train on the training dataset with batch size 64,
³ = 0.0001, Ã = 0.03 for 10 epochs. The resulting trained adversarial noise is added to the input
image for every inference. The results are shown in Table 1. Examples of rollouts and images used in
the attack can be found on our website.

We find that diffusion policy is not robust to noises introduced by our DP-Attacker. The performance
of diffusion policies is significantly reduced after running global attacks. A disturbance of less than
3% is able to decrease the performance from 100% to 0%. The success of offline global attacks also
shows attacks can be cheaply constructed and pose a significant threat to the safety of using diffusion
policy in the real world.

5.2 Patched Attack

Random Noise DP-Attacker
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Can PH CNN Online Global Attack

Random Noise DP-Attacker
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Lift PH CNN Online Global Attack

Figure 5: Difference in Encoded Feature Vector: we cal-
culate the distance between the clean feature vector and the
attacked feature vector. DP-Attacker perturb the feature
vector significantly compared to naive random noise attack.

Training vs. Evaluating Since
patched attacks directly put an at-
tack image into the environment, we
only consider offline attacks that pre-
generate some patch that is used
throughout the rollout. We train the
patch using Algorithm 2, where the
patch is applied to the training image
using some randomized affine trans-
form. This allows the gradient to
pass through for successful training.
Since we have used random affine
transforms during training, the patch
should be transferable when used in
the simulation environment. For eval-
uation, we create a thin box object
with the trained image patch as its tex-
ture and put it randomly onto the ta-
ble.
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Parameters (Ã = 0.03) N = 10 N = 20 N = 50

Success Rate 0.94 0.8 0.66

Parameters (N = 50) Ã = 0.01 Ã = 0.03 Ã = 0.05

Success Rate 1 0.68 0.32

Table 3: Different Parameters for DP-Attack: We did an ablation study on parameters Ã and
N , and we can see that smaller steps and budgets are not enough to fool a DP. Larger budgets will
dramatically decrease the Sucess Rate (SR).

Results We construct a patch of size that covers around 5% of the observation image using
Algorithm 2. The details of the training can be found in the appendix. We evaluate the effectiveness
of our patch attack algorithm on a total of 8 checkpoints, covering the PH dataset across four tabletop
manipulation tasks (Can, Lift, Square, and Toolhang) using both CNN and Transformer diffusion
backbones. The result success rate (SR) is shown in Table 2. Example rollouts are shown in Table 4.

Simpler tasks such as Can and Lift are quite robust to random noise patch. Our DP-Attacker
produces adversarial patches that perform better than random noise in terms of degrading the
diffusion policy performance.

5.3 Quantitative Results on Targeted Attacks

We qualitatively evaluate the effectiveness of our targeted attacks. We use our DP-Attacker to run
global-online-targeted attacks with varying strength on two model checkpoints: PushT (CNN) and
CAN (PH CNN). The target in PushT task is a 2D coordinate around (323.875, 328.75) (note the side
length of the PushT environment is 1024), and the target in the CAN task is the target end-effector
position around (0.1686, 0.1049, 1.0848) (in meters). In 6, we report how close the actions generated
by diffusion policy are to our attack targets during the rollout.
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Mean Distance from Target Action During Rollout (PushT CNN)
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Figure 6: We used DP-Attacker with different attack strengths to run rollouts. We report the average
distance between the predicted action sequence and the target action sequence (a sequence of a
duplicate target coordinate). The metric is calculated at each inference during the rollout.

Our DP-Attacker is able to manipulate the generated action to be within 20 units and 5 cm of the
attack targets, respectively, for the PushT task and CAN task, with an attack strength of ¶ = 0.06.
Example rollouts of these two attack scenarios can be found in the Sec. D of the appendix.

6 Ablation Study

Attack Parameters To investigate the effectiveness of our attack method, we evaluate how the
attack parameter plays a role in DP-Attacker. First, we investigate the effect of the number of PGD
steps N . We keep the Ã = 0.03, and ³ = 2σ

N
. Second, we investigate the effect of the noise scale Ã.

We keep N = 50, and ³ = 2σ
N

. We evaluate all six attacks on the transformer backbone DP trained
on the Lift PH dataset. The result is summarized in table 3.

End to End Loss vs. Noise Prediction Loss We perform a comparison with the end-to-end action
loss 3. We evaluate both methods with the same attack parameters (Ã = 0.03, ³ = 0.001875, N =
50) on the best-performing transformer backbone trained on the PH dataset of the Lift task. Again,
we evaluate 50 randomly initialized environments. The selection of end to end loss with DDPM [16]
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Method Attack Time Model Success Rate

Clean - 1
Random Noise - 1

End to End DDPM (Untargeted) ∼70s 1
End to End DDPM (Targeted) ∼67s 0.52

End to End DDIM-8 (Untargeted) ∼6.5s 0.9
End to End DDIM-8 (Targeted) ∼5.8s 0.24

DP-Attacker (Untargeted) ∼1.8s 0.62
DP-Attacker (Targeted) ∼1.3s 0.02

Table 4: Compared with End to End Attacks DP-Attacker runs significantly faster than the
end-to-end attacks even if it is accelerated with DDIM. Our DP-Attacker also provides better attack
results.

scheduler makes it infeasible for online attacks. In addition, we provide results where we replace
the loss-calculating noise scheduler with a DDIM-8 step scheduler [48]. This provides speedup for
calculating the end to end loss. The result SR after the attack and the average time used to perform
the online attacks are shown in 4. The naive end-to-end loss is significantly lower than our attack
algorithms and does not provide better results. We suspect that since diffusion models introduce
randomness during the sampling of a trajectory, it is better to attack the noise prediction loss rather
than the end to end action loss.

What Is Being Attacked Is the Encoder We try to investigate further what exactly is attacked
in our DP-Attacker. Other literature relating to text-to-image diffusion models shows that the
encoder is the one being attacked [45, 56]. We suspect the same is happening for diffusion policy. To
investigate this, we calculate the L2 distance between the encoded feature vector of clean and attacked
images random noise attack, unsuccessful attack parameters, and successful parameters, respectively.
The details of the calculation is in the appendix. We do this for 1000 images in the training dataset and
plot the distribution of the distances using a violin plot in Figure 5. The significant difference shows
that our attack method has drastically changed the representation of the conditional visual feature.
This later affects the downstream conditional noise prediction net, causing it to make inaccurate noise
predictions. We put details about it in the Appendix.

7 Conclusion and limitations

In this paper, we propose DP-Attacker, a suite of algorithms designed to effectively attack
diffusion-based policy generation, an emerging approach in behavior cloning. We demonstrate
that DP-Attacker can craft adversarial examples across various scenarios, posing a significant threat
to systems reliant on DP. Our findings highlight that despite the inherent randomness and cascaded
deep structure of diffusion-based policy generation, it remains vulnerable to adversarial attacks. We
emphasize the need for future research to focus on enhancing the robustness of DP to ensure its
reliability in real-world applications. There are also some limitations for this paper: our experiments
were conducted exclusively within a simulation environment, and we did not extend our testing to
real-world scenarios. Additionally, we did not develop or implement any defensive strategies for the
proposed tasks, which remains an area for future research and exploration.
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Appendix

We put more video results, including rollouts of the DP-based robots under various attacks crafted by
DP-Attacker , in the following anonymous link:

https://sites.google.com/view/dp-attacker-videos/.

A Broader Impact

Diffusion-based policies (DPs) have emerged as promising candidates for integrating real robots into
our daily lives. Even with just a few collected demonstrations, DPs exhibit strong performance across
various tasks [12, 58]. However, despite their utilization of diffusion models, which distinguish
them from other policy generators, our research highlights their vulnerability to adversarial attacks.
We demonstrate practical attacks on DP-based systems, such as hacking cameras to introduce fixed
perturbations across all frames (global offline attack) and incorporating patterns into the scene
(physical patched attack). It is critical to consider these threats, and we urge future research to
prioritize the development of more robust DPs before their widespread application in the real world.

B Algorithms

We also provide the algorithm for training the offline global attacks.

Algorithm 3 Global Adversarial Attack (Offline)

Input: training dataset DT = {(Ä t, It)|t ∈ T}, diffusion policy Ãθ, noise prediction net ϵθ, step
size ³, attack budget Ã

Output: adversarial noise ¶
¶ ← 0 ▷ initialize adversarial noise
repeat
(Ä t, It), ϵk, k ∼ DT ,N (0, I), randint(1,K) ▷ sample from dataset, forward noise and timestep

if targeted attack then
Ä t ← Ä ttarget + ϵk ▷ forward sample, Ä ttarget should be given
s← 1

else if untargeted attack then
Ä t ← Ä t + ϵk ▷ forward sample
s← −1

end if
ϵp ← ϵθ(Ä

t, k, clip(It + ¶, 0, 1))
L ← s · ||ϵk − ϵp||

2

¶ ← clip(¶ − ³ · sign(∇Iadv
L),−Ã, Ã) ▷ Projected-Gradient Descent

until satisfied
return ¶

C Experimental Details

C.1 Task Descriptions

We investigate a total of six different tasks: PushT, Can, Lift, Square, Transport, and Tool hang. The
tasks are illustrated in 7. Here are the descriptions for each task:

• PushT: The simulation happens in 2D. The agent controls a rod (blue circle) to push the
grey T block into the targeted green area. The score calculated is the maximum percent of
coverage of the green area by the grey T block during a rollout.
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Figure 7: Simulation renders of the six tasks

• Can: The simulation environment is provided by robosuite [60]. The agent controls the
6-DoF end-effector position and gripper close or open. The goal is to move the randomly
positioned can in the left bin into the corresponding bin (lower right) in the right bin.

• Lift: The simulation environment is provided by robosuite. The agent controls the 6-DoF
end-effector position and gripper close or open. The goal is to lift up the randomly positioned
red block.

• Square: The simulation environment is provided by robosuite. The agent controls the 6-DoF
end-effector position and gripper close or open. The goal is to put the randomly positioned
square nut around the square peg.

• Transport: The simulation environment is provided by robosuite. The agent controls 2 6-DoF
end-effector positions and grippers close or open. The goal is to transport the hammer inside
the box one one side to the box on the other side.

• Tool hang: The simulation environment is provided by robosuite. The agent controls the
6-DoF end-effector position and gripper close or open. The goal is to construct the tool
tower by first inserting an L-shaped bar into the base and later hanging the second tool on
the tip of the bar.

C.2 Training Details

Our goal is to construct noises for the observation images. The image encoder uses multiple views
when constructing the conditional image feature vector. Below are details of how we construct the
adversarial noises.

C.2.1 Global Online Attacks

For global online attacks, we construct noises for all observation views, i.e. suppose the encoder
takes two camera views (one side view and one eye-in-hand), and the conditional state length is two,
we will construct a total of four noises for adding onto the input images, respectively, before passing
it into the policy for action generation.

For the random noise attack, the noise selected is sampled from a standard Gaussian and scaled by
Ã = 0.03 and clipped in the range [−Ã, Ã]. For untargeted online attacks, we use PGD parameters
N = 50, Ã = 0.03, ³ = 0.001875. For targeted online attacks, the targeted selected is an action
matrix (actim dim× action horizon) of all 1’s (in normalized action space). The PGD parameters for
targeted online attacks are the same as the untargeted online attacks.

C.2.2 Global Offline Attacks

Similar to global online attacks, we also construct noise for all observation views. However, since
this is an offline attack, we pre-generate (train) just one set of adversarial noises for each input, and it
is used throughout the rollout for the same task. The training parameters for untargeted and targeted
attacks are the same: number of epochs = 10, ³ = 0.0001, and batch size = 64. For targeted attacks,
we again use a normalized action of all 1’s.

C.2.3 Patched Attacks

For patch attack training, we only apply the patch on the most important camera view (side view).
However, this is to maintain the consistency for the patch gradient pass. However, the patch is put into
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Parameter Range

x shift [−0.4, 0.4] percent of image, in centered coordinate.
y shift [−0.4, 0.4] percent of image, in centered coordinate.

rotation [−45◦, 45◦]
scale [1, 1]

shear x [−50◦, 50◦]
shear y [−50◦, 50◦]

Table 5: Set of Affine Transforms T for Patched Attack

Figure 8: Comparison of Physical Patch Training and Evaluation

the simulation environment for evaluation and can be observed from multiple perspectives. For tasks
Can, Lift, and Square, the observation image size is 84× 84, and we choose the training patch size of
17×17 that covers around 4% of the observation. For task Toolhang where the observation image size
is 84× 84, we choose the training patch size of 50× 50 that covers around 4.3% of the image. The
set of transforms T is summarized in the table 5. The training parameters are epochs = 10, batch size
= 64, ³ = 0.0001. For evaluation, we make patch objects of size 0.06m× 0.06m (2.36in× 2.36in)
and put it onto the table. The rotation angle is from [−45◦, 45◦]. For tasks Can, Lift, and Square,
the position of the patch can be anywhere on the table. For Toolhang, the position of the patch is
constrained to be on the top left of the table so it can be captured by the camera. The size is about the
same and we provide the comparison in the figure 8.

D More Results

Full Table for Global Attacks We provide the full table for the results of global attacks in 6 as an
extension for 1. CNN-based models are harder to attack. Nevertheless, the result score still decreased
significantly.

Targeted Attacks With more attack budget, we can manipulate the robot’s action quite well. For
this experiment, we increase the online global attack budget Ã to 0.05. With this increased budget, we
could manipulate the generated action of DP. This shows the effectiveness of DP-Attacker proposed
targeted noise prediction loss. See our website for details.

What Is Being Attacked Is the Encoder To investigate whether it is the encoder that is being
attacked in DP-Attacker we perform the following comparison. For a given image, we find the
encoded feature vector of the clean image E(x), clean image + random noise E(x+ ¶rand), and clean
image + adversarial noise E(x + ¶adv) by our DP-Attacker. Next we calculate the L2 distance
between the encoded clean image vs the encoded random noise attacked image |E(x)−E(x+¶rand)|

2
2,

and the L2 distance between the encoded clean image vs the encoded DP-Attacker attacked images
|E(x)− E(x+ ¶adv)|

2
2. We collect the these two distances for 1000 images in the training dataset and

plot the distribution of the two sets using violin plots 5. The attack we use are random noise attack with
Ã = 0.03 and online targeted global attacks with Ã = 0.03, N = 50, ³ = 0.001875, ntarget = 1. We
do this for two dataset, one is the CAN ph with CNN backbone where our DP-Attacker successfully
performs the attack, and the other is the Lift ph with CNN backbone where our DP-Attacker fails to
construct successful attacks (see table 6). The difference in distribution shows that successful attacks
is correlated with the successful disturbance of the encoder.
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Tasks PushT Can Lift Square Transport Toolhang
Demonstration Type PH PH MH PH MH PH MH PH MH PH

Clean 0.75/0.83 0.92/0.98 0.92/0.98 1/1 1/1 0.92/0.94 0.72/0.84 0.86/0.88 0.46/0.82 0.86/0.8
Random Noise 0.66/0.87 0.88/1 0.98/0.98 1/1 1/1 0.82/0.94 0.74/0.76 0.84/0.84 0.48/0.68 0.82/0.72

Targeted-Offline 0.46/0.68 0.08/0.2 0.08/0.16 0.94/1 0.7/1 0/0.9 0/0.66 0/0.66 0.02/0.64 0/0
Untargeted-Offline 0.39/0.73 0.1/0 0.46/0.34 0.8/1 0.62/0.98 0.04/0.62 0/0.68 0/0 0/0 0/0

Targeted-Online 0.10/0.45 0/0 0/0 0.02/1 0/1 0/0.54 0/0.08 0/0 0/0 0/0
Untargeted-Online 0.19/0.48 0.02/0.02 0.02/0.02 0.62/1 0.62/1 0/0.38 0/0.08 0/0.04 0/0.04 0/0

Table 6: Quantitative Results on Global Attacks: The table includes the attack results for both CNN
and transformer-based diffusion policy networks. The format is transformer/CNN. Our DP-Attack
can significantly lower the performance of the diffusion models.

Method Attack Time Model Score

Clean - 0.75
Random Noise - 0.66

End to End DDPM ∼44.6s 0.11
End to End DDIM-8 ∼4.3s 0.11

DP-Attacker Targeted-Online ∼1.5s 0.11

Table 7: Compared with End to End Attacks DP-Attacker runs significantly faster than the
end-to-end attacks even if it is accelerated with DDIM. Our DP-Attacker also provides better attack
results

Speed and Effectiveness Comparison With End to End Loss We perform another set of compari-
son with the end to end loss to show the both the speed benefit and effectiveness of our DP-Attacker .
We conduct online targeted attacks on the Transformer-based DP for the PushT task. The PGD
parameters for end to end attacks at N = 50, σ = 0.03, α = 0.001875. The result average model
score in 50 simulations and attack time is shown in 7. The evaluation is done on a machine with
RTX4080 mobile GPU , and Intel i9-13900HX CPU.

Rollouts of Quantitative Targeted Attacks The following are the rollouts of videos corresponding
to Sec. 5.3. Please open this PDF with Adobe Acrobat Reader to view the animated frames.

Figure 9: δ = 0.05 (PushT) Figure 10: δ = 0.06 (PushT) Figure 11: δ = 0.07 (CAN PH)

Figure 12: δ = 0.05 (CAN PH) Figure 13: δ = 0.06 (CAN PH) Figure 14: δ = 0.07 (CAN PH)
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Transferability of Offline Attacks Across Different Backbones We also evaluate the transfer-
ability of DP-Attacker generated offline attacks across different diffusion backbones. We first test
the transferability of offline global attacks. We use DP-attacker to generate untargeted global offline
attacks (δ = 0.03) on two checkpoints (CAN-MH-CNN and CAN-MH-TF). Then, we evaluate these
models using the two generated adversarial perturbations, and the success rate is listed in 8. We also
test the transferability of patched attacks. We use DP-Attacker to generate adversarial patches on
two checkpoints (CAN-PH-CNN and CAN-PH-TF). Then, we evaluate these models using the two
generated adversarial perturbations, and the success rate is listed in Table 9.

Runner
Model

Attacked
Model

CNN TF Original SR

CNN 0.34 0.78 0.98

TF 0.32 0.46 0.92

Table 8: Model success rate of the CAN task
trained on the MH dataset. We generated of-
fline global attacks for each backbone first, and
tested them on both models. The attack trans-
fer case is marked in blue. We also report the
model’s original SR (without perturbation).

Runner
Model

Attacked
Model

CNN TF Original SR

CNN 0.16 0.54 0.98

TF 0.42 0.44 0.92

Table 9: Model success rate of the CAN task
trained on the PH dataset. We generated phys-
ical patched attacks for each backbone first,
and tested them on both models. The attack
transfer case is marked in blue. We also report
the model’s original SR (without perturbation).

Note that from 2, the random noise patch does not affect the performance of DP on the CAN task very
much. However, our DP-Attacker generated patches are able to decrease model performance in
transfer settings (marked in blue) in Tables 8 and 9. This shows the effectiveness of our DP-Attacker
and its potential ability in black-box attacks.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We made accurate claims in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We stated our limitation in the last paragraph of the main paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We don’t have theoretical results in the paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We show experimental details in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We will release the code to the public.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have the training details in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the averaged metrics on different datasets, and the difference is
significant.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We put the settings in the main paper.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conforms with the ethics code.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impact in the main paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: all the models and datasets used in this paper are properly credited and licenses
are respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new datasets/models are proposed in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
answerNA

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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