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ABSTRACT. We show that for any surface of genus at least 3 equipped with any choice of
framing, the graph of non-separating curves with winding number 0 with respect to the
framing is hierarchically hyperbolic but not Gromov hyperbolic. We also describe how to
build analogues of the curve graph for marked strata of abelian differentials that capture
the combinatorics of their boundaries, analogous to how the curve graph captures the
combinatorics of the augmented Teichmiiller space. These curve graph analogues are also
shown to be hierarchically, but not Gromov, hyperbolic.

1. INTRODUCTION

The moduli space QM of genus g Abelian differentials forms a bundle over the usual
moduli space M, of genus g Riemann surfaces. This bundle decomposes into strata, subvari-
eties which parametrize differentials with a given number and order of zeros and which are
the ambient theatre for Teichmiiller dynamics. The overall structure of strata is still poorly
understood, and recent work has been largely guided by the following:

Question 1.1. How similar are strata and Mgy?

There has been a great deal of success constructing compactifications of strata akin to
the Deligne-Mumford compactification of My [EMZ03,BCG*18, BCG*19]. The structure
of these boundaries can then be used to compute constants of dynamical interest [EMZ03],
perform intersection theory on strata [CMSZ20], and compute their Euler characteristics
[CMZ22], among many other things.

Another version of Question 1.1 deals with their fundamental groups. Recall that M, is an
(orbifold) K (m,1) for the usual mapping class group Mod(S), the group of homeomorphisms
of the surface up to homotopy. By analogy, Kontsevich predicted that each connected
component of a stratum should be a K (7,1) for “some mapping class group” [KZ]. In [CS22],
the first author and Salter showed that the fundamental groups of strata are closely related
to framed mapping class groups FMod(S, ¢), the stabilizers inside Mod(S) of trivializations
¢:TS =S xR? (see §2 for a formal definition). Apisa, Bainbridge, and Wang subsequently
showed that certain strata of twisted 1-forms are K (m, 1)’s for framed mapping class groups
[ABW23]. A group-theoretic analogue of Question 1.1 is thus:

Question 1.2. How similar are FMod(S, ¢) and Mod(S)?

1.1. Curve graphs and strata. This paper initiates the study of Questions 1.1 and 1.2
from the coarse-geometric perspective by analyzing the geometry of certain curve graphs.
The classical curve graph € (S) has a vertex for each isotopy class of essential simple closed
curve on an orientable surface and an edge when two curves can be realized disjointly [Har81].
In addition to this topological interpretation, this graph also plays the role of (the 1-skeleton
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of) a Tits building for Teichmiiller space 7, recording the incidences of top-dimensional
boundary strata of the augmented Teichmaiiller space, a certain bordification of 7, that “lifts”
the Deligne— Mumford compactification of M, (see §5.2).

Masur and Minsky famously proved that €(S) is Gromov hyperbolic [MM98]. This
marquee result has far-reaching implications for the coarse geometry of the mapping class
group [Iva97,MMO00], the geometry of Teichmiiller space [MM98, Raf05], and the structure
of hyperbolic 3-manifolds [Min10, BCM12]. More generally, the geometry of curve graphs
has proven useful in a variety of settings; examples of this paradigm include relationships
between the pants graph/the Weil-Petersson metric on 7, [Bro03,BF06], the Torelli complex
and separating curve graph/the Torelli subgroup and the Johnson kernel [F105, BM04], and
the disk graph/the handlebody group and Heegaard splittings [Hen20, MS13].

As a first step towards Question 1.2, we study a topological analogue of €(S) that takes
the framing into account. Any framing ¢: T.S =2 S x R? can be used to measure the winding
number of a smooth, oriented curve in S by lifting the curve to T'S via its tangent vector,
projecting to the second coordinate, then measuring the winding number of the image about
0 € R2. A simple closed curve on S is admissible for ¢ if it is nonseparating and has zero
winding number, and the admissible curve graph Goam(S, @) is the subgraph of € (S) spanned
by admissible curves.

The framed mapping class group FMod(S, ¢) preserves the winding number of every curve,
hence acts on € (S) with infinitely many orbits of vertices. In contrast, FMod(.S, ¢) acts on
Gadm (S, ®) with finitely many orbits of vertices and edges (Proposition 2.9), indicating that
the admissible curve graph is better adapted to study FMod(S, ).

Our first main result is that the admissible curve graph is not Gromov hyperbolic, but
does possess a generalized notion of hyperbolicity.

Theorem A. For any surface S = Sy, of genus g > 3 and any framing ¢ of S, the
admissible curve graph Gpam(S, @) is hierarchically hyperbolic (but not Gromov hyperbolic).

Hierarchical hyperbolicity was introduced by Behrstock, Hagen, and Sisto to unify sim-
ilarities between the coarse geometry of mapping class groups, Teichmiiller spaces, and
right-angled Artin groups [BHS17b]. Briefly, this framework allows one to understand the
geometry of a space by projecting it onto a collection of Gromov hyperbolic spaces. The
presence of “orthogonal” projections leads to quasi-isometrically embedded flats, hence a
failure of Gromov hyperbolicity.

We can also define a geometric analogue of € (.S) that captures the intersection pattern
of the boundary of a marked stratum. More precisely, since holomorphic differentials are
determined up to scaling by the order and position of their zeros, any stratum component
H C Q' M, is an (orbifold) C*-bundle over a subvariety of M, ,, the moduli space of genus
g Riemann surfaces with n marked points. Let us conflate H with this subvariety.

Take any non-hyperelliptic stratum component H C M, ,,, let H, be any component of the
preimage of H in 7y, and consider its closure H, in the augmented Teichmiiller space ﬁ.
Define a graph ¢(H,) whose vertices are those multicurves  such that H, N Tg.n(7y) # 0,
where 7y ,,(7) is the boundary stratum of 7, ,, in which v is pinched, and whose edges are
given by inclusion. The intricate structure of the boundary of H, means there are other
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natural ways to define this graph (see Sections 5.3 and 5.4), but they all turn out to be
quasi-isometric to € (H).

The geometry of ¢’ (Hy) is closely linked to that of Gaam (S, ¢), and using Theorem A plus
structural results about compactifications of strata [BCGT18, BCGT19], we prove:

Theorem B. For any non-hyperelliptic stratum component H C QlMg with g > 5, the
graph € (M) is hierarchically hyperbolic (but not Gromov hyperbolic).

Remark 1.3. As shown in [CS22, Corollary 1.2], admissible curves are exactly the core
curves of cylinders on surfaces in Hg. One can also construct a partial bordification of
Hy in which only cylinders are allowed to degenerate; the combinatorics of how this space
meets 8@ then correspond to €yam (S, ¢). Thus Theorem A can also be interpreted as a
statement about the coarse geometry of H.

Remark 1.4. Our restriction to non-hyperelliptic components is because the hyperelliptic
ones do not exhibit new phenomena. Indeed, hyperelliptic stratum components are essentially
strata of quadratic differentials on CP*, which are in turn parametrized by their poles and
zeros. Thus we can understand compactifications of hyperelliptic stratum components
entirely in terms of the Deligne-Mumford compactification of Mg .

Remark 1.5. The restriction to g > 3 in Theorem A is because for g = 1,2 the admissible
curve graph is not necessarily connected. The restriction to g > 5 in Theorem B comes from
the fact that the main theorem of [CS22] relating 7 (#) and FMod(S, ¢) only applies for
g > 5. In Section 5 we give a (slightly circuitous) definition of ¢'(H,) that agrees with the
one given above for g > 5 and for which Theorem B holds in genus 3 and 4. In particular,
all of the proofs in this paper hold for g > 3.

Curve graph techniques have been used successfully to study certain GL;R-invariant
subvarieties of Q' M,: [Tan21] proved that Veech groups are undistorted in Mod(S), [RS09]
proved a similar result for covering constructions, and [AHW24] used curve graphs to study
the geometry of totally geodesic subvarieties of Teichmiiller space. It is our hope that the
tools developed in this paper will yield insights into both the intrinsic and extrinsic geometry
of framed mapping class groups and strata. For example, we ask:

Question 1.6. Is FMod(S, ¢) distorted in Mod(S)? Are strata distorted in Mg, ?

1.2. Outline of proof and paper. To prove Theorems A and B, we need to exhibit
projections from Gpam (S, #) and € (Hs) to Gromov hyperbolic spaces. In both settings,
we use Masur and Minsky’s subsurface projection maps to the curve graphs of witnesses —
subsurfaces of S that intersect every admissible curve. This approach was inspired by work of
Vokes, who showed that a wide variety of graphs of curves are hierarchically hyperbolic using
their subsurface projection maps to witnesses [Vok22]. Vokes first uses the set of witnesses
to build a hierarchically hyperbolic “model graph” IC, then shows that if the graph of curves
admits a cobounded action of Mod(S) then it is quasi-isometric to K.

To prove Theorem A, we construct a hierarchically hyperbolic model K for €ham (S, ¢) a
la Vokes (Section 3). However, we cannot employ her quasi-isometry as €nam (S, ¢) does not
admit an action by all of Mod(.S) and the action of FMod(S, ¢) on K is not sufficiently cofinite
to adapt her argument. Instead, we construct a novel quasi-isometry K — ©oam (S, ¢) via
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the graph G of genus separating curves (Section 4). The graph G can be quasi-isometrically
realized as a “blow-up” of K, while €,am (S, ¢) is quasi-isometric to a “cone-off” of G. To
build the map K — €am (S, ), we show that the blown-up subsets from K — G coarsely
match the coned-off subsets from G — €oam (S, ¢). This step requires some fairly delicate
computations with curves on surfaces.

Theorem B follows by constructing a quasi-isometric model for €' (H,) entirely in terms
of framing data. This requires unpacking some of the finer structure of the boundary,
as developed in [BCG*19], and giving topological interpretations to many of the objects
involved. These steps are accomplished in Section 5. In this section, we also build a trio of
graphs whose definitions interpolate between the structure of H, and framing data.

In the final Section 6, we show that the three graphs from Section 5 are all quasi-isometric,
and that they are quasi-isometric to a Vokes model graph IC. Again, there is not sufficient
transitivity to apply Vokes’s methods, and the construction of a quasi-isometry is quite
subtle. The graph K is an FMod(.S, ¢)-equivariant cone-off of the model K for €pqm (S, ¢),
and the inclusion G,am (S, ¢) — ¢ (Hg) is also an equivariant cone-off. As in the case of
Theorem A, the main difficulty is then showing that these two cone-offs coarsely match.

A common theme running throughout this paper is that if one understands the FMod(S, ¢)
action on configurations of curves and subsurfaces well enough, then many surface-topological
arguments can be adapted to the framed setting with a little extra care and effort. As such,
we prove a number of transitivity results (Propositions 2.9, 6.2, and 6.3) for the FMod(S, ¢)
action that may be of broader interest.
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2. SURFACES, CURVES, AND FRAMINGS

Let us first recall some basic surface-topological notions and set our notation for the rest
of the paper. Let § =S, ,, denote an orientable surface with genus g and n punctures. The
complezity of S =Sy, is £(S) = 3g — 3+ n. By a curve on S we mean an isotopy class of an
essential (i.e., non-nulhomotopic), non-peripheral (i.e., not homotopic to a puncture), simple
closed curve on S. An arc on S is an isotopy class of essential, non-peripheral simple arcs
running between the punctures. Curves and arcs are unoriented unless we say otherwise. By
a subsurface of S, we mean an isotopy class of an essential, non-peripheral, (relatively) closed
subsurface of S. For two subsurfaces U and V, we say U C V if U and V can be realized
such that U is contained in V. We say two curves and/or subsurfaces are disjoint if their
isotopy classes can be realized disjointly. Otherwise, we say they intersect. A multicurve on
S is a collection of distinct, disjoint curves on S. Throughout the paper, we use lowercase
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Latin letters to refer to curves, Greek letters to multicurves and arcs, and uppercase letters
to subsurfaces.

Given two multicurves «, 8 on S, we let i(a, 8) denote their geometric intersection number.
If o and S are oriented curves, then {(a, 8) will denote their algebraic intersection number. If
a multicurve « intersects a subsurface W C S, then o« N W is the isotopy class (relative to
OW) of curves and arcs obtained by taking the intersection of W with a representative for «
that realizes i(a, OW). Two arcs oy, as on the subsurface W are parallel if they are isotopic
by isotopies fixing OW setwise but not pointwise.

If o is a multicurve on S, then S\ a will denote the closed subsurface obtained by removing
a small open neighborhood of each curve in « from S. Similarly, if W is a subsurface of .5,
then S\ W is the closed subsurface obtained by removing a small open neighborhood of W
from S. We denote the genus of a subsurface W C S by g(W).

The (pure) mapping class group, Mod(.S), is the group of homeomorphisms of S that fix
each of its punctures, modulo isotopy. The mapping class group is generated by Dehn twists:
for any simple closed curve ¢, let T, denote the homeomorphism obtained by cutting open S
along ¢, twisting one of the boundary components of S\ ¢ once to the left, and then regluing.

2.1. Framings and winding numbers. A framing of a surface S is a trivialization of its
tangent bundle ¢ : TS = S x R?. For surfaces of genus not equal to 1, the existence of a
framing requires S to have punctures and/or boundary. Throughout this paper we will think
of S as having punctures.

We are interested in the set of framings up to isotopy; these were called “absolute framings’
in [CS22]. Isotopy classes of framings can be described by the discrete invariant of a “winding
number function” as follows. Given any C! immersed curve v : [0,1] — S, the tangent

)

framing (y,v') gives a curve in T'S = S x R2. Projecting into the second factor gives a loop
in R?\ {0} and so one can measure the winding number ¢(y) of o/ about 0. This number is
an invariant of the isotopy class of framing as well as the isotopy class of v (though not its
homotopy class), and so to every framing ¢ we have an associated winding number function
of the same name

¢:S =7,

where S denotes the set of isotopy classes of oriented simple closed curves. It is not hard
to show that the function ¢ is actually a complete invariant of the isotopy class of the
framing [RW14, Proposition 2.4], and so for the remainder of the paper we will conflate a(n
isotopy class of) framing and its associated winding number function.

Remark 2.1. In a previous version of this paper, we considered surfaces with boundary
where the framing was allowed to vary on the boundary. This is equivalent to the absolute
framings we now cousider; see [CS22, Section 6.2].

Winding number functions have two very important properties, which were first elucidated
by Humphries and Johnson [HJ89]. As a consequence, a framing is completely determined
(up to isotopy) by its values on a basis for homology.

Lemma 2.2 (Humphries—-Johnson). Any winding number function ¢ associated to a framing
satisfies the following properties.
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(1) (Twist-linearity) Let a,b C S be oriented simple closed curves. Then

¢(Ta(b)) = ¢(b) + (b, a)¢(a),

where (-,-) : H1(S;Z) x H1(S;Z) — Z denotes the algebraic intersection pairing.

(2) (Homological coherence) Let U C S be a subsurface and let cq,...,c, denote its
boundary components and the peripheral loops about its punctures, oriented such that
U lies to the left of each c;. Then

k
3 oe) = x(U),

where x(U) denotes the Euler characteristic.

Let Aq,..., Ay denote small loops about the punctures of S (oriented with the surface on
their left); then the signature of a framing ¢ is the tuple

sig(¢) == (6(A1),.. ., d(Ay)) € Z¥,

A framing is said to be of holomorphic type if every ¢(A;) is negative; this terminology comes
from the fact that the horizontal vector fields of holomorphic abelian differentials give rise to
such framings (compare Section 5.1).

Remark 2.3. We note that not every framing of holomorphic type comes from a holomorphic
abelian differential. This is the case for framings on surfaces of genus at least 3, but the
following families of framings do not come from abelian differentials due to certain low-
complexity strata being empty (see just below for the definitions of Arf; and Arf).

e g=1,b=1, and Arf;(¢) # 0.

e g=2b=1, and Arf(¢) = 0.

The peripheral curves A; span a k — 1 dimensional subspace of Hy(S), so we can construct
all framings with a given signature by specifying the values on 2¢ homologically independent
curves [CS22, Remark 2.7]. One particularly nice configuration is as follows:

Definition 2.4. A collection of simple closed curves B = {a1,b1,...,a4,bs} on S is called a
geometric symplectic basis (GSB) if i(a;, b;) = 1 for all ¢ and all other pairs of curves from B
are disjoint.

2.2. Framed mapping class groups. The framed mapping class group FMod(S, ¢) associ-
ated to a framing ¢ is the stabilizer of ¢ in Mod(S) up to isotopy. Equivalently, and more
usefully, f € FMod(S, ¢) if and only if it preserves all winding numbers, i.e.,

(f - ®)(a) = o(f~(a)) = ¥(a)

for every a € S. In light of Lemma 2.2, in order to check if an element f € Mod(S) actually
preserves ¢, it suffices to show that show that f preserves the ¢—winding numbers of all
curves of a GSB.

Throughout the paper, a particularly important role will be played by the set of non-
separating simple closed curves with ¢(a) = 0 (note that this does not depend on orientation);
these curves are said to be admissible. By twist-linearity (Lemma 2.2.1), Dehn twists in
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admissible curves are always in FMod(S, ¢), and in [CS22] it is shown (for g > 5) that
FMod(S, ¢) is generated up to finite index by admissible twists.

Since each orbit of Mod(S) on the set of framings has infinite size (this is an immediate
consequence of Lemma 2.2) and FMod(S, ¢) is a stabilizer, it is an infinite-index subgroup.
Along the same lines, understanding the possible conjugacy classes of FMod(S, ¢) for
different ¢ is equivalent to listing the Mod(S) orbits. To state this “classification of framed
surfaces” [Kawl8] (see also [RW14] for the relatively framed version), we first need to recall
the definitions of the Arf invariant and its genus 1 version; see [CS22, §2.2], [Kaw18, §2.4],
and [RW14, §2.4] for more detailed discussions.

Suppose first that g = ¢g(S) > 2 and that every ¢(A;) is odd. In this case, we say that ¢
is of spin type. ! Fix a geometric symplectic basis {a1, by, ... ,ag,bg} on S. Then the Arf
invariant of ¢ is defined to be

g

Art(9) == 3 (#la) + 1) (6(b) + 1) mod 2. (1)
i=1
This invariant turns out to only be well-defined when each ¢(4;) is odd, and in this setting
it does not depend on our choice of GSB. If g = 1, then there is an Z-valued refinement of
the Arf invariant which we denote by

Arfy(¢) := ged(p(c), d(A1) +1,...,¢(Ak) + 1| ¢ is a non-separating simple closed curve).

Theorem 2.5. Two framings ¢ and ¢’ of S are in the same Mod(S) orbit if and only if
(9 =10) sig(¢) = sig(¢')
(9 =1) sig(¢) = sig(¢’) and Arf1(¢) = Arf1(¢')
(g > 2) sig(¢) = sig(¢') and if ¢ and ¢' are of spin type, then Arf(¢) = Arf(¢’).

In particular, for genus at least 2 there are only ever at most 2 distinct conjugacy classes
of framed mapping class groups.

The Arf invariant interacts in a complicated way with taking subsurfaces V' C S; sometimes
the Arf invariant of ¢|y is forced by the topology of V', and sometimes it can vary for different
V and V' of the same topological type. For later use, we record an example of this phenomenon
below. See also the proofs of Propositions 2.9 and 6.2.

Lemma 2.6. Suppose that V C S is a connected subsurface of full genus.
(1) If g(S) > 2 and ¢ is of spin type, then Arf(¢) = Arf(¢y).
(2) g(S) =1 and ¢ is of holomorphic type, then Arfi(¢) = Arf1(d|v)

Proof. When S has genus at least 2, this is an immediate consequence of (1). In the case
when S has genus 1, homological coherence together with holomorphic type imply that two
curves which differ by sliding over a boundary component must have the same winding
number. Thus for any simple closed curve ¢ on S, there is some ¢’ C V with ¢(c) = ¢(c),
and hence their genus-1 Arf invariants must agree. O

Note that statement (2) is false if one does not assume holomorphic type.

n this case, the framing induces a (2-)spin structure on the closed surface obtained by capping off all
boundary components, and the Arf invariant of the framing coincides with the parity of the spin structure.
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2.3. Framed change-of-coordinates. The standard change-of-coordinates principle for the
entire mapping class group roughly states that given two multicurves « and §, there is some
f € Mod(S) taking « to ¢ if and only if S\ v and S\ § have the same topological type and
are glued together in the same way. This technique is often used in surface topology to show
the existence of certain configurations of curves with prescribed intersection pattern and to
show the transitivity of the Mod(S) action on such configurations. Its proof is a corollary of
the classification of surfaces: one uses the classification to build a homeomorphism between
the complements then extends that to a self-homeomorphism of S.

In the framed setting, we can similarly use Theorem 2.5 to show the existence of configu-
rations with certain intersection pattern and winding number (compare [CS22, Proposition
2.5]). For example, we can quickly show that (sub)surfaces with genus always contain
admissible curves. Essentially the same statement appears as Corollary 4.3 of [Sal], but we
include a proof as we will repeatedly use this statement throughout the paper.

Lemma 2.7. For any framing ¢ on a surface S of positive genus, there is some non-separating
simple closed curve a C S with ¢(a) = 0.

Proof. Fix a GSB {a1,...,bs} on S. Then by stipulating winding numbers on our GSB we
can build a framing v such that

o sig(¢) = sig(¥)

e ¢(ay) =0, and

o if g(S) =1 then Arf;(¢)) = Arfi(¢), or

e if g(S) > 2 and ¢ is of spin type then Arf(y)) = Arf(o).

Now by Theorem 2.5 there is some homeomorphism f € Mod(S) taking ¢ to ¢, and the
curve f(aq) is our desired admissible curve. O

Along the same lines, one can show that S always admits a GSB with given winding
numbers so long as those winding numbers yield the correct Arf invariant; the proof is left
to the reader. See also the proof of the first part of [CS22, Proposition 2.15].

Lemma 2.8. Let ¢ be a framing of a surface S of genus g > 1 and fiz any tuple of integers
(Z1,y1,...,2g,Yq) such that

b ng = 17 then ng(Ila Y1, ¢(A1) + 17 RN} ¢(An) + 1) = Arf1(¢)a

e if g > 2 and ¢ is of spin type, then

g

> (@i + 1)(yi + 1) = Arf(¢) mod 2

i=1
e if g > 2 and ¢ is not of spin type, then we impose no conditions on the tuple.
Then there is a GSB B = {a1,b1,...,a4,bs} on S such that ¢(a;) = x; and ¢(b;) = y;.

In particular, any surface of genus at least 2 contains nonseparating curves of arbitrary
winding number.

The classification of framed surfaces can also be used to easily obstruct transitivity of the
FMod(S, ¢) action. For example, FMod(S, ¢) does not act transitively on the set of curves
that separate off a genus 1 subsurface with one boundary component, even though those
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curves all have the same topological type and same winding number. The reason is that the
induced framing on the subsurface may have different Arf; invariant.

We caution the reader that Theorem 2.5 does not imply transitivity on the set of multic-
urves of the same topological type that induce homeomorphic framings on each subsurface.
Indeed, suppose that some ¢(4;) is even so ¢ does not have an induced Arf invariant. If
we consider the set of multicurves v = ¢ U d where ¢ cuts off a genus 1 subsurface with
one puncture and d is an admissible curve on that subsurface, then the paragraph above
implies that FMod(S, ¢) does not act transitively on this set, even though there is only one
Mod(S'\ ) orbit of framing on S\ . At issue is what happens when we try to glue together
framings on subsurfaces to a framing on the entire surface; this can be dealt with by using
relative framings and being careful about boundary conditions (compare the proof of Lemma
5.3 in [CS22]). Since such arguments require a fair amount of delicacy and are beyond what
we need in this paper, we will restrict ourselves to proving those transitivity results we will
need in the sequel.

Proposition 2.9. Let ¢ be a framing of a surface S of genus at least 3. Then FMod(S, ¢)
acts transitively on the set of pairs of admissible curves of the same topological type. That
is, if v, are pairs of admissible curves and there is some g € Mod(S) taking v to 7', then
there is also some f € FMod(S, @) taking v to +'.

Before proving Proposition 2.9, we first record a useful lemma that allows us to adjust the
winding numbers of curves in a configuration without changing their intersection properties.
A similar statement appears as Corollary 4.4 of [Sal].

Lemma 2.10. Let ¢ be a framing of a surface S and let c1, ..., ck,d be a collection of simple
closed curves. Assume there is some subsurface T C S, disjoint from all of the listed curves,
such that either

e g(T)>2, or

e g(T) =1 and Arf,(d|7) = 1.
Suppose also that there is some arc € connecting d to T that is disjoint from all ¢;. Then for
any z € Z, there is a simple closed curve d, such that ¢(d,) = z and i(c;,d,) = i(c;,d) for
all 7.

Proof. Orient d such that the arc from d to T exits d from its left-hand side.

Suppose first that g(7T") = 2. Then by Lemma 2.8 there is a nonseparating curve e on T'
with winding number —z — ¢(d) — 1. Since d is not separated from T, we may concatenate &
with an arc connecting 0T to the left side of e and take the connect sum of d and e along
this composite arc. Let d, be the resulting curve; then by homological coherence (Lemma
2.2.2) we have that

¢(d2) + ¢(d) + ¢(e) = —1
and so d, is our desired curve. It clearly has the same intersection pattern as d with each ¢;
since we have only altered d away from ¢; (see also the proof of [Sal, Corollary 4.4]).

In the case that g(T) = 1, our assumption on Arf;(¢|r) implies (via Lemma 2.8) that
there is some GSB (a,b) on T with ¢(a) = 1. Choose an arc from 9T to b disjoint from a,
then take the connected sum of d with b along the concatenation of € with this arc. This
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results in a new curve d’ that has the same intersection pattern as d with each ¢; and meets
a exactly once. Twist-linearity (Lemma 2.2.1) now implies that by twisting around a we can
alter the winding number of d’ by an arbitrary amount to find our desired d.. O

One particularly important consequence is that we can complete any admissible curve to
a partial GSB while specifying the winding number of the transverse curve.

Corollary 2.11. For any surface of genus at least 2, any admissible a, and any z € Z, there
is a curve b with i(a,b) =1 and ¢(b) = z.

Proof. The subsurface S\ a has two boundary components with winding number 0 and so
Arf;(S\ a) = 1. Applying Lemma 2.8 we can pick some GSB on S\ a with coprime winding
numbers; let T' denote the subsurface filled by this pair of curves. We can now pick any
curve V' disjoint from T with i(a,b’) = 1 . Since &’ does not meet T and Arfy(¢|r) = 1, we
can apply Lemma 2.10 to adjust ¢(b') at will. O

With these results in hand, we can now prove the desired transitivity statements.

Proof of Proposition 2.9. Obviously transitivity on single curves follows from the result for
pairs, but since the proof for pairs requires a bit of casework we will prove the result for
single curves first as a demonstration of our techniques.

Single curves. Suppose first that a,a’ C S are both admissible. Complete a to a GSB
a=ai, b, ...,aq,by of S. Using Corollary 2.11, there is some b} on S with i(a’,b}) = 1 and
(b)) = &(b1). Now take the subsurface Y’ filled by o’ and b} and consider its complement.
If ¢|g\y~ is of spin type, then the additivity of the Arf invariant [RW14, Lemma 2.11] implies
that

g
Arf(9]s\y7) = Arf(¢) — (é(a') + 1) (6(b1) +1) = D (¢(ai) +1) (#(b:) +1)  mod 2.
i=2
Otherwise, it is not of spin type; in either case we can now apply Lemma 2.8 to find a GSB
sag, by on S\'Y' with
¢(a;) = ¢(a;) and ¢(b;) = ¢(b;) for all i.

By the usual change-of-coordinates principle (compare Lemma 2.3 of [Sal]), there is some
f € Mod(S) taking a to a', each a; to af, and each b; to b}. Since f preserves the winding

/ /
as, by, ...

numbers of the curves of a GSB, it preserves the winding numbers of all simple curves
(Lemma 2.2), and thus we see that f € FMod(S, ¢).

Nonseparating pairs. If g > 4 and the admissible curves a;, as together do not separate
S, then we can just repeat our argument for transitivity on single admissible curves: extend
ay,as to an arbitrary GSB, use Corollary 2.11 and 2.8 to extend af, a} to a GSB with the
same winding numbers, and then use the transitivity of the mapping class group action on
GSBs to find some f (necessarily in FMod(S, ¢)) taking one GSB to the other.

If g = 3 then we must be slightly more clever about how we choose our intial GSB since
our choice of transverse curves b; and by may constrain the winding numbers of the remaining
curves az and bz due to the Arf; invariant. Suppose first that ¢ is of spin type. Using
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Corollary 2.11 twice, we can choose disjoint curves b; and bs, each meeting their respective
a; and disjoint from the other, such that

Arf(¢p) + ¢(b1) + ¢(b2) =0 mod 2.

In particular, this implies that if we let Y denote the (disconnected) subsurface obtained by
taking a regular neighborhood of a; U az U by U by, then the contribution to Arf(¢) of ¢[s\y
must be 0, hence for any GSB (a3, b3) on S\ 'Y at least one of ¢(a3) or ¢(bs) must be odd.
Now we observe that
Sig((blS\Y) = (Sig(¢), +1, +1)

and so Arfi(é|s\y) is the ged of an odd number and 2, i.e., is 1.

If ¢ is not of spin type then choose any disjoint b; and by, each meeting their respective
a; and disjoint from the other, and define Y similarly. Then since some ¢(4;) is even, the
signature of ¢|g\y contains both an even number and +1, and so we see that Arfi(¢|g\y) = 1.
Therefore, no matter whether ¢ is of spin type or not, we can choose our b; and by such
that ¢|s\y has fixed Arf;, and so by Lemma 2.8 admits a GSB a3, b3 with ¢(a3) = 0 and
@(bs) = 1. We can now finish the proof by inserting a prime in all of the arguments above to
get another GSB on S with the same winding number data and then concluding as in the
g > 4 case.

Separating pairs. Finally, suppose that a; U ay separates S into two subsurfaces 7" and U.
In this case, neither of the complementary components to a; U as is of spin type, so if ¢ is of
spin type then we will need be somewhat clever about our choice of GSB to deal with the
emergence of the Arf invariant.

Pick an arbitrary curve b; meeting a; and ay each exactly once. Since at least one of T’
or U has genus at least 2 or genus 1 with Arf; = 1, we can use Lemma 2.10 to turn this
curve into an admissible b; that also meets each of a; and as exactly once. Choose GSBs

BT = 517t17~..,59(T)7tg(T) fOI' T a‘nd BU = U17U1,.--,ug(U)7vg(U) fOI' U

that are disjoint from by; then {a1,b1} U Br U By is a GSB for S.

Since (a1,a2) and (a}, ay) are in the same mapping class group orbit, there is a correspon-
dence between their complementary components; let 77 and U’ denote the two components
of a} U a} corresponding to T and U. Since neither component is of spin type (having a
boundary component with even winding number) or, if they have genus 1, have Arf; =1
with an admissible boundary component, Lemma 2.8 implies that both 7" and U’ admit
GSBs with any given tuples of winding numbers. We may therefore choose GSBs By and
By with the same winding numbers as those for By and By. To extend these to a GSB of
S, we just need to find an admissible curve disjoint from By U By that meets a} and af
exactly once.

Suppose ¢ is of spin type. Then we see that for any choice of b] meeting a} exactly once
and disjoint from B U By, we have

(B(ar) +1) ((b1) + 1)+ > (¢(s:) + 1) (d(t:) + 1) + > (¢(ui) + 1) (¢(vs) + 1) = Arf(¢)
9(T) g(U)

=($(ah) + 1) ($(b5) + 1) + D (&(s1) + 1) (6(t)) + 1) + Y (é(uf) +1) (¢(v) +1) mod 2

g(T") g(U’)
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which simplifies to ¢(b1) = ¢(b)) mod 2 by our choices of By and By. Thus ¢(b]) must be
even. Now choose a curve ¢ on either 77 or U’ that

e is disjoint from By U By,

e meets b} exactly once, and

e together with a} bounds a surface of genus 1 with 2 boundary components.
Such a ¢ can be obtained, for example, by taking the boundary of a regular neighborhood
of v} Uv] and then connect summing that curve with a}. See Figure 1. By homological
coherence (Lemma 2.2.2), it must be that ¢(c) = £2 (where sign depends on orientation).
Twist-linearity (Lemma 2.2.1) then implies that some twist of b} about ¢ will be admissible.
Thus the configurations of curves

a1, b1, as, Br, By and a), T *“2 W), al, Byr, Buy

have the same topological type, so there is a mapping class taking one to the other, and
since all of the corresponding curves have the same winding number, any such mapping class
must preserve ¢.

P @

F1GURrRE 1. GSBs and auxiliary curves as in the proof of Proposition 2.9.

If ¢ is not of spin type, then we can conclude by picking an arbitrary b} disjoint from
Br U By:. We then note that since ¢ is not of spin type, then there is some peripheral
curve A; with even winding number. Choose ¢ as before and let d be a curve disjoint from
all of the listed curves except b}, obtained by taking the connect sum of as with this Ay;
by homological coherence again, its winding number must be odd. See Figure 1. Thus, by
twisting around ¢ and d we can change the winding number of b} by any amount (while
keeping all other winding numbers fixed) and so in particular T;*T} (b)) is admissible for
some m,n. We can then conclude as in the spin case. ([l

3. THE ADMISSIBLE CURVE GRAPH AND ITS GEOMETRIC MODEL

A graph of multicurves for a surface S is any graph whose vertices are multicurves on S.
The simplest and most influential example is the curve graph €(S). The curve graph has all
curves on S as vertices and edges between two curves if and only if they intersect the fewest
number of times possible for a pair of curves on S. If £(S) > 1 then edges correspond with
disjointness, and when £(S) = 1 the minimal intersection number is either 1 or 2.
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We will focus on the following subset of the curve graph: given a framing ¢ of S, the
admissible curve graph Gaam(S, @) relative to ¢ is the subgraph of €(S) spanned by the
non-separating curves that are admissible with respect to ¢.

Proposition 2.9 implies that the framed mapping class group FMod(S, ¢) acts transitively
on the vertices of Guam (S, ¢) and with finitely many orbits on its edges. As a consequence of
Lemma 2.7, every vertex of € (.9) is distance 1 from a vertex of €,am (S, ¢) when g(S) > 2.
When ¢(S) > 3, Lemma 2.7 also allows us to copy Salter’s “hitchhiking argument” in the
case of r-spin structures [Sal, Lemma 3.11] to show %adm (.5, ¢) is connected.

Lemma 3.1. If g(S) > 3, then for any framing on S, Gadam (S, @) is connected.

Proof sketch. The graph of genus 1 subsurfaces (with edges for disjointness) is connected
[Put08]. Since each genus 1 subsurface contains an admissible curve, the paths in this graph
can be upgraded to a path in €ham (S, @). |

Given a graph of multicurves X, a subsurface W C S is a witness for X if every vertex of
X intersects W and £(W) < 0. We let Wit(X) denote the set of all witness for X. For the
admissible curve graph, the witnesses are all subsurfaces whose complement has no genus
and where the winding numbers of the boundary curves do not satisfy a particular set of
linear equations.

Lemma 3.2. Let S = S,, with g >3 andn > 1. Fiz a framing ¢ of S.

(1) If Z C S is a genus 0 subsurface and z1, ...,z are the boundary components of Z
and peripheral loops about its punctures, oriented such that Z is to the left of each
zi, then Z contains a nonperipheral curve of winding number 0 if and only if there
isno I C{z1,...,2;r} such that

Doz =1-11. (2)
zel

(2) A subsurface W of S is a witness for €aam(S, @) if and only if each curve in OW
is not admissible and each component Z of S\ W is a genus 0 subsurface with the
following property: enumerate the boundary components and peripheral loops of Z
as in the previous item. Then there is no I such that (2) holds and both I and
{z;}5_ \ I contain curves of OW .

(3) If V,W € Wit(Gaam (S, @)) are disjoint, then each is a genus 0 subsurface that does
not contain any admissible curves, and there does not exist Z € Wit(Caam(S, @))
that is disjoint from both V and W.

Proof. The first item is an immediate consequence of homological coherence and the fact
that every curve on a genus 0 surface separates it. The second item follows from the first
plus Lemma 2.7’s guarantee that every subsurface with genus contains an admissible curve;
note that the condition that W meets both I and {z;}*_, \ I indicates whether or not a
curve cutting off the boundaries {z;};cr separates S or not. The third item is an immediate
consequence of the second. O

Paralleling [Vok22], we now use the witnesses of a graph of multicurves to construct a
“model graph,” which is in some sense the largest graph of multicurves that has the same
witness set as the starting graph.
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Definition 3.3. Let & be a collection of subsurfaces of S. We say & is a set of wvalid
witnesses if for all W € &,

(1) W is connected;
(2) EW) =15
(3) if Z is a connected subsurface with W C Z| then Z € &;

Definition 3.4. Let & be a set of valid witnesses for the surface S. If & = (), define Kg(S)
to be a single point. Otherwise, define Kg(S) to be the graph such that:

e cach vertex is a multicurve vy on S with the property that each component of S\ v
is mot an element of &;
e two multicurves v and § are joined by an edge if either
(1) ~ differs from 0 by either adding or removing a single curve, or
(2) ~ differs from ¢ by “flipping” a curve in some subsurface of S, that is, § is
obtained from ~ by replacing a curve ¢ C v by a curve d, where ¢ and d are
contained in the same component Y, of S\ (7 \ ¢) and are adjacent in €(Y,).

By construction, the set of witness for Kg(S) is precisely &. Moreover, the vertex set of
Kes(S) is the maximal collection of multicurves whose set of witnesses is &. Thus, if X is a
graph of multicurves with Wit(X) = &, then the vertices of X are a subset of Kg(S). In
the case of the admissible curve graph, this inclusion is Lipschitz.

Lemma 3.5. If & = Wit(Gaam (S, ¢)), then the inclusion €aam (S, @) = K (S) is 2-Lipschitz

Proof. If a,b are a pair of disjoint admissible curves, then a U b is also a vertex of Kg(5),
hence a,a U b, b is a path of length 2 connecting a and b in Kg(5). |

Vokes studied the family of g (S) as quasi-isometric models for graphs of multicurves.
Specifically, she showed that if X is a graph of multicurves on S with a cobounded action of
Mod(S) and no annular witnesses, then the inclusion X < Kg(S) for & = Wit(X) is a quasi-
isometry. The advantage of using K (S) as a quasi-isometric model is that she showed that
Kes(S) is a hierarchically hyperbolic space in a natural way. This means the coarse geometry
of K (S) can be well understood using the subsurface projection machinery of Masur and
Minsky and the relations between the subsurfaces in &; see [BHS17b, BHS19, Vok22] for full
details.

We note that while Vokes states her results in the case of an action of the full mapping
class group, the only actual use of the action is in establishing the quasi-isometry described
above. In particular, the proof in Section 3 of [Vok22] as written demonstrates that Kg(S)
is a hierarchically hyperbolic space, even in the case where & is not invariant under the
mapping class group.

One consequence of Vokes’s hierarchically hyperbolic structure is that Gromov hyperbol-
icity of the the graph is encoded in the disjointness of the witnesses.

Theorem 3.6 (Corollary 1.5 of [Vok22]). The graph K (S) is Gromov hyperbolic if and
only if & does not contain a pair of disjoint subsurfaces.
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4. A QUASI-ISOMETRY WITH THE MODEL

Vokes’s proof of the quasi-isometry between graphs of multicurves and their models relies
on the action of the mapping class group in a fundamental way. Specifically, given any
connected graph of multicurves X’ that has no annular witnesses and has a cobounded action
by Mod(S), she uses the “change-of-coordinates” principle and curve surgery arguments to
build a quasi-isometry from Kg(S) to X', where & is the set of witnesses of X.

In our setting, we only have access to the (weaker) framed versions of these techniques.
Moreover, there are infinitely many FMod(S, ¢) orbits of curves and of witnesses, so we
cannot employ standard change-of-coordinates arguments of the form “make a choice for
each orbit, then propagate that choice around using the group action to get finiteness”
(e.g., [Vok22, Claim 4.3] or Lemma 4.4 below).

Instead of relying on change-of-coordinates, we build our quasi-isometry Kg(S) —
Gaam (S, @) by going through an intermediary graph G, which admits a coarsely Lipschitz
map II onto €pam (S, ¢) (Lemma 4.5). One can then define a map ¥ from Kg(S) to subsets
of G; while this map is not coarsely Lipschitz or even coarsely well-defined, the composition
ITo ¥ turns out to be (Proposition 4.11).

The utility of this approach is that G admits an action of the entire mapping class group, so
we can use standard change-of-coordinates arguments. A fruitful comparison is the “hitching
a ride” argument we used to show the connectivity of Gram (S, ¢) in Lemma 3.1.

For the remainder of the section, S = S, will be a surface with g > 3 and n > 1 and
G will be the set of witnesses for Gpam (S, ¢) with respect to a fixed framing ¢. Since we
will only be considering theses graphs for the surface S, we will use $am and K to denote
Gadm (S, ¢) and Ke(S) respectively.

4.1. Coarse maps and quasi-isometries. Let X,Y be metric spaces. A map f: X — 2V
is coarsely well-defined if f(x) has uniformly bounded diameter for every = € X. It is coarsely
Lipschitz if there are constants K > 1 and C' > 0 such that

diamy (f(z) U f(2')) < Kdx(z,2') + C

for every z,2’ € X. In particular, note that coarsely Lipschitz maps are in particular
coarsely well-defined. Prototypical examples are the inclusion of a connected subgraph into
a connected graph, the subsurface projection map from the the marking graph to € (W)
where W C S is a subsurface, or the systole map that sends a point in Teichmiiller space to
its hyperbolic systole(s).

When X is a graph, one can simply define a map f: X — 2¥ on the vertices and assume
that the image of any point on an edge is the union of the images of the endpoints of that
edge. In this case, to show f is coarsely Lipschitz, it suffices to show that

(1) f(x) is uniformly bounded for all vertices x of X, and
(2) if x and =’ are two vertices joined by an edge of X, then diam(f(x) U f(2)) is
uniformly bounded.

Two spaces are quasi-isometric if there exist two coarsely Lipschitz map f: X — 2Y and
f:Y — 2Y such that dx(x, f o f(x)) is uniformly bounded for all z € X. In this case, f is a
quasi-isometry from X to Y and f is the quasi-inverse of f.
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4.2. The genus-separating curve graph. We begin building our quasi-isometry from K
t0 Gaqm by defining the intermediate graph G that we use throughout this section. We say
that a separating curve ¢ C S is genus-separating if each component of S\ ¢ has positive
genus.

Definition 4.1. The genus-separating curve graph G = G(S) is the graph whose vertices are
genus-separating curves, and where two vertices are connected by an edge if the corresponding
curves are disjoint.

Putman’s argument that the separating curve graph is connected in the closed case also
shows that G is connected [Put08]. The key commonality are that every vertex of G is
adjacent to a genus separating curve that cuts off a torus with one boundary component.

Lemma 4.2. The graph G is connected so long as g(S) > 3.

Since every subsurface with genus contains an admissible curve, we see that for any c € G
both components of S\ ¢ are not witnesses for €,qm. Thus G is a subgraph of K.

Remark 4.3. While we will not use this in the sequel, we can in fact relate the geometries
of G and K by considering their sets of witnesses. The witnesses for G are exactly those
subsurfaces that have genus 0 complements, which form a strict superset of the witnesses for
K (characterized in Lemma 3.2). Using the “factored space” construction from [BHS17al,
we can thus view K as being obtained from Kyyit(g)(S) by coning off regions corresponding
to the non-shared witnesses.

As for the usual curve graph, intersection number bounds distance in G.

Lemma 4.4. For each n > 0 there exists N = N(n) > 0 such that for any two genus-
separating curves ¢,d € G, if i(c,d) < n, then dg(c,d) < N.

Proof. By the change-of-coordinates principle in Mod(S), there exist finitely many pairs
{(ci,d;)}E_; of genus-separating curves such that every pair of genus-separating curves that
intersect at most n times is in the Mod(.S)—orbit of some (¢;, d;). Setting N = max{dg(c;, d;) :
1 <4 <k}, the fact that Mod(S) acts by isometries on G implies any two genus-separating
curves that intersect at most n times are at most NV far apart in G. (|

4.3. From genus-separating to admissible curves. Define a map
II: G — 2%am

by sending a genus-separating curve to the collection of admissible curves disjoint from it.
This set is always non-empty by Lemma 2.7.

Lemma 4.5. The map 11 is coarsely Lipschitz.

Proof. As remarked above, it suffices to check that the diameters of the images of vertices
and edges are both bounded.

Let ¢ € G be any genus-separating curve and let U,V denote the components of S\ c.
Let a be any admissible curve in II(c), and assume without loss of generality that a C U.
Every admissible curve in V' is distance 1 from «a, and likewise every admissible curve in U is
disjoint from any curve in V. Thus II(c) has diameter 2 as a subgraph of €pam-
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Now suppose ¢ and d in G are disjoint; this implies that one of the (positive genus)
components of S\ ¢ is nested inside a component of S\ d. In particular, this implies that
II(¢) and TI(d) overlap, and since each has bounded diameter their union does as well. [

The map II is defined such that if a € €qm and ¢ € G with i(a,c) = 0, then
A (@, 11(c)) = 0.

Below, we prove a generalization of this fact that allows us to bound the distance between a
and II(c) by bounding the geometric intersection number i(a, c).

Lemma 4.6. For any m > 0, there exists M = M(m) > 0 such that for any admissible
curve a and any genus-separating curve ¢ with i(a,c) < m, we have dg,,, (a,1I(c)) < M.

We will only ever apply this lemma with m = 2, but since the proof for general m is not
much harder we choose to include it here.

Proof of Lemma 4.6. If a is disjoint from ¢, then a € II(¢) and we are done. Otherwise, we
will surger ¢ along a to produce a new genus-separating curve ¢’ disjoint from ¢ that intersects
a strictly fewer times. By Lemma 4.4, this will allow us to decrease the intersection number
of a and ¢ at the cost of moving ¢ a fixed distance in G. Since II is a coarsely Lipschitz
map, this procedure moves the projection a uniformly bounded amount in €,qu,, proving the
desired statement.

Since S has genus at least 3, there is at least one component U, C S\ ¢ of genus at least
2. Consider an arc « of a N U.. The regular neighborhood of ¢ U « forms a pair of pants P,,
one of whose boundaries is ¢; label the other two by d and e. Because any strand of a N U,
that meets d or e must travel through P, while avoiding «, any such strand must exit P,
through c. Thus, we have

i(a,d) +i(a,e) <i(a,c) — 2.

If either d or e is separating, then the other one is either separating or homotopic to a
boundary curve of S (they cannot both be homotopic to a boundary curve as ¢ is genus-
separating). Since U, has positive genus, at least one of d and e is genus-separating; we then
take ¢’ to be whichever is, completing the proof in this case.

In the other case, d and e are both non-separating. Let V. C U, denote the connected
subsurface of U, \ (dU e) not containing . Choose an arc 8 in V. connecting d and e that is
disjoint from a N V.. Such an arc always exists because either a NV, contains such an arc, or
it does not, in which case one can take an arbitrary arc from d to e and surger it along its
intersections with a NV, to make it disjoint; see Figure 2.

The curve ¢’ obtained from a regular neighborhood of d U e U 3 forms a pair of pants Ps
with d and e. Since any arc of a that enters Pg through ¢’ cannot intersect 3, that arc must
exit through either d or e. Thus

i(c,a) <i(a,d) +i(a,e) <ila,c).

Since ¢’ is constructed to cut off a genus g(U.) — 1 > 1 subsurface, we see that ¢’ is still
genus-separating and is clearly disjoint from c. This completes the proof. (Il
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F1GURE 2. On the left, the subsurfaces involved in the proof of Lemma
4.6. On the right, surgering an arbitrary arc 8’ from d to e along a NV, to
obtain a disjoint arc .

4.4. A quasi-inverse. We now construct a map ¥ that sends vertices of K to sets of
genus-separating curves so that the composition IT o ¥ is a quasi-inverse of the inclusion
Goam — K. The idea to is assign a multicurve a € KC to the set of genus-separating curves
that intersect the components of S\ « in a particularly nice way. This is always possible by
the following lemma.

Lemma 4.7. For any multicurve o on S, there exists a genus-separating curve ¢ so that for
each component Y of S\ a, we have exactly one of the following:
(1) c is disjoint from Y,
(2) cCY,
(8) ¢NY is a single arc with both endpoints on the same curve of Y, or
(4) ¢NY is a pair of parallel arcs that both go from one curve y; € Y to a different
curve ys € Y.

Proof. If a component of S\ a has positive genus, then the lemma is true using a separating
curve cutting off that genus. Otherwise, the dual graph D of o on .S must contain a cycle.
We can use the dual graph to build such a separating curve c as follows:

(1) Take any cycle vy,..., v, in the dual graph D that meets any vertex of D at most
once. Let a; be the curve of a/edge in the dual graph connecting v; to v; 1 (where
indices are taken mod n).

(2) On each subsurface Y; of S\ « corresponding to a vertex v; of the cycle, choose an
arc (3; connecting a;_1 to a;.

(3) The concatenation of the 8; is now a curve b that meets each a; exactly once.

(4) Set ¢ to be a regular neighborhood of b U ay,.

By construction ¢ NY; is a pair of arcs parallel to f3; for each i # 1,n, and it follows by
inspection that ¢cNY; (and ¢NY,) is a single arc with both endpoints on a; (and a,_1,
respectively). See Figure 3. |

In light of Lemma 4.7, we define a map

U: K — 29
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by setting ¥U(«a) to be the set of genus-separating curves c that satisfy the conclusion of
Lemma 4.7.

Our discussion in Remark 4.3 shows that this map is rather poorly behaved. Viewing K as
(quasi-isometric to) the cone-off of (the model Kyyig(gy(S) for) G, this map sends cone point
points to entire product regions. In particular, the diameter of ¥(«) need not be bounded.
Nevertheless, we will show that the composition II o ¥ is coarsely Lipschitz and is hence a
quasi-inverse of the inclusion ,qm — K.

The key technical step is the next lemma, which takes a component Y of S\ o and a
genus-separating curve ¢ € ¥(«a) and produces an admissible curve a that intersects c¢ at
most 4 times and is disjoint from Y. This admissible curve provides an “anchor” that allows
us to modify c inside the component Y without large changes in the eventual composition
ITo U(w). It is in this lemma where we need the finer control over the genus-separating curve
in ¥(«) ensured by Lemma 4.7 as opposed to defining ¥(«) to be all genus-separating curves
that intersect each curve of o some fixed number of times.

Lemma 4.8. Let o be a multicurve in K and ¢ € U(«). For each component Y of S\ « that
¢ intersects, there exists an admissible curve ay that is disjoint from'Y and has i(c,ay) < 4.

Proof. Let Y be a component of S\ « that ¢ intersects. If any curve of « is admissible, then
c intersects that curve at most twice and we are done. This also allows us to proceed by
assuming that S\ « is disconnected: because each component of S\ « is not a witness, if
S\ « is connected then o must contain an admissible curve.

Since Y is not a witness for $pam by the definition of I, some component Z of S\ Y
contains an admissible curve. If ¢ is disjoint from Z, then c is disjoint from the admissible
curve on Z and again we are done. So suppose that ¢ intersects Z; then ¢ N Z separates Z
since c is separating. Since c is genus-separating, if Z has positive genus then at least one
of the components of Z — (¢ N Z) must also have genus. Applying Lemma 2.7, this implies
there is an admissible curve in Z that is disjoint from ¢ whenever Z contains genus.

We can therefore concentrate on the case where Z has no genus. In this case, every
curve on Z is separating, and which curves of Z are admissible are determined by how they

a2

ai

an

FicURE 3. Building a genus-separating curve out of a cycle in the dual
graph.
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separate the boundary components and peripheral curves of Z (Lemma 2.2.2). Let A be a
set of boundary and peripheral curves of Z such that any curve partitioning the boundaries
and peripheral curves into A and its complement must be admissible. We argue below that
one can always draw a curve a that cuts off the curves of A and intersects ¢ at most 4 times.

To facilitate this, we first show that ¢ N Z cuts Z into at most 3 components. Since ¢
intersects at most 2 components of JY’, it also intersects at most 2 components of 9Z (and
intersects each component at most twice) and must be disjoint from all peripheral curves. If
¢ intersects exactly one component of 7, then we are in case 3 of Lemma 4.7 and so ¢N Z
must be a single arc with both endpoints on the same boundary component of Z; in this
case Z — (¢N Z) has two components. When c¢ intersects two distinct components zj, z3 of
0Z, then we are in case 4 of Lemma 4.7 and so ¢N Z is a pair of arcs c¢1, ¢y such that either

e both endpoints of ¢; are on z; for each i € {1,2}, or
® c1,cy are parallel arcs each running from z; to zs.

In the first case, Z — (¢ N Z) has either two or three components and in the second it has two.

To find an admissible curve on Z that intersects ¢ at most 4 times, let Z1, Z5, Z3 be the
components of Z — (¢N Z), with Z3 being omitted in the case of two components. Without
loss of generality, assume 0Z5 contains an arc of ¢ N Z in common with both 0Z; and 073
when there are three components. Partition the curves in A into 5 (possibly empty) sets:
Ay, Ay, A3 and By, By. The A; are the subsets of curves in A that are contained in Z; for
each 4, while By are the curve(s) that contains the endpoints of the arc in ¢ N Z shared by
07, and 0Z5 and Bs is the same for 075 and 073 (when Z3 exists). Note that the A; may
contain curves peripheral to the punctures, but the B; must always consist of essential curves
on S.

Order the curves in each A; and B; in any sequence, then join successive curves by disjoint
arcs in the following order, skipping any empty sets: A, Bi, As, By, A3. We further
stipulate that the arcs must be disjoint from ¢ N Z unless some set is empty, in which case
their intersection with ¢ N Z is allowed to be the difference of the indices of the Z; that the
two sets border. For example, if only As is empty then the arc from B; to Bs must still be
disjoint from ¢, since both By and Bs border Zs, but if By, A, and By are empty then the
arc from A; to Az is allowed to meet ¢ N Z twice. Compare Figure 4.

A regular neighborhood of A together with these arcs produces a curve a that cuts off
all of the curves in A, and hence must be admissible. It remains to note that the arcs and
curves in the construction of a are all disjoint from ¢ N Z except for the B;’s and arcs that
travel between different Z;’s (which exist only when one of the B;’s is empty). In particular,
this means that a intersects ¢ only in a neighborhood of the B; or the above-mentioned arcs,
and only does so at most twice for each component of the construction. O

We now prove that IT o U(a) has uniformly bounded diameter for each o € K. The proof
will use Lemma 4.8 to anchor the image of IT o U(«) while we modify the genus-separating
curves on the components of S\ « to reduce intersection numbers.

Proposition 4.9. There is an N > 0 such that for any « € K and ¢,d € ¥U(a), there is
€ U(a) with
(1) i(c' d) < 21x(S)| and
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FIGURE 4. Building a curve that cuts off A, and is hence admissible. The
highlighted curves are in A. In this example, Ay and By are empty, so the
arc from B; to Az meets ¢ N Z exactly once.

(2) The diameter of TI(c) UTI(¢") in Gaam s at most N.
In particular, ITL o ¥(a) has uniformly bounded diameter for all « € K.

Proof. Throughout the proof, we fix representatives of the isotopy classes of all of the curves
involved such that ¢ and d are each in minimal position with respect to o, and such that no
points of ¢ N d lie on a. This allows us to give meaning to statements like “c and d intersect
on a component Y of S\ &” even though there is no canonical minimal position for triples
of isotopy classes of curves.

Having fixed representatives, the proposition will follow by inductively applying the
following claim.

Claim 4.10. IfY is a component of S\ a on which ¢ and d intersect, then there exists
cy € U(«a) such that cy and d intersect at most twice on'Y and cy agrees with ¢ on S\'Y.

Proof. We will show that cy can be obtained by replacing ¢ N'Y with some well chosen arcs
that intersect d N'Y at most twice. By construction, each of cNY and dNY is either a
single arc connecting a boundary component to itself (which necessarily separates Y') or a
pair of parallel arcs connecting different boundary components (and neither of these arcs
can separate Y).

We first handle the case where ¢NY is a pair of parallel arcs. Let ci,c?,¢d, 2 be the four
endpoints of cNY in Y such that ¢! is joined by an arc of cNY to ¢7. If dNY is a single
arc, then ¢! and ¢? are either on the same or different sides of d Y. In either case, we can
connect each ¢} to its corresponding ¢? with an arc «; such that v; and 7 are parallel arcs
and i(y;,d) < 1. If dNY is instead a pair of parallel arcs, let 41,2 be the arcs of dNY.
Now Y \ 4 is connected, but (Y \ 61) \ 2 has two components. Thus ¢} and ¢? are either on
the same or different sides of of d3 in Y\ d;. As before, this means we can connect each pair
¢} and ¢? with an arc 7; such that v, and 2 are parallel, i(v;,62) < 1, and i(d1,7;) = 0. In
either case, let cy be the curve obtained from ¢ be replacing ¢cNY with v3 U~s. Since cNY
and cy NY are both parallel arcs between the same boundary components of Y, we see that
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S\ ¢ is homeomorphic to S\ ¢y, and in particular cy is genus-separating. By construction,
it is also clear that ¢y € ¥(«), so we are done.

Now consider the case where cNY is a single arc. Since cNY separates Y, we orient
c and then label each boundary component and peripheral curve of Y by “left” or “right”
depending on which side of ¢ MY it lies on. Let g; and g, be the genus of the left and
right sides of Y\ (¢NY) respectively. We will find ¢y by replacing ¢ N'Y with an arc ~
that separates Y into two components, one with genus ¢; and all the left curves of Y and
the other with genus g, and all the right curves of Y (any such arc is essential on Y since
c¢NY is an essential arc and « will separate Y in the same way as ¢). This ensures S\ ¢
is homeomorphic to S\ ¢y, which makes ¢y a genus-separating curve which is in ¥(«) by
construction. Let ¢, cy be the end points of cNY in JY.

FIGURE 5. The curves p1, p2 cobounding the pair of pants P. The arcs 7,
and v2 cut S\ P into “left” and “right” sides.

If dNY is a single arc, let y be the curve of Y that d intersects. The boundary of a
neighborhood of (d NY) Uy is a pair of curves py, ps that cobound a pair of pants P with
the boundary curve y. The complement Y \ P has two components Z;, Z5 where Z; contains
pi as a boundary curve; see Figure 5.

Suppose that ¢ also intersects the boundary curve y. On each Z;, we can draw an arc ~;
with both endpoints on p; such that ~; separates Z; into two components, one that contains
the left boundary components of Y that also live on Z; and the other that contains the right
boundary components. Moreover, we can choose the 7; such that the sum of the genera on
the “left” sides of Z; \ 7; is ¢; and the sum of the genera on the “right” sides is g,. The ~;
also separate p; into “left” and “right” arcs.

We can now complete 73 U2 to an arc on all of Y by adding arcs in the pair of pants P.
Select three disjoint arcs a, by, b such that a joins one endpoint of v to one endpoint of v
and each b; joins the other endpoint of v; to ¢; by an arc in P. These arcs can be chosen
such that a intersects d N'Y once, by is disjoint from d MY, and by intersects d MY at most
once. Moreover, we can choose these arcs such that the left arcs of p; are in one component
of P\ (aUby Uby) and the right arcs are in the other; see Figure 6. The desired arc v is the
concatenation of 71, 72 and these arcs in P.

The case when c¢ does not intersect the boundary curve y is similar. In this case c intersects
a different boundary curve ¢y’ € 9Y and without loss of generality, y' C Zy. We draw vy, as
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any any
C2
left left
1 b a bo Co 1 b1 a
p1 b2 p1
right
Y Y right

FIGURE 6. The arcs a, by, b one must add in the pair of pants P to complete
71Uy to .

we did in the previous case, but instead of 2, we draw two arcs 4,72 where a4 connects c;
to pg and 3 connects co to pa such that v4 U~3 cuts Zo into two pieces with the appropriate
boundary components and number of genus on the “left” and “right” sides. We now finish ~
by joining each end point of 74 on ps to one of the endpoint of ; on p; by arcs in P that
intersect d N'Y exactly once and separate the left and right arc of p1, ps to the correct sides.

Now suppose dNY is a pair of parallel arcs between two boundary component y,y2 € Y.
There is a unique curve p C Y that forms a pair of pants P with y; and ys such that
P contains d N'Y’; this curve p is found by taking the boundary of a neighborhood of
(dNY)Uy; Uys. Note that Y\ P is a connected subsurface with the same genus as Y but
one fewer boundary.

Assume first that both y; and yy are on the same side of ¢ N Y; this implies ¢ is disjoint
from y; and y2. Since g(Y) = ¢g(Y \ P) and y1, y2 are on the same side of cNY’, we can draw
an arc y on Y \ P with connects ¢; to ¢3 and cuts Y into two components, one with g; genus
and all the “left” components of Y and one with g, genus and all the “right” components.

Now assume that both y; and yo are on different sides of ¢cNY (again this implies ¢ is
disjoint from y; and y2). Without loss of generality let y; be on the left side of ¢ and ys on
the right. In this case we draw two arcs 1,72 on Y \ P such that +; connects ¢; to p, y2
connects cg to p, and 1 U o separates Y \ P into “left” and “right” components where the
left component has g; genus and all the left curves of Y except y; and the right component
has g, genus and all the right curves except y,. We complete v, U v to the arc v on Y by
joining 71 to 2 by an arc in P that separates y; and yo to the correct side of Y\ ; this can
be done such that the final arc has i(y,dNY) < 2; see Figure 7.

P P
Tlany
C o T > C Y €GO
Y1 Y2
left right left right

FIGURE 7. The arc drawn in P to complete the arc . One the left, the
case where y; and y, are on different sides of cNY. On the right, the case
where ¢ intersects yo.
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Finally, assume that c intersects exactly one of y; or yo. Without loss of generality, assume
¢ intersects yo and y; is on the left side of ¢. As in the previous cases, pick an arc vy on
Y \ P that has both endpoints on p and separates Y \ P into two components where the
“left” component has g; genus and contains all left curves of Y except y; and the “right”
component has g, genus and contains all right curves. We complete 7 to an arc v on Y by
joining the endpoints of vy to ¢; and ¢y by arcs in P that separate y; to the “left” side of
Y \ v; this can be done such that the final arc has i(y,dNY) < 2 ; see Figure 7.

We conclude by observing that in any of the three above cases, we have produced an arc
v on Y with the same topological type as ¢cNY but that intersects d at most twice on Y.
Surgering ¢ along ~ as before we produce the desired curve cy. O

To prove Proposition 4.9, let Y7,...Y; be the components of S\ « on which ¢ and d
intersect. Applying Claim 4.10 to Y7, we get a genus-separating curve ¢; € ¥(«) that
intersects d at most 4 times in Y7 and agrees with ¢ outside of Y;. By Lemma 4.8, there is an
admissible curve a; on S\ Y] that intersects ¢, and hence c;, at most twice. Applying Lemma
4.6, this implies that a; is M-close to both II(c) and II(¢1) in Gham for some universal M.
Hence, II(c) and II(c1) are 2M-close to each other. Repeating this argument, we produce a
sequence of genus-separating curves ¢ = ¢, ¢1, ..., ¢, in ¥(a) such that II(¢;) and (c;q1)
are 2M-close in €ham and i(ck, d) is at most 2 times the number of components of S\ «,
which is at most |x(S)|. The final curve ¢y is the desired curve ¢’

We now establish the requisite diameter bounds. Since the length of the sequence from c to
¢’ is bounded by |x(5)|, each II(¢;) has uniformly bounded diameter in €aqm, and each II(c;)
and II(c;41) are 2M-close, we conclude that II(c) UTI(¢’) has uniformly bounded diameter.
This gives (2).

Finally, ¢’ and d have uniformly bounded intersection number by construction, so by
Lemma 4.4 they have uniformly bounded distance in G. Since II is coarsely Lipschitz (Lemma
4.5), we see that II(¢’) UII(d) also has uniformly bounded diameter. The last statement of
Proposition 4.9 now follows by the triangle inequality. O

We now show that the admissible curve graph %,qm is quasi-isometric to the model K.
Since the inclusion %.qm — K is simplicial and hence 1-Lipschitz, this statement is implied
by the following:

Proposition 4.11. The map [IoV: K — Gaam 1S a quasi-inverse to the inclusion GCpam — K.

Proof. We first check that for all a € €qm, the image I o ¥(a) is uniformly close to a in
Gaam- Since g(S) > 3, there must exists a genus-separating curve ¢ disjoint from a. Hence
¢ € ¥(a) and a € II(c). Thus a € ITo ¥(a) as desired.

We now show that II o ¥ is coarsely Lipschitz; this will complete the proof of Proposition
4.11. We have already shown in Proposition 4.9 that the image of every vertex of I has
uniformly bounded diameter, so it suffices to do the same for every edge. That is, if o, a’ € K
are two vertices joined by an edge, then we must show that

diam(II o ¥U(a) UIl o ¥(a'))

is uniformly bounded.
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If the edge from « to o’ corresponds to adding a curve to « to achieve o/, then ¥ (') C ¥(a)
by definition. This implies IT o ¥ (o) C IT o ¥(a); the desired diameter bound then follows
from Proposition 4.9.

Now assume the edge from « to o’ corresponds to a flip move. Let z € a and 2’ € o’ such
that z is flipped to 2’. If  and 2’ are disjoint, then oo U 2’ is a vertex of K as adding curves
to a vertex of K always produces a new vertex of .. Now aU 2’ is joined by an edge to both
a and o as removing x’ produces a and removing x produces o’. The desired bound now
follows from the proceeding paragraph about add/remove edges.

If  and 2’ are not disjoint, then the component Y of S\ (a\ ) that contains = has
&Y)=1. IfY is not a witness, then o\ x = o’ \ 2’ is a vertex of K that is joined by an
add/remove-edge to both o and o’. As before this establishes the bound.

If Y is a witness, then Lemma 3.2 requires S \ Y has no genus. Since £(Y) = 1 and
g(S) > 3, this is only possible if g(S) = 3 and Y is a 4-holed sphere where every curve in
dY is non-peripheral and non-separating on S. In this case, z and x’ intersect twice in the
4-holed sphere Y. Thus, flipping a to o’ corresponds to moving from the dual graph D for o
to the dual graph D’ for o/ by performing a “Whitehead move” where one collapses the edge
of D dual to x and then expands an edge dual to z’; see Figure 8. Since no curves in 9Y are
separating or peripheral on S, the dual graph D contains a cycle C' with an edge dual to =
such that after performing the Whitehead move to produce D’, the cycle C becomes a cycle
C’ of D’ that does not include the edge dual to 2. There is therefore a genus-separating
curve ¢ built from C' that will be disjoint from 2, which implies ¢ € ¥(a) N ¥(a’). Since
II(c) will then be contained in ITo ¥(a) NI o ¥(a'), we have that diam(ITo ¥(a) UIlo ¥(a'))
is uniformly bounded by Proposition 4.9. ]

C c’
) — W

FIGURE 8. One the left, the subsurface Y where z is flipped to z’. One the
right, the Whitehead move on the dual graph corresponding to flipping z to
a’. The cycle C' is sent to the cycle C' under this move.

Proof of Theorem A. Lemma 3.5 and Proposition 4.11 together show that %,qm is quasi-
isometric to the hierarchically hyperbolic space K. Since hierarchical hyperbolicity can be
passed along quasi-isometries, Gpqm is also hierarchically hyperbolic.

As Gromov hyperbolicity is also a quasi-isometry invariant, it suffices to to verify that
K is not Gromov hyperbolic. By Corollary 3.6, K is not Gromov hyperbolic if and only
if Gaam has a pair of disjoint witnesses. Let Aq,..., A, be peripheral curves encircling
the punctures of S. Without loss of generality, assume ¢(4A;) > 0 for i € {1,...,k} and
d(A;) <0forie{k+1,...,n}. Let @ be a multicurve consisting of g + 1 non-separating
curves ap, . ..,ag+1 such that S\ « is a pair of genus zero subsurfaces, W+ and W™, where
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W contains A1, ..., A, and W™ contains Agi1,...,Ay; see Figure 9. Orient each curve of
a such that W7 is to the left.

FIGURE 9. The multicurve o whose complement is a pair of witnesses for
(gadm~

By homological coherence (Lemma 2.2.2), we have that for any framing v of S,

g+1 k

Domit ) YA =1-g—k (3)

where x; = ¥(a;). On the other hand, we know from Lemma 3.2 that W™ contains a
(non-peripheral) 1-admissible curve if and only if there is some subset C of €« UA; U...UA
such that
Y dlo=1-1c|. (4)
ceC
A similar condition tells us if W~ contains any non-peripheral admissible curves.

Now since g of the curves of a are homologically independent, we see that for any
(w1,...,2441) € Z9T! such that (3) holds, there is a framing 1 of S such that ¥(a;) = ;
for all < and ¥(A;) = ¢(A;) for each j € {1,...,n} (see [CS22, Remark 2.7]). Moreover, we
can choose z; not to satisfy (4) for any subset C of 9W™ or the corresponding equations for
W~ since these all linearly independent from (3). Thus W and W~ are a pair of disjoint
witnesses for Gaam (S, ©).

Set K =3 |¢(A;)|. The choices in the previous paragraph can all be made explicitly
by choosing 1, ...,%4 all to be positive and larger than 2K and such that their differences
are all larger than 2K. Set x4, to satisfy (3), so it will necessarily be very negative. Then
for any subset C of o U Ay,..., Ay, the left-hand side of (4) has magnitude larger than
K unless it contains all of . In this case, any curve separating off (a subset of) the A;
appearing in W must have negative winding number, which is in particular not zero. Thus
W contains no admissible curves, so W~ is a witness. The argument to show W7 is a
witness is completely analogous.

Finally, we note that in the case that ¢ is of spin type, we can also choose ¥ to have the

same Arf invariant as ¢ by stipulating the winding numbers on the completion of ay,. .., a4
to a GSB. Theorem 2.5 now provides f € Mod(S) such that ¢ = f(¢), and thus f(W™) and
f(W~) are the desired pair of disjoint witnesses for €aam (.S, ¢). O

5. CURVE GRAPHS FOR STRATA

In this section we define a number of analogous graphs for (bordifications of) strata.
We start by recalling some of the results of [CS22] on the relationship between strata,
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markings, and framed mapping class groups and discussing how the curve complex captures
the intersection pattern of the boundary of a bordification of Teichmiiller space. Unlike the
classical case, it is much more subtle to determine exactly which nodal surfaces can appear
in the boundary, leading us to define a number of different graphs that we will eventually
prove are all quasi-isometric (Corollary 6.5).

5.1. Framings and strata. A stratum of abelian differentials is a (quasi-projective) subva-
riety of the bundle of holomorphic abelian differentials Q2 M, on genus g Riemann surfaces
defined by conditioning the number and order of zeros. More explicitly, given any partition
k= (k1,...,ky) of 29 — 2 into positive integers, we let QM (k) C QM denote the stratum
parametrizing pairs (X,w) where X is a Riemann surface and w is a holomorphic 1-form
on X with n distinct zeros of orders ki, ...,k,. Since a holomorphic 1-form is entirely
determined (up to global scaling by C*) by the order and position of its zeros, any stratum
can be thought of as a C* bundle over a subvariety of M, ,, (after taking a manifold cover).
In the sequel, we will freely conflate a stratum and its image in M, ,,; we trust this will not
cause any confusion.

Let Q74 (k) denote the full preimage of the stratum QMg (&) inside of 7 ,. In order to
understand its connected components, one needs to understand which mapping classes can
be realized inside a stratum, that is, one needs to understand the image of the map

p:mi(H) = m(Mg,) = Mod(Sy.,)

of orbifold fundamental groups, where # is any stratum component. When H is hyperelliptic,
it is not hard to see that the image of p is (conjugate to) a hyperelliptic mapping class
group [LM14, Cal20]. The main theorem of [CS22| characterizes the image of p for non-
hyperelliptic components.

Observe first that a differential w has an associated horizontal vector field that does not
vanish outside the zeros of w; we denote this by 1/w.

Theorem 5.1 (Theorem A of [CS22]). Let H be a non-hyperelliptic stratum component and
suppose that g > 5. Then the image of p is (conjugate to) the framed mapping class group
associated to the framing 1/w.

We therefore introduce the following notation:

Definition 5.2. Suppose that H is a non-hyperelliptic stratum component and let (X, w) € H.
Choose an arbitrary marking f : S, , — X and let ¢ denote the framing corresponding to
the vector field 1/f*w. Then we use Hy to denote the subset of Q7 (k) parametrizing
those marked differentials (X', «’, f') such (X’,w’) € H and 1/(f’)*(w') is isotopic to ¢.

By Theorem 5.1, if g > 5 then M, is just a specified connected component of Q7 ,, (k).
The reader should think of H this way; Definition 5.2 is written as it is only so that we
have something that works for all g > 3.

The Theorem also reveals a relationship between cylinders and admissible curves. Inte-
grating w induces a singular flat metric on X, and the core curve of any embedded Euclidean
cylinder has constant slope with respect to the horizontal vector field 1/w, hence winding
number 0. Moreover, since the cylinder has nonzero period with respect to a holomorphic
1-form, the core curve must necessarily be non-separating by Stokes’s theorem. Thus the
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core curve is admissible. Transitivity of the FMod(S, ¢) action on admissible curves (see
Proposition 2.9) now implies that every admissible curve is realized as a cylinder on some
differential in H,4 [CS22, Corollary 1.2].

In Section 6 below, we will use similar transitivity arguments to understand which
multicurves can be pinched in the boundary of H.

5.2. The curve complex as a nerve. Recall that the Deligne-Mumford compactification
My, of the moduli space of Riemann surfaces is obtained by adjoining boundary strata
corresponding to (stable) nodal surfaces to M, ,,. Equivalently, it can also be obtained by
taking the completion of M, , with respect to the Weil-Petersson metric. A sequence of
surfaces X; degenerates to the boundary if the (extremal or hyperbolic) length of an essential
simple closed curve goes to 0; if v is a topological type of multicurve, then we use Mg, (7)
to denote the boundary stratum where ~ is pinched.

One can do a similar thing at the level of Teichmiiller space. For any multicurve =,
let 74n(7) denote the Teichmiiller space of the open subsurface S\ 7. The augmented
Teichmiiller space Tq r, is then obtained by adjoining all possible 7 ,(7) to Ty, marking
S\ v by the subsurface complementary to . Equivalently, 7., is also the Weil-Petersson

metric completion of 7, ,. Points in 7, ,(y) can be obtained as geometric limits of non-
degenerate structures: for example, if 7;,, 2 X; = X € Ty n(7) then the hyperbolic length
of v on X; goes to 0, so the X; develop a long collar that limits to a pair of cusps in X.

We direct the reader to [HK14] and its extensive bibliography for a thorough discussion
of the history and construction of these spaces.

Remark 5.3. It is useful (though not quite correct) to think of T, as covering My ,.
There is a surjective map m — m, which when restricted to any stratum 7, () is
a covering onto M, (), but the overall map is not a covering. This is because 7, is
infinitely ramified around the boundary stratum 7, (y) (and likewise 7y ,(7) is infinitely
ramified around its boundary, etc).

The collar lemma implies that the nerve of the (closures of the) top-dimensional boundary
strata of T,,, is exactly given by the usual curve complex % (S) (with vertices given by
simple closed curves and simplices given by disjointness). The 1-skeleton of the barycentric
subdivision of the curve complex is the multicurve graph, which has a vertex for each (simple)
multicurve on S and whose edges are given by inclusion: 7 is connected to ¢ if and only
if y C 0 or § C v. Equivalently, the multicurve graph is the nerve of the (closures of) all
boundary strata of ﬁ.

5.3. Multi-scale differentials and level splittings. We now perform a similar con-
struction for (marked) strata of abelian differentials. Our discussion will be made more
complicated by a number of factors, one of which is that some curves on S cannot be pinched
by themselves (since any abelian differential is in particular a cohomology class). In fact, if
H7¢ﬁ Tgn(v) # 0 and 7 is a single simple closed curve, then it must either be admissible or
separating. See Section 5.4 just below.

Example 5.4 (Pinching a multicurve but not its components). Consider the surface shown
in Figure 10. In this example, curves « and g are homologous and so their periods must
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FIGURE 10. A 2-level splitting consisting of two homologous curves. Neither
« nor 3 is admissible, and neither defines a level splitting by itself, so by
Theorem 5.9 below, H, does not meet Ty ,, () or Ty, (8).

be equal. Crushing the right-hand torus to have 0 area degenerates into the boundary
stratum H, N Ty, (U B). However, it is impossible to pinch either a or 3 individually while
remaining in 7—[7(#

Specifying H, C Ty as in Definition 5.2, let H, C 7,5, denote its closure (equivalently,
its Weil-Petersson metric completion). Analogous to the multicurve graph, we now define a
graph capturing the pattern of intersections of H, with the boundary strata of 7y ,,:

Definition 5.5. Let ¢(H,;) be the graph whose vertices are multicurves « such that
Hy N Tyn(7y) is nonempty and whose edges are given by inclusion.

Exactly which multicurves appear as vertices of ¢’ (Hy) is a very intricate question, and
is related to subtle properties of a certain compactification of . Let #H be the closure of
H inside of M, ,, (without markings). The structure of its boundary is determined by the
so-called “incidence variety compactification” (IVC) of H# [BCG'18]. A point in the IVC
consists of a “level graph” and a “twisted differential” compatible with the level graph;
forgetting the differential and remembering only the underlying complex structure yields a
surjective map from the IVC onto H [BCG*18, Corollary 1.4]. It turns out that the IVC is
highly singular, and in [BCGT19], the IVC is refined into the moduli space of “multi-scale
differentials” ZH which has nicer geometric properties (e.g., its boundary is a normal crossing
divisor). A multi-scale differential is encoded by three pieces of data: an “enhanced level
graph,” a twisted differential compatible with the level graph and the enhancement, and a
“prong matching.”

We will not give precise definitions of these compactifications here, and direct the reader to
the original papers (especially Section 5.1 of [BCG119] and Section 3 of [CMZ22]). Instead,
we record some of the relevant combinatorial data using our terminology of multicurves and
winding numbers. We keep the numbering conventions of [BCG'19].

Definition 5.6. Let S =S, ,, and let ¢ be a framing of S. An N-level splitting is an oriented
multicurve § together with a partition of S\ 8 into (nonempty, but possibly disconnected)
subsurfaces Yp, ..., Y_n41 such that:

e The winding number ¢(b) is negative for every curve b C f.
e Let b be a curve of 5. Then if the subsurfaces it sees on its left and right are Y; and
Y;, respectively, then ¢ > j.
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A multicurve § is an N-level multicurve if 8 can be oriented and S\ 8 can be partitioned to
yield an level splitting with N levels.

FIGURE 11. A 3-level multicurve and corresponding enhanced level graph.

Remark 5.7. Homological coherence implies that a 2-level multicurve determines a unique
level splitting (because there are only two options for the partition of S\ 8, and one option
does not satisfy homological coherence). However, as shown in [BCGT18, Examples 3.3
and 3.4], this is not true for general N-level multicurves as soon as N > 3. Moreover, it is
possible that an N-level multicurve is compatible with N'-level splittings.

Comparing this to [BCGT19], a level splitting records slightly different information than
an enhanced level graph/enhanced multicurve without horizontal edges. The dual graph to
a splitting (together with the partition of S\ /) is a level graph, and the winding numbers
of the curves correspond to the enhancement, i.e., the orders of the zero and pole on each
side of the node. In particular, for each oriented curve b C 5 corresponding to an edge of
the dual graph with enhancement  (so a zero z of order o(z) = k — 1 and a pole p of order
o(p) = —k — 1), we have

6(b) = —r = —1—0(z) = 1+ olp).

Thus every N-level splitting gives rise to an enhanced level graph.

However, a single enhanced level graph may be compatible with multiple level splittings,
as the splitting enforces the Arf invariants of the components of ¢|s\s (even up to the action
of Stabyroa(s)(8)) and the level graph does not. This is related to the fact that the Mod(S)
orbit of multicurves are generally larger than the FMod(S, ¢) orbits (even controlling for
winding numbers). Compare Proposition 6.2 below.

When ¢ has holomorphic type, every boundary component and peripheral curve of the top
(that is, 0'") level of a level splitting has negative winding number. Homological coherence
(Lemma 2.2.2) then implies that each of these top component must have positive genus. This
corresponds to the fact that the top level of a multi-scale differential in the boundary of a
holomorphic stratum must itself be holomorphic, hence is supported on a surface with genus.
We record this for later use:
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Fact 5.8. Let B, (Yo,...,Y_ny1) be a level splitting of a framed surface of holomorphic type.
Then each component of Yy has positive genus.

A corollary of the description of the moduli space of multi-scale differentials in [BCGT19] is
the following statement, which gives an important necessary condition for which multicurves
can be pinched in ’H7¢:

Theorem 5.9. If H, N T, (7) is nonempty, then v is the union of an admissible multicurve
a and a disjoint N -level multicurve (3.

[MUW?21] gives a sufficient condition for a topological type of multicurve to appear in
the boundary of a stratum. Using results from the literature, one can refine this result to
stratum components H. In particular, using [Won24] one can determine exactly when the
Arf invariants of subsurfaces enforce the total Arf invariant, and the main result of [CF22]
implies that the global residue condition does not impose any further restrictions.

To further upgrade this to a result for 7-T¢, one would also need to establish very strong
transitivity results for the action of the framed mapping class group (for example, one needs
transitivity on all admissible multicurves of the same topological type, not just pairs). We
were unable to achieve this level of generality, and so instead focus our attention on the
“largest” boundary strata. For coarse-geometric questions, this distinction will be irrelevant.

5.4. Divisorial multicurves. As mentioned above, the map from the space of multiscale
differentials ZH to the closure H C M, , is highly singular. All the same, because the
boundary of ZH is a normal crossing divisor, it gives us a good notion of what the largest
boundary strata are.

Irreducible components of the boundary divisor of the moduli space ZH of multiscale
differentials correspond to 1-level graphs with a single horizontal edge (i.e., admissible curves)
and certain 2-level graphs with only vertical edges (i.e., 2-level multicurves) [BCGT19]. We
therefore make the following definition:

Definition 5.10. A multicurve v is called divisorial for Hy if Hg N Tyn(7) is nonempty and
~ is either a single admissible curve or a 2-level multicurve.

It is still fairly complicated to identify exactly which 2-level multicurves are divisorial
(compare the discussion at the end of the previous subsection as well as Proposition 6.2
below). As a first example, if 3 is divisorial and Y;(3) has a genus 1 component U, then in
the associated boundary component of =H the surface U is equipped with a holomorphic
abelian differential. Thus Arf;(¢|y) must be 0 (Remark 2.3).

All the same, we can build a graph that records only the intersections of (multicurves
corresponding to) strata of H, coming from boundary divisors of ZH.

Definition 5.11. Set @(7—7;5) to be the graph with vertices given by divisorial multicurves
7, and with an edge between ~ and § if and only if Hy N Ty, (7 U6) is nonempty.

Observe that 2(H,) is to the curve graph as ¢ (Hy) is to the multicurve graph. In
particular, its subdivision is a subgraph of ¢ (H,) by definition, and since every boundary
stratum of ZH is an intersection of boundary divisors, this subgraph is coarsely dense.
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Unfortunately, while it is simpler than ¢’ (Hy), the edges of Z(H) are still defined in
terms of intersections of boundary strata. This is a subtle question even for disjoint 2-level
splittings, so we define one further, simpler curve graph that is more amenable to the HHS
techniques from the previous sections. Eventually, we will show that all of the graphs we
have defined are quasi-isometric (Corollary 6.5).

Definition 5.12. Set &(H,) to have the same vertex set as Z(H), with an edge between ~y
and ¢ if and only if the two multicurves are disjoint (but are allowed to share components).

The graphs 2(Hs) and &(Hg) are indeed different. We thank Martin Moller for first
bringing this phenomenon to our attention.

Example 5.13 (Pinching curves but not their union). Suppose that S has a single puncture
and let A denote a curve encircling that puncture. Let ¢ and d be separating curves on
S such that (A, ¢, d) bounds a pair of pants P. Then Y;(c) and Y;(d) both have genus for
i =0, —1, and by the main Theorem of [MUW21] (or explicit construction), one sees that
H, meets both 7, ,(c) and Ty, (d).

However, if H, were to meet 7y ,,(cUd), then on any multiscale differential corresponding
to this boundary stratum the pair of pants P would be equipped with a meromorphic
differential with a single zero and two poles. Stokes’ theorem (more generally, the global
residue condition [BCG*19, §2.4 item (4)]) would then imply that the residues at each pole
would be 0, but there is no meromorphic differential on C with a single zero and two poles
of zero residue.

The inclusion gives a 1-Lipschitz map from 2(H,) to &(H); below, we show that this
map actually extends to €' (Hyg).

Lemma 5.14. There is a coarsely Lipschitz map
§:C(Hy) > E(Hy)
that coarsely agrees with the inclusion 2(Hg) < &(Hg).
Proof. Any boundary stratum of ZH is an intersection of boundary divisors; exactly which
divisors can be recovered from the “undegenerations” of the associated enhanced level

graph [BCG'19, Definition 5.1]. The precise details of the situation will not be important
to us; all we need is the following:

Fact 5.15. Given any boundary stratum of ZH in which v is pinched, all of its undegenera-
tions correspond to pinching sub-multicurves of .

We now define the desired coarsely Lipschitz map
¢ C(Hy) — 2500

by sending a multicurve 7 to the set of multicurves pinched in any divisorial undegeneration
of any boundary stratum corresponding to v.2 The image of any vertex of ‘5(7—[7@5) lies in a

2This is one place where our viewpoint of taking level multicurves, not level splittings, makes the discussion
more complicated. Which undegenerations occur, and which boundary divisors intersect, depend not just on
the multicurve but also on the level structure.
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clique since all of the undegenerations are disjoint, and since edges of %(7—@) are given by
inclusion, it follows that if 4 C § then £(y) C £(d). Thus & is coarsely (2-)Lipschitz.

To see that £ coarsely agrees with the inclusion, we simply observe that it agrees with the
inclusion on vertices of Z(H,), and that the edges of Z(Hs) get mapped to sets containing
both endpoints. O

6. FROM TRANSITIVITY TO GEOMETRY

All of the graphs defined in the previous section carry a natural action of the framed
mapping class group. Throughout the section, fix a non-hyperelliptic stratum component
H C My, (necessarily with g > 3) and let Hy be as in Definition 5.2. Set S = S, ,,. Then
if Hy N Tyn(7y) # 0, we have for any f € FMod(S, ¢),

f('H7¢ﬁ ’Tg,n('}/)) = ’H7¢ﬂ E,H(f(’}/)) # 0.

In this section, we analyze this action in more detail and use certain transitivity properties
to relate the geometries of € (Hy), Z(He), and &(Hg) to each other, to a hierarchically
hyperbolic model, and to the admissible curve graph %aqm (S, ¢). This will complete the
proof of our main Theorem B.

As a first example of this technique, let us prove the following:

Lemma 6.1. Both 2(H,) and &(Hy) contain Caam (S, ¢).

Proof. 1t suffices to prove the statement for 2(H,) as it is a subgraph of & (7). Since every
admissible curve is divisorial, Z(H,) contains the vertices of €am (S, ¢), so it remains to
show that it also contains the edges. By Proposition 2.9, the framed mapping class group
FMod(S, ¢) acts transitively on pairs of admissible curves of the same topological type. Thus,
it only remains to show that H, meets some boundary stratum 7Ty ,,(c) for each topological
type « of pair of admissible curves.

One can do this by explicit construction, one possibility of which we sketch below. The
restriction of ¢ to S\ « is a framing with four boundary components of winding number 0.
By holomorphicity of ¢, each component of S\ « either has positive genus or each peripheral
curve on that component has winding number —1. Pick meromorphic differentials on the
components of S\ « inducing the same framing and with simple poles corresponding to
a, all of the same residue (this can be done because strata of meromorphic differentials
on surfaces of genus > 1 with simple poles are always nonempty [Boil5], and the genus 0
case corresponds to adding free marked points on a cylinder). Cutting the infinite cylinders
and gluing them together along « yields a holomorphic differential in the correct stratum;
applying the (unframed) mapping class group then allows us to ensure that it actually lies
in Hy4. Degenerating these cylinders by letting their heights go to co then produces a path
in Hg to Tgn(a).

The only thing one might worry about is matching the Arf invariants of the subsurfaces
to ensure that the plumbed surface has the correct Arf invariant: this turns out not to be
an issue for the following reason. If g > 4 then each stratum of meromorphic differentials
in genus > 2 has components of both spin parities [Boil5, Theorem 1.2], so by choosing
the appropriate Arf invariants on pieces we can ensure that the plumbed surface has the
appropriate Arf invariant. In the special case that ¢ = 3, there is a unique component of
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meromorphic differentials on a genus 1 surface with two simple poles and a single zero of
order 2, and so the plumbed surface is forced to have odd Arf invariant. Fortunately, this
only happens in the stratum QM3(2,2), which has a unique non-hyperelliptic component of
odd Arf invariant [KZ03, Theorem 2]. O

6.1. The action on 2-level multicurves. 2-level multicurves can have many different
topological types, so FMod(S, ¢) will certainly not act transitively on them. However, even
controlling for topological type and winding numbers, the Arf invariants of subsurfaces
present additional invariants of the FMod(.S, ¢) orbit. We show below that these are the
only obstructions to transitivity.

While we will not use this in the sequel, note that the following statement is true for all
2-level splittings of a surface of holomorphic type, not just divisorial ones.

Proposition 6.2. Let ¢ be a framing of holomorphic type on a surface S of genus at least
3. Let B be any 2-level multicurve. Then a multicurve 8" is in the FMod(S, ¢) orbit of 5 if
and only if there ezists an h € Mod(S) such that:

(1) h(B)=p".

(2) ¢(b) = p(h(b)) for every curve b € j.

(8) For each component U of S\ B of genus at least 2 such that ¢|y is of spin type,

Arf(¢lu) = Arf(|nwr),

and similarly, for any complementary component U of genus 1,
Arfi(¢lv) = Arf1(dlnw))-

Proof. We are given h € Mod(S) taking 8 to f’; our goal is to find an element in the
(orientation-preserving, component-wise) stabilizer of 5’ such that its composition with h
preserves the winding numbers of a GSB for S. We will construct this element and the
associated GSB in steps, starting from the bottom and working up. The reader is invited
to compare with the discussion of “perturbed period coordinates,” especially Figure 5,
in [BCG™19]. Throughout the proof, given any curve of 8 or component U of S\ 3, we will
add a prime to denote its image under h, i.e., U’ := h(U).

Bottom level: Choose a GSB By on each component U of Y_;(8). Hypothesis (3) allows
us to apply Lemma 2.8 to choose a GSB By for U’ with the same set of winding numbers as
appear in By. Using the classical change-of-coordinates principle, we can find some element
fur € Mod(U’) (which we can then think of as living in Mod(S) via inclusion) that takes
h(BU) to BU/. Set
foor =[]  furoh;
U'CcY_1(B')

by construction it takes 3 to 8’ and preserves the winding numbers of a GSB for Y_;(3).
Level passage: For this and the next step, for each component U of the top level Yy(8),

pick a subsurface Vi C U with full genus and a single boundary component.
Pick a maximally homologically independent subset b = (by,...,bp) of 8 and extend

J Buub

UcY-1(B)
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/
by

FIGURE 12. The multitwist needed to fix the winding number of fy.:(c1).
Note that it may not always be possible to choose the curve dj to be disjoint
from the other curves of fyo:(c).

to a GSB for the complement of all of the Vi;. Let ¢ = (¢, ..., c) denote the resulting set of
curves symplectically dual to those of b. The element f,; will most likely not preserve the
winding numbers of ¢, but we can rectify this using elements supported entirely on Y5 (53’).

Consider first ¢p; the dual curve b; is a curve of the 2-level splitting 3, and we use Uy
to denote the component of Y;(8) adjacent to by. Since ¢ is of holomorphic type, U; has
genus, hence so does the full-genus subsurface V; := Viy,. Set ¢/ = fio(c) and likewise for its
components. Pick some admissible curve aj C fyor(V1) and let d} denote the connect sum of
b} with a} along some arc contained in Uj. Since a] is disjoint from ¢’ and b} only meets ¢/,
we see that the algebraic intersection number of d} with each c;- is 0 unless 7 = 1, in which
case it is exactly 1. See Figure 12.

By homological coherence (Lemma 2.2.2),

o(by) — ¢dy) = —1

when appropriately oriented. Thus, if we set

fii= (Tbj,ltT;Z)
for an appropriate choice of signs, then by twist-linearity (Lemma 2.2.1) we see that f1(c})
has the same winding number as ¢; and that f; preserves the winding numbers of all other
cj.

We now repeat the above procedure but with f; o f,; instead of fy,:. More precisely,
set Vo C Us to be the full-genus subsurface of the top-level component of S\ 8 adjacent
to by.3 There is an admissible a) C f1 fyot(V2), and taking the connect sum of b, with this
curve yields some d, whose algebraic intersection with each curve of fi fyot(c) is 0 except for
f1fvot(c2). Taking an appropriate multitwist in b, and df yields some f> supported on U}
such that f5f1 fror preserves the winding numbers of both ¢; and cs.

Iterating, we get a sequence of mapping classes fi,..., f all supported on Yy(8’) such

that the composite

d(cy)—o(cr)

fmid == fno...0o f10 fro

3The component Us (and subsurface V2) may be the same as Uy (and V3).
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takes B to 3’ and preserves the winding numbers of the curves of a GSB for the complement
of the full-genus subsurfaces V of the top-level components U C Yy (53).

Top level: To finish, we can simply use the action of Mod(f,:4(V)) to amend the winding
numbers of the remaining curves as we did for the bottom level.
Pick a GSB By for each such V. Then by Lemma 2.6 and hypothesis (3), we have that

Arf(ply) = Arf(d|lv) = Arf(¢|ur) = Arf(dls,...v))

when defined. If U is of genus 1, the same thing holds for the genus 1 Arf invariant (note
that this requires the fact that ¢|y is of holomorphic type!). Lemma 2.8 then implies that
fmia(V) admits a GSB with the same winding numbers as By and we pick an element
fv € Mod(fmia(V)) taking fim:qa(By) to this GSB.

Finally, we observe that the mapping class [[, fv © fmia takes B to 3’ and preserves the
winding numbers of the following GSB for S:

U By UbUcU U By .
UCY_1(B) UCYo(B)

We have therefore constructed the desired framed mapping class. O

6.2. Pinching admissible curves. Using the same ideas as Proposition 6.2, we show that
every 2-level splitting is connected to some admissible curve in Z(H,).

Proposition 6.3. Suppose that 8 is a divisorial 2-level multicurve for He, i.e., Hys meets
Tyn(B). Then for any admissible a C Yo(B3), we have that H, meets Ty (3 U a).

Proof. We first show that one can further pinch some admissible curve in Yy(83). The
restriction of a multiscale differential lying over H, N7y ,,(3) is holomorphic on Yy (3). Every
holomorphic differential contains an embedded nonsingular cylinder [Mas86] whose core
curve a’ is necessarily admissible, and one can degenerate into Hg N T, (3 U a’) by sending
the height of this cylinder to oco.

Thus, it suffices to show that the stabilizer of § in FMod(S, ¢) acts transitively on the
set of admissible curves contained in each component of Yy(8). Let a and a’ be different
admissible curves contained in the same component U of Y;() and suppose (postcomposing
by an element of Mod(U) as necessary) that the element h taking S to 3’ also takes a to a’.
The proof of Proposition 6.2 then proceeds by upgrading h into a framed mapping class; we
show that each step, this can done be done in a way that preserves a’ and so the composite
element still takes a to a’.

Bottom level: The element fp,; differs from h by an element supported entirely on the
bottom level Y_1 (), so still takes a to a’.

Level passage: Pick the full-genus subsurface V C U to contain a’, so fyer (V) contains a’.
Each element f; is constructed by taking a multitwist disjoint from some choice of admissible
curve. So long as we pick a’ to be this admissible base curve each time that U is the relevant
subsurface in the iteration, then the resulting multitwist f; will preserve a’ and the new
subsurface f; - - f1foor (V) will still contain a’. Thus f,,;q must also take a to a'.
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Top level: The last step of the construction takes a fixed GSB of V to a GSB of f,,;4(V)
with the same winding numbers. We now just make sure to take a as an element of the
GSB of V and take a’ to be the corresponding element of the GSB of f,,;4(V). The fact
that we can extend a’ to a GSB with the appropriate winding numbers is immediate in the
genus 1 case, as divisoriality implies that Arf;(¢y) = 0, so every nonseparating curve is
admissible. If g(V') > 2, it follows from Corollary 2.11 that we can choose a curve transverse
to a’ with the desired winding number, then apply Lemma 2.8 to the complement in V of
the subsurface filled by a and this curve (note that if g(V) = 2, then the boundaries of this
subsurface have winding numbers —3 and +1, so its genus 1 Arf invariant is either 1 or 2 and
there are no more restrictions than already appear from fixing the Arf invariant of V). O

Combining this with Lemma 6.1 allows us to quickly conclude connectivity.
Corollary 6.4. The graphs ¢ (Hg), P(Hy), and &(Hy) are connected.

Proof. Since 9(H,) is a subgraph of &(H,) (and its subdivision is a subgraph of € (H,)), it
suffices to prove this for Z2(Hs). By Lemma 6.1, Z(H,) contains the admissible curve graph
Gaam (S, ¢), and as shown in Lemma 3.1, Gpam (S, ¢) is connected. Every vertex of 2(Hg)
that is not an admissible curve is a 2-level multicurve 8. There is some admissible curve a
contained inside of each component of Yy(5) (Fact 5.8 and Lemma 2.7) and so Proposition
6.3 implies that H, meets 7, (83 U a). Thus 8 and a are connected in Z(H). Since we
have connected every vertex of Z(Hg) to the connected graph Gaam (S, ¢), we conclude that
P(Hg) is connected. O

Pushing this line of reasoning slightly further, we also get the following;:
Corollary 6.5. The graphs € (Hy), 2(Hy), and &(Hy) are quasi-isometric.

Proof. Observe that via the inclusion (of its subdivision) and Lemma 5.14, we have already
built coarsely Lipschitz maps

D(Hy) = € (Hy) = E(Hy)

such that the final map 2(H,) — &(H,) coarsely agrees with the inclusion. Thus, it remains
to show that the inclusion 2(H,) < & (H,) has a coarse inverse.

Define ¢: &(Hy) — 27(2) to be the identity on the vertices of &(7y) and to send each
edge of &(H,) to the pair of vertices in Z(H,) that are its endpoints. If ¢ is coarsely
Lipschitz, then it is necessarily a coarse inverse of the inclusion 2(Hy) < &(Hy).

To that end, consider any edge of & (%) connecting disjoint multicurves v and § that
correspond to divisorial boundary strata. We just need to show a bound on the length of
a path from v to § in Z(H,). If both v and § are single admissible curves, then Lemma
6.1 implies they are connected in Z(H,). Now suppose v is admissible and § is a 2-level
curve. As in the proof of Corollary 6.4, each component of Yy(d) has genus and if v C Y5(9)
then Proposition 6.3 implies that v and § are connected by an edge of 2(H,). Otherwise,
v C Y_1(6) and in particular it is disjoint from Yy(d). By Lemma 2.7, there is an admissible
curve a on Yy(d). Applying Proposition 6.3 again we see that « is connected to a which is
connected to § (by Lemma 6.1).
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Finally, suppose that both v and ¢ are 2-level curves. If any components of Yy(y) and
Yo(d) are nested, then since they both have genus their intersection does. In particular by
Lemma 2.7 there is some admissible curve a disjoint from both v and §. We may then invoke
Proposition 6.3 again to connect v to § in Z2(H,) through a. Otherwise, Yy(7) and Yy(9)
are disjoint. In this case we choose admissible curves a, and a; inside Yy(y) and Y5(6),
respectively. The previous two paragraphs then imply that (v, a.,as,0) is an edge path in
9(H,). Thus, collecting cases, we have shown that each edge of &(H,) is sent to a set of
diameter at most 4, hence ( is coarsely Lipschitz. O

6.3. A quasi-isometry with the model. We now build off our work showing €pam (S, ¢)
is hierarchically hyperbolic to prove that &(H,) (hence 2(H,) and €' (Hg)) are as well.
As in the case of the admissible curve graph, we establish the hierarchical hyperbolicity
of &(H,) by showing it is quasi-isometric to a model graph constructed from its witnesses.
Because Wit(&(H,)) is a proper subset of Wit(%pam (S, #)), our proof for & (H,) will actually
rely on the proof for €pam(S, ¢). To describe this setup, we need the following notation:

e Set £ = £(S5), the cardinality of the largest set of disjoint curves on S = Sy .

e Let D be the set of divisorial 2-level splittings for H, (these are exactly the vertices
of &(H,) that are not in Gaam (S, ¢)).

e Let & = Wit(oam(S, ¢)) and & = Wit(&(H,)). By definition,

G=6\{We&:36cDwithdnW = 0}.

e Let K = Kg denote the quasi-isometric model for €qm (S, @) (Definition 3.4) and
let KC denote Ks.

By construction, there are 1-Lipschitz inclusion maps
i: K — K and t: Gaam(S, d) — E(Hy).

The idea behind our proof that K is quasi-isometric to &(Hg) is to show that the decreases
in distances that happen under i: I — K coarsely match the decreases that happen under
L: (gadm(57 ¢> — (9@(%¢>

To formalize this idea, we define
Plu)={aeck:pCa}l

for any multicurve p on S. If i is a multicurve such that S\ 1 does not contain a subsurface
in &, then p is a vertex of K and every vertex of P(u) is connected to p by a path with at
most £ edges (corresponding to removing curves until only g is left). On the other hand, if
S\ p does contain a subsurface in &, then P(u) has infinite diameter; see [RV19, Corollary
4.10]. Hence, if p is a vertex of KC, but not K, then P(u) is an infinite diameter subset of K
that becomes finite diameter under i: K — K. If K is to be quasi-isometric to &(Hg), we
would like the image of P(u) under the quasi-isometry K — €aam (S, ¢) to have uniformly
bounded diameter under ¢: Gpam (S, ¢) — &(Hg).
Our candidate quasi-isometry ©: K — 26(Hs) is therefore

O(n) = vollo U(P(u))

where IT o ¥ is the quasi-isometry from K t0 Gaam (S, ¢) constructed in Section 4.=
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As suggested above, the main work required to prove © is a quasi-isometry is to show that
tolloW(P(u)) is a bounded diameter subset of &(Hg). To achieve this, we need to know
that &(Hg) is obtained from Gaam (S, ¢) by adding enough divisorial 2-level multicurves to
collapse the image of P(u) for each p that is in K but not K. The abundance of 2-level
multicurves comes from the following lemma.

Lemma 6.6. For any Hg, there is an N, depending only on S, such that the following holds.
Let W be a genus 0 witness of Caam (S, ) and let 5 € D be a divisorial 2-level multicurve
disjoint from W. Then for any multicurve o on S\ W, there is an f € FMod(S, ¢) such
that f(B) remains disjoint from W and i(«, f(8)) < N.

Note that in particular, f(8) € D since D is a union of FMod(.S, ¢) orbits.
This is a weaker, framed version of the following standard “change of coordinates” lemma.

Lemma 6.7. For any surface Z, there is an Nz such that for any multicurves or multiarcs
a and B, there is a g € Mod(Z) such that i(a,g(8)) < Nyz.

As in Section 4, the reason that we cannot use a similar “change of coordinates” argument
(even though we have shown the set of divisorial 2-level splittings for H, is a finite union of
FMod(S, ¢) orbits) is that there are infinitely many FMod(S, ¢) orbits of witnesses. Instead
of making a finite number of arbitrary choices, we will instead need to be more clever and
make a infinite number of good ones.

Proof of Lemma 6.6. We first record a number of topological consequences of our hypotheses.
Let Yy and Y_; denote the two levels of the 2-level splitting associated to 3. Then since W
is a witness and (S, ¢) is of holomorphic type, we see that

o W CYyp,

e each component of Y_; has genus 0,

e Y[ is connected, and

e Y, has genus at least 2.

Indeed, contradicting any of the first three statements immediately implies that there is
an admissible curve disjoint from W (Lemma 2.7). The last assertion follows similarly: Yj
always has positive genus, and some curve of W is always non-separating on Y. If the
genus of Yy were equal to 1 then Arf;(Yy) = 0 must be 0 by divisoriality (see the discussion
right after Definition 5.10) and hence some boundary curve of our witness W would be
admissible, a contradiction.

We observe that since S\ W has genus 0, the winding number of any curve on S\ W is
determined by how it partitions the curves of W and the punctures of S. Thus, any mapping
class supported entirely on W necessarily preserves the winding numbers of the curves of 3.
Applying Lemma 6.7 (and using the inclusion homomorphism for subsurfaces [FM12, Theorem
3.18]), we can therefore find some h(8) € Mod(S) - 5 that has bounded intersection with
a and with the same winding numbers as 3. Note that h(8) is a 2-level splitting, as the
definition of 2-level splitting depends only on winding numbers. Note also that h(S) may
not be divisorial.

In the case that Yj is not of spin type, or if Arf(hYy) happens to equal Arf(Yp), then
Proposition 6.2 ensures that 8 and h(8) are in the same FMod(.S, ¢) orbit, completing the
proof.
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Otherwise, Arf(hYy) = Arf(Yy) + 1. Our goal is now to amend the Arf invariant of hYj
while introducing a uniformly bounded number of intersections with . We note first that the
topology of the situation at hand forces there to be a curve w of AW that is nonseparating
on Yy (hence on hYy) and such that ¢(w) is even. Indeed, if the winding numbers of all such
w were odd, then since Yy \ W has genus 0 this would imply that ¢ is odd on curves spanning
a Lagrangian subspace of Hq(Yp;Z). In particular, this would imply that each term in the
formula for the Arf invariant (1) would be 0, hence Arf(Yy) = 0. The same would therefore
also be true for Arf(hYp), but this is a contradiction.

Now every mapping class supported entirely on W can be written as a product of Dehn
twists, and every curve on S \ W is separating. Thus, for any curve ¢ on S and any curve
d C S\ W, we have that

i(he,d) = i(c,d)
where (-, -) denotes the algebraic intersection number. Combining this with twist-linearity,
we see that if we factorize h = Tfll e Tf: where d; are curves on S\ W, then

¢(h0) = ¢(C) + klz(ca dl)(rb(dl) +.oo+ k,LZ<C, dn)(rb(dn)

for any curve ¢ on S.

Returning to the situation at hand, since Arf(hYy) = Arf(Yp) + 1, the discussion above
implies there must be some curve ¢ C Y), part of a GSB for Y and symplectically dual to a
curve w C OW of even winding number, and some curve d C S\ W such that i(c,d) and
¢(d) are both odd. Moreover, i(hc,d) is also odd, and since algebraic intersection number
and winding number properties on a genus 0 surface depend only on how a curve separates
the surface, Lemma 6.7 ensures there is a d’ on S\ W such that

(1) i(ge,d') is odd

(2) ¢(d') is odd

(3) The geometric intersection number of d’ with « is uniformly bounded.
Comparing with Formula (1), items (1) and (2) ensure that T hY; has the same Arf invariant
(and boundary winding numbers) as Yy, hence Proposition 6.2 implies that 8 and Ty hf are
in the same FMod(S, ¢) orbit. Since the geometric intersection of A8 and « was uniformly
bounded, item (3) ensures that the geometric intersection of Ty hf and « is as well. O

We can now prove K is quasi-isometric to & (Hy); thus &(Hy) is hierarchically hyperbolic.
Theorem 6.8. The map ©: K — 26(Ho) s q quasi-isometry.

Proof. Throughout the proof, we say a quantity is uniform if it depends only on the surface
S. Set & := &(Hy) and let 0 = 1ol o U, so O(u) = O(P(u)).

Our proof has three steps. First we prove that diam(©(u)) is uniformly bounded for each
vertex y € K. Then we show that if g and v are joined by an edge of K then diam(6(u)UO(v))
is also uniformly bounded. Together these show that © is coarsely Lipschitz. Finally, we
check that © is a coarse inverse to the inclusion map & — K.

Step 1: vertices have uniform diameter. If no component of S\ u is an element of &,
then p € K and every vertex of P(u) is obtained by adding fewer than & curves to . Hence
diam(P(p)) < 2€. Since 6§ = ¢ o IT o W is coarsely Lipschitz, this implies 0(P(u)) = O(p) is
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uniformly bounded. Hence, we can assume there exist a component W of S\ p that is in &,
i.e., is a witness for Gpqm.

For our fixed p € K, let & € P(u). The multicurve « is the union of three distinct sets: p,
aw =anNW, and a\ (pUaw); see Figure 13. Set o := p U ay. We divide the remainder
of our proof into three cases based on the subsurface W.

a\ (pUawy)
FIGURE 13. The partition of a € P(u) into aw, p and « \ (pU aw).

Case 1: g(W) > 1. Since u € K, then by definition of K there must exist some 2-level
splitting 6 € D such that W is disjoint from 4. Since W has genus, no component of S\ W
can be in &, thus o’ is a vertex of K that is joined by a path of length at most £ to a. By
Lemma 4.7, there exists a curve ¢ C W that cuts off a genus 1 subsurface and such that
¢ € ¥(a/). Thus, there is an admissible curve a € Il o ¥(a') contained in the subsurface
W. Since a is disjoint from §, there is an edge of & from a vertex of 8(a’) to ¢. Since 0 is
coarsely Lipschitz, this implies §(«) is uniformly close to ¢ for all & € P(u). This shows
O(p) is uniformly bounded in this case.

Case 2: g(W) =0, and none of the components of S\ W are in &. This implies that o’
is a vertex of P(u). Moreover, o can be connected to o with at most £ edges of K (one for
each curve removed to go from « to o).

Since W € & but not in &, there exists a multicurve in D that is disjoint from W. Each
component of S\ W has genus zero by Lemma 3.2. Thus, we can apply Lemma 6.6 to find
some 6 € D and N > 0 depending only on S such that i(u,d) < N and § is disjoint from W;
see Figure 14. Note that this choice depends only on u, not on a € P(p).

Since ¢ is a 2-level splitting, S\ § has a component Z C Y5(4) with g(Z) > 1. Since Z
contains an admissible curve and W € &, we must have W C Z. By Lemma 6.7, there is a
uniform N’ > 0 and a (possibly empty) multicurve m on Z \ W such that m cuts Z \ W into
three-holed spheres and i(m, ) < N'; see Figure 14. Since m cuts Z \ W into three-holed
spheres, ay Um U AW UJ is a vertex of K that intersects o at most N + N’ times; see
Figure 14 for a schematic of the situation. Let ' = mU W U4, so i(a/,aw Ud') < N + N'.

Thus di (e, aw U d") is bounded uniformly by some number determined by N + N'.

As in the previous case, Lemma 4.7 says ¥(ay U ') will contain a curve ¢ C Z that cuts
off a genus 1 subsurface of Z. Hence ¥(ap U d’) will contain an admissible curve that is
disjoint from J. This means 6(aw U ') is a bounded diameter set that contains a vertex
that is adjacent to § in &. Thus, since « is uniformly close to o/ which is in turn uniformly
close to ay U d’ and 6 is coarsely Lipschitz, we conclude that («) is uniformly close to 6.
Since § depended only on p, this implies diam(©(u)) is uniformly bounded.

Case 3: g(W) =0 and S\W has a component V that is in &. By Lemma 3.2, there is only
one such component V. Let 8 be a second vertex of P(u) alongside a.. Recall oy = anW
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FIGURE 14. A schematic of the curves 6 and m relative to u and W. The
actual intersection number between § U m and g is possibly higher, but still
uniformly bounded.

and similarly define oy, By, and By. Note that iU oy and U By are vertices of K that
we have already shown in the previous cases to have bounded diameter image under ©. Now
observe

a€ P(pUaw), aw UpU By € P(pUaw)NP(uUpB,), and B € P(pU By).

Hence 6(«) is uniformly close to 8(aw U p U By), which is in turn uniformly close to
O(Bw U pU By). Thus O(u) is uniformly bounded.

Step 2: edges have uniform diameter. If v is obtained from p by adding a curve, then
P(v) € P(u). Hence ©(u) UO(v) = ©(u) which has bounded diameter by Step 1.

Otherwise, the edge from pu to v corresponds to a flip move. Let x € p and 2’ € v be such
that z is flipped to 2’ and let Y be the component of S\ (p \ z) containing = and 2’. If
E(Y) > 1, then i(z,y) = 0 and p Uz’ is a vertex of K. Now p Uz’ is joined by a “remove”
edge to both 4 and v (removing 2’ gives u and removing x gives v), so the diameter bound
follows from the add/remove edge case. If £(Y) = 1, then 2 and 2’ intersect minimally on Y.
We can therefore find two pants decompositions a € P(u) and o € P(v) such that « differs
from o' by flipping = to z’. Since o and o’ are joined by an edge in K, the sets 6(a) and
6(c’) are uniformly close in &. Since o € P(u) and o € P(v), this implies that ©(u) U ©(v)
has uniformly bounded diameter.

Step 3: © is a coarse inverse of the inclusion. Let j: & — K be the 2-Lipschitz
inclusion map. Let p € j(&), that is, p is either an admissible curve or p € D. If u is
admissible, then p is a vertex of P(u) and II o U(u) contains the admissible curve p (as
in the proof of Proposition 4.11), so u € O(u). If u € D, then there is some admissible
curve a contained in Yp(u) that is in particular disjoint from p. Since a Uy and p are joined
by an edge of K, this means ©(a U u) and ©(p) are uniformly close in & by Step 2. Now
a € O(a U ) because it is an admissible curve. Thus O(y) is uniformly close to a, which is
joined to p by an edge in &(Hy). O

Proof of Theorem B. By Corollary 6.5, &(H4) is quasi-isometric to 2(Hg) and € (Hg), and
by Theorem 6.8, it is quasi-isometric to the hierarchically hyperbolic model K. Thus all of
these graphs are hierarchically hyperbolic.

The proof that ¢ (H,) has a pair of disjoint witnesses is a slight variation of the one
appearing in the proof of Theorem A. Since the restriction of ¢ to the top level of any 2-level
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splitting must be of holomorphic type, the winding numbers of each curve of 8 must be
negative, and by homological coherence are all bounded by x/(.59).

Now consider a multicurve a separating S into a pair of genus 0 subsurfaces W+ such
that W™ contains no punctures and lies to the left of each curve of «. In order for W7 to
contain either an admissible curve or a curve of a 2-level splitting then there must be some
subset C of the curves of « such that

L=l <Y dle) <1—ICl = x(9).

ceC
Thus, by choosing an « with large enough winding numbers such that no subset sums of the
winding numbers of its curves are in this small range, we see that there can be no admissible
curves or 2-level splittings contained in W+ and hence W~ is a witness. A similar argument
implies that for sufficiently large choices of the winding numbers of a, the subsurface W+
will also be a witness, and so K cannot be Gromov hyperbolic. ]
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