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Abstract. We show that for any surface of genus at least 3 equipped with any choice of

framing, the graph of non-separating curves with winding number 0 with respect to the

framing is hierarchically hyperbolic but not Gromov hyperbolic. We also describe how to

build analogues of the curve graph for marked strata of abelian differentials that capture

the combinatorics of their boundaries, analogous to how the curve graph captures the

combinatorics of the augmented Teichmüller space. These curve graph analogues are also

shown to be hierarchically, but not Gromov, hyperbolic.

1. Introduction

The moduli space ΩMg of genus g Abelian differentials forms a bundle over the usual

moduli space Mg of genus g Riemann surfaces. This bundle decomposes into strata, subvari-

eties which parametrize differentials with a given number and order of zeros and which are

the ambient theatre for Teichmüller dynamics. The overall structure of strata is still poorly

understood, and recent work has been largely guided by the following:

Question 1.1. How similar are strata and Mg?

There has been a great deal of success constructing compactifications of strata akin to

the Deligne–Mumford compactification of Mg [EMZ03,BCG+18,BCG+19]. The structure

of these boundaries can then be used to compute constants of dynamical interest [EMZ03],

perform intersection theory on strata [CMSZ20], and compute their Euler characteristics

[CMZ22], among many other things.

Another version of Question 1.1 deals with their fundamental groups. Recall that Mg is an

(orbifold) K(π, 1) for the usual mapping class group Mod(S), the group of homeomorphisms

of the surface up to homotopy. By analogy, Kontsevich predicted that each connected

component of a stratum should be a K(π, 1) for “some mapping class group” [KZ]. In [CS22],

the first author and Salter showed that the fundamental groups of strata are closely related

to framed mapping class groups FMod(S, ϕ), the stabilizers inside Mod(S) of trivializations

ϕ : TS ∼= S × R2 (see §2 for a formal definition). Apisa, Bainbridge, and Wang subsequently

showed that certain strata of twisted 1-forms are K(π, 1)’s for framed mapping class groups

[ABW23]. A group-theoretic analogue of Question 1.1 is thus:

Question 1.2. How similar are FMod(S, ϕ) and Mod(S)?

1.1. Curve graphs and strata. This paper initiates the study of Questions 1.1 and 1.2

from the coarse-geometric perspective by analyzing the geometry of certain curve graphs.

The classical curve graph C (S) has a vertex for each isotopy class of essential simple closed

curve on an orientable surface and an edge when two curves can be realized disjointly [Har81].

In addition to this topological interpretation, this graph also plays the role of (the 1-skeleton
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of) a Tits building for Teichmüller space Tg, recording the incidences of top-dimensional

boundary strata of the augmented Teichmüller space, a certain bordification of Tg that “lifts”

the Deligne– Mumford compactification of Mg (see §5.2).
Masur and Minsky famously proved that C (S) is Gromov hyperbolic [MM98]. This

marquee result has far-reaching implications for the coarse geometry of the mapping class

group [Iva97,MM00], the geometry of Teichmüller space [MM98,Raf05], and the structure

of hyperbolic 3-manifolds [Min10,BCM12]. More generally, the geometry of curve graphs

has proven useful in a variety of settings; examples of this paradigm include relationships

between the pants graph/the Weil–Petersson metric on Tg [Bro03,BF06], the Torelli complex

and separating curve graph/the Torelli subgroup and the Johnson kernel [FI05,BM04], and

the disk graph/the handlebody group and Heegaard splittings [Hen20,MS13].

As a first step towards Question 1.2, we study a topological analogue of C (S) that takes

the framing into account. Any framing ϕ : TS ∼= S ×R2 can be used to measure the winding

number of a smooth, oriented curve in S by lifting the curve to TS via its tangent vector,

projecting to the second coordinate, then measuring the winding number of the image about

0 ∈ R2. A simple closed curve on S is admissible for ϕ if it is nonseparating and has zero

winding number, and the admissible curve graph Cadm(S, ϕ) is the subgraph of C (S) spanned

by admissible curves.

The framed mapping class group FMod(S, ϕ) preserves the winding number of every curve,

hence acts on C (S) with infinitely many orbits of vertices. In contrast, FMod(S, ϕ) acts on

Cadm(S, ϕ) with finitely many orbits of vertices and edges (Proposition 2.9), indicating that

the admissible curve graph is better adapted to study FMod(S, ϕ).

Our first main result is that the admissible curve graph is not Gromov hyperbolic, but

does possess a generalized notion of hyperbolicity.

Theorem A. For any surface S = Sg,n of genus g ≥ 3 and any framing ϕ of S, the

admissible curve graph Cadm(S, ϕ) is hierarchically hyperbolic (but not Gromov hyperbolic).

Hierarchical hyperbolicity was introduced by Behrstock, Hagen, and Sisto to unify sim-

ilarities between the coarse geometry of mapping class groups, Teichmüller spaces, and

right-angled Artin groups [BHS17b]. Briefly, this framework allows one to understand the

geometry of a space by projecting it onto a collection of Gromov hyperbolic spaces. The

presence of “orthogonal” projections leads to quasi-isometrically embedded flats, hence a

failure of Gromov hyperbolicity.

We can also define a geometric analogue of C (S) that captures the intersection pattern

of the boundary of a marked stratum. More precisely, since holomorphic differentials are

determined up to scaling by the order and position of their zeros, any stratum component

H ⊂ Ω1Mg is an (orbifold) C∗-bundle over a subvariety of Mg,n, the moduli space of genus

g Riemann surfaces with n marked points. Let us conflate H with this subvariety.

Take any non-hyperelliptic stratum component H ⊂ Mg,n, let Hϕ be any component of the

preimage of H in Tg,n, and consider its closure Hϕ in the augmented Teichmüller space Tg,n.
Define a graph C (Hϕ) whose vertices are those multicurves γ such that Hϕ ∩ Tg,n(γ) ̸= ∅,
where Tg,n(γ) is the boundary stratum of Tg,n in which γ is pinched, and whose edges are

given by inclusion. The intricate structure of the boundary of Hϕ means there are other
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natural ways to define this graph (see Sections 5.3 and 5.4), but they all turn out to be

quasi-isometric to C (Hϕ).

The geometry of C (Hϕ) is closely linked to that of Cadm(S, ϕ), and using Theorem A plus

structural results about compactifications of strata [BCG+18,BCG+19], we prove:

Theorem B. For any non-hyperelliptic stratum component H ⊂ Ω1Mg with g ≥ 5, the

graph C (Hϕ) is hierarchically hyperbolic (but not Gromov hyperbolic).

Remark 1.3. As shown in [CS22, Corollary 1.2], admissible curves are exactly the core

curves of cylinders on surfaces in Hϕ. One can also construct a partial bordification of

Hϕ in which only cylinders are allowed to degenerate; the combinatorics of how this space

meets ∂Tg,n then correspond to Cadm(S, ϕ). Thus Theorem A can also be interpreted as a

statement about the coarse geometry of Hϕ.

Remark 1.4. Our restriction to non-hyperelliptic components is because the hyperelliptic

ones do not exhibit new phenomena. Indeed, hyperelliptic stratum components are essentially

strata of quadratic differentials on CP1, which are in turn parametrized by their poles and

zeros. Thus we can understand compactifications of hyperelliptic stratum components

entirely in terms of the Deligne–Mumford compactification of M0,n.

Remark 1.5. The restriction to g ≥ 3 in Theorem A is because for g = 1, 2 the admissible

curve graph is not necessarily connected. The restriction to g ≥ 5 in Theorem B comes from

the fact that the main theorem of [CS22] relating π1(H) and FMod(S, ϕ) only applies for

g ≥ 5. In Section 5 we give a (slightly circuitous) definition of C (Hϕ) that agrees with the

one given above for g ≥ 5 and for which Theorem B holds in genus 3 and 4. In particular,

all of the proofs in this paper hold for g ≥ 3.

Curve graph techniques have been used successfully to study certain GL2R–invariant
subvarieties of Ω1Mg: [Tan21] proved that Veech groups are undistorted in Mod(S), [RS09]

proved a similar result for covering constructions, and [AHW24] used curve graphs to study

the geometry of totally geodesic subvarieties of Teichmüller space. It is our hope that the

tools developed in this paper will yield insights into both the intrinsic and extrinsic geometry

of framed mapping class groups and strata. For example, we ask:

Question 1.6. Is FMod(S, ϕ) distorted in Mod(S)? Are strata distorted in Mg,n?

1.2. Outline of proof and paper. To prove Theorems A and B, we need to exhibit

projections from Cadm(S, ϕ) and C (Hϕ) to Gromov hyperbolic spaces. In both settings,

we use Masur and Minsky’s subsurface projection maps to the curve graphs of witnesses —

subsurfaces of S that intersect every admissible curve. This approach was inspired by work of

Vokes, who showed that a wide variety of graphs of curves are hierarchically hyperbolic using

their subsurface projection maps to witnesses [Vok22]. Vokes first uses the set of witnesses

to build a hierarchically hyperbolic “model graph” K, then shows that if the graph of curves

admits a cobounded action of Mod(S) then it is quasi-isometric to K.

To prove Theorem A, we construct a hierarchically hyperbolic model K for Cadm(S, ϕ) à

la Vokes (Section 3). However, we cannot employ her quasi-isometry as Cadm(S, ϕ) does not

admit an action by all of Mod(S) and the action of FMod(S, ϕ) on K is not sufficiently cofinite

to adapt her argument. Instead, we construct a novel quasi-isometry K → Cadm(S, ϕ) via
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the graph G of genus separating curves (Section 4). The graph G can be quasi-isometrically

realized as a “blow-up” of K, while Cadm(S, ϕ) is quasi-isometric to a “cone-off” of G. To
build the map K → Cadm(S, ϕ), we show that the blown-up subsets from K → G coarsely

match the coned-off subsets from G → Cadm(S, ϕ). This step requires some fairly delicate

computations with curves on surfaces.

Theorem B follows by constructing a quasi-isometric model for C (Hϕ) entirely in terms

of framing data. This requires unpacking some of the finer structure of the boundary,

as developed in [BCG+19], and giving topological interpretations to many of the objects

involved. These steps are accomplished in Section 5. In this section, we also build a trio of

graphs whose definitions interpolate between the structure of ∂Hϕ and framing data.

In the final Section 6, we show that the three graphs from Section 5 are all quasi-isometric,

and that they are quasi-isometric to a Vokes model graph K. Again, there is not sufficient

transitivity to apply Vokes’s methods, and the construction of a quasi-isometry is quite

subtle. The graph K is an FMod(S, ϕ)–equivariant cone-off of the model K for Cadm(S, ϕ),

and the inclusion Cadm(S, ϕ) ↪→ C (Hϕ) is also an equivariant cone-off. As in the case of

Theorem A, the main difficulty is then showing that these two cone-offs coarsely match.

A common theme running throughout this paper is that if one understands the FMod(S, ϕ)

action on configurations of curves and subsurfaces well enough, then many surface-topological

arguments can be adapted to the framed setting with a little extra care and effort. As such,

we prove a number of transitivity results (Propositions 2.9, 6.2, and 6.3) for the FMod(S, ϕ)

action that may be of broader interest.
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2. Surfaces, curves, and framings

Let us first recall some basic surface-topological notions and set our notation for the rest

of the paper. Let S = Sg,n denote an orientable surface with genus g and n punctures. The

complexity of S = Sg,n is ξ(S) = 3g− 3+ n. By a curve on S we mean an isotopy class of an

essential (i.e., non-nulhomotopic), non-peripheral (i.e., not homotopic to a puncture), simple

closed curve on S. An arc on S is an isotopy class of essential, non-peripheral simple arcs

running between the punctures. Curves and arcs are unoriented unless we say otherwise. By

a subsurface of S, we mean an isotopy class of an essential, non-peripheral, (relatively) closed

subsurface of S. For two subsurfaces U and V , we say U ⊆ V if U and V can be realized

such that U is contained in V . We say two curves and/or subsurfaces are disjoint if their

isotopy classes can be realized disjointly. Otherwise, we say they intersect. A multicurve on

S is a collection of distinct, disjoint curves on S. Throughout the paper, we use lowercase
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Latin letters to refer to curves, Greek letters to multicurves and arcs, and uppercase letters

to subsurfaces.

Given two multicurves α, β on S, we let i(α, β) denote their geometric intersection number.

If α and β are oriented curves, then ⟨α, β⟩ will denote their algebraic intersection number. If

a multicurve α intersects a subsurface W ⊆ S, then α ∩W is the isotopy class (relative to

∂W ) of curves and arcs obtained by taking the intersection of W with a representative for α

that realizes i(α, ∂W ). Two arcs α1, α2 on the subsurface W are parallel if they are isotopic

by isotopies fixing ∂W setwise but not pointwise.

If α is a multicurve on S, then S\α will denote the closed subsurface obtained by removing

a small open neighborhood of each curve in α from S. Similarly, if W is a subsurface of S,

then S \W is the closed subsurface obtained by removing a small open neighborhood of W

from S. We denote the genus of a subsurface W ⊆ S by g(W ).

The (pure) mapping class group, Mod(S), is the group of homeomorphisms of S that fix

each of its punctures, modulo isotopy. The mapping class group is generated by Dehn twists:

for any simple closed curve c, let Tc denote the homeomorphism obtained by cutting open S

along c, twisting one of the boundary components of S \ c once to the left, and then regluing.

2.1. Framings and winding numbers. A framing of a surface S is a trivialization of its

tangent bundle ϕ : TS
∼−→ S × R2. For surfaces of genus not equal to 1, the existence of a

framing requires S to have punctures and/or boundary. Throughout this paper we will think

of S as having punctures.

We are interested in the set of framings up to isotopy; these were called “absolute framings”

in [CS22]. Isotopy classes of framings can be described by the discrete invariant of a “winding

number function” as follows. Given any C1 immersed curve γ : [0, 1] → S, the tangent

framing (γ, γ′) gives a curve in TS ∼= S × R2. Projecting into the second factor gives a loop

in R2 \ {0} and so one can measure the winding number ϕ(γ) of γ′ about 0. This number is

an invariant of the isotopy class of framing as well as the isotopy class of γ (though not its

homotopy class), and so to every framing ϕ we have an associated winding number function

of the same name

ϕ : S → Z,

where S denotes the set of isotopy classes of oriented simple closed curves. It is not hard

to show that the function ϕ is actually a complete invariant of the isotopy class of the

framing [RW14, Proposition 2.4], and so for the remainder of the paper we will conflate a(n

isotopy class of) framing and its associated winding number function.

Remark 2.1. In a previous version of this paper, we considered surfaces with boundary

where the framing was allowed to vary on the boundary. This is equivalent to the absolute

framings we now consider; see [CS22, Section 6.2].

Winding number functions have two very important properties, which were first elucidated

by Humphries and Johnson [HJ89]. As a consequence, a framing is completely determined

(up to isotopy) by its values on a basis for homology.

Lemma 2.2 (Humphries–Johnson). Any winding number function ϕ associated to a framing

satisfies the following properties.
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(1) (Twist-linearity) Let a, b ⊂ S be oriented simple closed curves. Then

ϕ(Ta(b)) = ϕ(b) + ⟨b, a⟩ϕ(a),

where ⟨·, ·⟩ : H1(S;Z)×H1(S;Z) → Z denotes the algebraic intersection pairing.

(2) (Homological coherence) Let U ⊂ S be a subsurface and let c1, . . . , ck denote its

boundary components and the peripheral loops about its punctures, oriented such that

U lies to the left of each ci. Then

k∑
i=1

ϕ(ci) = χ(U),

where χ(U) denotes the Euler characteristic.

Let ∆1, . . . ,∆k denote small loops about the punctures of S (oriented with the surface on

their left); then the signature of a framing ϕ is the tuple

sig(ϕ) := (ϕ(∆1), . . . , ϕ(∆k)) ∈ Zk.

A framing is said to be of holomorphic type if every ϕ(∆i) is negative; this terminology comes

from the fact that the horizontal vector fields of holomorphic abelian differentials give rise to

such framings (compare Section 5.1).

Remark 2.3. We note that not every framing of holomorphic type comes from a holomorphic

abelian differential. This is the case for framings on surfaces of genus at least 3, but the

following families of framings do not come from abelian differentials due to certain low-

complexity strata being empty (see just below for the definitions of Arf1 and Arf).

• g = 1, b = 1, and Arf1(ϕ) ̸= 0.

• g = 2, b = 1, and Arf(ϕ) = 0.

The peripheral curves ∆i span a k−1 dimensional subspace of H1(S), so we can construct

all framings with a given signature by specifying the values on 2g homologically independent

curves [CS22, Remark 2.7]. One particularly nice configuration is as follows:

Definition 2.4. A collection of simple closed curves B = {a1, b1, . . . , ag, bg} on S is called a

geometric symplectic basis (GSB) if i(ai, bi) = 1 for all i and all other pairs of curves from B
are disjoint.

2.2. Framed mapping class groups. The framed mapping class group FMod(S, ϕ) associ-

ated to a framing ϕ is the stabilizer of ϕ in Mod(S) up to isotopy. Equivalently, and more

usefully, f ∈ FMod(S, ϕ) if and only if it preserves all winding numbers, i.e.,

(f · ϕ)(a) := ϕ(f−1(a)) = ϕ(a)

for every a ∈ S. In light of Lemma 2.2, in order to check if an element f ∈ Mod(S) actually

preserves ϕ, it suffices to show that show that f preserves the ϕ–winding numbers of all

curves of a GSB.

Throughout the paper, a particularly important role will be played by the set of non-

separating simple closed curves with ϕ(a) = 0 (note that this does not depend on orientation);

these curves are said to be admissible. By twist-linearity (Lemma 2.2.1), Dehn twists in



ADMISSIBLE CURVE GRAPHS AND THE BOUNDARY OF STRATA 7

admissible curves are always in FMod(S, ϕ), and in [CS22] it is shown (for g ≥ 5) that

FMod(S, ϕ) is generated up to finite index by admissible twists.

Since each orbit of Mod(S) on the set of framings has infinite size (this is an immediate

consequence of Lemma 2.2) and FMod(S, ϕ) is a stabilizer, it is an infinite-index subgroup.

Along the same lines, understanding the possible conjugacy classes of FMod(S, ϕ) for

different ϕ is equivalent to listing the Mod(S) orbits. To state this “classification of framed

surfaces” [Kaw18] (see also [RW14] for the relatively framed version), we first need to recall

the definitions of the Arf invariant and its genus 1 version; see [CS22, §2.2], [Kaw18, §2.4],
and [RW14, §2.4] for more detailed discussions.

Suppose first that g = g(S) ≥ 2 and that every ϕ(∆i) is odd. In this case, we say that ϕ

is of spin type. 1 Fix a geometric symplectic basis {a1, b1, . . . , ag, bg} on S. Then the Arf

invariant of ϕ is defined to be

Arf(ϕ) :=

g∑
i=1

(ϕ(ai) + 1) (ϕ(bi) + 1) mod 2. (1)

This invariant turns out to only be well-defined when each ϕ(∆i) is odd, and in this setting

it does not depend on our choice of GSB. If g = 1, then there is an Z-valued refinement of

the Arf invariant which we denote by

Arf1(ϕ) := gcd(ϕ(c), ϕ(∆1) + 1, . . . , ϕ(∆k) + 1 | c is a non-separating simple closed curve).

Theorem 2.5. Two framings ϕ and ϕ′ of S are in the same Mod(S) orbit if and only if

(g = 0) sig(ϕ) = sig(ϕ′)

(g = 1) sig(ϕ) = sig(ϕ′) and Arf1(ϕ) = Arf1(ϕ
′)

(g ≥ 2) sig(ϕ) = sig(ϕ′) and if ϕ and ϕ′ are of spin type, then Arf(ϕ) = Arf(ϕ′).

In particular, for genus at least 2 there are only ever at most 2 distinct conjugacy classes

of framed mapping class groups.

The Arf invariant interacts in a complicated way with taking subsurfaces V ⊂ S; sometimes

the Arf invariant of ϕ|V is forced by the topology of V , and sometimes it can vary for different

V and V ′ of the same topological type. For later use, we record an example of this phenomenon

below. See also the proofs of Propositions 2.9 and 6.2.

Lemma 2.6. Suppose that V ⊂ S is a connected subsurface of full genus.

(1) If g(S) ≥ 2 and ϕ is of spin type, then Arf(ϕ) = Arf(ϕV ).

(2) g(S) = 1 and ϕ is of holomorphic type, then Arf1(ϕ) = Arf1(ϕ|V )

Proof. When S has genus at least 2, this is an immediate consequence of (1). In the case

when S has genus 1, homological coherence together with holomorphic type imply that two

curves which differ by sliding over a boundary component must have the same winding

number. Thus for any simple closed curve c on S, there is some c′ ⊂ V with ϕ(c) = ϕ(c′),

and hence their genus-1 Arf invariants must agree. □

Note that statement (2) is false if one does not assume holomorphic type.

1In this case, the framing induces a (2-)spin structure on the closed surface obtained by capping off all

boundary components, and the Arf invariant of the framing coincides with the parity of the spin structure.
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2.3. Framed change-of-coordinates. The standard change-of-coordinates principle for the

entire mapping class group roughly states that given two multicurves γ and δ, there is some

f ∈ Mod(S) taking γ to δ if and only if S \ γ and S \ δ have the same topological type and

are glued together in the same way. This technique is often used in surface topology to show

the existence of certain configurations of curves with prescribed intersection pattern and to

show the transitivity of the Mod(S) action on such configurations. Its proof is a corollary of

the classification of surfaces: one uses the classification to build a homeomorphism between

the complements then extends that to a self-homeomorphism of S.

In the framed setting, we can similarly use Theorem 2.5 to show the existence of configu-

rations with certain intersection pattern and winding number (compare [CS22, Proposition

2.5]). For example, we can quickly show that (sub)surfaces with genus always contain

admissible curves. Essentially the same statement appears as Corollary 4.3 of [Sal], but we

include a proof as we will repeatedly use this statement throughout the paper.

Lemma 2.7. For any framing ϕ on a surface S of positive genus, there is some non-separating

simple closed curve a ⊂ S with ϕ(a) = 0.

Proof. Fix a GSB {a1, . . . , bg} on S. Then by stipulating winding numbers on our GSB we

can build a framing ψ such that

• sig(ϕ) = sig(ψ)

• ψ(a1) = 0, and

• if g(S) = 1 then Arf1(ψ) = Arf1(ϕ), or

• if g(S) ≥ 2 and ϕ is of spin type then Arf(ψ) = Arf(ϕ).

Now by Theorem 2.5 there is some homeomorphism f ∈ Mod(S) taking ψ to ϕ, and the

curve f(a1) is our desired admissible curve. □

Along the same lines, one can show that S always admits a GSB with given winding

numbers so long as those winding numbers yield the correct Arf invariant; the proof is left

to the reader. See also the proof of the first part of [CS22, Proposition 2.15].

Lemma 2.8. Let ϕ be a framing of a surface S of genus g ≥ 1 and fix any tuple of integers

(x1, y1, . . . , xg, yg) such that

• if g = 1, then gcd(x1, y1, ϕ(∆1) + 1, . . . , ϕ(∆n) + 1) = Arf1(ϕ),

• if g ≥ 2 and ϕ is of spin type, then

g∑
i=1

(xi + 1)(yi + 1) = Arf(ϕ) mod 2

• if g ≥ 2 and ϕ is not of spin type, then we impose no conditions on the tuple.

Then there is a GSB B = {a1, b1, . . . , ag, bg} on S such that ϕ(ai) = xi and ϕ(bi) = yi.

In particular, any surface of genus at least 2 contains nonseparating curves of arbitrary

winding number.

The classification of framed surfaces can also be used to easily obstruct transitivity of the

FMod(S, ϕ) action. For example, FMod(S, ϕ) does not act transitively on the set of curves

that separate off a genus 1 subsurface with one boundary component, even though those
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curves all have the same topological type and same winding number. The reason is that the

induced framing on the subsurface may have different Arf1 invariant.

We caution the reader that Theorem 2.5 does not imply transitivity on the set of multic-

urves of the same topological type that induce homeomorphic framings on each subsurface.

Indeed, suppose that some ϕ(∆i) is even so ϕ does not have an induced Arf invariant. If

we consider the set of multicurves γ = c ∪ d where c cuts off a genus 1 subsurface with

one puncture and d is an admissible curve on that subsurface, then the paragraph above

implies that FMod(S, ϕ) does not act transitively on this set, even though there is only one

Mod(S \ γ) orbit of framing on S \ γ. At issue is what happens when we try to glue together

framings on subsurfaces to a framing on the entire surface; this can be dealt with by using

relative framings and being careful about boundary conditions (compare the proof of Lemma

5.3 in [CS22]). Since such arguments require a fair amount of delicacy and are beyond what

we need in this paper, we will restrict ourselves to proving those transitivity results we will

need in the sequel.

Proposition 2.9. Let ϕ be a framing of a surface S of genus at least 3. Then FMod(S, ϕ)

acts transitively on the set of pairs of admissible curves of the same topological type. That

is, if γ, γ′ are pairs of admissible curves and there is some g ∈ Mod(S) taking γ to γ′, then

there is also some f ∈ FMod(S, ϕ) taking γ to γ′.

Before proving Proposition 2.9, we first record a useful lemma that allows us to adjust the

winding numbers of curves in a configuration without changing their intersection properties.

A similar statement appears as Corollary 4.4 of [Sal].

Lemma 2.10. Let ϕ be a framing of a surface S and let c1, . . . , ck, d be a collection of simple

closed curves. Assume there is some subsurface T ⊂ S, disjoint from all of the listed curves,

such that either

• g(T ) ≥ 2, or

• g(T ) = 1 and Arf1(ϕ|T ) = 1.

Suppose also that there is some arc ε connecting d to T that is disjoint from all ci. Then for

any z ∈ Z, there is a simple closed curve dz such that ϕ(dz) = z and i(ci, dz) = i(ci, d) for

all i.

Proof. Orient d such that the arc from d to T exits d from its left-hand side.

Suppose first that g(T ) = 2. Then by Lemma 2.8 there is a nonseparating curve e on T

with winding number −z − ϕ(d)− 1. Since d is not separated from T , we may concatenate ε

with an arc connecting ∂T to the left side of e and take the connect sum of d and e along

this composite arc. Let dz be the resulting curve; then by homological coherence (Lemma

2.2.2) we have that

ϕ(dz) + ϕ(d) + ϕ(e) = −1

and so dz is our desired curve. It clearly has the same intersection pattern as d with each ci
since we have only altered d away from ci (see also the proof of [Sal, Corollary 4.4]).

In the case that g(T ) = 1, our assumption on Arf1(ϕ|T ) implies (via Lemma 2.8) that

there is some GSB (a, b) on T with ϕ(a) = 1. Choose an arc from ∂T to b disjoint from a,

then take the connected sum of d with b along the concatenation of ε with this arc. This
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results in a new curve d′ that has the same intersection pattern as d with each ci and meets

a exactly once. Twist-linearity (Lemma 2.2.1) now implies that by twisting around a we can

alter the winding number of d′ by an arbitrary amount to find our desired dz. □

One particularly important consequence is that we can complete any admissible curve to

a partial GSB while specifying the winding number of the transverse curve.

Corollary 2.11. For any surface of genus at least 2, any admissible a, and any z ∈ Z, there
is a curve b with i(a, b) = 1 and ϕ(b) = z.

Proof. The subsurface S \ a has two boundary components with winding number 0 and so

Arf1(S \ a) = 1. Applying Lemma 2.8 we can pick some GSB on S \ a with coprime winding

numbers; let T denote the subsurface filled by this pair of curves. We can now pick any

curve b′ disjoint from T with i(a, b′) = 1 . Since b′ does not meet T and Arf1(ϕ|T ) = 1, we

can apply Lemma 2.10 to adjust ϕ(b′) at will. □

With these results in hand, we can now prove the desired transitivity statements.

Proof of Proposition 2.9. Obviously transitivity on single curves follows from the result for

pairs, but since the proof for pairs requires a bit of casework we will prove the result for

single curves first as a demonstration of our techniques.

Single curves. Suppose first that a, a′ ⊂ S are both admissible. Complete a to a GSB

a = a1, b1, . . . , ag, bg of S. Using Corollary 2.11, there is some b′1 on S with i(a′, b′1) = 1 and

ϕ(b′1) = ϕ(b1). Now take the subsurface Y ′ filled by a′ and b′1 and consider its complement.

If ϕ|S\Y ′ is of spin type, then the additivity of the Arf invariant [RW14, Lemma 2.11] implies

that

Arf(ϕ|S\Y ′) = Arf(ϕ)− (ϕ(a′) + 1) (ϕ(b′1) + 1) =

g∑
i=2

(ϕ(ai) + 1) (ϕ(bi) + 1) mod 2.

Otherwise, it is not of spin type; in either case we can now apply Lemma 2.8 to find a GSB

a′2, b
′
2, . . . , a

′
g, b

′
g on S \ Y ′ with

ϕ(ai) = ϕ(a′i) and ϕ(bi) = ϕ(b′i) for all i.

By the usual change-of-coordinates principle (compare Lemma 2.3 of [Sal]), there is some

f ∈ Mod(S) taking a to a′, each ai to a
′
i, and each bi to b

′
i. Since f preserves the winding

numbers of the curves of a GSB, it preserves the winding numbers of all simple curves

(Lemma 2.2), and thus we see that f ∈ FMod(S, ϕ).

Nonseparating pairs. If g ≥ 4 and the admissible curves a1, a2 together do not separate

S, then we can just repeat our argument for transitivity on single admissible curves: extend

a1, a2 to an arbitrary GSB, use Corollary 2.11 and 2.8 to extend a′1, a
′
2 to a GSB with the

same winding numbers, and then use the transitivity of the mapping class group action on

GSBs to find some f (necessarily in FMod(S, ϕ)) taking one GSB to the other.

If g = 3 then we must be slightly more clever about how we choose our intial GSB since

our choice of transverse curves b1 and b2 may constrain the winding numbers of the remaining

curves a3 and b3 due to the Arf1 invariant. Suppose first that ϕ is of spin type. Using
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Corollary 2.11 twice, we can choose disjoint curves b1 and b2, each meeting their respective

ai and disjoint from the other, such that

Arf(ϕ) + ϕ(b1) + ϕ(b2) = 0 mod 2.

In particular, this implies that if we let Y denote the (disconnected) subsurface obtained by

taking a regular neighborhood of a1 ∪ a2 ∪ b1 ∪ b2, then the contribution to Arf(ϕ) of ϕ|S\Y
must be 0, hence for any GSB (a3, b3) on S \ Y at least one of ϕ(a3) or ϕ(b3) must be odd.

Now we observe that

sig(ϕ|S\Y ) = (sig(ϕ),+1,+1)

and so Arf1(ϕ|S\Y ) is the gcd of an odd number and 2, i.e., is 1.

If ϕ is not of spin type then choose any disjoint b1 and b2, each meeting their respective

ai and disjoint from the other, and define Y similarly. Then since some ϕ(∆i) is even, the

signature of ϕ|S\Y contains both an even number and +1, and so we see that Arf1(ϕ|S\Y ) = 1.

Therefore, no matter whether ϕ is of spin type or not, we can choose our b1 and b2 such

that ϕ|S\Y has fixed Arf1, and so by Lemma 2.8 admits a GSB a3, b3 with ϕ(a3) = 0 and

ϕ(b3) = 1. We can now finish the proof by inserting a prime in all of the arguments above to

get another GSB on S with the same winding number data and then concluding as in the

g ≥ 4 case.

Separating pairs. Finally, suppose that a1 ∪ a2 separates S into two subsurfaces T and U .

In this case, neither of the complementary components to a1 ∪ a2 is of spin type, so if ϕ is of

spin type then we will need be somewhat clever about our choice of GSB to deal with the

emergence of the Arf invariant.

Pick an arbitrary curve b1 meeting a1 and a2 each exactly once. Since at least one of T

or U has genus at least 2 or genus 1 with Arf1 = 1, we can use Lemma 2.10 to turn this

curve into an admissible b1 that also meets each of a1 and a2 exactly once. Choose GSBs

BT := s1, t1, . . . , sg(T ), tg(T ) for T and BU := u1, v1, . . . , ug(U), vg(U) for U

that are disjoint from b1; then {a1, b1} ∪ BT ∪ BU is a GSB for S.

Since (a1, a2) and (a′1, a
′
2) are in the same mapping class group orbit, there is a correspon-

dence between their complementary components; let T ′ and U ′ denote the two components

of a′1 ∪ a′2 corresponding to T and U . Since neither component is of spin type (having a

boundary component with even winding number) or, if they have genus 1, have Arf1 = 1

with an admissible boundary component, Lemma 2.8 implies that both T ′ and U ′ admit

GSBs with any given tuples of winding numbers. We may therefore choose GSBs BT ′ and

BU ′ with the same winding numbers as those for BT and BU . To extend these to a GSB of

S, we just need to find an admissible curve disjoint from BT ′ ∪ BU ′ that meets a′1 and a′2
exactly once.

Suppose ϕ is of spin type. Then we see that for any choice of b′1 meeting a′1 exactly once

and disjoint from BT ∪ BU , we have

(ϕ(a1) + 1) (ϕ(b1) + 1) +
∑
g(T )

(ϕ(si) + 1) (ϕ(ti) + 1) +
∑
g(U)

(ϕ(ui) + 1) (ϕ(vi) + 1) = Arf(ϕ)

= (ϕ(a′1) + 1) (ϕ(b′1) + 1) +
∑
g(T ′)

(ϕ(s′i) + 1) (ϕ(t′i) + 1) +
∑
g(U ′)

(ϕ(u′i) + 1) (ϕ(v′i) + 1) mod 2
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which simplifies to ϕ(b1) = ϕ(b′1) mod 2 by our choices of BT ′ and BU ′ . Thus ϕ(b′1) must be

even. Now choose a curve c on either T ′ or U ′ that

• is disjoint from BT ′ ∪ BU ′ ,

• meets b′1 exactly once, and

• together with a′1 bounds a surface of genus 1 with 2 boundary components.

Such a c can be obtained, for example, by taking the boundary of a regular neighborhood

of u′1 ∪ v′1 and then connect summing that curve with a′1. See Figure 1. By homological

coherence (Lemma 2.2.2), it must be that ϕ(c) = ±2 (where sign depends on orientation).

Twist-linearity (Lemma 2.2.1) then implies that some twist of b′1 about c will be admissible.

Thus the configurations of curves

a1, b1, a2,BT ,BU and a′1, T
−ϕ(b′1)/2
c (b′1), a

′
2,BT ′ ,BU ′

have the same topological type, so there is a mapping class taking one to the other, and

since all of the corresponding curves have the same winding number, any such mapping class

must preserve ϕ.

U ′T ′ a′1

a′2

b′1

c

d

Figure 1. GSBs and auxiliary curves as in the proof of Proposition 2.9.

If ϕ is not of spin type, then we can conclude by picking an arbitrary b′1 disjoint from

BT ′ ∪ BU ′ . We then note that since ϕ is not of spin type, then there is some peripheral

curve ∆i with even winding number. Choose c as before and let d be a curve disjoint from

all of the listed curves except b′1, obtained by taking the connect sum of a2 with this ∆i;

by homological coherence again, its winding number must be odd. See Figure 1. Thus, by

twisting around c and d we can change the winding number of b′1 by any amount (while

keeping all other winding numbers fixed) and so in particular Tm
c T

n
d (b

′
1) is admissible for

some m,n. We can then conclude as in the spin case. □

3. The admissible curve graph and its geometric model

A graph of multicurves for a surface S is any graph whose vertices are multicurves on S.

The simplest and most influential example is the curve graph C (S). The curve graph has all

curves on S as vertices and edges between two curves if and only if they intersect the fewest

number of times possible for a pair of curves on S. If ξ(S) > 1 then edges correspond with

disjointness, and when ξ(S) = 1 the minimal intersection number is either 1 or 2.
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We will focus on the following subset of the curve graph: given a framing ϕ of S, the

admissible curve graph Cadm(S, ϕ) relative to ϕ is the subgraph of C (S) spanned by the

non-separating curves that are admissible with respect to ϕ.

Proposition 2.9 implies that the framed mapping class group FMod(S, ϕ) acts transitively

on the vertices of Cadm(S, ϕ) and with finitely many orbits on its edges. As a consequence of

Lemma 2.7, every vertex of C (S) is distance 1 from a vertex of Cadm(S, ϕ) when g(S) ≥ 2.

When g(S) ≥ 3, Lemma 2.7 also allows us to copy Salter’s “hitchhiking argument” in the

case of r-spin structures [Sal, Lemma 3.11] to show Cadm(S, ϕ) is connected.

Lemma 3.1. If g(S) ≥ 3, then for any framing on S, Cadm(S, ϕ) is connected.

Proof sketch. The graph of genus 1 subsurfaces (with edges for disjointness) is connected

[Put08]. Since each genus 1 subsurface contains an admissible curve, the paths in this graph

can be upgraded to a path in Cadm(S, ϕ). □

Given a graph of multicurves X , a subsurface W ⊆ S is a witness for X if every vertex of

X intersects W and ξ(W ) < 0. We let Wit(X ) denote the set of all witness for X . For the

admissible curve graph, the witnesses are all subsurfaces whose complement has no genus

and where the winding numbers of the boundary curves do not satisfy a particular set of

linear equations.

Lemma 3.2. Let S = Sg,n with g ≥ 3 and n ≥ 1. Fix a framing ϕ of S.

(1) If Z ⊆ S is a genus 0 subsurface and z1, . . . , zk are the boundary components of Z

and peripheral loops about its punctures, oriented such that Z is to the left of each

zi, then Z contains a nonperipheral curve of winding number 0 if and only if there

is no I ⊊ {z1, . . . , zk} such that∑
z∈I

ϕ(z) = 1− |I|. (2)

(2) A subsurface W of S is a witness for Cadm(S, ϕ) if and only if each curve in ∂W

is not admissible and each component Z of S \W is a genus 0 subsurface with the

following property: enumerate the boundary components and peripheral loops of Z

as in the previous item. Then there is no I such that (2) holds and both I and

{zi}ki=1 \ I contain curves of ∂W .

(3) If V,W ∈ Wit(Cadm(S, ϕ)) are disjoint, then each is a genus 0 subsurface that does

not contain any admissible curves, and there does not exist Z ∈ Wit(Cadm(S, ϕ))

that is disjoint from both V and W .

Proof. The first item is an immediate consequence of homological coherence and the fact

that every curve on a genus 0 surface separates it. The second item follows from the first

plus Lemma 2.7’s guarantee that every subsurface with genus contains an admissible curve;

note that the condition that ∂W meets both I and {zi}ki=1 \ I indicates whether or not a

curve cutting off the boundaries {zi}i∈I separates S or not. The third item is an immediate

consequence of the second. □

Paralleling [Vok22], we now use the witnesses of a graph of multicurves to construct a

“model graph,” which is in some sense the largest graph of multicurves that has the same

witness set as the starting graph.
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Definition 3.3. Let S be a collection of subsurfaces of S. We say S is a set of valid

witnesses if for all W ∈ S,

(1) W is connected;

(2) ξ(W ) ≥ 1;

(3) if Z is a connected subsurface with W ⊆ Z, then Z ∈ S;

Definition 3.4. Let S be a set of valid witnesses for the surface S. If S = ∅, define KS(S)

to be a single point. Otherwise, define KS(S) to be the graph such that:

• each vertex is a multicurve γ on S with the property that each component of S \ γ
is not an element of S;

• two multicurves γ and δ are joined by an edge if either

(1) γ differs from δ by either adding or removing a single curve, or

(2) γ differs from δ by “flipping” a curve in some subsurface of S, that is, δ is

obtained from γ by replacing a curve c ⊂ γ by a curve d, where c and d are

contained in the same component Yc of S \ (γ \ c) and are adjacent in C (Yc).

By construction, the set of witness for KS(S) is precisely S. Moreover, the vertex set of

KS(S) is the maximal collection of multicurves whose set of witnesses is S. Thus, if X is a

graph of multicurves with Wit(X ) = S, then the vertices of X are a subset of KS(S). In

the case of the admissible curve graph, this inclusion is Lipschitz.

Lemma 3.5. If S = Wit(Cadm(S, ϕ)), then the inclusion Cadm(S, ϕ) → KS(S) is 2-Lipschitz

Proof. If a, b are a pair of disjoint admissible curves, then a ∪ b is also a vertex of KS(S),

hence a, a ∪ b, b is a path of length 2 connecting a and b in KS(S). □

Vokes studied the family of KS(S) as quasi-isometric models for graphs of multicurves.

Specifically, she showed that if X is a graph of multicurves on S with a cobounded action of

Mod(S) and no annular witnesses, then the inclusion X ↪→ KS(S) for S = Wit(X ) is a quasi-

isometry. The advantage of using KS(S) as a quasi-isometric model is that she showed that

KS(S) is a hierarchically hyperbolic space in a natural way. This means the coarse geometry

of KS(S) can be well understood using the subsurface projection machinery of Masur and

Minsky and the relations between the subsurfaces in S; see [BHS17b,BHS19,Vok22] for full

details.

We note that while Vokes states her results in the case of an action of the full mapping

class group, the only actual use of the action is in establishing the quasi-isometry described

above. In particular, the proof in Section 3 of [Vok22] as written demonstrates that KS(S)

is a hierarchically hyperbolic space, even in the case where S is not invariant under the

mapping class group.

One consequence of Vokes’s hierarchically hyperbolic structure is that Gromov hyperbol-

icity of the the graph is encoded in the disjointness of the witnesses.

Theorem 3.6 (Corollary 1.5 of [Vok22]). The graph KS(S) is Gromov hyperbolic if and

only if S does not contain a pair of disjoint subsurfaces.
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4. A quasi-isometry with the model

Vokes’s proof of the quasi-isometry between graphs of multicurves and their models relies

on the action of the mapping class group in a fundamental way. Specifically, given any

connected graph of multicurves X that has no annular witnesses and has a cobounded action

by Mod(S), she uses the “change-of-coordinates” principle and curve surgery arguments to

build a quasi-isometry from KS(S) to X , where S is the set of witnesses of X .

In our setting, we only have access to the (weaker) framed versions of these techniques.

Moreover, there are infinitely many FMod(S, ϕ) orbits of curves and of witnesses, so we

cannot employ standard change-of-coordinates arguments of the form “make a choice for

each orbit, then propagate that choice around using the group action to get finiteness”

(e.g., [Vok22, Claim 4.3] or Lemma 4.4 below).

Instead of relying on change-of-coordinates, we build our quasi-isometry KS(S) →
Cadm(S, ϕ) by going through an intermediary graph G, which admits a coarsely Lipschitz

map Π onto Cadm(S, ϕ) (Lemma 4.5). One can then define a map Ψ from KS(S) to subsets

of G; while this map is not coarsely Lipschitz or even coarsely well-defined, the composition

Π ◦Ψ turns out to be (Proposition 4.11).

The utility of this approach is that G admits an action of the entire mapping class group, so

we can use standard change-of-coordinates arguments. A fruitful comparison is the “hitching

a ride” argument we used to show the connectivity of Cadm(S, ϕ) in Lemma 3.1.

For the remainder of the section, S = Sg,n will be a surface with g ≥ 3 and n ≥ 1 and

S will be the set of witnesses for Cadm(S, ϕ) with respect to a fixed framing ϕ. Since we

will only be considering theses graphs for the surface S, we will use Cadm and K to denote

Cadm(S, ϕ) and KS(S) respectively.

4.1. Coarse maps and quasi-isometries. Let X,Y be metric spaces. A map f : X → 2Y

is coarsely well-defined if f(x) has uniformly bounded diameter for every x ∈ X. It is coarsely

Lipschitz if there are constants K ≥ 1 and C ≥ 0 such that

diamY (f(x) ∪ f(x′)) ≤ KdX(x, x′) + C

for every x, x′ ∈ X. In particular, note that coarsely Lipschitz maps are in particular

coarsely well-defined. Prototypical examples are the inclusion of a connected subgraph into

a connected graph, the subsurface projection map from the the marking graph to C (W )

where W ⊆ S is a subsurface, or the systole map that sends a point in Teichmüller space to

its hyperbolic systole(s).

When X is a graph, one can simply define a map f : X → 2Y on the vertices and assume

that the image of any point on an edge is the union of the images of the endpoints of that

edge. In this case, to show f is coarsely Lipschitz, it suffices to show that

(1) f(x) is uniformly bounded for all vertices x of X, and

(2) if x and x′ are two vertices joined by an edge of X, then diam(f(x) ∪ f(x′)) is

uniformly bounded.

Two spaces are quasi-isometric if there exist two coarsely Lipschitz map f : X → 2Y and

f : Y → 2Y such that dX(x, f ◦ f(x)) is uniformly bounded for all x ∈ X. In this case, f is a

quasi-isometry from X to Y and f is the quasi-inverse of f .
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4.2. The genus-separating curve graph. We begin building our quasi-isometry from K
to Cadm by defining the intermediate graph G that we use throughout this section. We say

that a separating curve c ⊆ S is genus-separating if each component of S \ c has positive
genus.

Definition 4.1. The genus-separating curve graph G = G(S) is the graph whose vertices are

genus-separating curves, and where two vertices are connected by an edge if the corresponding

curves are disjoint.

Putman’s argument that the separating curve graph is connected in the closed case also

shows that G is connected [Put08]. The key commonality are that every vertex of G is

adjacent to a genus separating curve that cuts off a torus with one boundary component.

Lemma 4.2. The graph G is connected so long as g(S) ≥ 3.

Since every subsurface with genus contains an admissible curve, we see that for any c ∈ G
both components of S \ c are not witnesses for Cadm. Thus G is a subgraph of K.

Remark 4.3. While we will not use this in the sequel, we can in fact relate the geometries

of G and K by considering their sets of witnesses. The witnesses for G are exactly those

subsurfaces that have genus 0 complements, which form a strict superset of the witnesses for

K (characterized in Lemma 3.2). Using the “factored space” construction from [BHS17a],

we can thus view K as being obtained from KWit(G)(S) by coning off regions corresponding

to the non-shared witnesses.

As for the usual curve graph, intersection number bounds distance in G.

Lemma 4.4. For each n ≥ 0 there exists N = N(n) ≥ 0 such that for any two genus-

separating curves c, d ∈ G, if i(c, d) ≤ n, then dG(c, d) ≤ N .

Proof. By the change-of-coordinates principle in Mod(S), there exist finitely many pairs

{(ci, di)}ki=1 of genus-separating curves such that every pair of genus-separating curves that

intersect at most n times is in the Mod(S)–orbit of some (ci, di). Setting N = max{dG(ci, di) :
1 ≤ i ≤ k}, the fact that Mod(S) acts by isometries on G implies any two genus-separating

curves that intersect at most n times are at most N far apart in G. □

4.3. From genus-separating to admissible curves. Define a map

Π: G → 2Cadm

by sending a genus-separating curve to the collection of admissible curves disjoint from it.

This set is always non-empty by Lemma 2.7.

Lemma 4.5. The map Π is coarsely Lipschitz.

Proof. As remarked above, it suffices to check that the diameters of the images of vertices

and edges are both bounded.

Let c ∈ G be any genus-separating curve and let U, V denote the components of S \ c.
Let a be any admissible curve in Π(c), and assume without loss of generality that a ⊂ U .

Every admissible curve in V is distance 1 from a, and likewise every admissible curve in U is

disjoint from any curve in V . Thus Π(c) has diameter 2 as a subgraph of Cadm.
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Now suppose c and d in G are disjoint; this implies that one of the (positive genus)

components of S \ c is nested inside a component of S \ d. In particular, this implies that

Π(c) and Π(d) overlap, and since each has bounded diameter their union does as well. □

The map Π is defined such that if a ∈ Cadm and c ∈ G with i(a, c) = 0, then

dCadm
(a,Π(c)) = 0.

Below, we prove a generalization of this fact that allows us to bound the distance between a

and Π(c) by bounding the geometric intersection number i(a, c).

Lemma 4.6. For any m ≥ 0, there exists M = M(m) ≥ 0 such that for any admissible

curve a and any genus-separating curve c with i(a, c) ≤ m, we have dCadm
(a,Π(c)) ≤M .

We will only ever apply this lemma with m = 2, but since the proof for general m is not

much harder we choose to include it here.

Proof of Lemma 4.6. If a is disjoint from c, then a ∈ Π(c) and we are done. Otherwise, we

will surger c along a to produce a new genus-separating curve c′ disjoint from c that intersects

a strictly fewer times. By Lemma 4.4, this will allow us to decrease the intersection number

of a and c at the cost of moving c a fixed distance in G. Since Π is a coarsely Lipschitz

map, this procedure moves the projection a uniformly bounded amount in Cadm, proving the

desired statement.

Since S has genus at least 3, there is at least one component Uc ⊂ S \ c of genus at least
2. Consider an arc α of a ∩ Uc. The regular neighborhood of c ∪ α forms a pair of pants Pα,

one of whose boundaries is c; label the other two by d and e. Because any strand of a ∩ Uc

that meets d or e must travel through Pα while avoiding α, any such strand must exit Pα

through c. Thus, we have

i(a, d) + i(a, e) ≤ i(a, c)− 2.

If either d or e is separating, then the other one is either separating or homotopic to a

boundary curve of S (they cannot both be homotopic to a boundary curve as c is genus-

separating). Since Uc has positive genus, at least one of d and e is genus-separating; we then

take c′ to be whichever is, completing the proof in this case.

In the other case, d and e are both non-separating. Let Vc ⊂ Uc denote the connected

subsurface of Uc \ (d∪ e) not containing α. Choose an arc β in Vc connecting d and e that is

disjoint from a ∩ Vc. Such an arc always exists because either a ∩ Vc contains such an arc, or

it does not, in which case one can take an arbitrary arc from d to e and surger it along its

intersections with a ∩ Vc to make it disjoint; see Figure 2.

The curve c′ obtained from a regular neighborhood of d ∪ e ∪ β forms a pair of pants Pβ

with d and e. Since any arc of a that enters Pβ through c′ cannot intersect β, that arc must

exit through either d or e. Thus

i(c′, a) ≤ i(a, d) + i(a, e) < i(a, c).

Since c′ is constructed to cut off a genus g(Uc) − 1 ≥ 1 subsurface, we see that c′ is still

genus-separating and is clearly disjoint from c. This completes the proof. □
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Vc

Uc

c d

e

β β β′

a ∩ Vcc′

d

e

α

Figure 2. On the left, the subsurfaces involved in the proof of Lemma

4.6. On the right, surgering an arbitrary arc β′ from d to e along a ∩ Vc to

obtain a disjoint arc β.

4.4. A quasi-inverse. We now construct a map Ψ that sends vertices of K to sets of

genus-separating curves so that the composition Π ◦ Ψ is a quasi-inverse of the inclusion

Cadm → K. The idea to is assign a multicurve α ∈ K to the set of genus-separating curves

that intersect the components of S \ α in a particularly nice way. This is always possible by

the following lemma.

Lemma 4.7. For any multicurve α on S, there exists a genus-separating curve c so that for

each component Y of S \ α, we have exactly one of the following:

(1) c is disjoint from Y ,

(2) c ⊆ Y ,

(3) c ∩ Y is a single arc with both endpoints on the same curve of ∂Y , or

(4) c ∩ Y is a pair of parallel arcs that both go from one curve y1 ∈ ∂Y to a different

curve y2 ∈ ∂Y .

Proof. If a component of S \ α has positive genus, then the lemma is true using a separating

curve cutting off that genus. Otherwise, the dual graph D of α on S must contain a cycle.

We can use the dual graph to build such a separating curve c as follows:

(1) Take any cycle v1, . . . , vn in the dual graph D that meets any vertex of D at most

once. Let ai be the curve of α/edge in the dual graph connecting vi to vi+1 (where

indices are taken mod n).

(2) On each subsurface Yi of S \ α corresponding to a vertex vi of the cycle, choose an

arc βi connecting ai−1 to ai.

(3) The concatenation of the βi is now a curve b that meets each ai exactly once.

(4) Set c to be a regular neighborhood of b ∪ an.
By construction c ∩ Yi is a pair of arcs parallel to βi for each i ̸= 1, n, and it follows by

inspection that c ∩ Y1 (and c ∩ Yn) is a single arc with both endpoints on a1 (and an−1,

respectively). See Figure 3. □

In light of Lemma 4.7, we define a map

Ψ: K → 2G
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by setting Ψ(α) to be the set of genus-separating curves c that satisfy the conclusion of

Lemma 4.7.

Our discussion in Remark 4.3 shows that this map is rather poorly behaved. Viewing K as

(quasi-isometric to) the cone-off of (the model KWit(G)(S) for) G, this map sends cone point

points to entire product regions. In particular, the diameter of Ψ(α) need not be bounded.

Nevertheless, we will show that the composition Π ◦Ψ is coarsely Lipschitz and is hence a

quasi-inverse of the inclusion Cadm → K.

The key technical step is the next lemma, which takes a component Y of S \ α and a

genus-separating curve c ∈ Ψ(α) and produces an admissible curve a that intersects c at

most 4 times and is disjoint from Y . This admissible curve provides an “anchor” that allows

us to modify c inside the component Y without large changes in the eventual composition

Π ◦Ψ(α). It is in this lemma where we need the finer control over the genus-separating curve

in Ψ(α) ensured by Lemma 4.7 as opposed to defining Ψ(α) to be all genus-separating curves

that intersect each curve of α some fixed number of times.

Lemma 4.8. Let α be a multicurve in K and c ∈ Ψ(α). For each component Y of S \α that

c intersects, there exists an admissible curve aY that is disjoint from Y and has i(c, aY ) ≤ 4.

Proof. Let Y be a component of S \ α that c intersects. If any curve of α is admissible, then

c intersects that curve at most twice and we are done. This also allows us to proceed by

assuming that S \ α is disconnected: because each component of S \ α is not a witness, if

S \ α is connected then α must contain an admissible curve.

Since Y is not a witness for Cadm by the definition of K, some component Z of S \ Y
contains an admissible curve. If c is disjoint from Z, then c is disjoint from the admissible

curve on Z and again we are done. So suppose that c intersects Z; then c ∩ Z separates Z

since c is separating. Since c is genus-separating, if Z has positive genus then at least one

of the components of Z − (c ∩ Z) must also have genus. Applying Lemma 2.7, this implies

there is an admissible curve in Z that is disjoint from c whenever Z contains genus.

We can therefore concentrate on the case where Z has no genus. In this case, every

curve on Z is separating, and which curves of Z are admissible are determined by how they

a1

a2

an

a1

a2

an

c

b

Figure 3. Building a genus-separating curve out of a cycle in the dual

graph.
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separate the boundary components and peripheral curves of Z (Lemma 2.2.2). Let A be a

set of boundary and peripheral curves of Z such that any curve partitioning the boundaries

and peripheral curves into A and its complement must be admissible. We argue below that

one can always draw a curve a that cuts off the curves of A and intersects c at most 4 times.

To facilitate this, we first show that c ∩ Z cuts Z into at most 3 components. Since c

intersects at most 2 components of ∂Y , it also intersects at most 2 components of ∂Z (and

intersects each component at most twice) and must be disjoint from all peripheral curves. If

c intersects exactly one component of ∂Z, then we are in case 3 of Lemma 4.7 and so c ∩ Z
must be a single arc with both endpoints on the same boundary component of Z; in this

case Z − (c ∩ Z) has two components. When c intersects two distinct components z1, z2 of

∂Z, then we are in case 4 of Lemma 4.7 and so c ∩ Z is a pair of arcs c1, c2 such that either

• both endpoints of ci are on zi for each i ∈ {1, 2}, or
• c1, c2 are parallel arcs each running from z1 to z2.

In the first case, Z − (c∩Z) has either two or three components and in the second it has two.

To find an admissible curve on Z that intersects c at most 4 times, let Z1, Z2, Z3 be the

components of Z − (c ∩ Z), with Z3 being omitted in the case of two components. Without

loss of generality, assume ∂Z2 contains an arc of c ∩ Z in common with both ∂Z1 and ∂Z3

when there are three components. Partition the curves in A into 5 (possibly empty) sets:

A1, A2, A3 and B1, B2. The Ai are the subsets of curves in A that are contained in Zi for

each i, while B1 are the curve(s) that contains the endpoints of the arc in c ∩ Z shared by

∂Z1 and ∂Z2 and B2 is the same for ∂Z2 and ∂Z3 (when Z3 exists). Note that the Ai may

contain curves peripheral to the punctures, but the Bi must always consist of essential curves

on S.

Order the curves in each Ai and Bi in any sequence, then join successive curves by disjoint

arcs in the following order, skipping any empty sets: A1, B1, A2, B2, A3. We further

stipulate that the arcs must be disjoint from c ∩ Z unless some set is empty, in which case

their intersection with c ∩ Z is allowed to be the difference of the indices of the Zi that the

two sets border. For example, if only A2 is empty then the arc from B1 to B2 must still be

disjoint from c, since both B1 and B2 border Z2, but if B1, A2, and B2 are empty then the

arc from A1 to A3 is allowed to meet c ∩ Z twice. Compare Figure 4.

A regular neighborhood of A together with these arcs produces a curve a that cuts off

all of the curves in A, and hence must be admissible. It remains to note that the arcs and

curves in the construction of a are all disjoint from c ∩ Z except for the Bi’s and arcs that

travel between different Zi’s (which exist only when one of the Bi’s is empty). In particular,

this means that a intersects c only in a neighborhood of the Bi or the above-mentioned arcs,

and only does so at most twice for each component of the construction. □

We now prove that Π ◦Ψ(α) has uniformly bounded diameter for each α ∈ K. The proof

will use Lemma 4.8 to anchor the image of Π ◦Ψ(α) while we modify the genus-separating

curves on the components of S \ α to reduce intersection numbers.

Proposition 4.9. There is an N ≥ 0 such that for any α ∈ K and c, d ∈ Ψ(α), there is

c′ ∈ Ψ(α) with

(1) i(c′, d) ≤ 2|χ(S)| and
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A1

A2 = ∅

B2 = ∅
B1

A3

Z1 Z2 Z3c ∩ Z

c ∩ Z

a

Figure 4. Building a curve that cuts off A, and is hence admissible. The

highlighted curves are in A. In this example, A2 and B2 are empty, so the

arc from B1 to A3 meets c ∩ Z exactly once.

(2) The diameter of Π(c) ∪Π(c′) in Cadm is at most N .

In particular, Π ◦Ψ(α) has uniformly bounded diameter for all α ∈ K.

Proof. Throughout the proof, we fix representatives of the isotopy classes of all of the curves

involved such that c and d are each in minimal position with respect to α, and such that no

points of c ∩ d lie on α. This allows us to give meaning to statements like “c and d intersect

on a component Y of S \ α” even though there is no canonical minimal position for triples

of isotopy classes of curves.

Having fixed representatives, the proposition will follow by inductively applying the

following claim.

Claim 4.10. If Y is a component of S \ α on which c and d intersect, then there exists

cY ∈ Ψ(α) such that cY and d intersect at most twice on Y and cY agrees with c on S \ Y .

Proof. We will show that cY can be obtained by replacing c ∩ Y with some well chosen arcs

that intersect d ∩ Y at most twice. By construction, each of c ∩ Y and d ∩ Y is either a

single arc connecting a boundary component to itself (which necessarily separates Y ) or a

pair of parallel arcs connecting different boundary components (and neither of these arcs

can separate Y ).

We first handle the case where c ∩ Y is a pair of parallel arcs. Let c11, c
2
1, c

1
2, c

2
2 be the four

endpoints of c ∩ Y in Y such that c1i is joined by an arc of c ∩ Y to c2i . If d ∩ Y is a single

arc, then c1i and c2i are either on the same or different sides of d ∩ Y . In either case, we can

connect each c1i to its corresponding c2i with an arc γi such that γ1 and γ2 are parallel arcs

and i(γi, d) ≤ 1. If d ∩ Y is instead a pair of parallel arcs, let δ1, δ2 be the arcs of d ∩ Y .

Now Y \ δ1 is connected, but (Y \ δ1) \ δ2 has two components. Thus c1i and c2i are either on

the same or different sides of of δ2 in Y \ δ1. As before, this means we can connect each pair

c1i and c2i with an arc γi such that γ1 and γ2 are parallel, i(γi, δ2) ≤ 1, and i(δ1, γi) = 0. In

either case, let cY be the curve obtained from c be replacing c ∩ Y with γ1 ∪ γ2. Since c ∩ Y
and cY ∩ Y are both parallel arcs between the same boundary components of Y , we see that
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S \ c is homeomorphic to S \ cY , and in particular cY is genus-separating. By construction,

it is also clear that cY ∈ Ψ(α), so we are done.

Now consider the case where c ∩ Y is a single arc. Since c ∩ Y separates Y , we orient

c and then label each boundary component and peripheral curve of Y by “left” or “right”

depending on which side of c ∩ Y it lies on. Let gl and gr be the genus of the left and

right sides of Y \ (c ∩ Y ) respectively. We will find cY by replacing c ∩ Y with an arc γ

that separates Y into two components, one with genus gl and all the left curves of Y and

the other with genus gr and all the right curves of Y (any such arc is essential on Y since

c ∩ Y is an essential arc and γ will separate Y in the same way as c). This ensures S \ c
is homeomorphic to S \ cY , which makes cY a genus-separating curve which is in Ψ(α) by

construction. Let c1, c2 be the end points of c ∩ Y in ∂Y .

d ∩ Y
p1
p2

γ2

γ1

Figure 5. The curves p1, p2 cobounding the pair of pants P . The arcs γ1
and γ2 cut S \ P into “left” and “right” sides.

If d ∩ Y is a single arc, let y be the curve of ∂Y that d intersects. The boundary of a

neighborhood of (d ∩ Y ) ∪ y is a pair of curves p1, p2 that cobound a pair of pants P with

the boundary curve y. The complement Y \P has two components Z1, Z2 where Zi contains

pi as a boundary curve; see Figure 5.

Suppose that c also intersects the boundary curve y. On each Zi, we can draw an arc γi
with both endpoints on pi such that γi separates Zi into two components, one that contains

the left boundary components of Y that also live on Zi and the other that contains the right

boundary components. Moreover, we can choose the γi such that the sum of the genera on

the “left” sides of Zi \ γi is gl and the sum of the genera on the “right” sides is gr. The γi
also separate pi into “left” and “right” arcs.

We can now complete γ1 ∪ γ2 to an arc on all of Y by adding arcs in the pair of pants P .

Select three disjoint arcs a, b1, b2 such that a joins one endpoint of γ1 to one endpoint of γ2
and each bi joins the other endpoint of γi to ci by an arc in P . These arcs can be chosen

such that a intersects d ∩ Y once, b1 is disjoint from d ∩ Y , and b2 intersects d ∩ Y at most

once. Moreover, we can choose these arcs such that the left arcs of pi are in one component

of P \ (a ∪ b1 ∪ b2) and the right arcs are in the other; see Figure 6. The desired arc γ is the

concatenation of γ1, γ2 and these arcs in P .

The case when c does not intersect the boundary curve y is similar. In this case c intersects

a different boundary curve y′ ∈ ∂Y and without loss of generality, y′ ⊂ Z2. We draw γ1 as
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d ∩ Y d ∩ Y

a ab1 b1b2

b2
left left

right
right

p1 p1p2 p2

y y

c1 c1

c2

c2

Figure 6. The arcs a, b1, b2 one must add in the pair of pants P to complete

γ1 ∪ γ2 to γ.

we did in the previous case, but instead of γ2, we draw two arcs γ12 , γ
2
2 where γ12 connects c1

to p2 and γ22 connects c2 to p2 such that γ12 ∪ γ22 cuts Z2 into two pieces with the appropriate

boundary components and number of genus on the “left” and “right” sides. We now finish γ

by joining each end point of γi2 on p2 to one of the endpoint of γ1 on p1 by arcs in P that

intersect d ∩ Y exactly once and separate the left and right arc of p1, p2 to the correct sides.

Now suppose d∩Y is a pair of parallel arcs between two boundary component y1, y2 ∈ ∂Y .

There is a unique curve p ⊂ Y that forms a pair of pants P with y1 and y2 such that

P contains d ∩ Y ; this curve p is found by taking the boundary of a neighborhood of

(d ∩ Y ) ∪ y1 ∪ y2. Note that Y \ P is a connected subsurface with the same genus as Y but

one fewer boundary.

Assume first that both y1 and y2 are on the same side of c ∩ Y ; this implies c is disjoint

from y1 and y2. Since g(Y ) = g(Y \P ) and y1, y2 are on the same side of c∩Y , we can draw

an arc γ on Y \P with connects c1 to c2 and cuts Y into two components, one with gl genus

and all the “left” components of ∂Y and one with gr genus and all the “right” components.

Now assume that both y1 and y2 are on different sides of c ∩ Y (again this implies c is

disjoint from y1 and y2). Without loss of generality let y1 be on the left side of c and y2 on

the right. In this case we draw two arcs γ1, γ2 on Y \ P such that γ1 connects c1 to p, γ2
connects c2 to p, and γ1 ∪ γ2 separates Y \ P into “left” and “right” components where the

left component has gl genus and all the left curves of Y except y1 and the right component

has gr genus and all the right curves except y2. We complete γ1 ∪ γ2 to the arc γ on Y by

joining γ1 to γ2 by an arc in P that separates y1 and y2 to the correct side of Y \ γ; this can
be done such that the final arc has i(γ, d ∩ Y ) ≤ 2; see Figure 7.

d ∩ Y

left leftright right

y1 y1y2 y2

p p

c1 c2

γ

d ∩ Y

γ

Figure 7. The arc drawn in P to complete the arc γ. One the left, the

case where y1 and y2 are on different sides of c ∩ Y . On the right, the case

where c intersects y2.
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Finally, assume that c intersects exactly one of y1 or y2. Without loss of generality, assume

c intersects y2 and y1 is on the left side of c. As in the previous cases, pick an arc γ0 on

Y \ P that has both endpoints on p and separates Y \ P into two components where the

“left” component has gl genus and contains all left curves of Y except y1 and the “right”

component has gr genus and contains all right curves. We complete γ0 to an arc γ on Y by

joining the endpoints of γ0 to c1 and c2 by arcs in P that separate y1 to the “left” side of

Y \ γ; this can be done such that the final arc has i(γ, d ∩ Y ) ≤ 2 ; see Figure 7.

We conclude by observing that in any of the three above cases, we have produced an arc

γ on Y with the same topological type as c ∩ Y but that intersects d at most twice on Y .

Surgering c along γ as before we produce the desired curve cY . □

To prove Proposition 4.9, let Y1, . . . Yk be the components of S \ α on which c and d

intersect. Applying Claim 4.10 to Y1, we get a genus-separating curve c1 ∈ Ψ(α) that

intersects d at most 4 times in Y1 and agrees with c outside of Y1. By Lemma 4.8, there is an

admissible curve a1 on S \Y1 that intersects c, and hence c1, at most twice. Applying Lemma

4.6, this implies that a1 is M -close to both Π(c) and Π(c1) in Cadm for some universal M .

Hence, Π(c) and Π(c1) are 2M -close to each other. Repeating this argument, we produce a

sequence of genus-separating curves c = c0, c1, . . . , ck in Ψ(α) such that Π(ci) and Π(ci+1)

are 2M -close in Cadm and i(ck, d) is at most 2 times the number of components of S \ α,
which is at most |χ(S)|. The final curve ck is the desired curve c′.

We now establish the requisite diameter bounds. Since the length of the sequence from c to

c′ is bounded by |χ(S)|, each Π(ci) has uniformly bounded diameter in Cadm, and each Π(ci)

and Π(ci+1) are 2M -close, we conclude that Π(c) ∪Π(c′) has uniformly bounded diameter.

This gives (2).

Finally, c′ and d have uniformly bounded intersection number by construction, so by

Lemma 4.4 they have uniformly bounded distance in G. Since Π is coarsely Lipschitz (Lemma

4.5), we see that Π(c′) ∪Π(d) also has uniformly bounded diameter. The last statement of

Proposition 4.9 now follows by the triangle inequality. □

We now show that the admissible curve graph Cadm is quasi-isometric to the model K.

Since the inclusion Cadm → K is simplicial and hence 1-Lipschitz, this statement is implied

by the following:

Proposition 4.11. The map Π◦Ψ: K → Cadm is a quasi-inverse to the inclusion Cadm → K.

Proof. We first check that for all a ∈ Cadm, the image Π ◦Ψ(a) is uniformly close to a in

Cadm. Since g(S) ≥ 3, there must exists a genus-separating curve c disjoint from a. Hence

c ∈ Ψ(a) and a ∈ Π(c). Thus a ∈ Π ◦Ψ(a) as desired.

We now show that Π ◦Ψ is coarsely Lipschitz; this will complete the proof of Proposition

4.11. We have already shown in Proposition 4.9 that the image of every vertex of K has

uniformly bounded diameter, so it suffices to do the same for every edge. That is, if α, α′ ∈ K
are two vertices joined by an edge, then we must show that

diam(Π ◦Ψ(α) ∪Π ◦Ψ(α′))

is uniformly bounded.



ADMISSIBLE CURVE GRAPHS AND THE BOUNDARY OF STRATA 25

If the edge from α to α′ corresponds to adding a curve to α to achieve α′, then Ψ(α′) ⊆ Ψ(α)

by definition. This implies Π ◦Ψ(α′) ⊆ Π ◦Ψ(α); the desired diameter bound then follows

from Proposition 4.9.

Now assume the edge from α to α′ corresponds to a flip move. Let x ∈ α and x′ ∈ α′ such

that x is flipped to x′. If x and x′ are disjoint, then α ∪ x′ is a vertex of K as adding curves

to a vertex of K always produces a new vertex of K. Now α∪ x′ is joined by an edge to both

α and α′ as removing x′ produces α and removing x produces α′. The desired bound now

follows from the proceeding paragraph about add/remove edges.

If x and x′ are not disjoint, then the component Y of S \ (α \ x) that contains x has

ξ(Y ) = 1. If Y is not a witness, then α \ x = α′ \ x′ is a vertex of K that is joined by an

add/remove-edge to both α and α′. As before this establishes the bound.

If Y is a witness, then Lemma 3.2 requires S \ Y has no genus. Since ξ(Y ) = 1 and

g(S) ≥ 3, this is only possible if g(S) = 3 and Y is a 4-holed sphere where every curve in

∂Y is non-peripheral and non-separating on S. In this case, x and x′ intersect twice in the

4-holed sphere Y . Thus, flipping α to α′ corresponds to moving from the dual graph D for α

to the dual graph D′ for α′ by performing a “Whitehead move” where one collapses the edge

of D dual to x and then expands an edge dual to x′; see Figure 8. Since no curves in ∂Y are

separating or peripheral on S, the dual graph D contains a cycle C with an edge dual to x

such that after performing the Whitehead move to produce D′, the cycle C becomes a cycle

C ′ of D′ that does not include the edge dual to x′. There is therefore a genus-separating

curve c built from C that will be disjoint from x′, which implies c ∈ Ψ(α) ∩Ψ(α′). Since

Π(c) will then be contained in Π ◦Ψ(α)∩Π ◦Ψ(α′), we have that diam(Π ◦Ψ(α)∪Π ◦Ψ(α′))

is uniformly bounded by Proposition 4.9. □

Y
x

x′

C C ′
α \ x

Figure 8. One the left, the subsurface Y where x is flipped to x′. One the

right, the Whitehead move on the dual graph corresponding to flipping x to

x′. The cycle C is sent to the cycle C ′ under this move.

Proof of Theorem A. Lemma 3.5 and Proposition 4.11 together show that Cadm is quasi-

isometric to the hierarchically hyperbolic space K. Since hierarchical hyperbolicity can be

passed along quasi-isometries, Cadm is also hierarchically hyperbolic.

As Gromov hyperbolicity is also a quasi-isometry invariant, it suffices to to verify that

K is not Gromov hyperbolic. By Corollary 3.6, K is not Gromov hyperbolic if and only

if Cadm has a pair of disjoint witnesses. Let ∆1, . . . ,∆n be peripheral curves encircling

the punctures of S. Without loss of generality, assume ϕ(∆i) ≥ 0 for i ∈ {1, . . . , k} and

ϕ(∆i) < 0 for i ∈ {k + 1, . . . , n}. Let α be a multicurve consisting of g + 1 non-separating

curves a1, . . . , ag+1 such that S \ α is a pair of genus zero subsurfaces, W+ and W−, where
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W+ contains ∆1, . . . ,∆k and W− contains ∆k+1, . . . ,∆b; see Figure 9. Orient each curve of

α such that W+ is to the left.

α

W+

W−

Figure 9. The multicurve α whose complement is a pair of witnesses for

Cadm.

By homological coherence (Lemma 2.2.2), we have that for any framing ψ of S,

g+1∑
i=1

xi +

k∑
j=1

ψ(∆j) = 1− g − k (3)

where xi = ψ(ai). On the other hand, we know from Lemma 3.2 that W+ contains a

(non-peripheral) ψ-admissible curve if and only if there is some subset C of α∪∆1 ∪ . . .∪∆k

such that ∑
c∈C

ψ(c) = 1− |C|. (4)

A similar condition tells us if W− contains any non-peripheral admissible curves.

Now since g of the curves of α are homologically independent, we see that for any

(x1, . . . , xg+1) ∈ Zg+1 such that (3) holds, there is a framing ψ of S such that ψ(ai) = xi
for all i and ψ(∆j) = ϕ(∆j) for each j ∈ {1, . . . , n} (see [CS22, Remark 2.7]). Moreover, we

can choose xi not to satisfy (4) for any subset C of ∂W+ or the corresponding equations for

W− since these all linearly independent from (3). Thus W+ and W− are a pair of disjoint

witnesses for Cadm(S, ψ).

Set K =
∑

|ϕ(∆j)|. The choices in the previous paragraph can all be made explicitly

by choosing x1, . . . , xg all to be positive and larger than 2K and such that their differences

are all larger than 2K. Set xg+1 to satisfy (3), so it will necessarily be very negative. Then

for any subset C of α ∪ ∆1, . . . ,∆k, the left-hand side of (4) has magnitude larger than

K unless it contains all of α. In this case, any curve separating off (a subset of) the ∆j

appearing in W+ must have negative winding number, which is in particular not zero. Thus

W+ contains no admissible curves, so W− is a witness. The argument to show W+ is a

witness is completely analogous.

Finally, we note that in the case that ϕ is of spin type, we can also choose ψ to have the

same Arf invariant as ϕ by stipulating the winding numbers on the completion of a1, . . . , ag
to a GSB. Theorem 2.5 now provides f ∈ Mod(S) such that ϕ = f(ψ), and thus f(W+) and

f(W−) are the desired pair of disjoint witnesses for Cadm(S, ϕ). □

5. Curve graphs for strata

In this section we define a number of analogous graphs for (bordifications of) strata.

We start by recalling some of the results of [CS22] on the relationship between strata,
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markings, and framed mapping class groups and discussing how the curve complex captures

the intersection pattern of the boundary of a bordification of Teichmüller space. Unlike the

classical case, it is much more subtle to determine exactly which nodal surfaces can appear

in the boundary, leading us to define a number of different graphs that we will eventually

prove are all quasi-isometric (Corollary 6.5).

5.1. Framings and strata. A stratum of abelian differentials is a (quasi-projective) subva-

riety of the bundle of holomorphic abelian differentials ΩMg on genus g Riemann surfaces

defined by conditioning the number and order of zeros. More explicitly, given any partition

κ = (k1, . . . , kn) of 2g − 2 into positive integers, we let ΩMg(κ) ⊂ ΩMg denote the stratum

parametrizing pairs (X,ω) where X is a Riemann surface and ω is a holomorphic 1-form

on X with n distinct zeros of orders k1, . . . , kn. Since a holomorphic 1-form is entirely

determined (up to global scaling by C∗) by the order and position of its zeros, any stratum

can be thought of as a C∗ bundle over a subvariety of Mg,n (after taking a manifold cover).

In the sequel, we will freely conflate a stratum and its image in Mg,n; we trust this will not

cause any confusion.

Let ΩTg,n(κ) denote the full preimage of the stratum ΩMg(κ) inside of Tg,n. In order to

understand its connected components, one needs to understand which mapping classes can

be realized inside a stratum, that is, one needs to understand the image of the map

ρ : π1(H) → π1(Mg,n) ∼= Mod(Sg,n)

of orbifold fundamental groups, where H is any stratum component. When H is hyperelliptic,

it is not hard to see that the image of ρ is (conjugate to) a hyperelliptic mapping class

group [LM14,Cal20]. The main theorem of [CS22] characterizes the image of ρ for non-

hyperelliptic components.

Observe first that a differential ω has an associated horizontal vector field that does not

vanish outside the zeros of ω; we denote this by 1/ω.

Theorem 5.1 (Theorem A of [CS22]). Let H be a non-hyperelliptic stratum component and

suppose that g ≥ 5. Then the image of ρ is (conjugate to) the framed mapping class group

associated to the framing 1/ω.

We therefore introduce the following notation:

Definition 5.2. Suppose thatH is a non-hyperelliptic stratum component and let (X,ω) ∈ H.

Choose an arbitrary marking f : Sg,n → X and let ϕ denote the framing corresponding to

the vector field 1/f∗ω. Then we use Hϕ to denote the subset of ΩTg,n(κ) parametrizing

those marked differentials (X ′, ω′, f ′) such (X ′, ω′) ∈ H and 1/(f ′)∗(ω′) is isotopic to ϕ.

By Theorem 5.1, if g ≥ 5 then Hϕ is just a specified connected component of ΩTg,n(κ).
The reader should think of Hϕ this way; Definition 5.2 is written as it is only so that we

have something that works for all g ≥ 3.

The Theorem also reveals a relationship between cylinders and admissible curves. Inte-

grating ω induces a singular flat metric on X, and the core curve of any embedded Euclidean

cylinder has constant slope with respect to the horizontal vector field 1/ω, hence winding

number 0. Moreover, since the cylinder has nonzero period with respect to a holomorphic

1-form, the core curve must necessarily be non-separating by Stokes’s theorem. Thus the
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core curve is admissible. Transitivity of the FMod(S, ϕ) action on admissible curves (see

Proposition 2.9) now implies that every admissible curve is realized as a cylinder on some

differential in Hϕ [CS22, Corollary 1.2].

In Section 6 below, we will use similar transitivity arguments to understand which

multicurves can be pinched in the boundary of Hϕ.

5.2. The curve complex as a nerve. Recall that the Deligne–Mumford compactification

Mg,n of the moduli space of Riemann surfaces is obtained by adjoining boundary strata

corresponding to (stable) nodal surfaces to Mg,n. Equivalently, it can also be obtained by

taking the completion of Mg,n with respect to the Weil–Petersson metric. A sequence of

surfaces Xi degenerates to the boundary if the (extremal or hyperbolic) length of an essential

simple closed curve goes to 0; if γ is a topological type of multicurve, then we use Mg,n(γ)

to denote the boundary stratum where γ is pinched.

One can do a similar thing at the level of Teichmüller space. For any multicurve γ,

let Tg,n(γ) denote the Teichmüller space of the open subsurface S \ γ. The augmented

Teichmüller space Tg,n is then obtained by adjoining all possible Tg,n(γ) to Tg,n, marking

S \ γ by the subsurface complementary to γ. Equivalently, Tg,n is also the Weil–Petersson

metric completion of Tg,n. Points in Tg,n(γ) can be obtained as geometric limits of non-

degenerate structures: for example, if Tg,n ∋ Xi → X∞ ∈ Tg,n(γ) then the hyperbolic length

of γ on Xi goes to 0, so the Xi develop a long collar that limits to a pair of cusps in X∞.

We direct the reader to [HK14] and its extensive bibliography for a thorough discussion

of the history and construction of these spaces.

Remark 5.3. It is useful (though not quite correct) to think of Tg,n as covering Mg,n.

There is a surjective map Tg,n → Mg,n, which when restricted to any stratum Tg,n(γ) is

a covering onto Mg,n(γ), but the overall map is not a covering. This is because Tg,n is

infinitely ramified around the boundary stratum Tg,n(γ) (and likewise Tg,n(γ) is infinitely
ramified around its boundary, etc).

The collar lemma implies that the nerve of the (closures of the) top-dimensional boundary

strata of Tg,n is exactly given by the usual curve complex C (S) (with vertices given by

simple closed curves and simplices given by disjointness). The 1-skeleton of the barycentric

subdivision of the curve complex is the multicurve graph, which has a vertex for each (simple)

multicurve on S and whose edges are given by inclusion: γ is connected to δ if and only

if γ ⊂ δ or δ ⊂ γ. Equivalently, the multicurve graph is the nerve of the (closures of) all

boundary strata of Tg,n.

5.3. Multi-scale differentials and level splittings. We now perform a similar con-

struction for (marked) strata of abelian differentials. Our discussion will be made more

complicated by a number of factors, one of which is that some curves on S cannot be pinched

by themselves (since any abelian differential is in particular a cohomology class). In fact, if

Hϕ ∩ Tg,n(γ) ̸= ∅ and γ is a single simple closed curve, then it must either be admissible or

separating. See Section 5.4 just below.

Example 5.4 (Pinching a multicurve but not its components). Consider the surface shown

in Figure 10. In this example, curves α and β are homologous and so their periods must
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β

α

β

α

β

α

Figure 10. A 2-level splitting consisting of two homologous curves. Neither

α nor β is admissible, and neither defines a level splitting by itself, so by

Theorem 5.9 below, Hϕ does not meet Tg,n(α) or Tg,n(β).

be equal. Crushing the right-hand torus to have 0 area degenerates into the boundary

stratum Hϕ ∩Tg,n(α∪ β). However, it is impossible to pinch either α or β individually while

remaining in Hϕ.

Specifying Hϕ ⊂ Tg,n as in Definition 5.2, let Hϕ ⊂ Tg,n denote its closure (equivalently,

its Weil–Petersson metric completion). Analogous to the multicurve graph, we now define a

graph capturing the pattern of intersections of Hϕ with the boundary strata of Tg,n:

Definition 5.5. Let C (Hϕ) be the graph whose vertices are multicurves γ such that

Hϕ ∩ Tg,n(γ) is nonempty and whose edges are given by inclusion.

Exactly which multicurves appear as vertices of C (Hϕ) is a very intricate question, and

is related to subtle properties of a certain compactification of H. Let H be the closure of

H inside of Mg,n (without markings). The structure of its boundary is determined by the

so-called “incidence variety compactification” (IVC) of H [BCG+18]. A point in the IVC

consists of a “level graph” and a “twisted differential” compatible with the level graph;

forgetting the differential and remembering only the underlying complex structure yields a

surjective map from the IVC onto H [BCG+18, Corollary 1.4]. It turns out that the IVC is

highly singular, and in [BCG+19], the IVC is refined into the moduli space of “multi-scale

differentials” ΞH which has nicer geometric properties (e.g., its boundary is a normal crossing

divisor). A multi-scale differential is encoded by three pieces of data: an “enhanced level

graph,” a twisted differential compatible with the level graph and the enhancement, and a

“prong matching.”

We will not give precise definitions of these compactifications here, and direct the reader to

the original papers (especially Section 5.1 of [BCG+19] and Section 3 of [CMZ22]). Instead,

we record some of the relevant combinatorial data using our terminology of multicurves and

winding numbers. We keep the numbering conventions of [BCG+19].

Definition 5.6. Let S = Sg,n and let ϕ be a framing of S. An N -level splitting is an oriented

multicurve β⃗ together with a partition of S \ β into (nonempty, but possibly disconnected)

subsurfaces Y0, . . . , Y−N+1 such that:

• The winding number ϕ(b) is negative for every curve b ⊂ β⃗.

• Let b be a curve of β⃗. Then if the subsurfaces it sees on its left and right are Yi and

Yj , respectively, then i > j.
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A multicurve β is an N -level multicurve if β can be oriented and S \ β can be partitioned to

yield an level splitting with N levels.

−2
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−4
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−3

−5

−10

Y0

Y−1

Y−2

5

1

0 1

10 4 2

4

4
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3

Figure 11. A 3-level multicurve and corresponding enhanced level graph.

Remark 5.7. Homological coherence implies that a 2-level multicurve determines a unique

level splitting (because there are only two options for the partition of S \ β, and one option

does not satisfy homological coherence). However, as shown in [BCG+18, Examples 3.3

and 3.4], this is not true for general N -level multicurves as soon as N ≥ 3. Moreover, it is

possible that an N -level multicurve is compatible with N ′-level splittings.

Comparing this to [BCG+19], a level splitting records slightly different information than

an enhanced level graph/enhanced multicurve without horizontal edges. The dual graph to

a splitting (together with the partition of S \ β) is a level graph, and the winding numbers

of the curves correspond to the enhancement, i.e., the orders of the zero and pole on each

side of the node. In particular, for each oriented curve b ⊂ β⃗ corresponding to an edge of

the dual graph with enhancement κ (so a zero z of order o(z) = κ− 1 and a pole p of order

o(p) = −κ− 1), we have

ϕ(b) = −κ = −1− o(z) = 1 + o(p).

Thus every N -level splitting gives rise to an enhanced level graph.

However, a single enhanced level graph may be compatible with multiple level splittings,

as the splitting enforces the Arf invariants of the components of ϕ|S\β (even up to the action

of StabMod(S)(β)) and the level graph does not. This is related to the fact that the Mod(S)

orbit of multicurves are generally larger than the FMod(S, ϕ) orbits (even controlling for

winding numbers). Compare Proposition 6.2 below.

When ϕ has holomorphic type, every boundary component and peripheral curve of the top

(that is, 0th) level of a level splitting has negative winding number. Homological coherence

(Lemma 2.2.2) then implies that each of these top component must have positive genus. This

corresponds to the fact that the top level of a multi-scale differential in the boundary of a

holomorphic stratum must itself be holomorphic, hence is supported on a surface with genus.

We record this for later use:
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Fact 5.8. Let β⃗, (Y0, . . . , Y−N+1) be a level splitting of a framed surface of holomorphic type.

Then each component of Y0 has positive genus.

A corollary of the description of the moduli space of multi-scale differentials in [BCG+19] is

the following statement, which gives an important necessary condition for which multicurves

can be pinched in Hϕ:

Theorem 5.9. If Hϕ ∩Tg,n(γ) is nonempty, then γ is the union of an admissible multicurve

α and a disjoint N -level multicurve β.

[MUW21] gives a sufficient condition for a topological type of multicurve to appear in

the boundary of a stratum. Using results from the literature, one can refine this result to

stratum components H. In particular, using [Won24] one can determine exactly when the

Arf invariants of subsurfaces enforce the total Arf invariant, and the main result of [CF22]

implies that the global residue condition does not impose any further restrictions.

To further upgrade this to a result for Hϕ, one would also need to establish very strong

transitivity results for the action of the framed mapping class group (for example, one needs

transitivity on all admissible multicurves of the same topological type, not just pairs). We

were unable to achieve this level of generality, and so instead focus our attention on the

“largest” boundary strata. For coarse-geometric questions, this distinction will be irrelevant.

5.4. Divisorial multicurves. As mentioned above, the map from the space of multiscale

differentials ΞH to the closure H ⊂ Mg,n is highly singular. All the same, because the

boundary of ΞH is a normal crossing divisor, it gives us a good notion of what the largest

boundary strata are.

Irreducible components of the boundary divisor of the moduli space ΞH of multiscale

differentials correspond to 1-level graphs with a single horizontal edge (i.e., admissible curves)

and certain 2-level graphs with only vertical edges (i.e., 2-level multicurves) [BCG+19]. We

therefore make the following definition:

Definition 5.10. A multicurve γ is called divisorial for Hϕ if Hϕ ∩Tg,n(γ) is nonempty and

γ is either a single admissible curve or a 2-level multicurve.

It is still fairly complicated to identify exactly which 2-level multicurves are divisorial

(compare the discussion at the end of the previous subsection as well as Proposition 6.2

below). As a first example, if β is divisorial and Y0(β) has a genus 1 component U , then in

the associated boundary component of ΞH the surface U is equipped with a holomorphic

abelian differential. Thus Arf1(ϕ|U ) must be 0 (Remark 2.3).

All the same, we can build a graph that records only the intersections of (multicurves

corresponding to) strata of Hϕ coming from boundary divisors of ΞH.

Definition 5.11. Set D(Hϕ) to be the graph with vertices given by divisorial multicurves

γ, and with an edge between γ and δ if and only if Hϕ ∩ Tg,n(γ ∪ δ) is nonempty.

Observe that D(Hϕ) is to the curve graph as C (Hϕ) is to the multicurve graph. In

particular, its subdivision is a subgraph of C (Hϕ) by definition, and since every boundary

stratum of ΞH is an intersection of boundary divisors, this subgraph is coarsely dense.



32 AARON CALDERON AND JACOB RUSSELL

Unfortunately, while it is simpler than C (Hϕ), the edges of D(Hϕ) are still defined in

terms of intersections of boundary strata. This is a subtle question even for disjoint 2-level

splittings, so we define one further, simpler curve graph that is more amenable to the HHS

techniques from the previous sections. Eventually, we will show that all of the graphs we

have defined are quasi-isometric (Corollary 6.5).

Definition 5.12. Set E (Hϕ) to have the same vertex set as D(Hϕ), with an edge between γ

and δ if and only if the two multicurves are disjoint (but are allowed to share components).

The graphs D(Hϕ) and E (Hϕ) are indeed different. We thank Martin Möller for first

bringing this phenomenon to our attention.

Example 5.13 (Pinching curves but not their union). Suppose that S has a single puncture

and let ∆ denote a curve encircling that puncture. Let c and d be separating curves on

S such that (∆, c, d) bounds a pair of pants P . Then Yi(c) and Yi(d) both have genus for

i = 0,−1, and by the main Theorem of [MUW21] (or explicit construction), one sees that

Hϕ meets both Tg,n(c) and Tg,n(d).
However, if Hϕ were to meet Tg,n(c∪ d), then on any multiscale differential corresponding

to this boundary stratum the pair of pants P would be equipped with a meromorphic

differential with a single zero and two poles. Stokes’ theorem (more generally, the global

residue condition [BCG+19, §2.4 item (4)]) would then imply that the residues at each pole

would be 0, but there is no meromorphic differential on Ĉ with a single zero and two poles

of zero residue.

The inclusion gives a 1-Lipschitz map from D(Hϕ) to E (Hϕ); below, we show that this

map actually extends to C (Hϕ).

Lemma 5.14. There is a coarsely Lipschitz map

ξ : C (Hϕ) → E (Hϕ)

that coarsely agrees with the inclusion D(Hϕ) ↪→ E (Hϕ).

Proof. Any boundary stratum of ΞH is an intersection of boundary divisors; exactly which

divisors can be recovered from the “undegenerations” of the associated enhanced level

graph [BCG+19, Definition 5.1]. The precise details of the situation will not be important

to us; all we need is the following:

Fact 5.15. Given any boundary stratum of ΞH in which γ is pinched, all of its undegenera-

tions correspond to pinching sub-multicurves of γ.

We now define the desired coarsely Lipschitz map

ξ : C (Hϕ) → 2E (Hϕ)

by sending a multicurve γ to the set of multicurves pinched in any divisorial undegeneration

of any boundary stratum corresponding to γ.2 The image of any vertex of C (Hϕ) lies in a

2This is one place where our viewpoint of taking level multicurves, not level splittings, makes the discussion

more complicated. Which undegenerations occur, and which boundary divisors intersect, depend not just on

the multicurve but also on the level structure.
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clique since all of the undegenerations are disjoint, and since edges of C (Hϕ) are given by

inclusion, it follows that if γ ⊂ δ then ξ(γ) ⊂ ξ(δ). Thus ξ is coarsely (2-)Lipschitz.

To see that ξ coarsely agrees with the inclusion, we simply observe that it agrees with the

inclusion on vertices of D(Hϕ), and that the edges of D(Hϕ) get mapped to sets containing

both endpoints. □

6. From transitivity to geometry

All of the graphs defined in the previous section carry a natural action of the framed

mapping class group. Throughout the section, fix a non-hyperelliptic stratum component

H ⊂ Mg,n (necessarily with g ≥ 3) and let Hϕ be as in Definition 5.2. Set S = Sg,n. Then

if Hϕ ∩ Tg,n(γ) ̸= ∅, we have for any f ∈ FMod(S, ϕ),

f(Hϕ ∩ Tg,n(γ)) = Hϕ ∩ Tg,n(f(γ)) ̸= ∅.

In this section, we analyze this action in more detail and use certain transitivity properties

to relate the geometries of C (Hϕ), D(Hϕ), and E (Hϕ) to each other, to a hierarchically

hyperbolic model, and to the admissible curve graph Cadm(S, ϕ). This will complete the

proof of our main Theorem B.

As a first example of this technique, let us prove the following:

Lemma 6.1. Both D(Hϕ) and E (Hϕ) contain Cadm(S, ϕ).

Proof. It suffices to prove the statement for D(Hϕ) as it is a subgraph of E (Hϕ). Since every

admissible curve is divisorial, D(Hϕ) contains the vertices of Cadm(S, ϕ), so it remains to

show that it also contains the edges. By Proposition 2.9, the framed mapping class group

FMod(S, ϕ) acts transitively on pairs of admissible curves of the same topological type. Thus,

it only remains to show that Hϕ meets some boundary stratum Tg,n(α) for each topological

type α of pair of admissible curves.

One can do this by explicit construction, one possibility of which we sketch below. The

restriction of ϕ to S \ α is a framing with four boundary components of winding number 0.

By holomorphicity of ϕ, each component of S \α either has positive genus or each peripheral

curve on that component has winding number −1. Pick meromorphic differentials on the

components of S \ α inducing the same framing and with simple poles corresponding to

α, all of the same residue (this can be done because strata of meromorphic differentials

on surfaces of genus ≥ 1 with simple poles are always nonempty [Boi15], and the genus 0

case corresponds to adding free marked points on a cylinder). Cutting the infinite cylinders

and gluing them together along α yields a holomorphic differential in the correct stratum;

applying the (unframed) mapping class group then allows us to ensure that it actually lies

in Hϕ. Degenerating these cylinders by letting their heights go to ∞ then produces a path

in Hϕ to Tg,n(α).
The only thing one might worry about is matching the Arf invariants of the subsurfaces

to ensure that the plumbed surface has the correct Arf invariant: this turns out not to be

an issue for the following reason. If g ≥ 4 then each stratum of meromorphic differentials

in genus ≥ 2 has components of both spin parities [Boi15, Theorem 1.2], so by choosing

the appropriate Arf invariants on pieces we can ensure that the plumbed surface has the

appropriate Arf invariant. In the special case that g = 3, there is a unique component of
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meromorphic differentials on a genus 1 surface with two simple poles and a single zero of

order 2, and so the plumbed surface is forced to have odd Arf invariant. Fortunately, this

only happens in the stratum ΩM3(2, 2), which has a unique non-hyperelliptic component of

odd Arf invariant [KZ03, Theorem 2]. □

6.1. The action on 2-level multicurves. 2-level multicurves can have many different

topological types, so FMod(S, ϕ) will certainly not act transitively on them. However, even

controlling for topological type and winding numbers, the Arf invariants of subsurfaces

present additional invariants of the FMod(S, ϕ) orbit. We show below that these are the

only obstructions to transitivity.

While we will not use this in the sequel, note that the following statement is true for all

2-level splittings of a surface of holomorphic type, not just divisorial ones.

Proposition 6.2. Let ϕ be a framing of holomorphic type on a surface S of genus at least

3. Let β be any 2-level multicurve. Then a multicurve β′ is in the FMod(S, ϕ) orbit of β if

and only if there exists an h ∈ Mod(S) such that:

(1) h(β) = β′.

(2) ϕ(b) = ϕ(h(b)) for every curve b ∈ β.

(3) For each component U of S \ β of genus at least 2 such that ϕ|U is of spin type,

Arf(ϕ|U ) = Arf(ϕ|h(U)),

and similarly, for any complementary component U of genus 1,

Arf1(ϕ|U ) = Arf1(ϕ|h(U)).

Proof. We are given h ∈ Mod(S) taking β to β′; our goal is to find an element in the

(orientation-preserving, component-wise) stabilizer of β′ such that its composition with h

preserves the winding numbers of a GSB for S. We will construct this element and the

associated GSB in steps, starting from the bottom and working up. The reader is invited

to compare with the discussion of “perturbed period coordinates,” especially Figure 5,

in [BCG+19]. Throughout the proof, given any curve of β or component U of S \ β, we will

add a prime to denote its image under h, i.e., U ′ := h(U).

Bottom level: Choose a GSB BU on each component U of Y−1(β). Hypothesis (3) allows

us to apply Lemma 2.8 to choose a GSB BU ′ for U ′ with the same set of winding numbers as

appear in BU . Using the classical change-of-coordinates principle, we can find some element

fU ′ ∈ Mod(U ′) (which we can then think of as living in Mod(S) via inclusion) that takes

h(BU ) to BU ′ . Set

fbot =
∏

U ′⊂Y−1(β′)

fU ′ ◦ h;

by construction it takes β to β′ and preserves the winding numbers of a GSB for Y−1(β).

Level passage: For this and the next step, for each component U of the top level Y0(β),

pick a subsurface VU ⊂ U with full genus and a single boundary component.

Pick a maximally homologically independent subset b = (b1, . . . , bh) of β and extend⋃
U⊂Y−1(β)

BU ∪ b
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b′1

d′1

a′1

U ′
1

V ′
1

fbot(c1)

Figure 12. The multitwist needed to fix the winding number of fbot(c1).

Note that it may not always be possible to choose the curve d′1 to be disjoint

from the other curves of fbot(c).

to a GSB for the complement of all of the VU . Let c = (c1, . . . , ch) denote the resulting set of

curves symplectically dual to those of b. The element fbot will most likely not preserve the

winding numbers of c, but we can rectify this using elements supported entirely on Y0(β
′).

Consider first c1; the dual curve b1 is a curve of the 2-level splitting β, and we use U1

to denote the component of Y0(β) adjacent to b1. Since ϕ is of holomorphic type, U1 has

genus, hence so does the full-genus subsurface V1 := VU1
. Set c′ = fbot(c) and likewise for its

components. Pick some admissible curve a′1 ⊂ fbot(V1) and let d′1 denote the connect sum of

b′1 with a′1 along some arc contained in U ′
1. Since a

′
1 is disjoint from c′ and b′1 only meets c′1,

we see that the algebraic intersection number of d′1 with each c′j is 0 unless j = 1, in which

case it is exactly 1. See Figure 12.

By homological coherence (Lemma 2.2.2),

ϕ(b′1)− ϕ(d′1) = −1

when appropriately oriented. Thus, if we set

f1 :=
(
T±
b′1
T±
d′
1

)ϕ(c′1)−ϕ(c1)

for an appropriate choice of signs, then by twist-linearity (Lemma 2.2.1) we see that f1(c
′
1)

has the same winding number as c1 and that f1 preserves the winding numbers of all other

c′j .

We now repeat the above procedure but with f1 ◦ fbot instead of fbot. More precisely,

set V2 ⊂ U2 to be the full-genus subsurface of the top-level component of S \ β adjacent

to b2.
3 There is an admissible a′2 ⊂ f1fbot(V2), and taking the connect sum of b′2 with this

curve yields some d′2 whose algebraic intersection with each curve of f1fbot(c) is 0 except for

f1fbot(c2). Taking an appropriate multitwist in b′2 and d′2 yields some f2 supported on U ′
2

such that f2f1fbot preserves the winding numbers of both c1 and c2.

Iterating, we get a sequence of mapping classes f1, . . . , fh all supported on Y0(β
′) such

that the composite

fmid := fh ◦ . . . ◦ f1 ◦ fbot
3The component U2 (and subsurface V2) may be the same as U1 (and V1).
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takes β to β′ and preserves the winding numbers of the curves of a GSB for the complement

of the full-genus subsurfaces V of the top-level components U ⊂ Y0(β).

Top level: To finish, we can simply use the action of Mod(fmid(V )) to amend the winding

numbers of the remaining curves as we did for the bottom level.

Pick a GSB BV for each such V . Then by Lemma 2.6 and hypothesis (3), we have that

Arf(ϕ|V ) = Arf(ϕ|U ) = Arf(ϕ|U ′) = Arf(ϕ|fmid(V ))

when defined. If U is of genus 1, the same thing holds for the genus 1 Arf invariant (note

that this requires the fact that ϕ|U is of holomorphic type!). Lemma 2.8 then implies that

fmid(V ) admits a GSB with the same winding numbers as BV and we pick an element

fV ∈ Mod(fmid(V )) taking fmid(BV ) to this GSB.

Finally, we observe that the mapping class
∏

V fV ◦ fmid takes β to β′ and preserves the

winding numbers of the following GSB for S:⋃
U⊂Y−1(β)

BU ∪ b ∪ c ∪
⋃

U⊂Y0(β)

BV .

We have therefore constructed the desired framed mapping class. □

6.2. Pinching admissible curves. Using the same ideas as Proposition 6.2, we show that

every 2-level splitting is connected to some admissible curve in D(Hϕ).

Proposition 6.3. Suppose that β is a divisorial 2-level multicurve for Hϕ, i.e., Hϕ meets

Tg,n(β). Then for any admissible a ⊂ Y0(β), we have that Hϕ meets Tg,n(β ∪ a).

Proof. We first show that one can further pinch some admissible curve in Y0(β). The

restriction of a multiscale differential lying over Hϕ ∩Tg,n(β) is holomorphic on Y0(β). Every

holomorphic differential contains an embedded nonsingular cylinder [Mas86] whose core

curve a′ is necessarily admissible, and one can degenerate into Hϕ ∩ Tg,n(β ∪ a′) by sending

the height of this cylinder to ∞.

Thus, it suffices to show that the stabilizer of β in FMod(S, ϕ) acts transitively on the

set of admissible curves contained in each component of Y0(β). Let a and a′ be different

admissible curves contained in the same component U of Y0(β) and suppose (postcomposing

by an element of Mod(U) as necessary) that the element h taking β to β′ also takes a to a′.

The proof of Proposition 6.2 then proceeds by upgrading h into a framed mapping class; we

show that each step, this can done be done in a way that preserves a′ and so the composite

element still takes a to a′.

Bottom level: The element fbot differs from h by an element supported entirely on the

bottom level Y−1(β), so still takes a to a′.

Level passage: Pick the full-genus subsurface V ⊂ U to contain a′, so fbot(V ) contains a′.

Each element fj is constructed by taking a multitwist disjoint from some choice of admissible

curve. So long as we pick a′ to be this admissible base curve each time that U is the relevant

subsurface in the iteration, then the resulting multitwist fj will preserve a′ and the new

subsurface fj · · · f1fbot(V ) will still contain a′. Thus fmid must also take a to a′.
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Top level: The last step of the construction takes a fixed GSB of V to a GSB of fmid(V )

with the same winding numbers. We now just make sure to take a as an element of the

GSB of V and take a′ to be the corresponding element of the GSB of fmid(V ). The fact

that we can extend a′ to a GSB with the appropriate winding numbers is immediate in the

genus 1 case, as divisoriality implies that Arf1(ϕV ) = 0, so every nonseparating curve is

admissible. If g(V ) ≥ 2, it follows from Corollary 2.11 that we can choose a curve transverse

to a′ with the desired winding number, then apply Lemma 2.8 to the complement in V of

the subsurface filled by a and this curve (note that if g(V ) = 2, then the boundaries of this

subsurface have winding numbers −3 and +1, so its genus 1 Arf invariant is either 1 or 2 and

there are no more restrictions than already appear from fixing the Arf invariant of V ). □

Combining this with Lemma 6.1 allows us to quickly conclude connectivity.

Corollary 6.4. The graphs C (Hϕ), D(Hϕ), and E (Hϕ) are connected.

Proof. Since D(Hϕ) is a subgraph of E (Hϕ) (and its subdivision is a subgraph of C (Hϕ)), it

suffices to prove this for D(Hϕ). By Lemma 6.1, D(Hϕ) contains the admissible curve graph

Cadm(S, ϕ), and as shown in Lemma 3.1, Cadm(S, ϕ) is connected. Every vertex of D(Hϕ)

that is not an admissible curve is a 2-level multicurve β. There is some admissible curve a

contained inside of each component of Y0(β) (Fact 5.8 and Lemma 2.7) and so Proposition

6.3 implies that Hϕ meets Tg,n(β ∪ a). Thus β and a are connected in D(Hϕ). Since we

have connected every vertex of D(Hϕ) to the connected graph Cadm(S, ϕ), we conclude that

D(Hϕ) is connected. □

Pushing this line of reasoning slightly further, we also get the following:

Corollary 6.5. The graphs C (Hϕ), D(Hϕ), and E (Hϕ) are quasi-isometric.

Proof. Observe that via the inclusion (of its subdivision) and Lemma 5.14, we have already

built coarsely Lipschitz maps

D(Hϕ) → C (Hϕ) → E (Hϕ)

such that the final map D(Hϕ) → E (Hϕ) coarsely agrees with the inclusion. Thus, it remains

to show that the inclusion D(Hϕ) ↪→ E (Hϕ) has a coarse inverse.

Define ζ : E (Hϕ) → 2D(Hϕ) to be the identity on the vertices of E (Hϕ) and to send each

edge of E (Hϕ) to the pair of vertices in D(Hϕ) that are its endpoints. If ζ is coarsely

Lipschitz, then it is necessarily a coarse inverse of the inclusion D(Hϕ) ↪→ E (Hϕ).

To that end, consider any edge of E (Hϕ) connecting disjoint multicurves γ and δ that

correspond to divisorial boundary strata. We just need to show a bound on the length of

a path from γ to δ in D(Hϕ). If both γ and δ are single admissible curves, then Lemma

6.1 implies they are connected in D(Hϕ). Now suppose γ is admissible and δ is a 2-level

curve. As in the proof of Corollary 6.4, each component of Y0(δ) has genus and if γ ⊂ Y0(δ)

then Proposition 6.3 implies that γ and δ are connected by an edge of D(Hϕ). Otherwise,

γ ⊂ Y−1(δ) and in particular it is disjoint from Y0(δ). By Lemma 2.7, there is an admissible

curve a on Y0(δ). Applying Proposition 6.3 again we see that γ is connected to a which is

connected to δ (by Lemma 6.1).
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Finally, suppose that both γ and δ are 2-level curves. If any components of Y0(γ) and

Y0(δ) are nested, then since they both have genus their intersection does. In particular by

Lemma 2.7 there is some admissible curve a disjoint from both γ and δ. We may then invoke

Proposition 6.3 again to connect γ to δ in D(Hϕ) through a. Otherwise, Y0(γ) and Y0(δ)

are disjoint. In this case we choose admissible curves aγ and aδ inside Y0(γ) and Y0(δ),

respectively. The previous two paragraphs then imply that (γ, aγ , aδ, δ) is an edge path in

D(Hϕ). Thus, collecting cases, we have shown that each edge of E (Hϕ) is sent to a set of

diameter at most 4, hence ζ is coarsely Lipschitz. □

6.3. A quasi-isometry with the model. We now build off our work showing Cadm(S, ϕ)

is hierarchically hyperbolic to prove that E (Hϕ) (hence D(Hϕ) and C (Hϕ)) are as well.

As in the case of the admissible curve graph, we establish the hierarchical hyperbolicity

of E (Hϕ) by showing it is quasi-isometric to a model graph constructed from its witnesses.

Because Wit(E (Hϕ)) is a proper subset of Wit(Cadm(S, ϕ)), our proof for E (Hϕ) will actually

rely on the proof for Cadm(S, ϕ). To describe this setup, we need the following notation:

• Set ξ = ξ(S), the cardinality of the largest set of disjoint curves on S = Sg,n.

• Let D be the set of divisorial 2-level splittings for Hϕ (these are exactly the vertices

of E (Hϕ) that are not in Cadm(S, ϕ)).

• Let S = Wit(Cadm(S, ϕ)) and S = Wit(E (Hϕ)). By definition,

S = S \ {W ∈ S : ∃δ ∈ D with δ ∩W = ∅}.

• Let K = KS denote the quasi-isometric model for Cadm(S, ϕ) (Definition 3.4) and

let K denote KS.

By construction, there are 1-Lipschitz inclusion maps

i : K → K and ι : Cadm(S, ϕ) → E (Hϕ).

The idea behind our proof that K is quasi-isometric to E (Hϕ) is to show that the decreases

in distances that happen under i : K → K coarsely match the decreases that happen under

ι : Cadm(S, ϕ) → E (Hϕ).

To formalize this idea, we define

P (µ) = {α ∈ K : µ ⊆ α}

for any multicurve µ on S. If µ is a multicurve such that S \ µ does not contain a subsurface

in S, then µ is a vertex of K and every vertex of P (µ) is connected to µ by a path with at

most ξ edges (corresponding to removing curves until only µ is left). On the other hand, if

S \ µ does contain a subsurface in S, then P (µ) has infinite diameter; see [RV19, Corollary

4.10]. Hence, if µ is a vertex of K, but not K, then P (µ) is an infinite diameter subset of K
that becomes finite diameter under i : K → K. If K is to be quasi-isometric to E (Hϕ), we

would like the image of P (µ) under the quasi-isometry K → Cadm(S, ϕ) to have uniformly

bounded diameter under ι : Cadm(S, ϕ) → E (Hϕ).

Our candidate quasi-isometry Θ: K → 2E (Hϕ) is therefore

Θ(µ) = ι ◦Π ◦Ψ(P (µ))

where Π ◦Ψ is the quasi-isometry from K to Cadm(S, ϕ) constructed in Section 4.=
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As suggested above, the main work required to prove Θ is a quasi-isometry is to show that

ι ◦Π ◦Ψ(P (µ)) is a bounded diameter subset of E (Hϕ). To achieve this, we need to know

that E (Hϕ) is obtained from Cadm(S, ϕ) by adding enough divisorial 2-level multicurves to

collapse the image of P (µ) for each µ that is in K but not K. The abundance of 2-level

multicurves comes from the following lemma.

Lemma 6.6. For any Hϕ, there is an N , depending only on S, such that the following holds.

Let W be a genus 0 witness of Cadm(S, ϕ) and let β ∈ D be a divisorial 2-level multicurve

disjoint from W . Then for any multicurve α on S \W , there is an f ∈ FMod(S, ϕ) such

that f(β) remains disjoint from W and i(α, f(β)) ≤ N.

Note that in particular, f(β) ∈ D since D is a union of FMod(S, ϕ) orbits.

This is a weaker, framed version of the following standard “change of coordinates” lemma.

Lemma 6.7. For any surface Z, there is an NZ such that for any multicurves or multiarcs

α and β, there is a g ∈ Mod(Z) such that i(α, g(β)) ≤ NZ .

As in Section 4, the reason that we cannot use a similar “change of coordinates” argument

(even though we have shown the set of divisorial 2-level splittings for Hϕ is a finite union of

FMod(S, ϕ) orbits) is that there are infinitely many FMod(S, ϕ) orbits of witnesses. Instead

of making a finite number of arbitrary choices, we will instead need to be more clever and

make a infinite number of good ones.

Proof of Lemma 6.6. We first record a number of topological consequences of our hypotheses.

Let Y0 and Y−1 denote the two levels of the 2-level splitting associated to β. Then since W

is a witness and (S, ϕ) is of holomorphic type, we see that

• W ⊂ Y0,

• each component of Y−1 has genus 0,

• Y0 is connected, and

• Y0 has genus at least 2.

Indeed, contradicting any of the first three statements immediately implies that there is

an admissible curve disjoint from W (Lemma 2.7). The last assertion follows similarly: Y0
always has positive genus, and some curve of ∂W is always non-separating on Y0. If the

genus of Y0 were equal to 1 then Arf1(Y0) = 0 must be 0 by divisoriality (see the discussion

right after Definition 5.10) and hence some boundary curve of our witness W would be

admissible, a contradiction.

We observe that since S \W has genus 0, the winding number of any curve on S \W is

determined by how it partitions the curves of ∂W and the punctures of S. Thus, any mapping

class supported entirely on W necessarily preserves the winding numbers of the curves of β.

Applying Lemma 6.7 (and using the inclusion homomorphism for subsurfaces [FM12, Theorem

3.18]), we can therefore find some h(β) ∈ Mod(S) · β that has bounded intersection with

α and with the same winding numbers as β. Note that h(β) is a 2-level splitting, as the

definition of 2-level splitting depends only on winding numbers. Note also that h(β) may

not be divisorial.

In the case that Y0 is not of spin type, or if Arf(hY0) happens to equal Arf(Y0), then

Proposition 6.2 ensures that β and h(β) are in the same FMod(S, ϕ) orbit, completing the

proof.
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Otherwise, Arf(hY0) = Arf(Y0) + 1. Our goal is now to amend the Arf invariant of hY0
while introducing a uniformly bounded number of intersections with α. We note first that the

topology of the situation at hand forces there to be a curve w of ∂W that is nonseparating

on Y0 (hence on hY0) and such that ϕ(w) is even. Indeed, if the winding numbers of all such

w were odd, then since Y0 \W has genus 0 this would imply that ϕ is odd on curves spanning

a Lagrangian subspace of H1(Y0;Z). In particular, this would imply that each term in the

formula for the Arf invariant (1) would be 0, hence Arf(Y0) = 0. The same would therefore

also be true for Arf(hY0), but this is a contradiction.

Now every mapping class supported entirely on W can be written as a product of Dehn

twists, and every curve on S \W is separating. Thus, for any curve c on S and any curve

d ⊂ S \W , we have that

ι̂(hc, d) = ι̂(c, d)

where ι̂(·, ·) denotes the algebraic intersection number. Combining this with twist-linearity,

we see that if we factorize h = T k1

d1
· · ·T kn

dn
where di are curves on S \W , then

ϕ(hc) = ϕ(c) + k1ι̂(c, d1)ϕ(d1) + . . .+ knι̂(c, dn)ϕ(dn)

for any curve c on S.

Returning to the situation at hand, since Arf(hY0) = Arf(Y0) + 1, the discussion above

implies there must be some curve c ⊂ Y0, part of a GSB for Y0 and symplectically dual to a

curve w ⊂ ∂W of even winding number, and some curve d ⊂ S \W such that ι̂(c, d) and

ϕ(d) are both odd. Moreover, ι̂(hc, d) is also odd, and since algebraic intersection number

and winding number properties on a genus 0 surface depend only on how a curve separates

the surface, Lemma 6.7 ensures there is a d′ on S \W such that

(1) ι̂(gc, d′) is odd

(2) ϕ(d′) is odd

(3) The geometric intersection number of d′ with α is uniformly bounded.

Comparing with Formula (1), items (1) and (2) ensure that Td′hY0 has the same Arf invariant

(and boundary winding numbers) as Y0, hence Proposition 6.2 implies that β and Td′hβ are

in the same FMod(S, ϕ) orbit. Since the geometric intersection of hβ and α was uniformly

bounded, item (3) ensures that the geometric intersection of Td′hβ and α is as well. □

We can now prove K is quasi-isometric to E (Hϕ); thus E (Hϕ) is hierarchically hyperbolic.

Theorem 6.8. The map Θ: K → 2E (Hϕ) is a quasi-isometry.

Proof. Throughout the proof, we say a quantity is uniform if it depends only on the surface

S. Set E := E (Hϕ) and let θ = ι ◦Π ◦Ψ, so Θ(µ) = θ(P (µ)).

Our proof has three steps. First we prove that diam(Θ(µ)) is uniformly bounded for each

vertex µ ∈ K. Then we show that if µ and ν are joined by an edge of K then diam(Θ(µ)∪Θ(ν))

is also uniformly bounded. Together these show that Θ is coarsely Lipschitz. Finally, we

check that Θ is a coarse inverse to the inclusion map E → K.

Step 1: vertices have uniform diameter. If no component of S \ µ is an element of S,

then µ ∈ K and every vertex of P (µ) is obtained by adding fewer than ξ curves to µ. Hence

diam(P (µ)) ≤ 2ξ. Since θ = ι ◦Π ◦Ψ is coarsely Lipschitz, this implies θ(P (µ)) = Θ(µ) is



ADMISSIBLE CURVE GRAPHS AND THE BOUNDARY OF STRATA 41

uniformly bounded. Hence, we can assume there exist a component W of S \ µ that is in S,

i.e., is a witness for Cadm.

For our fixed µ ∈ K, let α ∈ P (µ). The multicurve α is the union of three distinct sets: µ,

αW = α ∩W , and α \ (µ ∪ αW ); see Figure 13. Set α′ := µ ∪ αW . We divide the remainder

of our proof into three cases based on the subsurface W .

W

µ

α \ (µ ∪ αW )

αW

α \ (µ ∪ αW )

Figure 13. The partition of α ∈ P (µ) into αW , µ and α \ (µ ∪ αW ).

Case 1: g(W ) ≥ 1. Since µ ∈ K, then by definition of K there must exist some 2-level

splitting δ ∈ D such that W is disjoint from δ. Since W has genus, no component of S \W
can be in S, thus α′ is a vertex of K that is joined by a path of length at most ξ to α. By

Lemma 4.7, there exists a curve c ⊂ W that cuts off a genus 1 subsurface and such that

c ∈ Ψ(α′). Thus, there is an admissible curve a ∈ Π ◦ Ψ(α′) contained in the subsurface

W . Since a is disjoint from δ, there is an edge of E from a vertex of θ(α′) to δ. Since θ is

coarsely Lipschitz, this implies θ(α) is uniformly close to δ for all α ∈ P (µ). This shows

Θ(µ) is uniformly bounded in this case.

Case 2: g(W ) = 0, and none of the components of S \W are in S. This implies that α′

is a vertex of P (µ). Moreover, α can be connected to α′ with at most ξ edges of K (one for

each curve removed to go from α to α′).

Since W ∈ S but not in S, there exists a multicurve in D that is disjoint from W . Each

component of S \W has genus zero by Lemma 3.2. Thus, we can apply Lemma 6.6 to find

some δ ∈ D and N > 0 depending only on S such that i(µ, δ) ≤ N and δ is disjoint from W ;

see Figure 14. Note that this choice depends only on µ, not on α ∈ P (µ).

Since δ is a 2-level splitting, S \ δ has a component Z ⊂ Y0(δ) with g(Z) ≥ 1. Since Z

contains an admissible curve and W ∈ S, we must have W ⊆ Z. By Lemma 6.7, there is a

uniform N ′ > 0 and a (possibly empty) multicurve m on Z \W such that m cuts Z \W into

three-holed spheres and i(m,µ) ≤ N ′; see Figure 14. Since m cuts Z \W into three-holed

spheres, αW ∪m ∪ ∂W ∪ δ is a vertex of K that intersects α′ at most N + N ′ times; see

Figure 14 for a schematic of the situation. Let δ′ = m∪ ∂W ∪ δ, so i(α′, αW ∪ δ′) ≤ N +N ′.

Thus dK(α
′, αW ∪ δ′) is bounded uniformly by some number determined by N +N ′.

As in the previous case, Lemma 4.7 says Ψ(αW ∪ δ′) will contain a curve c ⊂ Z that cuts

off a genus 1 subsurface of Z. Hence Ψ(αW ∪ δ′) will contain an admissible curve that is

disjoint from δ. This means θ(αW ∪ δ′) is a bounded diameter set that contains a vertex

that is adjacent to δ in E . Thus, since α is uniformly close to α′ which is in turn uniformly

close to αW ∪ δ′ and θ is coarsely Lipschitz, we conclude that θ(α) is uniformly close to δ.

Since δ depended only on µ, this implies diam(Θ(µ)) is uniformly bounded.

Case 3: g(W ) = 0 and S\W has a component V that is in S. By Lemma 3.2, there is only

one such component V . Let β be a second vertex of P (µ) alongside α. Recall αW = α ∩W
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W αW

Z δ

W αW

Z δ

m m
µ µ

Figure 14. A schematic of the curves δ and m relative to µ and W . The

actual intersection number between δ ∪m and µ is possibly higher, but still

uniformly bounded.

and similarly define αV , βW , and βV . Note that µ ∪ αW and µ ∪ βV are vertices of K that

we have already shown in the previous cases to have bounded diameter image under Θ. Now

observe

α ∈ P (µ ∪ αW ), αW ∪ µ ∪ βV ∈ P (µ ∪ αW ) ∩ P (µ ∪ βv), and β ∈ P (µ ∪ βV ).

Hence θ(α) is uniformly close to θ(αW ∪ µ ∪ βV ), which is in turn uniformly close to

θ(βW ∪ µ ∪ βV ). Thus Θ(µ) is uniformly bounded.

Step 2: edges have uniform diameter. If ν is obtained from µ by adding a curve, then

P (ν) ⊆ P (µ). Hence Θ(µ) ∪Θ(ν) = Θ(µ) which has bounded diameter by Step 1.

Otherwise, the edge from µ to ν corresponds to a flip move. Let x ∈ µ and x′ ∈ ν be such

that x is flipped to x′ and let Y be the component of S \ (µ \ x) containing x and x′. If

ξ(Y ) > 1, then i(x, y) = 0 and µ ∪ x′ is a vertex of K. Now µ ∪ x′ is joined by a “remove”

edge to both µ and ν (removing x′ gives µ and removing x gives ν), so the diameter bound

follows from the add/remove edge case. If ξ(Y ) = 1, then x and x′ intersect minimally on Y .

We can therefore find two pants decompositions α ∈ P (µ) and α′ ∈ P (ν) such that α differs

from α′ by flipping x to x′. Since α and α′ are joined by an edge in K, the sets θ(α) and

θ(α′) are uniformly close in E . Since α ∈ P (µ) and α′ ∈ P (ν), this implies that Θ(µ) ∪Θ(ν)

has uniformly bounded diameter.

Step 3: Θ is a coarse inverse of the inclusion. Let j : E → K be the 2-Lipschitz

inclusion map. Let µ ∈ j(E ), that is, µ is either an admissible curve or µ ∈ D. If µ is

admissible, then µ is a vertex of P (µ) and Π ◦ Ψ(µ) contains the admissible curve µ (as

in the proof of Proposition 4.11), so µ ∈ Θ(µ). If µ ∈ D, then there is some admissible

curve a contained in Y0(µ) that is in particular disjoint from µ. Since a ∪ µ and µ are joined

by an edge of K, this means Θ(a ∪ µ) and Θ(µ) are uniformly close in E by Step 2. Now

a ∈ Θ(a ∪ µ) because it is an admissible curve. Thus Θ(µ) is uniformly close to a, which is

joined to µ by an edge in E (Hϕ). □

Proof of Theorem B. By Corollary 6.5, E (Hϕ) is quasi-isometric to D(Hϕ) and C (Hϕ), and

by Theorem 6.8, it is quasi-isometric to the hierarchically hyperbolic model K. Thus all of

these graphs are hierarchically hyperbolic.

The proof that C (Hϕ) has a pair of disjoint witnesses is a slight variation of the one

appearing in the proof of Theorem A. Since the restriction of ϕ to the top level of any 2-level
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splitting must be of holomorphic type, the winding numbers of each curve of β must be

negative, and by homological coherence are all bounded by χ(S).

Now consider a multicurve α separating S into a pair of genus 0 subsurfaces W± such

that W+ contains no punctures and lies to the left of each curve of α. In order for W+ to

contain either an admissible curve or a curve of a 2-level splitting then there must be some

subset C of the curves of α such that

1− |C| ≤
∑
c∈C

ϕ(c) ≤ 1− |C| − χ(S).

Thus, by choosing an α with large enough winding numbers such that no subset sums of the

winding numbers of its curves are in this small range, we see that there can be no admissible

curves or 2-level splittings contained in W+ and hence W− is a witness. A similar argument

implies that for sufficiently large choices of the winding numbers of α, the subsurface W+

will also be a witness, and so K cannot be Gromov hyperbolic. □
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[CMZ22] M. Costantini, M. Möller, and J. Zachhuber, The Chern classes and Euler characteristic of the

moduli spaces of Abelian differentials, Forum Math. Pi 10 (2022), Paper No. e16, 55.

[CS22] A. Calderon and N. Salter, Framed mapping class groups and the monodromy of strata of abelian

differentials, J. Eur. Math. Soc. (2022), (to appear).

http://arxiv.org/abs/2412.16330
http://arxiv.org/abs/1910.13492
http://arxiv.org/abs/2212.05754


44 AARON CALDERON AND JACOB RUSSELL

[EMZ03] A. Eskin, H. Masur, and A. Zorich, Moduli spaces of abelian differentials: the principal boundary,

counting problems, and the Siegel-Veech constants, Publ. Math. Inst. Hautes Études Sci. (2003),

no. 97, 61–179.

[FI05] B. Farb and N. V. Ivanov, The Torelli geometry and its applications: research announcement,

Math. Res. Lett. 12 (2005), no. 2-3, 293–301. MR 2150885

[FM12] B. Farb and D. Margalit, A primer on mapping class groups, Princeton Mathematical Series,

vol. 49, Princeton University Press, Princeton, NJ, 2012.

[Har81] W. J. Harvey, Boundary structure of the modular group, pp. 245–252, Princeton University Press,

1981.

[Hen20] S. Hensel, A primer on handlebody groups, Handbook of group actions. V, Adv. Lect. Math.

(ALM), vol. 48, Int. Press, Somerville, MA, [2020] ©2020, pp. 143–177. MR 4237892

[HJ89] S. Humphries and D. Johnson, A generalization of winding number functions on surfaces, Proc.

London Math. Soc. 58 (1989), no. 2, 366–386.

[HK14] J. H. Hubbard and S. Koch, An analytic construction of the Deligne-Mumford compactification

of the moduli space of curves, J. Differential Geom. 98 (2014), no. 2, 261–313.

[Iva97] N. V. Ivanov, Automorphisms of complexes of curves and of Teichmüller spaces, Progress in

knot theory and related topics, Travaux en Cours, vol. 56, Hermann, Paris, 1997, pp. 113–120.

MR 1603146

[Kaw18] N. Kawazumi, The mapping class group orbits in the framings of compact surfaces, Q. J. Math.

69 (2018), no. 4, 1287–1302.

[KZ] M. Kontsevich and A. Zorich, Lyapunov exponents and Hodge theory, Preprint, 1–16.

[KZ03] , Connected components of the moduli spaces of Abelian differentials with prescribed

singularities, Invent. Math. 153 (2003), no. 3, 631–678.

[LM14] E. Looijenga and G. Mondello, The fine structure of the moduli space of abelian differentials in

genus 3, Geom. Dedicata 169 (2014), no. 1, 109–128.

[Mas86] H. Masur, Closed trajectories for quadratic differentials with an application to billiards, Duke

Math. J. 53 (1986), no. 2, 307–314.

[Min10] Y. N. Minsky, The classification of Kleinian surface groups. I. Models and bounds, Ann. of Math.

(2) 171 (2010), no. 1, 1–107. MR 2630036

[MM98] H. Masur and Y. N. Minsky, Geometry of the complex of curves I: Hyperbolicity, Invent. Math.

138 (1998), 103–149.

[MM00] , Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10

(2000), no. 4, 902–974. MR 1791145

[MS13] H. Masur and S. Schleimer, The geometry of the disk complex, J. Amer. Math. Soc. 26 (2013),

no. 1, 1–62. MR 2983005
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