
INDUCED QUASI-ISOMETRIES OF HYPERBOLIC SPACES, MARKOV

CHAINS, AND ACYLINDRICAL HYPERBOLICITY

ANTOINE GOLDSBOROUGH, MARK HAGEN, HARRY PETYT, AND ALESSANDRO SISTO

With an appendix by Jacob Russell

Abstract. We show that quasi-isometries of (well-behaved) hierarchically hyperbolic
groups descend to quasi-isometries of their maximal hyperbolic space. This has two ap-
plications, one relating to quasi-isometry invariance of acylindrical hyperbolicity, and the
other a linear progress result for Markov chains. The appendix, by Jacob Russell, contains
a partial converse under the (necessary) condition that the maximal hyperbolic space is
one-ended.
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1. Introduction

In this paper we consider groups G acting on hyperbolic spaces X such that every quasi-
isometry of G induces a quasi-isometry of X. We have two main motivations for considering
this property, one relating to quasi-isometry invariance of acylindrical hyperbolicity, and the
other to Markov chains. We discuss these separately below.

Examples of group actions with this induced quasi-isometry property include relatively
hyperbolic groups whose peripheral subgroups are not relatively hyperbolic: the space X is
the coned-off Cayley graph. This can be deduced from [BDM09, Thm 4.1], which implies
that quasi-isometries map peripheral subgroups into uniform neighbourhoods of peripheral
subgroups. Results of this type originated in [DS05].

Our first result, essentially a special case of Theorem 6.10, shows that many hierarchically
hyperbolic groups (HHGs) also fit into this framework. That is, their quasi-isometries descend
to their maximal hyperbolic space. We refer to the HHGs in question as well behaved in
this introduction—all naturally occurring HHGs are well behaved with the right choice of
structure. See Definition 6.9.

Theorem 1. Let pG,Sq be a well-behaved HHG, with maximal hyperbolic space CS, and
let πS : G Ñ CS be the associated projection. Every quasi-isometry f : G Ñ G induces a
quasi-isometry f̄ : CS Ñ CS such that πSf and f̄πS coarsely agree.
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In Appendix A, Jacob Russell proves a partial converse to Theorem 1. This is Theorem A.1,
which says that if CS is one-ended then all quasi-isometries of CS come from quasi-isometries
of G. This generalises a result of Rafi–Schleimer [RS11]; see the appendix for more discussion.

Theorem 1 is a direct consequence of Lemma 7.11 and Corollary 6.11, and provides many
examples of pairs pG,Xq where quasi-isometries of G induce quasi-isometries of X. Indeed,
the class of HHGs includes many: extensions and quotients of mapping class groups [BHS17a,
BHMS20, DDLS21, Rus21]; cubical groups, such as special groups [HS20, Che20]; 3–manifold
groups [HRSS22]; Artin groups [HMS21]; and combinations thereof [BR20a, BR20b] (in each
case, either the HHG structure in the literature is already well-behaved, or it is easily modified
to be so). In the case of mapping class groups, the fact that quasi-isometries descend to the
curve graph is a consequence of QI rigidity results from [BKMM12, Bow18], but Theorem
1 is a significantly more direct route to the conclusion in this case. For right-angled Artin
groups, the fact that quasi-isometries descend to the contact graph of the universal cover
of the Salvetti complex is in many cases a consequence of results of Huang [Hua17, Hua16]
showing that quasi-isometries descend to the extension graph, along with an observation of
Kim-Koberda relating this to the contact graph [KK14], but it appears to be new for right-
angled Artin groups where the outer automorphism group is sufficiently complicated.

Groups quasi-isometric to acylindrically hyperbolic groups. It is arguably the main
open question on acylindrically hyperbolic groups whether being acylindrically hyperbolic is a
quasi-isometry–invariant property of groups, as asked, for example, in [DGO17, Problem 9.1]
and [Osi18, Question 2.20]. In fact, it is not even known whether acylindrical hyperbolicity is
a commensurability invariant, and to highlight how little is known about this question, even
the following are unanswered:

‚ Let G be acylindrically hyperbolic and let H be of the form G¸Z{2. Is H necessarily
acylindrically hyperbolic?

‚ Can a torsion group be quasi-isometric to an acylindrically hyperbolic group?
‚ Let G be a group quasi-isometric to OutpFnq, with n ě 3. Is G necessarily acylindri-
cally hyperbolic?

It is quite possible that acylindrical hyperbolicity is not a quasi-isometry, or even com-
mensurability, invariant, making it quite interesting to obtain partial results in this direction.
We isolate properties leading to such partial results in our set-up, where we consider pairs
pG,Xq where quasi-isometries of the group G induce quasi-isometries of the hyperbolic space
X being acted on. The existence of induced quasi-isometries in itself is not sufficient, as
the hyperbolic space might be a point. However, it can be combined with some additional
restrictions into a short list of assumptions from which proving the next theorem is a fairly
routine matter. We state the assumptions on pG,Xq informally here, referring the reader to
Definition 7.1 for the precise version.

(1) The action of G on X is nonelementary and acylindrical.
(2) Quasi-isometries of G induce quasi-isometries of X.
(3) (Morse detectability) A geodesic in G is Morse if and only if it maps to a parametrised

quasi-geodesic in X.

We note that Morse detectability was abstracted in [RST22] (inspired by [ABD21, KL08]
among others) as a sufficient condition to show the Morse local-to-global property.

The following combines Corollary 7.5 and Theorem 7.12 (see Remark 7.13).

Theorem 2. Let G be a group satisfying Definition 7.1 (for example, let G be a well-behaved
HHG which is non-elementary and has unbounded maximal hyperbolic space). Then any group
quasi-isometric to G is acylindrically hyperbolic.
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Application to Markov chains. The study of Markov chains on groups as a “quasi-
isometry invariant” generalisation of random walks was initiated in [GS21]. Given quasi-
isometric groups, G and H, and a simple random walk on H, there is no meaningful notion
of a random walk on G induced by the one on H. Markov chains resolve this issue for non-
amenable groups since the push-forward (see Section 2 for definitions) of a tame Markov
chain by a bijective quasi-isometry is again a tame Markov chain, and quasi-isometries be-
tween non-amenable groups are bounded distance from bijective ones [Why99].

For a group G acting on a hyperbolic space X with basepoint x0, we say that a Markov
chain (or random walk) pwo

nqn in G makes linear progress with exponential decay in X if there

is a constant C ą 0 such that for all n and o P G we have PrdXpox0, w
o
nx0q ě n{Cs ě Ce´n{C .

In the case of random walks, establishing this property was done in [MT18] for weakly
hyperbolic groups. This property feeds into the proof of several results for random walks;
such as a Central Limit Theorem for the random walk [MS20], genericity of loxodromic
elements [MT18] or that random subgroups of weakly hyperbolic groups are free [TT15],
among many others.

In a similar spirit, the main result of [GS21] was establishing that tame Markov chains in
G make linear progress in the hyperbolic space X for many groups G acting on a hyperbolic
space X. Examples of groups admitting such an action on a hyperbolic space include (non-
elementary) relatively hyperbolic groups and acylindrically hyperbolic 3-manifold groups.
This enabled showing a Central Limit Theorem for random walks on groups quasi-isometric
to such groups, and this property is used in [GS23] to study random divergence (see below),
More generally, linear progress is intended as a crucial starting point for further study of
Markov chains.

One of the applications of Theorem 1 is in establishing linear progress in the case where
G is a hierarchically hyperbolic group and X is the maximal hyperbolic space in the HHG
structure of G. We work with a more restrictive class of Markov chains than in [GS21], as we
require a property that we call quasi-homogeneity, see Section 2. Importantly, this property is
satisfied by simple random walks and their push-forwards by bijective quasi-isometries. The
following is Theorem 5.1 (see Remark 7.13 for the verification of Assumption 2.1 for HHGs,
part of which is Theorem 6.10).

Theorem 3. Let G be a group acting on a hyperbolic space X and satisfying Assumption 2.1
(for example, let G be a well-behaved HHG which is non-elementary and has unbounded
maximal hyperbolic space CS). Then any tame, quasi-homogeneous Markov chain on G makes
linear progress with exponential decay in X.

One consequence is that, for a group G as in the theorem, the random divergence defined
in [GS23] (and chosen according to tame, quasi-homogeneous Markov chains) is the same
as the divergence of G. This means that generic points, chosen according to these Markov
chains, realise the worst-case scenario for divergence, see [GS23, Thm 1.1]. Note that if G
satisfies the stronger Definition 7.1, then using only Theorem 3 and [GS21, Thm 7.7] one
can deduce a Central Limit Theorem on groups quasi-isometric to G. This also follows from
Theorem 2 and [MS20].

Questions. Several questions arise. First, it would be interesting to find more classes of
group actions on hyperbolic spaces such that quasi-isometries of the group descend to quasi-
isometries of the space, in the sense of Theorem 1. For short, we will say in this case that
quasi-isometries descend.

Problem 1.1. Find more classes of groups admitting non-elementary actions on hyperbolic
spaces with the property that quasi-isometries descend.

We highlight two specific instances of Problem 1.1.
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Question 1.2. Do CAT(0) groups with rank-one elements admit actions on hyperbolic spaces
such that quasi-isometries descend? Do small-cancellation groups (of various flavours)?

A candidate hyperbolic space for CAT(0) groups could be the hyperbolic model from
[PSZ22], while for -cancellation groups (say for C 1p1{6q groups) it could be the space constructed in
[GS18]. For the CAT(0) question, any use of the model from [PSZ22] would have to use the geometric
group action on the CAT(0) space in an essential way in view of the example in [Ves23].

More strongly, it would be useful to identify more classes of groups such that Theorems 2 and
3 apply. But we would like to emphasise that variations of said theorems should be possible. For
instance, Theorem 2 does not apply to C 1p1{6q groups for the candidate space given above as the
action is not acylindrical in general, but a more general theorem might. Also, it is not known whether
the action of a CAT(0) group on the hyperbolic model is acylindrical. A positive answer to either of
the following questions might come from a more general version of Theorem 2.

Question 1.3. Let G be a group quasi-isometric to an acylindrically hyperbolic CAT(0) group. Is G
necessarily acylindrically hyperbolic?

Let G be a group quasi-isometric to an infinitely presented C 1p1{6q group. Is G necessarily acylin-
drically hyperbolic?

Of course, one can also ask about analogues of Theorem 3, whose conclusion we refer to as the
linear progress for Markov chains property.

Question 1.4. Do CAT(0) groups with rank-one elements admit non-elementary actions on hyper-
bolic spaces with the linear progress for Markov chains property? Do small-cancellation groups (of
various flavours)?

Finally, motivated by the appendix, it is natural to ask the following question.

Question 1.5. Which HHGs have an HHG structure with unbounded products and one-ended Ď–
maximal hyperbolic space?

Specifically, we believe that the answer is not known for extra-large type Artin groups and extensions
of lattice Veech groups, for instance. In fact, there is even no known classification of right-angled
Coxeter groups admitting an HHG structure as in the question. However, for right-angled Artin
groups, one can use [ABD21] together with the HHG structure with unbounded products and maximal
hyperbolic space a quasi-tree [BHS17b], to see that no HHG structure as in the question has one-ended
maximal hyperbolic space.

Outline of paper and proofs. Section 2 contains some general geometric group theory preliminaries,
as well as preliminaries on Markov chains. We also state the relevant assumptions on group actions
and Markov chains that we will need later.

The hardest theorem in this paper is Theorem 3, whose proof is contained in Sections 3–5. In
particular, in Sections 3 and 4, which contain the core of the geometric arguments involved, we will
show roughly that with positive probability the Markov chain has a bounded projection to the axis
of a fixed WPD element. This will be then used in Section 5 to check a criterion for linear progress
from [GS21].

The rough idea to show the bounded projection property is the following, and the reader might
want to look at Figure 1 for reference. If the property fails, then with overwhelming probability the
Markov chain creates a very large projection onto the axis. However, there is a positive probability
that the Markov chains starts off in a Morse direction different from the axis. If it does, it needs
to undo this second projection first, before creating the projection on the axis. We can also repeat
this argument with another Morse direction which has a very different Morse gauge. Therefore, the
Markov chain (from any basepoint due to quasi-homogeneity) has a large probability of creating a
large projection in two directions with very different Morse gauges. This is not yet a contradiction,
because we need to know that the two directions have different Morse gauges “close to the basepoint”
rather than, say, starting out in the same way and then diverging later. This is what the notion of
incompatible Morse rays from Section 3 is supposed to capture, and in that section we study it and
prove the required preliminary results.
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In Section 6 we show that quasi-isometries of well-behaved HHS descend to their maximal hyperbolic
space, and related results. There are two main ideas here. The first one is to use a result from [BHS21]
which says, roughly, that quasi-isometries between HHSs descend to quasi-isometries of “simpler”
HHSs (certain so-called factored spaces) obtained coning-off certain product regions. One can repeat
the procedure until the “simpler” HHSs are actually just hyperbolic spaces, but those will not in general
be the maximal hyperbolic spaces of the HHSs as there might be further (quasiconvex) subspaces to
cone-off to get there; this happens even for mapping class groups. The additional idea allows us to
recognise these subspaces, and roughly we show in Proposition 6.8 that two points are in the same
subspace to be coned-off if and only if their coarse fibres in the original HHS are “parallel”.

In Section 7 we show our results related to quasi-isometry invariance of acylindrical hyperbolicity.
The idea here is the following. If one has a group G acting on a hyperbolic space X with the
property that quasi-isometries descend, and if H is quasi-isometric to G, then H quasi-acts on G and
therefore on X. The quasi-action on X can be promoted to an action on a space Y quasi-isometric
to X, which is also hyperbolic. This action admits a loxodromic element due to the classification of
actions on hyperbolic spaces, and what is left to show is that any loxodromic is WPD. This comes
from acylindricity of the original action, which can be translated into a geometric property about
preimages of balls being geometrically separated as in [Sis16].

Finally, the appendix by Jacob Russell contains the result about quasi-isometries of the maximal
hyperbolic space of an HHG coming from quasi-isometries of the HHG, under suitable conditions.

Acknowledgements. We thank the organisers of the thematic programme on geometric group theory
at the Centre de Recherches Mathématiques, where some of the work on this project was done.
Goldsborough was supported by the EPSRC DTA studenship EP/V520044/1. Russell was supported
by NSF grant DMS-2103191. The authors of the non-appendix part of the paper thank Jacob Russell
for pointing out a subtlety involving the application of [ABD21, Thm. 3.7] and Abdul Zalloum for
interesting conversations. We are also grateful to the referee for numerous helpful comments.

2. Background and assumptions

To set notation, we recall some standard notions from geometric group theory. All hyperbolic
spaces considered in this paper will be geodesic.

2.1. Geometric group theory notions and definitions. A map f : Y Ñ X between metric
spaces is called a pλ, ϵq-quasi-isometric embedding, with λ ě 1, ϵ ě 0, if for all x, y P Y we have:
λ´1dY px, yq ´ ϵ ď dXpfpxq, fpyqq ď λdY px, yq ` ϵ. We say that f is a pλ, ϵq–quasi-isometry if, in
addition, for all x P X, there exists an element y P Y such that dXpfpyq, xq ď ϵ. If Y is a segment of
R, we call the image of f in X a pλ, ϵq-quasi-geodesic.

We will call a pλ, λq-quasi-geodesic a λ-quasi-geodesic, and similarly for quasi-isometric embeddings
and quasi-isometries. A subset Y of a geodesic metric space X is quasi-convex if there is a constant
C ě 0 such that all geodesics with endpoints in Y stay within the C-neighbourhood of Y . Further,
we say that a map f : X Ñ Y between metric spaces is R-coarsely Lipschitz if dY pfpxq, fpyqq ď

RdXpx, yq `R for all x, y P X.
Let M be a function r1,8q ˆ r0,8q Ñ r0,8q. We say a (quasi)-geodesic γ is M -Morse if any

pλ, ϵq-quasi-geodesic with endpoints on γ stays within the Mpλ, ϵq-neighbourhood of γ. We callM the
Morse gauge of γ. We can always assume thatM takes values in N. Note that a Morse quasi-geodesic
is quasi-convex.

If a group G acts on a hyperbolic metric space X (with basepoint x0), we say an element g is
loxodromic if the map Z Ñ X given by nÑ gnx0 is a quasi-isometric embedding. In this case, xgyx0
is quasi-convex in X. We say that g satisfies the weak proper discontinuity condition, or that g is
WPD, if for all κ ą 0 and x0 P X there exists N P N such that

#th P G| dXpx0, hx0q ă κ, dXpgNx0, hg
Nx0q ă κu ă 8.

Each loxodromic WPD element g is contained in a unique maximal elementary subgroup of G, denoted
Epgq and called the elementary closure of g, see [DGO17, Lemma 6.5].

Finally, all groups we consider are finitely generated, and whenever we consider a group G we
automatically fix a word metric dG on G coming from a finite generating set.
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2.2. Assumptions on the group action. Now that we recalled the relevant notions, we can state
our assumptions on the group action on a hyperbolic space that we will use for our result on linear
progress. The slightly different assumptions needed for the results on acylindrical hyperbolicity are
postponed to Section 7.

Let G be a group acting on a hyperbolic space X and fix x0 P X. We write ρ : G Ñ X for the
corresponding orbit map, though sometimes we shall suppress this.

Assumption 2.1. We assume the following.

(1) Some element of G acts on X as a loxodromic WPD.
(2) Quasi-isometries of G descend to X. This means that, for each ν there exists λ such that if

ϕ : G Ñ G is a ν–quasi-isometry, then there is some λ–quasi-isometry ϕ̄ : X Ñ X such that
dXpϕpgqx, ϕ̄pgxqq ď λ for all g P G and x P X.

(3) Partial (Morse) detectability. This means: for every Morse gauge M there exists λ such that
if γ Ă G is an M–Morse geodesic, then ργ Ă X is a λ–quasi-geodesic.

The notion of Morse detectability of G is [RST22, Def. 4.17], which is stated as an equivalence of
two properties, and the partial detectability hypothesis above is one of the two implications.

2.3. Projections. Given a group G acting on a hyperbolic space X, we will make use of X to define
’projection maps’ to subsets of G. The following definition makes this precise.

Definition 2.2. ([GS21, Definition 3.2]) Let G act on a hyperbolic space X, and fix x0 P X. For
A Ď G, an X-projection is a retraction πA : G Ñ A such that for all g P G the point πApgqx0 is a
closest point in Ax0 to gx0.

Given a subset B of a metric space X, we call a map π : X Ñ B a closest-point projection if
dXpx, πpxqq “ dXpx,Bq for all x P X. The following lemma is a well-known exercise in hyperbolic
geometry, see e.g. [GS21, Lemma 2.1].

Lemma 2.3. Let X be a δ-hyperbolic space. Let Q be a quasi-convex set and πQ : X Ñ Q a closest-
point projection. There exists a constant R ą 0 depending only on δ and the quasi-convexity constant
such that the following hold.

(1) πQ is R-coarsely Lipschitz.
(2) For all x, y P X with dXpπQpxq, πQpyqq ě R and for any geodesic rx, ys from x to y, there are

points m1,m2 P rx, ys such that dXpm1, πQpxqq ď R and dXpm2, πQpyqq ď R. Furthermore,
the subgeodesic of rx, ys from m1 to m2 lies in the R-neighbourhood of Q.

(3) If π1
Q : X Ñ Q is another closest-point projection, then dXpπQpxq, π

1
Qpxqq ď R for all x P X.

A particular consequence of the final part of Lemma 2.3 is that if a group G acts on a hyperbolic
space X, then whenever A Ă G has quasiconvex orbit and πA is an X–projection, we have a uniform
bound dXpπAppqx0, πAx0

ppx0qq ď R.
The following lemma is well known. Inequalities of this type are often referred to as “Behrstock

inequalities”.

Lemma 2.4. Let X be a δ-hyperbolic space and let Q1 ‰ Q2 be two quasi-convex sets and πQi
: X Ñ

Qi be closest point projections. There is a constant B only depending on δ and the quasi-convexity
constants of Q1 and Q2 such that for all x P X we have

dX pπQ1
pxq, πQ1

pQ2qq ą B ùñ dX pπQ2
pxq, πQ2

pQ1qq ď B.

The following lemma is an exercise in hyperbolic geometry and it states that in a hyperbolic space
quasi-isometries and closest-point projections are coarsely compatible.

Lemma 2.5. Let X be a δ-hyperbolic space and f : X Ñ X a λ-quasi-isometry. Let Q Ď X be a
quasi-convex subspace and let πQ : X Ñ Q be a closest point projection. Then there exists a constant
N , depending only on λ, δ, and the quasiconvexity constant, such that for all x P X,

dX
`

πfpQqpfpxqq, fpπQpxqq
˘

ď N.
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Notation 2.6. For a group G acting on a hyperbolic space with fixed basepoint x0 and corresponding
orbit map ρ, given a subset α Ď G (usually a quasi-geodesic), we will always implicitly fix an X-
projection πα : GÑ α. We also abbreviate the diameter of the union of two projections as measured
in X by

dαpx, yq “ diamX

´

ρ
`

παpxq Y παpyq
˘

¯

,

where x and y can be either points or subsets of G.

2.4. Markov chains. We refer the reader to [GS21] for more background information on Markov
chains, while here we describe the notion informally. A Markov chain on a group arises when transition
probabilities ppg, hq are assigned for all g, h P G. These encode the probability that the Markov chain
“jumps” from g to h in one step. The probability of going from g to h in n steps is a sum over
all possible trajectories, that is, sequences of jumps, of length n of executing that exact sequence of
jumps, and this is the product of the relevant transition probabilities.

We usually denote a Markov chain on a group by pw˚
nq, where w

o
n denotes the position of the Markov

chain starting at o after n steps, and we are usually interested in quantities such as Prwon “ gs, the
probability of getting from o to g in n steps.

The following notion of tameness was defined in [GS21].

Definition 2.7 (Tame). A Markov chain on G is tame if it satisfies the following:

(1) Bounded jumps: There exists a finite set S Ď G such that Prwg1 “ hs “ 0 if h R gS.
(2) Non-amenability: There exist A ą 0 and ρ ă 1 such that for all g, h P G and n ě 0 we have

Prwgn “ hs ď Aρn.
(3) Irreducibility: For each s P G there exist constants ϵs,Ks ą 0 such that for all g P G we have

Prwgk “ gss ě ϵs for some k ď Ks.

For a bijection ϕ : GÑ H and a Markov chain pw˚
nq on G, there is a natural push-forward Markov

chain on H, which we denote by ϕ#pw
˚
nq. This is the Markov chain such that P

“

ϕ#pw
o
nq “ h

‰

“

P
“

won “ ϕ´1phq
‰

for all h, o P H and n ě 0. To clarify, ϕ#pw
o
nq is the instance of the Markov chain

starting at ϕpoq.

Definition 2.8 (Quasi-homogeneous). A Markov chain pw˚
nq is quasi-homogeneous if it has the fol-

lowing property for some ν. For every p, q P G there is a bijective ν–quasi-isometry ϕ : G Ñ G with

ϕppq “ q and ϕ#pw
o
nq “ pw

ϕpoq
n q for all o P G.

Remark 2.9. A random walk driven by a measure whose support is bounded and generates the group
as a semi-group is a tame Markov chain, and moreover any push-forward of such a random walk by
a bijective quasi-isometry is a tame Markov chain by [GS21, Lemma 2.8]. Since any random walk is
group-invariant, it is readily seen that such a push-forward is in fact also quasi-homogeneous.

3. Incompatible Morse rays

In this section we consider a group G acting on a hyperbolic space X such that Assumption 2.1.(3)
holds, that is to say, Morse geodesics in G map to parametrised quasi-geodesics in X.

In particular, we are interested in a criterion to guarantee that two Morse rays in G travel in
genuinely distinct directions in X. The key definition to achieve this is the following, which roughly
describes a ray which, while being Morse, has an initial subgeodesic of controlled length which is “not
very Morse”.

Definition 3.1. Let Z be a metric space, let M : r1,8q ˆ r0,8q Ñ N be a Morse gauge, and let
κ, L ě 0. We say a Morse ray β : r0,8q Ñ Z is pM,κ,Lq-incompatible if there exists a pk, cq-quasi-
geodesic µ with endpoints on β|r0,Ls, such that there is a point p P µ with dpp, βq ąMpk, c`2κq`2κ.

The main result in this section is Lemma 3.5, guaranteeing the existence of incompatible rays. We
need two preliminary results. The first one says that, given a Morse ray γ and a quasi-geodesic ray
α, either α is contained in a controlled neighbourhood of γ, or α at some point starts diverging from
γ at a linear rate.
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Lemma 3.2 ([CM19], Corollary 4.3). Let α be a M -Morse quasigeodesic ray and let β be an pa, bq-
quasi-geodesic ray, both in some proper geodesic metric space Z. There exist κ1 “ κ1pM,a, bq and
κ2 “ κ2pκ1, a, bq such that the following holds. If dpαp0q, βq ď κ1 then there are two possibilities.

‚ The ray β is contained in the κ2-neighbourhood of α.
‚ There exists a last time T0 such that for all t P r0,8q we have

dpβptq, αq ě
1

2a
pt´ T0q ´ 2pb` κ1q.

We note that in [CM19] α is a geodesic ray, but since our α is Morse it lies within finite Hausdorff
distance of a geodesic ray.

The following result says that a geodesic triangle where two sides are Morse is thin.

Lemma 3.3. [Cor17, Lemma 2.2] For all Morse gauges M1,M2 there is a constant ∆ “ ∆pM1,M2q

such that every geodesic triangle where two of the sides are respectively M1- and M2-Morse is ∆-thin.

The following lemma states that an M -Morse ray and an M -incompatible Morse ray have bounded
projection onto each other. The constant dependencies are rather involved, but they are crucial for
the proof of the key Proposition 4.1. Recall the notation that the orbit map ρ : G Ñ X given by
g ÞÑ gx0 is K–Lipschitz.

Lemma 3.4. Suppose that G acts on a δ–hyperbolic space X and that Assumption 2.1.3 holds. For
every Morse gauge M and constant ν there exists κ “ κpM,νq such that for every Morse gauge M 1

and constant L there exists D “ DpM,ν,M 1, Lq such that the following holds.
Let α Ă G be an M -Morse ν-quasi-geodesic ray issuing from 1 P G. If β Ă G is an M 1-Morse ray

issuing from 1 P G that is pM,κ,Lq-incompatible, then

diamG pπαpβqq ď D and diamG pπβpαqq ď D.

Proof. Let κ1 and κ2 be the constants given by applying Lemma 3.2 to the M–Morse quasigeodesic α
and the geodesic β. According to Assumption 2.1.(3), there are λα “ λαpMq and λβ “ λβpM

1q such
that ρα Ă X is a λα–quasigeodesic and ρβ Ă X is a λβ–quasigeodesic. Let R “ Rpλαq be given by
applying Lemma 2.3 to ρα Ă X. and let ∆ “ ∆pM,M 1q be the constant from Lemma 3.3.

We first bound diamGpπαpβqq. For this, we shall consider sufficiently large constants

ϵ “ ϵpλα, λβ , δq and U “ UpM,M 1, R, ϵ,∆q.

From these, we define

D1 “ pU ` L`R` ϵ` 2∆` 2Mp1, 0q ` 6κ1qKλα ` λ2α.

Suppose that, contrary to the desired result, there is some v P β with the property that
dGp1, παpvqq ą D1. Since ρα is a λα–quasigeodesic, we have dXpx0, παpvqx0q ą KpU `L`R` ϵq. As
noted after Lemma 2.3, παpvqx0 differs from πραpvx0q by at most R.

Since ρβ is a λβ–quasigeodesic, the Morse lemma implies that every geodesic from x0 to vx0 stays
uniformly close to ρβ, so Lemma 2.3 provides a point u P β such that dpux0, πραpvx0qq ď ϵ, where
ϵ “ ϵpλα, λβ , δq is a uniform constant. Let us write u “ βptq. By the construction of u, we have

t´ U “ dGp1, uq ´ U ě
1

K
dXpx0, ux0q ´ U

ě
1

K

`

dXpx0, παpvqx0q ´ dXpπαpvqx0, πραpvx0qq ´ dXpπραpvx0q, ux0q
˘

´ U

ą
1

K
pKpU ` L`R` ϵ` 2∆` 2Mp1, 0q ` 6κ1q ´R´ ϵq ´ U

“ L` 2∆` 2Mp1, 0q ` 6κ1 ą L.

Claim 1. We have βr0, t´ U s Ă NG
∆`Mp1,0qpαq.

Proof. Consider a geodesic r1, παpvqs in G. Because α is M–Morse, r1, παpvqs lies in the Mp1, 0q–
neighbourhood of α, and isM`–Morse, where M` “M `Mp1, 0q. Now consider a geodesic ru, παpvqs
in G. The geodesic triangle formed by r1, παpvqs, rπαpvq, us, and βr0, ts has two sides that are M 1–
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and M`–Morse, so, according to [Cor17, Lem. 2.3], the geodesic ru, παpvqs is uniformly Morse. As-
sumption 2.1.(3) then tells us that ρru, παpvqs is a λ

1–quasigeodesic, where λ1 “ λ1pM 1,M`q. Since u
was constructed so that dXpux0, παpvqx0q ď ϵ ` R, this implies that dGpu, παpvqq ď λ1pR ` ϵq ` λ1.
Ensure that U is larger than this bound by at least ∆.

From Lemma 3.3, we know that the above geodesic triangle is ∆–thin. Thus, for s ă t ´ U , the
point βpsq must be ∆–close to r1, παpvqs. In turn, this means that it is p∆`Mp1, 0qq–close to α. ♢

We write t1 “ t´ U ´ 2∆´ 2Mp1, 0q ´ 6κ1. Note that by the above computation, t1 ą L.

Claim 2. We have βr0, t1s Ď NG
κ2
pαq.

Proof. If not, then by Lemma 3.2, there exists T0 ď t1 such that for all s ě 0 we have dGpβpsq, αq ě
1
2 ps´ T0q ´ 2κ1. In particular, for s “ t´ U , Claim 1 leads to

∆`Mp1, 0q ě dGpβpt´ U,αqq ě
1

2
pt´ U ´ T0q ´ 2κ1

ě
1

2
pt´ U ´ t1q ´ 2κ1 ě ∆`Mp1, 0q ` κ1,

a contradiction. ♢
Since α is a ν–quasigeodesic and β is a geodesic, it follows from Claim 2 that there is an initial

subsegment α1 of α that stays κ–close to βr0, t1s, where κ is a uniform constant depending only on
κ2 and ν. That is, κ “ κpM,νq. In other words, the Hausdorff-distance between α1 and βr0, t1s is at
most κ.

Since t1 ą L, the fact that β is pM,κ,Lq–incompatible means that there is some pk, cq–quasigeodesic
µ with endpoints µ´ and µ` on βr0, t1s such that there is some p P µ with dGpp, βq ąMpk, c`2κq`2κ.
Let y´ and y` be closest points in α to µ´ and µ`, respectively. We have dpy˘, µ˘q ď κ. It follows
that the path

ry´, µ´s Y µY rµ`, y`s

is a pk, c`2κq–quasigeodesic with endpoints on theM–Morse quasigeodesic α1. But this path contains
p P µ, which is at a distance of more than Mpk, c ` 2κq ` 2κ from βr0, t1s. Since βr0, t1s and α1 are
at Hausdorff-distance at most κ, this contradicts the fact that α is M–Morse. We conclude from this
contradiction that dGp1, παpvqq ď D1 for all v P β.

We now turn to the other inequality. Given a point v P α, consider w “ πβpvq and y “ παpwq. We
aim to bound dGp1, wq. From the above, we know that dGp1, yq ď D1.

Letting Rβ be given by applying Lemma 2.3 to ρβ, we have dXpwx0, πρβpvx0qq ď Rβ and
dXpyx0, πραpwx0qq ď R by the comment after that lemma. Since ρα and ρβ are uniform quasi-
geodesics in the δ–hyperbolic space X issuing from the common point x0, there is a uniform bound on
dXpπρβpvx0q, πραπρβpvx0qq. Lemma 2.3 also states that πρα is R–coarsely Lipschitz, so by combining
these bounds we obtain a uniform bound on dXpwx0, yx0q.

Because the restrictions of α and β between 1 and y and between 1 and w are, respectively,
M– and M 1–Morse, [Cor17, Lem. 2.3] tells us that a geodesic rw, ys in G is uniformly Morse. By
Assumption 2.1.(3), it follows that ρrw, ys is a uniform quasigeodesic, and hence dGpw, yq is bounded
by some uniform constant ϵ1. We can now compute

dGp1, wq ď dGp1, yq ` dGpy, wq ď D1 ` ϵ1. □

We now show the existence of an pM,κ,Lq-incompatible ray, which combined with Lemma 3.4 will
be enough to show that we can find two Morse rays that diverge after a short distance.

Lemma 3.5. Let G be a non-hyperbolic group acting on a hyperbolic space X such that Assumption
2.1.(3) holds. For all Morse gauges M and constants κ, there exist M 1, L such that there is an
M 1-Morse ray which is pM,κ,Lq-incompatible.

Proof. Given M and κ, let M1pk, cq “ Mpk, c ` 2κq ` 2κ. Since G is not hyperbolic, its Morse
boundary is not compact [CD19, Cor. 1.17], so there must be some Morse ray β that is not M1-Morse.
Let M 1 be the Morse gauge of β. As β is not M1-Morse, there are some k, c ą 0 such that there is a
pk, cq-quasi-geodesic µ with endpoints on β that contains a point p with dGpp, βq ą M1pk, cq. Let L
be such that the endpoints of µ lie in βr0, Ls. By definition, β is pM,κ,Lq–incompatible. □
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Corollary 3.6. Let G be a non-hyperbolic group acting on a hyperbolic space X such that Assumption
2.1.(3) holds. For every Morse gauge M there is a Morse gauge M 1, a constant D ą 0, and an M 1–
Morse ray β Ă G, issuing from 1 P G, such that if α is an M -Morse ray issuing from 1 P G then
diam pπαpβqq ď D and diam pπβpαqq ď D.

Proof. Let κ “ κpMq be given by Lemma 3.4. By Lemma 3.5, there are M 1 and L such that there is
an M 1–Morse ray β that is pM,κ,Lq–incompatible. Now apply Lemma 3.4. □

4. Bounded projections to axes

The goal of this section is to prove Proposition 4.1, which is an important part of the proof of
Theorem 5.1 on linear progress in Section 5. It asserts that there is a definite probability that tame,
quasi-homogeneous Markov chains have bounded projection to any given loxodromic WPD.

Proposition 4.1. Let G be a non-hyperbolic group satisfying Assumption 2.1 and let pw˚
nq be a tame,

quasi-homogeneous Markov chain. Fix a loxodromic WPD element g P G. There exist C, ϵ ą 0 such
that for all p, h P G and for all n P N, we have

P
”

dhEpgqpp, w
p
nq ď C

ı

ą ϵ.

Recall from Section 2.1 that Epgq is the elementary closure of g. See Notation 2.6 for the definition
of dhEpgq. For ease of notation, we write γ “ Epgq for the remainder of this section. Let us write ν for
the quasi-homogeneity constant of pw˚

nq. Recall that ρ : GÑ X is the orbit map with basepoint x0.

Lemma 4.2. For each Morse gauge M and ν ě 1, there is a constant A ą 0 such that the following
holds for all C ą 1. Let ξ Ă G be an M–Morse ray, and let p1 P ξ, p P G. If ϕ : GÑ G is a bijective
ν–quasi-isometry with ϕpp1q “ p, then

dϕξpp, ϕphqq ą
1

A
dξpp

1, hq ´A

for all h P G. Moreover,

P
”

dϕξpp, ϕ#pw
p1

n qq ą C
ı

ě P
”

dξpp
1, wp

1

n q ą ApC `Aq
ı

.

Proof. The first statement is essentially a consequence of Assumption 2.1.(2), that ϕ descends to a
quasi-isometry of X, and Lemma 2.5, which states that “the translate (by a quasiisometry) of the
projection of a point to a quasigeodesic coarsely agrees with the projection of the translate (of the
point) to the translate (of the quasigeodesic)”. The nature of X–projections is such that a careful
argument requires additional small errors. We now give details.

Let λ ě 1, given by Assumption 2.1, be such that ξx0 and ϕpξqx0 are λ-quasi-geodesics. As noted
after Lemma 2.3, if Y Ă G has λ–quasiconvex orbit then there is a uniform constant R such that the
maps ρπY and πY x0ρ differ by at most R. Thus

dϕξpp, ϕphqq ě dXpπϕpξqx0
ppx0q, πϕpξqx0

pϕphqx0qq ´ 2R.

According to Assumption 2.1.(2), the maps ρϕ and ϕ̄ρ differ by at most λ, so there is a uniform
constant R1 such that

dϕξpp, ϕphqq ě dX
`

πϕ̄pξx0q
ppx0q, πϕ̄pξx0q

pϕ̄phx0qq
˘

´ 2R1.

Using Lemma 2.5, there is now a uniform constant N such that

dϕξpp, ϕphqq ě dX
`

ϕ̄πξx0
pϕ̄´1ppx0qq, ϕ̄πξx0

phx0q
˘

´ 2R1 ´ 2N.

As ρϕ and ϕ̄ρ coarsely agree, ϕ̄´1ppx0q is uniformly close to p1x0, because ϕpp
1q “ p. Also note that, by

Lemma 2.3, the map πξx0
is uniformly coarsely Lipschitz. Hence the fact that ϕ̄ is a λ–quasi-isometry

means that there is a uniform constant R2 such that

dϕξpp, ϕphqq ě
1

λ
dXpπξx0

pp1x0q, πξx0
phx0qq ´R2.

To complete the proof of the first statement, observe that since ρπξ and πξx0
ρ differ by at most R,

we have
dXpπξx0pp

1x0q, πξx0phx0qq ě dξpp
1, hq ´ 2R.
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For the second statement, let C ą 1. By the first statement, any h P G with dξpp
1, hq ą ApC `Aq

also satisfies dϕξpp, ϕphqq ą C. We can therefore use quasi-homogeneity and the fact that ϕ is a
bijection to compute

P
“

dξpp
1, wp

1

n q ą ApC `Aq
‰

“
ÿ

dξpp1,hqąApC`Aq

P
“

wp
1

n “ h
‰

ď
ÿ

dϕξpp,ϕphqqąC

P
“

wp
1

n “ h
‰

“
ÿ

dϕξpp,h1qąC

P
“

wp
1

n “ ϕ´1ph1q
‰

“ P
“

dϕξpp, ϕ#pw
p1

n qq ą C
‰

. □

The following lemma says that a tame Markov chain has a (small but) positive probability of
reaching a given point at distance d within a number of steps linear in d.

Lemma 4.3 ([GS21, Lemma 2.9]). If pw˚
nq is a tame Markov chain on a finitely generated group G,

then there are constants U, ϵ0 ą 0 such that the following holds. For each p, q P G with dGpp, qq “ d
there exists t ď dU such that

Prwqt “ ps ě ϵd0.

As a final preliminary lemma, the following will allow us to “pivot away” certain quasi-geodesics
in X from a given translate hργ of ργ “ Epgqx0. The lemma is inspired by [MS20, Lemma 9.5] (but
the proof is different and simpler).

Lemma 4.4. For all θ there exist s, E such that the following holds. Given a θ-quasi-geodesic α Ă X
from px0 that passes through qx0, and given h P G, there exists q1 P G with dGpp, q

1q ď s such that

dhργpq
1q´1α, px0q ď E and dq1q´1αphργ, q

1x0q ď E.

Proof. To simplify notation, let us write α1 “ pq´1α. The desired element q1 P G will be of the form
q1 “ pf , where dGp1, fq ď s. We shall then have q1q´1α “ pfp´1α1.

Fix any two loxodromic WPD elements g1, g2 P G such that Epg1q, Epg2q, and Epgq “ γ are
pairwise distinct, the existence of which is given by the arguments in [BF02, Proposition 6] (see also

[DGO17, Corollary 6.12]). Observe that all three of these contain 1 P G. We shall choose f “ gji for
some i and some bounded j.

At most one direction of Epgiqx0 can have large coarse intersection with the initial subsegment
of p´1α1 from q´1px0 to x0, so after inverting the gi, we may assume that the positive direction
has small coarse intersection with it. Write γi for this positive direction of Epgiq. There is some
constant C0 such that for any k, k1 P G, both πkργpk

1ργiq and πk1ργipkργq have diameter at most C0;
see [AMS16, Thm 3.9], for instance (said reference gives geometric separation, which is equivalent to
bounded projections). The conclusion of Lemma 2.4 (the Behrstock inequality) therefore holds, with
some constant B, for all distinct pairs of translates of ργ, ργ1, and ργ2.

We now show that there exists C1 such that a least one of the πpργipα
1q has diameter at most C1.

If this were not the case, then there would exist x1, x2 P α1 such that dpργippx0, xiq were large. By
Lemma 2.3, we then also have that dXppx0, xiq is large. Because the pργi have small coarse intersection
with the initial subsegment of α1 between pq´1px0 and px0, we can relabel so that x1 lies between px0
and x2. Because the conclusion of Lemma 2.4 holds for pργ1 and pργ2, the set γ1p “ pργ1 Y pργ2 is
quasiconvex. Lemma 2.3 therefore tells us that any geodesic from x1 to x2 must pass uniformly close
to px0. By the Morse lemma, this contradicts the fact that α1 is a quasigeodesic.

After relabelling, we therefore have that diamXpπpργ1pα
1qq ď C1. Because pg1p

´1 acts on pEpg1qx0
with positive translation length independently of α, there is some uniformly bounded j such that
the set πpργ1ppg

j
1p

´1α1q “ pgj1p
´1πpργ1pα

1q lies at distance greater than B from πpργ1phργq. Setting

q1 “ pgj1 (i.e. f “ gj1), the desired inequalities follow from the Behrstock inequality, Lemma 2.4.
□

We are now ready to prove the main proposition. Before doing so, we fix various constants and
Morse gauges. The dependencies are rather delicate, so we have to be quite careful here. The reader
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may prefer to skip this and refer back when checking that the various constants and Morse gauges
have the claimed properties.

Constants and Morse gauges. We fix the following.

‚ M0 is such that G contains an M0–Morse ray (Assumption 2.1.(1)).
‚ ν is the quasi-homogeneity constant (Definition 2.8).
‚ M is the minimal Morse gauge such that whenever ϕ, ψ are bijective ν–quasi-isometries of G,
any M0–Morse ray gets mapped by ϕ´1ψ to an M–Morse ray.

‚ M 1 and D are given by applying Corollary 3.6 to the gauge M .
‚ A is given by applying Lemma 4.2 to the gauge maxtM0,M,M 1u.
‚ U and ϵ0 are as in Lemma 4.3.
‚ θ is such that the X–orbit of any maxtM0,M,M 1u–Morse geodesic in G is a θ–quasiconvex θ
quasi-geodesic (Assumption 2.1.(3)).

‚ s and E are given by applying Lemma 4.4 to θ.
‚ R and B are given by applying Lemmas 2.3 and 2.4, respectively, with quasi-convexity con-
stant θ.

‚ C1 “ ApB `A`D ` 1q and C2 “ ApC1 `Aq.
‚ d “ C2 ` θpB ` E ` 2R` θq.
‚ J ą 0 is a constant such that for any h, p P G, consecutive points in pπhγw

p
nq have distance

at most J . This exists by tameness of the Markov chain and Lemma 2.3.
‚ C “ d` JUpd` sq.

Proof of Proposition 4.1. For a contradiction, assume that Proposition 4.1 does not hold. Hence there
exist p, h P G and n P N such that:

(1) P
”

dhγpp, w
p
nq ď C

ı

ď
1

3
ϵd`s0 ,

where C is as above. Let β be an M 1-Morse ray issuing from p that satisfies the conclusion of
Corollary 3.6, and let α be an M0-Morse ray issuing from p.

hEpgq

p

πhEpgqpw
p
nq

wpn

πβpw
p
nq

πhEpgqppq

παpw
p
nq

ě C

Figure 1. For a contradiction, we assume that with overwhelming probability
the Markov chain creates a large projection on hEpgq. The dotted line is meant
to represent the sample path of the Markov chain and α, β are the two Morse
rays with very different Morse gauges.



INDUCED QUASI-ISOMETRIES 13

The main ingredient in producing a contradiction is the following claim, which states that if (1)
holds then in a definite number of steps, the Markov chain pwpnq simultaneously travels a long way
along two Morse rays that are in very different directions.

Claim. There exists a natural number m such that there are bijective ν–quasi-isometries ϕα, ϕβ : GÑ

G with ϕαppq “ ϕβppq “ p such that

P
“

dϕααpp, w
p
mq ą C1

‰

ě
2

3
and P

“

dϕββpp, w
p
mq ą C1

‰

ě
2

3
.

Proof. We first fix the value of m to be considered. Let q P β have dGpp, qq “ d, where d is as above.
According to Lemma 4.4, there is some q1 P G, with dGpp, q

1q ď s, such that diamXpπhργpq
1q´1ρβqq ď

E. Let p1 “ q1q´1p, so that dGpp
1, q1q “ dpp, qq “ d.

Because dGpp, p
1q ď d` s, Lemma 4.3 tells us that there is some tβ ď pd` sqU such that Prwptβ “

p1s ě ϵd`s0 . An analogous construction yields a corresponding number tα ď pd ` sqU . Observe that,
by (1) and the choice of J ,

P
”

dhγpp, w
p
n`tβ´tα

q ď C ´ JUpd` sq “ d
ı

ď
1

3
ϵd`s0 .

Set m “ n´ tα. Let us write n̂ “ n` tβ ´ tα and t “ tβ . We have m “ n̂´ t.
The above probability that dhγpp, w

p
n̂q is at most d is bounded below by the probability of the

Markov chain going to p1 in exactly t steps and then making little distance along hγ for a further n̂´ t
steps. This gives us

ϵ ě P
”

wpt “ p1
ı

¨ P
”

dhγpp, w
p1

n̂´tq ď d
ı

ě ϵd`s0 P
”

dhγpp, w
p1

n̂´tq ď d
ı

,

from which we deduce that Prdhγpp, wp
1

n̂´tq ď ds ď 1
3 . Since m “ n̂´ t, we have established that

P
”

dhγpp, w
p1

mq ą d
ı

ě
2

3
.

Now let us consider an arbitrary point k P G satisfying dhγpp, kq ą d. Since hργ is a θ–quasigeodesic,

Lemma 2.3 tells us that dhργppx0, kx0q ą
d
θ ´ θ´R. By the choice of q1 via Lemma 4.4, we therefore

have

dhργpkx0, q
1q´1ρβq ą

d

θ
´ θ ´R´ E ą B.

By the Behrstock inequality, Lemma 2.4, we have dq1q´1ρβphργ, kx0q ď B. Now, using Lemmas 4.4
and 2.3, the fact that q1q´1ρβ is a θ–quasigeodesic means that this leads to

dq1q´1βpp
1, kq ě dq1q´1βpp

1, q1q ´ dq1q´1βpq
1, kq

ě d´ θpdq1q´1ρβpq
1x0, kx0q ` 2R` θq

ě d´ θpB ` E ` 2R` θq “ C2.

In particular, our previous estimate on the Markov chain implies that

P
”

dq1q´1βpp
1, wp

1

mq ą C2

ı

ě
2

3
.

By quasi-homogeneity, Definition 2.8, there is a bijective ν–quasiisometry ϕ : GÑ G that respects
the Markov chain and has ϕpp1q “ p. Applying Lemma 4.2 with ξ “ q1q´1β, we therefore have

P
”

dϕq1q´1βpp, w
p
mq ą C1

ı

“ P
”

dϕq1q´1βpp, ϕ#pw
p1

mqq ą C1

ı

ě P
”

dq1q´1βpp
1, wp

1

mq ą ApC1 `Aq
ı

ě P
”

dq1q´1βpp
1, wp

1

mq ą C2

ı

ě
2

3
.

The statement follows by letting ϕβ be the quasiisometry ϕq1q´1 of X, which depends on β because
q and q1 do.

♢
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In view of the claim, there must be some q P G such that dϕαpp, qq ą C1 and dϕβpp, qq ą C1. Let

α1 “ ϕ´1
β ϕαα and q1 “ ϕ´1

β pqq. Because ϕβppq “ p, the first part of Lemma 4.2 tells us that

dα1pp, q1q ą
1

A
dϕααpp, qq ´A ą

C1

A
´A.

The choice of β via Corollary 3.6 means that diampπαpβqq ď D, so since p P β, we have dα1pq1, βq ą B
by definition of C1. Similarly, dβpq

1, αq ą B. This contradicts the Behrstock inequality, Lemma 2.4.
□

5. Linear progress

Our main theorem on Markov chains is the following.

Theorem 5.1. Let G be a group acting on a hyperbolic space X with basepoint x0 and satisfying
Assumption 2.1. If pw˚

nqn is a tame, quasi-homogeneous Markov chain on G, then there exists a
constant C such that for all o P G and n P N we have:

P
”

dXpox0, w
o
nx0q ě n{C

‰

ě 1´ Ce´n{C .

Recall that a Markov chain satisfying the conclusion of the above theorem is said to make linear
progress with exponential decay in the hyperbolic space X.

In this section, we prove Theorem 5.1. The main technical result that we establish in order to do
this is Proposition 5.6 below, the conclusion of which is the same as that of [GS21, Proposition 5.1].
Theorem 5.1 is a consequence of this by the following.

Theorem 5.2 ([GS21, §6]). Let G be a group acting on a hyperbolic space X. Every tame Markov
chain on G satisfying the conclusion of [GS21, Prop. 5.1] makes linear progress in X with exponential
decay.

Thus, in order to prove Theorem 5.1 it suffices to establish Proposition 5.6, because Proposition 4.1
shows that, under the assumptions of Theorem 5.1, the hypotheses of Proposition 5.6 are met. Before
we can state Proposition 5.6, we need to introduce some notation.

5.1. Notation and preliminary lemmas. Fix a group G acting on a hyperbolic space X, and a
basepoint x0 P X. We extend the notation used in Notation 2.6 with the following lemma, which
states that, in the case of an axis of a WPD element, one can perturb closest-point projections to
make them satisfy a stronger version of the Behrstock inequality.

Lemma 5.3 ([BBFS20, Thm 4.1]). Let g P G be a loxodromic WPD. Writing γ “ Epgq, there is a
constant B and a g-equivariant map πγ : GÑ Ppγq with the following property, where Ppγq is the set
of all subsets of γ. For all x P G and distinct translates hγ ‰ h1γ,

if dXpπhγpxq, πhγph
1γqq ą B, then πh1γpxq “ πh1γphγq,

where we define πkγpzq “ kπγpk
´1zq. Moreover, for all x P G the Hausdorff distance between πγpxq

and any X-projection of x to xgy is bounded by B.

In view of this lemma and with an abuse of notation, for h, x, y P G we will denote

dhγpx, yq “ diampπhγpxq Y πhγpyqq,

where πhγ is the equivariant map of Lemma 5.3.
The following definition captures the set of cosets where two given elements have far away projec-

tions.

Definition 5.4 ([GS21, Def. 3.11]). Let g be a loxodromic WPD element of a group G acting on a
hyperbolic space. Given x, y P G and T ě 0, we write

HT px, yq “ thEpgq : dhEpgqpx, yq ě T u.

With g fixed, let o, p, x, y P G. We define the following “distance formula” expression:
ÿ

HT po,pq

rx, ys –
ÿ

hEpgq PHT po,pq
πhEpgqpxq‰πhEpgqpyq

dhEpgqpx, yq.
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Remark 5.5 ([GS21, Rem. 3.12]). Since projection distances satisfy the triangle inequality, so do
these distance-formula expressions. That is, for all o, p, x, y, z, P G we have

ÿ

HT po,pq

rx, zs ď
ÿ

HT po,pq

rx, ys `
ÿ

HT po,pq

ry, zs.

We can now state the main result of this section, the conclusion of which is the same as that of
[GS21, Prop. 5.1]. As discussed, Theorem 5.1 follows from it, Theorem 5.2, and Proposition 4.1.

Proposition 5.6. Let G be a group acting on a hyperbolic space X and fix a basepoint x0 P X.
Suppose that the conclusion of Proposition 4.1 holds for some loxodromic WPD g P G. There exist
T0, C

1 such that the following holds for each T ě T0. For all o, p P G, n P N, and t ą 0,

P
”

Dr ď n :
ÿ

HT po,pq

rp, wpr s ě t
ı

ď 2e´t{C
1

.

Before proceeding to the proof, we collect two more preliminary lemmas that are needed in order
to choose the constant T0.

Lemma 5.7 ([BBFS20, Thm 4.1], [BBFS20, Thm 3.3(G)]). Fix a loxodromic WPD element g P G,
and let o, p P G. Write γ “ Epgq. For any sufficiently large T , the set HT po, pq Y toγ, pγu is totally
ordered with least element oγ and greatest element pγ. The order is given by hγ ă h1γ if any one of
the following equivalent conditions holds, where B is as in Lemma 5.3.

‚ dhγpo, h
1γq ą B.

‚ πh1γpoq “ πh1γphγq.
‚ dh1γpp, hγq ą B.
‚ πhγppq “ πhγph

1γq.

Lemma 5.8 ([GS21, Lem. 3.14]). Let g P G be a loxodromic WPD and let x0 P X. For all sufficiently
large T , we have the following for all a, b P G:

dXpax0, bx0q ě
1

2

ÿ

HT pa,bq

ra, bs.

5.2. Proof of Proposition 5.6. Fix an element g P G satisfying the conclusion of Proposition 4.1.
Throughout the proof, we write γ “ Epgq.

Constants. We fix the following quantities.

‚ B is given by Lemma 5.3.
‚ T 1 ě 10B is sufficiently large that the conclusions of Lemmas 5.7 and 5.8 hold.
‚ L “ LpT 1q is given by [GS21, Lem. 3.16].
‚ J is such that for any p, h P G, consecutive points of both pwpnx0q and pπhγw

p
nq have distance

at most J . This exists by tameness, Definition 2.7.
‚ C and ϵ are as in Proposition 4.1. We can and will assume that C ą B.
‚ T0 “ maxtT 1, 2pC `B ` J ` 1qu.
‚ D “ T0 ` LJ ` L` C.

Fix o, p, q P G and n P N. For ease of notation, given t ą 0 we define

gptq “ P
”

Dr ď n :
ÿ

HT po,pq

rp, wpr s ě t
ı

, and fptq “ P
”

ÿ

HT po,pq

rp, wpns ě t
ı

.

Thus our goal is to find a constant C2, independent of t, such that gptq ď C2e
´t{C2 . Fix T ě T0.

The main technical step in our proof of Proposition 5.6 is the following, which relates the probability
functions fptq and gptq.

Lemma 5.9. For all t ě D, we have ϵgptq ď fpt´Dq ´ fpt`Dq.

Proof. For ease of notation, set D1 “ LJ `L` 2C ` 2B. For t ě D, let At denote the set of all x P G
such that

ř

HT po,pqrp, xs ě t´D1 and dhγpp, xq ě 2C and dhγpo, xq ě 2C, where hγ P HT po, pq is the

minimal coset contributing to the sum
ř

HT po,pqrp, xs, with respect to the linear order from Lemma

5.7 for HT po, pq. For k ď n and x P G, let At
k,x denote the event
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“We have wpk “ x and x P At and @i ă k : wpi R At.”

That is, At
k,x is the event that wpk “ x is the first time that wpk P At.

Claim 3. For any k ď n, x P G, and t ě D, we have

P

»

–

ÿ

HT po,pq

rp, wpns P rt´D, t`Ds

ˇ

ˇ

ˇ
At
k,x

fi

fl ě P
“

dh1γpx,w
x
n´kq ď C

‰

.

Proof of Claim. We fix k ď n, x P G and t ě D and assume that At
k,x holds. Let hγ be the minimal

coset, with respect to the linear order from Lemma 5.7 for the set HT po, pq that contributes to the
sum

ř

HT po,pqrp, w
p
ks.

Therefore

(2) πhγppq ‰ πhγpw
p
kq and πh1γppq “ πh1γpw

p
kq @h1γ ă hγ.

By the Behrstock inequality (Lemma 5.3), any point y P G with dhγpp, yq ą B has πh2γpyq “

πh2γphγq “ πh2γpoq for all h2γ ą hγ. Similarly, any point y P G with dhγpo, yq ą B has
πh1γpyq “ πh1γphγq “ πh1γppq for all h1γ ă hγ (and in HT po, pq). Hence, if dhγpw

p
k, w

p
nq ď C, then

ř

HT po,pqrw
p
k, w

p
ns “ dhγpw

p
k, w

p
nq ď C as wpk P At. Hence if At

k,x holds and if dhγpw
p
k, w

p
nq ď C then

ÿ

HT po,pq

rp, wpns ě
ÿ

HT po,pq

rp, wpk
‰

´
ÿ

HT po,pq

rwpk, w
p
n

‰

ě t´D1 ´ C ě t´D,

by the triangle inequality (Remark 5.5).
Now, by the triangular inequality (Remark 5.5) we also have that if dhγpw

p
k, w

p
nq ď C, then

ÿ

HT po,pq

rp, wpns ď
ÿ

HT po,pq

rp, wpks ` C.

Therefore, in order to complete the proof of the claim we need to bound
ř

HT po,pqrp, w
p
ks.

Subclaim 1. We have
ř

HT po,pqrp, w
p
ks ď t´D1 ` 4C ` 2J .

Proof of Subclaim 1 Let h1γ be the second minimal coset (with respect to the linear order from
Lemma 5.7 for HT po, pq) contributing to the sum

ř

HT po,pqrp, w
p
ks. Let r ă k be the last time such

that dh1γpo, w
p
r q ą 2C. Then we have that dh1γpp, w

p
r q ě dh1γpo, pq´dh1γpo, w

p
r`1q´dh1γpw

p
r`1, w

p
r q ě

T ´2C´J ą 2C. Therefore,
ř

HT po,pqrp, w
p
r s ă t´D1 otherwise wpr P At contradicting the minimality

of k. By the strong Behrstock inequality, we have that πh3γpoq “ πh3γpw
p
r q “ πh3γpw

p
kq for all

h3γ ą h1γ. We also have that dhγpo, w
p
r q ą B and hence πh1γppq “ πh1γpw

p
r q “ πh1γpw

p
kq for all

h1γ ă hγ. As dh1γpo, w
p
r q ą B and hγ ă h1γ we have that πhγppq “ πhγpw

p
r q.

Therefore,
ÿ

HT po,pq

rp, wpks ď
ÿ

HT po,pq

rp, wpr s `
ÿ

HT po,pq

rwpr , w
p
r s

ď t´D1 ` dhγpw
p
r , w

p
kq ` dh1γpw

p
r , w

p
kq

ď t´D1 ` dhγpw
p
r , w

p
kq ` dh1γpw

p
r`1, w

p
r q ` dh1γpw

p
r`1, w

p
kq

ď t´D1 ` dhγpp, w
p
kq ` J ` 2C.

By definition of At
k,x, there is a last time s ă k such that dhγpp, w

p
sq ď 2C. If s ` 1 “ k then

dhγpp, w
p
kq ď dhγpp, w

p
sq ` J ď 2C ` J and this proves the subclaim.

If s ă k´ 1 then let u P ps` 1, kq be the last time such that
ř

HT po,pqrp, w
p
us ă t´D1. If u` 1 “ k

then
ÿ

HT po,pq

rp, wpks ď
ÿ

HT po,pq

rp, wpus `
ÿ

HT po,pq

rwpu, w
p
u`1s ď t´D1 ` J

and we have proved the subclaim. If not, then we consider wpi , for i “ k´ 1 or i “ u` 1 (these might
be equal but that’s fine), we have that k ą i ą u. By definition of wpk, we must have wpi R At, but
i ą maxts, uu hence

ř

HT po,pqrp, w
p
i s ě t ´ D1 and dhγpp, w

p
i q ě 2C. Therefore dhγpo, w

p
i q ă 2C for
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i “ k ´ 1 or i “ u` 1. Now, by the fact that the projections of wpk and wpu coincide on cosets which
are not hγ and by the triangular inequality (Remark 5.5), we get

ÿ

HT po,pq

rp, wks ď
ÿ

HT po,pq

rp, wpus `
ÿ

HT po,pq

rwpu, w
p
ks

ď t´D1 ` dhγpw
p
u, w

p
kq

ď t´D1 ` dhγpw
p
u, w

p
u`1q ` dhγpw

p
u`1, oq ` dhγpo, w

p
k´1q ` dhγpw

p
k´1, w

p
kq

ă t´D1 ` J ` 2C ` 2C ` J

and this proves the subclaim. ♦
Therefore, by Subclaim 1, if Atk,x holds then the event ”dhγpw

p
k, w

p
n´kq ď C” implies that

ÿ

HT po,pq

rp, wpns ď
ÿ

HT po,pq

rp, wpks `
ÿ

HT po,pq

rwpk, w
p
ns ď t´D1 ` 4C ` 2J ` C ď t`D.

Combining this with the result obtained earlier (above the subclaim), we get that

P
”

ÿ

HT po,pq

rp, wpns P rt´D, t`Ds|Atk,x

ı

“ P
”

dhγpw
p
k, w

p
nq ď C|Atk,x

ı

“ P
”

dhγpx,w
x
n´kq ď C

ı

by the strong Markov property [GS21, Lemma 2.2]. ♢

Since the conclusion of Proposition 4.1 holds for g, with γ “ Epgq, we have Prdh1γpx,w
x
n´kq ď

Cs ą ϵ. Claim 3 above and the law of total probability therefore gives us

fpt´Dq ´ fpt`Dq “ P
”

ÿ

HT po,pq

rp, wpns P rt´D, t`Ds

ı

ě
ÿ

kďn

ÿ

xPG

´

P
”

ÿ

HT po,pq

rp, wpns P rt´D, t`Ds

ˇ

ˇ

ˇ
At
k,x

‰

¨ P
“

At
k,x

‰

¯

ą ϵ
ÿ

kďn

ÿ

xPG

P
“

At
k,x

‰

ě ϵP
“

Dk ď n : wpk P At
‰

.

To complete the proof of the lemma, we show that gptq ď P
“

Dk ď n : wpk P At
‰

. For this, suppose
that the defining event of gptq holds. That is, suppose that there exists r ď n such that S “
ř

HT po,pqrp, w
p
r s ě t. Let hγ, h1γ P HT po, pq be the minimal and second-minimal elements contributing

to the sum S, respectively. Note that πh2γpoq “ πh2γpw
p
r q for every h

2γ ą hγ.
If dhγpp, w

p
r q ě 2C and dhγpo, w

p
r q ě 2C, then wpr P At. In particular, there exists k ď n such that

wpk P At and we are done.
Otherwise, dhγpp, w

p
r q ă 2C or dhγpo, w

p
r q ă 2C. First, say that dhγpp, w

p
r q ă 2C. Since hγ

contributes to the sum S, we have πhγppq ‰ πhγpw
p
r q, so by Lemma 5.3 we must have dh1γpo, w

p
r q ď B,

and in particular dh1γpp, w
p
r q ą B. Because T ą 2pC ` B ` Jq, there is a maximal r1 ď r such that

dh1γpo, w
p
r1q ą 2C ą B.

By the choice of J , we have dh1γpp, w
p
r1q ą 2C ą B. By the assumption that dhγpp, w

p
r q ă 2C, we

have dhγpo, w
p
r q ą B. By applying Lemma 2.4 using these various estimates, we can use the definition

of the linear order on HT po, pq to obtain:

‚ πh`γpw
p
r q “ πh`γpoq for all h

`γ ą h1γ;
‚ πh´γpw

p
r1q “ πh´γppq for all h

´γ ă h1γ;
‚ πh`γpw

p
r1q “ πh`γpoq for all h

`γ ą h1γ;
‚ πh2γpw

p
r q “ πh2γppq for all h

2γ ă hγ.
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In particular, h1γ is the minimal element of HT po, pq that contributes to
ř

HT po,pqrp, w
p
r1s, and we have

dh1γpp, w
p
r1q ą 2C and dh1γpo, w

p
r1q ą 2C. Moreover, Remark 5.5 lets us compute

ÿ

HT po,pq

rp, wpr1s ě
ÿ

HT po,pq

rp, wpr s ´
ÿ

HT po,pq

rwpr , w
p
r1s

ě t´
`

dhγpw
p
r , w

p
r1q ` dh1γpw

p
r , w

p
r1q

˘

ě t´ dhγpw
p
r , pq ´

`

dh1γpw
p
r , oq ` dh1γpo, w

p
r1q

˘

ě t´ 2C ´B ´ pB ` Jq ě t´D1.

We have shown that wpr1 P At. Thus, whenever the defining event of gptq holds, there is some k ď n
such that wpk P At.

If, instead, it is the case that dhγpo, w
p
r q ă 2C then let r1 be the last time that dhγpo, w

p
r1q ě 2C.

Then we have that dhγpo, w
p
r1q ď 2C`J by the choice of J , hence dhγpp, w

p
r1q ě dhγpp, oq´dhγpo, w

p
r1q ě

2C by the choice of T . Further, by Remark 5.5 we have
ÿ

HT po,pq

rp, wpr1s ě
ÿ

HT po,pq

rp, wpr s ´ dhγpw
p
r , w

p
r1q ě t´ p6C ` Jq ě t´D1.

Thus, wpr1 P At. Hence, we have shown that the defining event of gptq implies that there exists a k ď n
such that wpk P At. This completes the proof of the lemma. □

We have shown that the probability gptq is bounded above by a probability fpt´Dq. In order to
prove Proposition 5.6 it suffices to show that the function f decays exponentially.

Proof of Proposition 5.6. By definition, gptq ě fptq ě fpt ` Dq for all t. Therefore for t ě D,

Lemma 5.9 gives us fpt´Dq´fpt`Dq ě ϵgptq ě ϵfpt`Dq. Hence fpt`Dq ď
fpt´Dq

1`ϵ . For simplicity,

set ϵ2 “ 1
1`ϵ ă 1. Rephrasing this, for every s ě 0 we have fps`2Dq ď ϵ2fpsq. If we write s “ 2qD`r

with q P N and r P r0, 2Dq, then iterating this estimate yields

fpsq ď ϵq2fprq ď ϵq2 “ ϵ
s´r
2D
2 ď

1

ϵ2
ϵ

s
2D
2 “ p1` ϵqϵ

s
2D
2 .

Changing the base of the exponential completes the proof, with C 1 “ 2D
logp1`ϵq .

□

6. Descent of quasi-isometries in HHSs

This section and the next one concern hierarchically hyperbolic spaces and groups. For more
detailed background on hierarchical hyperbolicity the reader is directed to any of several expository
treatments; see e.g. [Sis19] for a detailed conceptual explanation of the definition or [CHK22, Part
2] for a technical overview. For present purposes, we refer the reader to [BHS19, Def. 1.1] for the
definition of a hierarchically hyperbolic space (HHS).

We will sometimes require the following properties of an HHS pX,Sq:

‚ pX,Sq is normalised if all maps πU : X Ñ CU to the various hyperbolic spaces CU are
uniformly coarsely surjective; see [BHS19, Rem. 1.3] for why this can always be assumed.

‚ pX,Sq has the bounded domain dichotomy if there is a constant B such that diampCUq ď B
for any U P S with CU bounded. For this and the next definition, see also [ABD21, Sec. 3].

‚ pX,Sq has unbounded products if it has the bounded domain dichotomy and for all U P S∖tSu
such that CU is unbounded, there exists V P S such that UKV and CV is unbounded. (Recall
that S denotes the unique Ď–maximal element of S.)

Note that every HHG satisfies the bounded domain dichotomy, as there are finitely many isometry
classes of domains. Other hierarchical hyperbolicity notions will be used incidentally and we will refer
to the relevant literature as we go.

Two key notions for us are standard product regions and factored spaces. The standard product
region PU associated to a domain U is a subspace of the HHS under consideration which is naturally
quasi-isometric to a product FU ˆ EU , where moving in the FU (resp. EU ) factor only changes
projections to domains nested into (resp. orthogonal to) U ; see [BHS19, Sec. 5] and [CHK22, Sec.
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15]. Similarly, there are product regions associated to collections of pairwise orthogonal domains
(which is the coarse intersection of the various standard product regions).

Regarding factored spaces, the idea is that starting with an HHS, we can cone off standard product
regions and obtain another HHS, where the associated index set is obtained from the original index set
by removing all indices “relevant” for the product regions we coned-off (and the rest of the structure,
in particular the hyperbolic spaces, remains the same). In particular, the new HHS is somewhat
“simpler”. We now make this more precise.

Let pX, d,Sq be an HHS and let V Ă S be downwards-closed in the nesting poset pS,Ďq. In
[BHS17a], a metric dV ď d is constructed on X such that pX, dV ,S ∖ Vq is an HHS. We call dV the
factored metric and pX, dVq the factored space of pd,Vq. HHS automorphisms descend to factored
spaces [CHK22, Proposition 19.1].

Definition 6.1. Given an HHS pX,Sq, let ΓS be the graph with a vertex for each element of S and
an edge joining U to V whenever UKV and both CU and CV are unbounded.

Remark 6.2 (Arranging unbounded products). If pX,Sq has the bounded domain dichotomy, then
ΓS has an edge whenever CU and CV have diameter more than B and UKV . We mainly use the
bounded domain dichotomy indirectly, via the construction in [ABD21, Sec. 3]: if pX,S0q is an HHS
with the bounded domain dichotomy, then there is an HHS structure pX,Sq with unbounded products.

The following proposition says roughly that quasi-isometries of HHSs descend to quasi-isometries
of the factored spaces where we cone-off the product regions with the maximal number of factors. A
clique in a graph is said to be largest if its cardinality agrees with the clique number of the graph.

Proposition 6.3 ([BHS21, Cor. 6.3]). Let pX, d,Sq be an HHS with the bounded domain dichotomy,
and let V be the downwards-closure of the union of all largest cliques of ΓS. If there is some D such
that for each Ď–maximal U P V, every pair of points in FU lies on some biinfinite D–quasigeodesic of
FU , then every quasiisometry of pX, dq is a quasiisometry of pX, dVq.

After applying the above proposition, we have an HHS pX, dV ,S∖Vq. Since V contained all U P S
belonging to a largest clique in ΓS, the maximum size of a clique in ΓS∖V is strictly smaller than
in ΓS, while the bounded domain dichotomy persists since the cone-off construction does not modify
the CU .

Applying the proposition repeatedly, we therefore obtain HHSs where the maximal number of
factors of a product regions decreases until there are no products with at least two factors left. The

space obtained in this way is an HHS pX that is hyperbolic in view of [BHS21, Cor. 2.16]. Moreover,
quasi-isometries of the original HHS descend to this HHS.

However, this hyperbolic space is not necessarily the maximal hyperbolic space associated to the
original HHS. This is explained more concretely in the following remark.

Remark 6.4. Let S P S be the maximal element. By [BHS17a, Cor. 2.9], the maximal hyperbolic
space CS is naturally quasi-isometric to the factored space pX, dS´tSuq. This is in general not naturally

quasi-isometric to pX, as the HHS structure of the latter contains more domains than just S.
To illustrate this, skipping all technical details but hopefully still conveying the picture, consider

the group

G “ pZ2 ˚ Zq ˆ Z.
Notice that G has a splitting with two vertex groups, a copy of Z3 and a copy of Z, and two edge
groups with vertex group Z, one edge being a loop while the other connects the two vertices. The
first step of the procedure cones-off quasiflats of rank 3, resulting in a space quasi-isometric to the
Bass-Serre tree T for the aforementioned splitting; in particular this is already a hyperbolic space.
The action on T is not acylindrical, so T is not the top-level hyperbolic space for any HHG structure
on G.

To illustrate this in a different way, we describe a factored space on the mapping class group that,

whilst not giving exactly pX, gives the idea of how it can differ from CS, where S is a closed connected
oriented surface of genus at least 3. Namely, let U be the set of subsurfaces that are neither S nor the
complement of a curve. Then ΓS∖U has no edges, so pX, dU q is hyperbolic. But it is not naturally
quasiisometric to CS, and it has loxodromic isometries that are not pseudo-Anosovs of S, namely
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partial pseudo-Anosovs supported on the complement of a single curve. The iterative construction

of pX gives an even “bigger” space than pX, dU q as above, meaning that pX has an HHS structure
containing more domains than S and complements of single curves. For instance, complements of

four-holed spheres are also part of the HHS structure for pX (four-holed spheres get “removed” at the
first iteration of the construction, so after then their complements are never involved in quasiflats of
dimension at least 2).

More abstractly, Figure 2 shows how applying the iterative procedure to S can result in pX having
a nontrivial HHS structure.

Figure 2. If the leftmost graph is part of ΓS (with non-adjacent vertices
transverse), then it yields the second graph in ΓS∖V , which is obtained by
applying Proposition 6.3. Repeating yields the third graph, and we termi-
nate with the fourth graph, which has vertices representing non-maximal un-

bounded domains. Hence pX is not quasiisometric to CS in this case.

We record the iterative construction described above here:

Lemma 6.5. Let pX, d,Sq be an HHS with the bounded domain dichotomy and the following property:
if FU is unbounded then every pair of points of FU lies on a uniform biinfinite quasigeodesic of FU .
There is a downwards-closed set U Ă S´tSu such that pX, dU q is hyperbolic and every quasiisometry
of pX, dq is a quasiisometry of pX, dU q.

Note that, in view of the HHS structure on pX, dU q, the map πS : X Ñ CS is still coarsely Lipschitz
and coarsely surjective when X is endowed with the metric dU .

Proof. Let ω be the clique number of ΓS. Let S0 “ S, d0 “ d. Given Si and di, let U i be the
downwards-closure of the union of all maximal cliques of ΓSi . Let di`1 be the factored metric of
pdi,U iq, and let Si`1 “ Si∖U i. Because pX, di,Siq is an HHS with the bounded domain dichotomy,
so is pX, di`1,Si`1q. Moreover, the clique number of ΓSi is at most ω ´ i. Thus there is some
minimal n ă ω such that ΓSn has no nontrivial cliques. Let U “ S∖Sn. By Proposition 6.3, every
quasiisometry of pX, dq is a quasiisometry of every pX, diq, in particular of pX, dU q “ pX, dnq. □

From now on, U , U i, and Si denote the subsets of S constructed in proving Lemma 6.5.

Remark 6.6. The proof of Lemma 6.5 did not need every U P S to have the property that each
pair of points in FU lies on a uniform quasigeodesic: it only needs this to hold for those U that
are Ď–maximal in some U i. Moreover, it does not need to hold for the full space FU obtained by
considering U P S, only the F iU obtained by considering U P Si.

Lemma 6.7. Let pX,Sq be an HHS with unbounded products. If for all unbounded U P S, every
x P CU lies on a uniform biinfinite quasigeodesic, then every quasiisometry of pX, dq is a quasiisometry
of pX, dU q.

Proof. As noted in Remark 6.6, it suffices to show that if U is Ď–maximal in some U i, then each pair
of points of F iU lies on some uniform quasigeodesic of F iU , where F

i
U is the space of nested partial

tuples in pX, di,Siq.
Let U P U i be Ď–maximal, and let x1, x2 P F iU . Consider the set β “ Hθ0px1, x2q. By the

definition of U i, no two unbounded elements of Si
U “ SiXSU are orthogonal, so β Ă F iU is a uniform

quasigeodesic. Moreover, this implies that F iU is hyperbolic, for instance by [Bow13, Thm 2.1].
By [BHS19, Lem. 2.8], the set Rel100Epx1, x2qXSi

U is totally ordered. Let V1 and V2 be the minimal
and maximal elements, respectively. By assumption, there are uniform biinfinite quasigeodesics αj Ă
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CVj through πVj
pxjq, respectively. Although the αj might not be coarsely connected subsets of the

hyperbolic space F iU , their convex hulls ᾱj therein are uniform biinfinite quasigeodesics. By the
distance formula [BHS19, Thm 4.5] and the choice of the Vj , the quasigeodesic ᾱj passes uniformly
close to xj P F iU . We can therefore take subrays ᾱ1

j such that ᾱ1
1 Y β Y ᾱ1

2 is a uniform biinfinite

quasigeodesic in F iU through x1 and x2. □

The hyperbolic space pX, dU q to which quasi-isometries descend is set-theoretically unchanged from
X, so still admits a map πS : X Ñ CS, where S P S is the maximal element. Moreover, as explained
in the factored space construction in [BHS17a], this map is coarsely lipschitz. However, it need not
be a quasi-isometry, as explained in Remark 6.4. We will need to further cone off pX, dU q to get a
quasi-isometry to CS.

We now informally explain how to do this. We have to identify the (quasiconvex) subspaces that
need to be coned off, which from the construction, come from product regions (with at least two
factors) of the original HHS: they are isolated vertices as in Figure 2. That is, in the original HHS
there is a subspace of the form U ˆ V , and only one of the factors, say V , gets coned off when
constructing pX, dU q. To recognise those subspaces, we look at preimages of points in pX, dU q and
notice that if two points lie in the remnant of a product region, their preimages have unbounded coarse
intersection. In the notation above, preimages are of the form tuu ˆ V , and any two such subsets lie
at finite Hausdorff distance (we stated bounded coarse intersection because we will take preimages of
balls, not points, and we emphasise that the Hausdorff distance is finite but depends on the subsets
in question). In fact, this characterises pairs of points in remnants of product regions, once this is
properly quantified. We make this precise after setting notation.

If pX,Sq is an HHS with K–unbounded products, then we can and shall assume that K ě

maxt1,K0,K1,K2,K3u, where the Ki are the constants appearing in the statement of [BHS21,
Lem. 1.20]. Recall the function θu from the uniqueness axiom of HHSs: if pX, d,Sq is an HHS
and dpx, yq ě θuprq, then there is some U P S with dU px, yq ě r. Also recall that every element
V P S ∖ tSu has an orthogonal container V K. Finally, recall (see [BHS19, Lem. 6.2]) that for each
HHS pX,Sq there is a constant θ0 such that for any A Ă X, the θ0–hull Hθ0A, defined in [BHS19, Sec.
6], is hierarchically quasiconvex in the sense of [BHS19, Def. 5.1] (meaning roughly that its projections
in all hyperbolic spaces are quasiconvex, and it is coarsely maximal with those projections). We will
also use the notion of a gate map gH to a hierarchically quasiconvex set H [BHS19, Def. 5.4], defined
by assembling all closest-point projections in the associated hyperbolic spaces.

Proposition 6.8. Suppose that pX, d,Sq is an HHS with K–unbounded products. There is a constant
C such that the following holds. If U R U Y tSu has FU unbounded, then every x, y P PU lie in
unbounded subsets Ix, Iy Ă pX, dq, respectively, that are at finite Hausdorff distance and have diameter
at most C in pX, dU q.

Conversely, for each C there exists D such that the following holds. Suppose that x, y P X lie in
unbounded subsets Ix, Iy Ă pX, dq that are at finite Hausdorff-distance and have diameter at most C
in pX, dU q. Either dpx, yq ď 2C ` θupKq, or there is some V P U such that x and y are both D–close
to PV in pX, dU q.

Proof. For the first statement, define Ix “ txu ˆ EU Ă PU and Iy “ tyu ˆ EU Ă PU . These are
unbounded because pX,Sq has unbounded products, and they are clearly at finite Hausdorff-distance.
Moreover, the fact that U R U implies that every unbounded WKU is in U . There is some such W
because U ‰ S, so Ix and Iy have uniformly bounded diameter in pX, dU q.

Now let us consider the converse statement, in which we start with subsets Ix and Iy containing
x and y, respectively. Since Ix and Iy are at finite Hausdorff-distance, so are their projections to
each CW , and hence so are the convex hulls of these projections. This shows that the hierarchically
quasiconvex hulls Hθ0Ix and Hθ0Iy are at finite Hausdorff-distance, and it follows that the gates
gHθ0

IxIy and gHθ0
IyIx are unbounded. Let I 1x “ gHθ0

IxIy and let I 1y “ gHθ0
IyIx.

Because I 1x is unbounded, the uniqueness axiom implies the existence of a pair of points a, a1 P I 1x
with dpa, a1q ď 2θupKq and a domain V P RelKpa, a1q such that RelKpa, a1q Ă SV . Consider b “

gHθ0
Iya. If dpa, bq ď θupKq, then

dU px, yq ď dU px, aq ` dU pa, bq ` dU pb, yq ď 2C ` θupKq.
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Otherwise, the set RelKpa, bq is nonempty. According to [BHS21, Lem. 1.20(5)], we have UKV
for all U P RelKpa, bq. Now suppose that W P S has V Ĺ W or V&W . Using the fact that
dV pa, a

1q ě K, consistency and bounded geodesic image tell us that at least one of πW paq, πW pa1q is
E–close to ρVW . This shows that dpa, PV q is bounded by some uniform constant D1 defined in terms
of dpa, a1q ď 2θupKq and the uniqueness function. Because of [BHS21, Lem 1.20], we can use a similar
argument with slightly different constants to obtain a uniform bound D2 on dpb, PV q in terms of
dpb, gHθ0

Iya
1q, which is itself bounded in terms of dpa, a1q ď 2θupKq. We can now compute

dU px, PV q ď dU px, aq ` dU pa, PV q ď C `D1,

and dU py, PV q is bounded similarly. Since V P RelKpa, a1q, it is unbounded, and the condition that
diampX,dU q Ix ď C implies that V P U . □

We can now prove the main theorem of this section, after collecting all required hypotheses in the
following definition.

Definition 6.9. We call an HHS pX,Sq well behaved if it is normalised, has unbounded products,
and any one of the following holds for all U P S:

‚ If FU is unbounded then each pair of points of FU lies on a uniform biinfinite quasigeodesic
of FU .

‚ If CU is unbounded, each p P CU lies on a uniform biinfinite quasigeodesic of CU .
‚ CU has uniformly cobounded isometry group.

Theorem 6.10. Let pX,Sq be a well-behaved HHS. Then every quasiisometry f of X induces a
quasiisometry f 1 of CS such that f 1πS and πSf coarsely agree.

Proof. Let f be a quasiisometry of pX, dq. Under the first assumption, Lemma 6.5 shows that f is a
quasiisometry of pX, dU q. Under the second assumption, this is given by Lemma 6.7, and the third
assumption implies the second.

Let V “ pS ∖ Uq ∖ tSu. By the distance formula, the map πS is a quasiisometry from the HHS
pX, pdU qV , tSuq to CS (here we use that the HHS is normalised, otherwise the map would only be
a quasi-isometric embedding). It therefore suffices to show that f is a coarsely lipschitz map of
pX, pdU qVq, for then the same will apply to a quasiinverse of f .

Let us write d1 “ pdU qV . By the definition of d1, we just have to check that if x and y both lie in some
FU Ă pX, dU ,S ∖ Uq with U P V then d1pfpxq, fpyqq is uniformly bounded. If diampX,dU qpFU q ă 8,

then dU px, yq is uniformly bounded by the bounded domain dichotomy, and hence so is d1pfpxq, fpyqq,
because f is a quasiisometry of pX, dU q and d1 ď dU .

Otherwise, the forward direction of Proposition 6.8 provides a pair of unbounded subspaces
Ix, Iy Ă pX, dq that are at finite Hausdorff distance and lie in bounded dU–neighbourhoods of x
and y, respectively. These properties are preserved by quasiisometries, so applying the reverse direc-
tion of Proposition 6.8 with fIx and fIy tells us that either dpfpxq, fpyqq is uniformly bounded or
there is a domain V P S∖ tSu such that fpxq and fpyq are uniformly close to PV with respect to dU .
In the latter case, the definition of d1 gives a uniform bound on d1px, yq. □

In the case of hierarchically hyperbolic groups, we can remove the unbounded product assumption
using results from [ABD21], at the expense of working in the slightly more general category of G–
HHSes; see Definition 7.6.

Corollary 6.11. Let pG,Sq be an HHG and suppose that the action of StabGpUq on CU is cobounded
for every U P S, and that G is not wide. Then G admits a G–HHS structure pG,S1q such that
the following holds, where S P S1 is the unique Ď–maximal element: CS is unbounded and every
quasiisometry f of G induces a quasiisometry f 1 of CS such that f 1πS and πSf coarsely agree.

Proof. This is a consequence of Theorem 6.10 together with Lemma 7.11 below (which follows from
[ABD21]), which can be used to remove the unbounded products hypothesis, and Lemma 7.9, which
relates non-wideness to unboundedness of CS. □

The conclusion of Theorem 6.10 is not true without some extra hypothesis beyond unbounded
products, as illustrated by the following example.
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Example 6.12. Let X be the universal cover of the plane minus an open square, which is a CAT(0)
cube complex whose hyperclosure (see [HS20]) S is a factor system in the sense of [BHS17b], so that
pX,Sq is an HHS with unbounded products. However, there are self-quasiisometries of X, modelled
on the logarithmic spiral map, that do not induce quasiisometries of the contact graph of X. See the
discussion in [Cas16, §3].

7. Acylindrical hyperbolicity and quasi-isometries

Throughout this section, we still work with a fixed finitely generated group G and word metric
dG. We start with a stronger version of Assumption 2.1, which strengthens partial detectability to full
Morse detectability and the WPD property to acylindricity.

Definition 7.1 (Geometrically faithful pair). Let G act on a δ–hyperbolic geodesic space pX, dXq.
Fix a basepoint x0 P X and let ρ : G Ñ X be the corresponding orbit map. Assume that the action
is cobounded, i.e. X Ď NδpρpGqq. Suppose that the following conditions all hold:

(1) (Acylindricity.) G acts on X acylindrically and non-elementarily.
(2) (QIs descend.) For each ν there exists some λ such that for each ν–quasi-isometry ϕ : GÑ G

there exists a λ–quasi-isometry ϕ̄ : X Ñ X such that dXpϕpgqpxq, ϕ̄pgxqq ď λ for all g P G
and x P X.

(3) (Morse detectable.) For every Morse gauge M there exists λ such that if γ Ă G is an
M–Morse geodesic, then ρ ˝ γ is a λ–quasigeodesic. Conversely, for each λ there is a Morse
gauge M such that if γ Ă G is a geodesic such that ρ ˝ γ is a λ–quasigeodesic, then γ is
M–Morse.

Then the pair pG,Xq is geometrically faithful . We refer to the constant δ, the map ν ÞÑ λ implicit
in condition (2), and the maps λ ÞÑM and M ÞÑ λ implicit in condition (3) as the parameters of the
geometrically faithful pair pG,Xq.

A related coarse version (targeted at our applications) is as follows:

Definition 7.2 (Quasi-geometrically faithful pair). Let pX, dXq be a δ–hyperbolic space and let ρ :
pG, dGq Ñ pX, dXq be a δ–coarsely surjective δ–coarsely lipschitz map. Suppose that the following all
hold:

(1) (Morse ray.) G contains a Morse geodesic ray.
(2) (QIs descend.) For each ν there exists some λ such that for each ν–quasi-isometry ϕ : GÑ G

there exists a λ–quasi-isometry ϕ̄ : X Ñ X such that dXpρpϕpgqq, ϕ̄pρpgqqq ď λ for all g P G
and x P X.

(3) (Morse detectable.) For every Morse gauge M there exists λ such that if γ Ă G is an
M–Morse geodesic, then ρ ˝ γ is a λ–quasigeodesic. Conversely, for each λ there is a Morse
gauge M such that if γ Ă G is a geodesic such that ρ ˝ γ is a λ–quasigeodesic, then γ is
M–Morse.

(4) (Geometrically separated fibres.) For all r ě 0 there exists R ě 0 such that for all
x, y P X such that dXpx, yq ě R,

diam
`

NG
s pρ´1pNX

r pxqqq X ρ´1pNX
r pyqq

˘

ă 8

for all s ě 0, where NG and NX respectively denote neighbourhoods in G and X.

Then the pair pG,Xq is quasi-geometrically faithful. We refer to the constant δ, the map ν ÞÑ λ
implicit in condition (2), and the maps λ ÞÑM andM ÞÑ λ implicit in condition (3) as the parameters
of the quasi-geometrically faithful pair pG,Xq.

We relate the definitions, and show that Definition 7.2 is quasi-isometry invariant:

Lemma 7.3. Let H be a finitely generated group such that there exists a quasi-isometry ψ : H Ñ G,
and suppose that pG,Xq is a quasi-geometrically faithful pair, with ρ : G Ñ X the coarsely lipschitz
map from Definition 7.2. Then pH,Xq is a quasi-geometrically faithful pair, with map ρ ˝ ψ and
parameters depending only on the parameters of pG,Xq and the quasi-isometry constants of ψ.

Also, if pG,Xq is a geometrically faithful pair, then it is a quasi-geometrically faithful pair.
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Proof. Let pG,Xq be a quasi-geometrically faithful pair, with ρ as in the statement, and let ψ : H Ñ G
be a quasi-isometry. Hence ρψ : H Ñ X is a coarsely surjective coarsely lipschitz map. Existence of
a Morse ray is a quasi-isometry invariant property, so Definition 7.2.(1) holds for H.

Suppose that ϕ : H Ñ H is a quasi-isometry. Then by Definition 7.2.(2) we have a coarsely
commutative diagram

H G X

H G X
❄

ϕ

✲ψ

❄

ϕ1

✲ρ

❄

ϕ̄1

✲
ψ

✲
ρ

(constants depending only on the parameters of pG,Xq and the quasi-isometry constants for ϕ), where

ϕ1 “ ψϕψ̂ and ψ̂ is a quasi-inverse of ψ. By construction, using ρψ in place of ρ, we have verified
Definition 7.2.(2) for pH,Xq.

Next, we check Definition 7.2.(3) for pH,Xq, using the map ρψ. This follows since the corresponding
property holds for pG,Xq, and in fact the same property, with geodesics replaced by quasigeodesics,
also holds in pG,Xq, using e.g. [RST22, Lem. 2.8], and we can move quasigeodesics between G and
H using ψ.

Finally, we verify the geometric separation for fibers, i.e. that pH,Xq satisfies Definition
7.2.(4). Let s ě 0 and let x, y P X. Let us fix points a, b, a1, b1 P H such that we have
dHpa, a1q, dHpb, b1q ď s and dXpρψpaq, xq, dXpρψpbq, xq ď r and dXpρψpa1q, yq, dXpρψpb1q, yq ď r. Then
dGpψpaq, ψpa

1qq, dGpψpbq, ψpb
1qq are bounded in terms of s and ψ, and so Definition 7.2.(4), applied to

pG,Xq, bounds dGpψpa
1q, ψpb1qq (the bound is allowed to depend on x, y, s), and we therefore get the

required bound on dHpa1, b1q.
Now we prove the second assertion, that geometrically faithful implies quasi-geometrically faithful.

Suppose that pG,Xq is a geometrically faithful pair, with orbit map ρ. Then Definition 7.2.(2),(3)
are immediate from Definition 7.1.(2),(3). Let g P G be a loxodromic WPD element, so that n ÞÑ

ρpgnqx0 “ ρpgnq is a quasi-isometric embedding Z Ñ X, and hence n ÞÑ gn is a Morse quasigeodesic
Z Ñ G, because of Definition 7.1.(3). Restricting to N gives a Morse ray in G, so Definition 7.2.(1)
holds. Definition 7.2.(4) follows from Definition 7.1.(1) along with [Sis16, Lem. 3.3]. Indeed, the
acylindricity assumption guarantees that G acts acylindrically along X in the sense of [Sis16, Def.
3.1] (viewing X as a subspace of itself), and the property of preimages of balls mentioned in Definition
7.2 coincides with geometric separation in the sense of [Sis16, Def. 2.1]. □

The main technical result of this section is:

Proposition 7.4 (Acylindrical hyperbolicity from quasi-geometrically faithful pair). Let pG,Xq be
a quasi-geometrically faithful pair. Then there exists a hyperbolic geodesic space Y such that G acts
on Y , there exists g P G acting on Y as a loxodromic element, and every loxodromic g P G is a
WPD element for the G–action on Y . In particular, if G is nonelementary, then G is acylindrically
hyperbolic.

Before the proof, we note:

Corollary 7.5. Let G be a nonelementary finitely generated group such that there is a hyperbolic space
X making pG,Xq a geometrically faithful pair, and let H be a finitely generated group quasi-isometric
to G. Then H is acylindrically hyperbolic.

Proof. By Lemma 7.3, pG,Xq, and hence pH,Xq, is a quasi-geometrically faithful pair, so applying
Proposition 7.4 implies that H is acylindrically hyperbolic. □

We now prove the proposition:

Proof of Proposition 7.4. Fix a quasi-geometrically faithful pair pG,Xq with map ρ and parameters
as in Definition 7.2.

Once we produce a hyperbolic space Y on which G acts with a loxodromic WPD element, then,
under the additional assumption that G is nonelementary, acylindrical hyperbolicity follows from
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[Osi16, Thm. 1.2]. In particular, the conclusion that every loxodromic g P G is WPD is stronger than
necessary, but we included it in the statement since it introduces no extra complexity to the proof.

Quasi-action of G on X: Each g P G can be regarded as a left-multiplication isometry g : G Ñ

G, so by Definition 7.2.(2), there is a constant λ such that for all g, we have a λ–quasi-isometry
Apgq : X Ñ X such that dXpApgqpρpxqq, ρpgxqq ď λ for all x P G. Up to uniformly increasing λ, this
implies that dXpApghqpyq, ApgqpAphqpyqqq ď λ for all y P X and g, h P G. Here we have used coarse
surjectivity of ρ.

Moreover, for any y P X, we can choose x P G with dXpρpxq, yq ď λ, and then
dXpApx´1qpρpxqq, ρp1qq ď λ, so since Apx´1q is uniformly coarsely lipschitz, we have, up to uni-
formly enlarging λ, that dXpy,Apgqpρp1qqq ď λ for some g P G. Thus far, we have produced a uniform
λ such that A : GÑ XX is a λ–cobounded λ–quasi-action of G on X by λ–quasi-isometries.

The space Y : Using any of the various “Milnor-Švarc for quasi-actions” statements in the liter-
ature, we now replace the quasi-action by an action. For instance, [Man05, Prop. 4.4] provides, up
to uniform enlargement of δ and λ, a δ–hyperbolic graph Y , a λ–quasi-isometry q : X Ñ Y , and a
homomorphism C : GÑ IsompY q such that

‚ C is λ–cobounded, and
‚ supxPX dY pCpgqpqpxqq, qpApgqpxqqq ď λ for all g P G.

Since the action is cobounded, in particular the orbits are quasiconvex and from, e.g., [CCMT15,
Prop. 3.2], there exists g P G acting on Y loxodromically, because Y is unbounded in view of Definition
7.2.(1),(3). Let τ : G Ñ Y be τpgq “ Cpgqpqpρp1qqq, which λ–coarsely coincides with qpApgqpρp1qqq
and so with qpρpgqq.

Checking WPD: We now verify that g is a WPD element. In our notation, this means we must
show that for each ϵ ą 0, there exists n P Z such that |Hpn, ϵq| ă 8, where

Hpn, ϵq “ th P G : dY pCphqpτp1qq, τp1qq ă ϵ, dY pCphqpτpg
nqq, τpgnqq ă ϵu .

There exists r, depending only on ϵ and q, but not on n, such that h P Hpn, ϵq implies
dXpρp1q, Aphqpρp1qqq ď r and dXpρpgnq, Aphqpρpgnqqq ď r. So by the triangle inequality,

dXpρp1q, ρphqq ď r ` λ

and

dXpρpgnq, ρphgnqq ď r ` λ.

Definition 7.2.(4) provides an R “ Rpr`λq such that dXpρp1q, ρpgnqq ě R implies that the ρ–preimages
of NX

r`λpρp1qq and N
X
r`λpρpg

nqq are geometrically separated.
For n P N, let γn be a geodesic in G joining 1 to gn. Since g is loxodromic, the composition τγn is

a quasi-isometric embedding with constants depending on λ, δ, and g but not on n. Hence the map
ργn is also a quasi-isometric embedding with constants independent of n, so for sufficiently large n we
have dXpρp1q, ρpgnqq ą R. Fix such an n.

If h P Hpn, ϵq, then from the earlier discussion we have h P ρ´1pNX
r`λpρp1qqq and hgn P

ρ´1pNX
r`λpρpg

nqqq. Thus h P NG
s pρ´1pNX

r`λpρpg
nqqqq, where s “ dGp1, g

nq is independent of h. So
Definition 7.2.(4) allows only finitely many possibilities for h, as required. □

7.1. Application to hierarchically hyperbolic groups. We now use Theorem 6.10 to apply
Proposition 7.4 to hierarchically hyperbolic groups. We first recall the definition of an HHG (see
e.g. [PS20] for the following modern formulation and [DHS20] for why it is equivalent to the original
definition from [BHS19]):

Definition 7.6 (Hierarchically hyperbolic group, G–HHS). Let G be a finitely generated group.
Suppose that G, with the quasi-isometry class of word metrics associated to finite generating sets,
admits an HHS structure pG,Sq. Suppose, moreover, that G acts cofinitely on S preserving Ď,K,&,
and that the following hold for all U, V P S:

‚ for each g P G, there is an isometry g : CU Ñ CgU such that for all g, h P G,

‚ the composition CU h
ÝÑ ChU g

ÝÑ CghU agrees with the isometry gh, and
‚ πgU pgxq “ gpπU pxqq for all x P G and

‚ ρgUgV “ gpρUV q whenever U&V or U Ĺ V .
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Then pG,Sq is a hierarchically hyperbolic group.
Following [ABR22, Def. 3.3], we say the pair pG,Sq is a G–HHS if it has all of the above properties,

except weakened in the following way: we do not require S to contain only finitely many G–orbits,
but we do require pG,Sq to satisfy the bounded domain dichotomy.

Remark 7.7. The reason to work with G–HHSes is twofold: first, various results about HHGs hold in
the slightly more general context of G-HHSes, and second, the maximisation procedure from [ABD21],
used to produce an HHS with the bounded domain dichotomy into one with unbounded products,
will in general convert an HHG structure on G into a G–HHS structure that does not necessarily have
finitely many orbits. See [ABR22, Rem. 3.4].

Our main result is about acylindrically hyperbolic HHGs where the top-level hyperbolic space
witnesses acylindrical hyperbolicity. We formulate this is follows:

Definition 7.8 (Irreducible). The G–HHS pG,Sq is irreducible if G has unbounded orbits in CS,
where S P S is the unique Ď–maximal element.

Irreducibility is related to acylindrical hyperbolicity, and various other properties by assembling
various results in the literature:

Lemma 7.9 (HHG irreducibility criteria). The following are equivalent, for a normalised G–HHS
pG,Sq with unbounded products and G nonelementary:

(1) pG,Sq is irreducible.
(2) G is acylindrically hyperbolic.
(3) G has a Morse element.
(4) G is not wide, i.e. asymptotic cones of G have cut-points.
(5) G is not quasi-isometric to the product of two unbounded metric spaces.
(6) G has no nonempty finite orbit in S´ tSu.

Proof. Since the action of G on CS is always acylindrical [BHS17b, Thm. 14.3], and we are assuming
G is nonelementary, (1) implies (2). Item (2) implies (3) and (4) by [Sis16], and both of the latter
imply (5). If there exists U P S´tSu such that G ¨U is finite, then G virtually stabilises the standard
product region PU which, by the unbounded products assumption, is quasi-isometric to the product
of two unbounded metric spaces (see [CHK22, Sec. 15] for the quasi-isometry computation). Hence
(5) implies (6). Finally, using the normalisation assumption, [DHS17, Cor. 9.9] says that (6) implies
(1). The latter implication also follows from [PS20, Thm. 5.1]. □

For what follows, in view of results from [ABD21] we can work with more general HHSs than
well-behaved ones. Essentially, we can drop the unbounded products assumption:

Definition 7.10 (Reasonably behaved). The HHS pX,Sq is reasonably behaved if it is normalised, it
satisfies the bounded domain dichotomy from [ABD21, Def. 3.2] and for all U P S, IsompCUq acts on
CU coboundedly.

The next lemma is an application of results in [ABD21], used to avoid having to add the hypothesis
of unbounded products to the final statements:

Lemma 7.11. Let pG,Sq be a reasonably behaved irreducible G–HHS. Then there is a G–HHS struc-
ture pG,Tq that is well behaved and irreducible.

Proof. Applying [ABD21, Cor. 3.8] yields a G–HHS structure pG,Tq with unbounded products.
Examining the proof of the aforementioned theorem, each element U P T is of one of three types.

First, U can be a dummy domain coming from the application of [ABD21, Thm. A.1], and in this
case CU is a single point.

Second, U can correspond to an element of S, with stabiliser StabGpUq and associated hyperbolic
space CU unchanged from the original HHG/HHS structure.

Third, we could have U “ S. In this case, CS is replaced by a hyperbolic space T S which is an
electrification of G, so there is a coarsely lipschitz map G Ñ T S, and the construction makes the
original map πS : G Ñ CS factor as G Ñ T S Ñ CS, where the latter map is also coarsely lipschitz.
So T S is unbounded if CS was. All of the maps involved are G–equivariant, and the action of G on
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T S is cobounded since the latter is an equivariant electrification. We take T “ S and CT “ T S in
the new HHG structure.

Thus pG,Tq has unbounded products and is therefore a well-behaved HHG structure, with un-
bounded maximal hyperbolic space by Lemma 7.9. □

Now we can state and prove the HHG part of Theorem 2 from the introduction, along with a
slightly more general version:

Theorem 7.12 (AH from QI to G–HHS). Let G be a nonelementary finitely generated group that
is not quasi-isometric to the product of two unbounded spaces. Suppose that G admits a reasonably
behaved G–HHS structure. Then any finitely-generated group H quasi-isometric to G is acylindrically
hyperbolic.

Proof. First suppose that pG,Sq is a reasonably behaved G–HHS structure. Using Lemma 7.11 and
Lemma 7.9, we can assume that pG,Sq is well behaved and irreducible. Let S P S be the maximal
element. By [BHS17b, Thm. 14.3], G acts on CS acylindrically. By Theorem 6.10, along with the
well-behaved assumption, quasi-isometries of G descend through πS to CS (since, by Definition 7.6,
πS is an orbit map), in the sense of Definition 7.1.(2). Finally, equivalence of Morseness of geodesics in
G and quasi-geodesicity of their compositions with πS is given by [ABD21, Cor. 6.2]. Hence pG, CSq
is a geometrically faithful pair as in Definition 7.1. By Corollary 7.5, any H as in the statement is
acylindrically hyperbolic. □

Remark 7.13. The proof of Theorem 7.12 shows that any group G that admits a reasonably behaved
irreducible HHG structure pG,Sq admits an action on a hyperbolic space X such that pG,Xq is a
geometrically faithful pair, and in particular, pG,Xq satisfies Assumption 2.1. If the original HHG
structure had unbounded products, then we can take X “ CS. And, moreover, the preceding holds
in the slightly more general setting of a G–HHS, not just an HHG.

A. Appendix: Quasi-isometries of HHGs with one-ended maximal hyperbolic spaces,
by Jacob Russell

In this appendix, we prove a converse of Theorem 6.10 when pX,Sq is a hierarchically hyperbolic
group and the Ď-maximal space CS is one-ended.

Theorem A.1. Let pG,Sq be a hierarchically hyperbolic group with unbounded products. If CS is
one-ended, then every quasi-isometry f of CS induces a quasi-isometry F of G so that f ˝ πS and
πS ˝ F coarsely agree. In particular, if pG,Sq is well-behaved as described in Definition 6.9, then
f Ñ F induces a group isomorphism QIpCSq Ñ QIpGq.

Remark A.2. We prove Theorem A.1 under looser hypotheses than an HHG. All one needs is that
the Cayley graph has an HHS structure on which the group acts by automorphisms. See Section A.6.

Our proof of Theorem A.1 uses the machinery of quasi-möbius maps on the Morse boundary
developed by Charney, Cordes, and Murray [CCM19] and independently by Mousley and Russell in
the case of HHGs [MR19]. The idea is that the quasi-isometry f of CS will induce a quasi-möbius map
on the boundary BCS. Using a result of Abbott, Behrstock, and Durham about unbounded products,
this quasi-möbius map on BCS can be upgraded to a quasi-möbius map on the Morse boundary of G.
The results of Charney, Cordes, and Murray (or Mousley and Russell in the HHG case), then say that
this quasi-möbius map on the Morse boundary is induced by a quasi-isometry of the group.

One-endedness of CS comes into play in being able to upgrade the map on BCS to a map on the
Morse boundary. Being one-ended allows us to adopt an idea of Rafi and Schleimer for the curve
graph and the mapping class group [RS11].

Theorem A.1 can fail when CS is not one-ended. For example, both the the fundamental group
of a non-geometric graph manifold and any non-relatively hyperbolic right angled Artin group have
HHG structures with unbounded products and where the Ď-maximal hyperbolic space is a quasi-tree.
However, these examples are known to not all be quasi-isometric [BN12].
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A.1. The Morse Boundary. We briefly recall the relevant properties of the Morse boundary that
we shall need. We direct the reader to [Cor17] for a more detailed account.

Let X be a proper geodesics metric space and fix a basepoint x0 P X. As a set, the Morse boundary
of X is the collection of all Morse geodesic rays based at x0 up to asymptotic equivalence. We will
topologize this boundary with the topology introduced by Cordes and denote this topological space
by B˚Xx0 ; see [Cor17] for details. The primary fact we need about this topology is that any quasi-
isometry f : X Ñ Y of proper geodesic metric spaces has a continuous extension to a homeomorphism
Bf : B˚Xx0

Ñ B˚Yfpx0q. This shows that the boundary is not affected by the choice of basepoint.
Moreover, there is a well defined Morse boundary for a finitely generated group G by identifying it
with the Morse boundary of any proper geodesic space on which it acts geometrically—usually its
Cayley graph. We denote the Morse boundary of G by B˚G and will always assume it is identified
with the Morse boundary of some finitely generated Cayley graph. The Morse boundary is visual in
the sense that for any two points p, q P B˚Xx0

, there is some bi-infinite Morse geodesic between p and
q (the specific Morse gauge will depend on p and q).

A.2. Cross-ratio in hyperbolic spaces. Let X be a (not necessarily proper) δ-hyperbolic space.
Every pair of distinct points a, b P BX is joined by a bi-infinite p1, 20δq-quasi-geodesic. A point x P X
is a K-center for the triple pa, b, cq P pBXq3 if x is within K of any p1, 20δq-quasi-geodesic between
any two of a, b, c. There exists Kδ, so that for every triple pa, b, cq P pBXq3 the set of Kδ-centers is
non-empty provided a, b, c are all distinct. Let mpa, b, cq be the set of Kδ-centers for pa, b, cq. There
exists D “ Dpδq so that diampmpa, b, cqq ď D whenever mpa, b, cq is non-empty.

For distinct points a, b, c, d P BX define the cross-ratio ra, b, c, ds to be

ra, b, c, ds :“ diampmpa, b, cq Ympa, d, cqq.

This cross ratio is an additive error away from the absolute value of the cross ratio defined by Paulin;
see [Pau96, Lemma 4.2] for the proper case and [MR19, Proposition 4] for the non-proper case.

The next lemma is proved by Paulin when X is proper [Pau96]. The same proof works in the
non-proper case if you replace geodesics with p1, 20δq-quasi-geodesics.

Lemma A.3. Let X and Y be δ-hyperbolic spaces where BX has at least 4 points. If f : X Ñ Y is a
pλ, ϵq-quasi-isometric embedding, then there exist λ1 ě 1 and ϵ1 ě 0 determined by λ, ϵ, and δ so that

rBfpaq, Bfpbq, Bfpcq, Bfpdqs ď λ1ra, b, c, ds ` ϵ1

for all a, b, c, d P BX.

A.3. Cross-ratio on the Morse boundary. Let G be a finitely generated group and X a finitely
generated Cayley graph. Let B˚G denote the Morse boundary of a group identified with B˚X. For

k P N, let B
pk,Mq
˚ G denote k-tuples of distinct elements of the Morse boundary so that every pair of

points in the k-tuple are joined by a bi-infinite M -Morse geodesic in X (this set is G-invariant). The
next set of definitions are from [CCM19] or [MR19].

Let H be a second finitely generated group. A map h : B˚GÑ B˚H is 2-stable if for each Morse M

there is a Morse gauge M 1 so that hpB
p2,Mq
˚ Gq Ď B

p2,M 1
q

˚ H.

For each triple pa, b, cq P B
p3,Mq
˚ G a point x P G is a K-center for pa, b, cq if x is within K of all

three sides of any M -Morse ideal triangle with endpoints a, b, c. For each M , there is number KM so

that for any pa, b, cq P B
p3,Mq
˚ G the set of KM -centers is non-empty. Moreover, there exist D “ DpMq

so that for each pa, b, cq P B
p3,Mq
˚ G, the set of KM -centers, mpa, b, cq, has diameter at most D. For any

tuple pa, b, c, dq P B
p4,Mq
˚ G, the M -cross ratio is

ra, b, c, dsM :“ diampmpa, b, cq Ympa, d, cqq.

A 2-stable map h : B˚G Ñ B˚H is quasi-möbius if for every pair of Morse gauges M and M 1 with

hpB
p2,Mq
˚ Gq Ď B

p2,M 1
q

˚ H there exists an increasing function ψ so that

rhpaq, hpbq, hpcq, hpdqsM 1 ď ψpra, b, c, dsM q.

Charney, Cordes, and Murray established that quasi-möbius maps on the Morse boundary charac-
terize quasi-isometries of the group.
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Theorem A.4 ([CCM19, Theorems 3.7 and 4.5]). Let G and H be finitely generated groups so that
B˚G contains at least 3 points.

(1) If F : G Ñ H is a quasi-isometry, then the induced map BF : B˚G Ñ B˚H is a quasi-möbius
homeomorphism with quasi-möbius inverse.

(2) If h : B˚G Ñ B˚H is a quasi-möbius homeomorphism with quasi-möbius inverse, then there
exist a quasi-isometry F : GÑ H so that BF “ h.

A.4. The Morse boundary and unbounded products. For the remainder of the appendix, we
fix a finitely generated group G and a finitely generated Cayley graph, X, of G. We assume X has an
HHS structure S with unbounded products and let S P S be the Ď-maximal domain. As described in
[ABD21, Section 3], we can assume that CS is a graph obtained from X by adding additional edges
between the vertices. In this case, πS : X Ñ CS is taken to be the inclusion map.

Abbott, Behrstock, and Durham showed that in the presence of unbounded products, Morse geo-
desic are characterized by projecting to (parameterized) quasi-geodesics in CS.

Theorem A.5 ([ABD21, Corollary 6.2]). Let pX,Sq be an HHS with unbounded product and S P S
be the Ď-maximal domain. Let γ be a geodesic in X.

(1) If πS ˝ γ is a parameterized pλ, λq-quasi-geodesic in CS, then γ is M -Morse for some Morse
gauge M determined by λ and S.

(2) If γ is M -Morse, then there exists λ “ λpM,Sq ě 1 so that πS ˝ γ is a parameterized pλ, λq-
quasi-geodesic in CS.

Theorem A.5 implies there is a continuous injection BπS : B˚X Ñ BCS, which is a continuous
extension of πS : X Ñ CS, see [Rus21, Lemma A.6].

A.5. Downward relative projections and coboundedness. For each W P S ´ tSu define
ρSW : CSp0q Ñ CW by ρSW pvq “ πW ˝ π´1

S pvq. To extend this to points in BCS we need the next
lemma, which is a basic consequence of the bounded geodesic image axiom of an HHS.

Lemma A.6. Let pX,Sq be an HHS with hierarchy constant E and S be the Ď-maximal domain of
S. For each κ ě 1 there exist ν “ νpκ,Eq so that for all W P S´ tSu we have:

(1) if γ is a pκ, κq-quasi-geodesic in CW so that γ XNνpρ
W
S q “ H, then

diampρSW pγqq ď E.

(2) if γ1, γ2 Ă CS are pκ, κq-quasi-geodesic rays that both represent p P BCS, and γiXNνpρ
W
S q “ H

for i “ 1 and 2, then dHauspρ
S
W pγ1q, ρ

S
W pγ2qq ď ν.

Now for each p P BCS, define BρSW as follows: let Z be the set of p1, 20Eq-quasi-geodesics from the
basepoint of BCS to p. Let ν “ νpEq be the constant from Lemma A.6 for κ “ 20E. For W P S´tSu,
let ZW be the subset of Z that is at least ν far from ρWS . Define BρSW ppq to be the ν-bounded diameter
set ρSW pZW q.

If p is a point in the Morse boundary B˚X, we define BπW ppq as BρSW pBπSppqq.
If x, y are are points in any combination of X, B˚X, CS, or BCS, we say x and y are C-cobounded

if the union of their projections to CW for each W P S ´ tSu has diameter at most C. Here the
projection is under πW , BπW , ρSW , or BρSW depending on which space x and y are in.

In the language of coboundedness, Corollary 6.2 of [ABD21] becomes the following.

Theorem A.7 (Restatement of [ABD21, Corollary 6.2]). Let pX,Sq be a proper HHS with unbounded
products and hierarchy constant E. Let S P S be the Ď–maximal domains and x, y P X Y B˚X.

(1) For all Morse gauges M , there exist a constant C ě 0, depending on M and E, so that if x
and y are joined by an M -Morse geodesic, then x and y are C-bounded.

(2) For all C ě 0, there exists a Morse gauge M , depending on C and E, so that if x and y are
C-cobounded, then there exists an M -Morse geodesic from x to y.

(3) For all C ě 0 and p P BCS, if πSpxq and p are C-cobounded, then there exists a Morse gauge
M , depending on C and E, and z P B˚X so that BπSpzq “ p and the geodesic from x to z is
M -Morse.
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A.6. Quasi-möbius maps induced by quasi-isometry of CS. For our final section, we require
that G is a group of automorphisms of the HHS pX,Sq. This means that G acts on S by Ď-, K-, and
&-preserving bijections, and for each W P S and g P G, there exists an isometry gW : CW Ñ CgW
satisfying the following for all V,W P S and g, h P G.

‚ The map pghqW : CW Ñ CghW is equal to the map ghW ˝ hW : CW Ñ CghW .
‚ For each x P X, gW pπW pxqq uniformly coarsely equals πgW pg ¨ xq.

‚ If V&W or V Ĺ W , then gW pρVW q uniformly coarsely equals ρgVgW .

This equivariance hypothesis is required to establish the next lemma, which is the important technical
step in establishing that quasi-isometries of CS preserve being cobounded when CS is one-ended.

Lemma A.8. Let G be a finitely generated group and X any Cayley graph with respect to a finite
generating set. Let S be an HHS structure for X with hierarchy constant E and suppose G is a group
of automorphisms of pX,Sq. Let S P S be the Ď–maximal domains and assume CS is one-ended. For
all C,R P N, there exists c, r P N so that the following holds: Suppose x, y are elements of G that are
C-bounded, and let z be the midpoint of a M -Morse geodesic from x to y in X, where M is determined
by C and E as in Theorem A.7. If dXpx, yq “ 2r, then

(1) πSpxq and πSpyq are at least R` 1 far from πSpzq and
(2) there is a path η in CS of length less than c that connects πSpxq to πSpyq in CS´BRpπSpzqq.

Proof. Let x and y be elements of G that are C-bounded and z be the the midpoint of a M -Morse
geodesic from x to y, whereM is determined by C and E as in Theorem A.7. Thus, x, z and y, z are C 1-
cobounded for some C 1 depending on C. Hence the uniqueness axiom of an HHS implies that for each
R ě 0, there exists r “ rpR,E,Cq so that dXpx, zq “ dXpy, zq ě r implies dSpx, zq, dSpy, zq ě R ` 1.
Since CS is one-ended, we can connect πSpxq to πSpyq by a path ηxy that avoids BRpπSpzqq.

Now, since balls in X contain finitely many elements of G, for each r, there only exists finitely
many G-orbits of triples of x, y, z so that dXpx, yq “ 2r and x, y are joined by an M -Morse geodesic
with midpoint z. Since πS is coarsely equivariant with respect to the the action of G, for each R and
C, we can pick ηxy so that its length in CS is at most c “ cpR,C,Eq. □

We now fix two finitely generated groups G and H, and let X and Y , respectively, be Cayley graphs
with respect to finite generating sets. We assume there are HHS structures S and T for X and Y
respectively so that S and T have unbounded products and that G and H are groups of automorphism
of pX,Sq and pY,Tq respectively. Let S P S and T P T be the respective Ď-maximal domains, and
let E be the hierarchy constant for both S and T.

We now prove that when CS is one-ended, quasi-isometries CS Ñ CT will preserve coboundedness
and hence induce a quasi-möbius map on the Morse boundary. Our proof of Theorem A.9 is inspired
by work of Rafi and Schleimer in the case of the mapping class group [RS11].

Theorem A.9. Suppose f : CS Ñ CT is a pλ, ϵq-quasi-isometric embedding, and let Bf : BCS Ñ BCT
be the topological embedding induced by f . If CS is one-ended, then:

(1) There exists a topological embedding h : B˚GÑ B˚H so that

BπT ˝ hppq “ Bf ˝ BπSppq

for all p P B˚G.
(2) If p, q P BCS are C-cobounded, then Bfppq and Bfpqq are C 1-cobounded for some C 1 “

C 1pC, λ, ϵ, Eq. In particular, the map h from (1) is 2-stable.
(3) The map h from (1) is quasi-möbius with increasing function ψ determined by λ, ϵ, and E.

Proof. Without loss of generality, we can assume the image of f is contained in the vertices of CT .
Let e be the identity in G and b be the element of H so that πT pbq “ f ˝ πSpeq. Let e and b be the
base points for the Morse boundaries of G and H respectively.

Proof of (1): Let p P B˚G and pS “ BπSppq. We will first show that BfppSq “ BπT pqpq for some
point qp P B˚G. By Theorem A.7, it suffices to show that BfppSq and πT pbq are cobounded (although
not necessarily uniformly).

Let γ : r0,8q Ñ G be the M -Morse geodesic ray from e to p and let W P T. There exist C “

CpM,Eq so that any two points on γ are C-cobounded by Theorem A.7. By Theorem A.5, γ̄ “
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f ˝ πS ˝ γ : r0,8q Ñ CT is a pκ, κq-quasi-geodesic for some κ “ κpλ, ϵ,M,Eq ě 1. Without loss of
generality, we can assume κ ě maxtλ, ϵ, 20Eu. Let ν “ νpE, κq ě 0 be the constant from Lemma
A.6 so that diampρTW pγ̄qq ď E whenever γ̄ is not within ν of ρWT . Let R “ λp2ν ` ϵ ` 1q and let
r, c P N be as in Lemma A.8 for this choice of R and our given C. Hence, we can assume there exists
t P r0,8q X Z so that dT pγ̄ptq, ρ

W
T q ď ν.

To start, assume t ą 2r`1. By Lemma A.8, there exists a path η from πS ˝γpt´ rq to πS ˝γpt` rq
in CS so that η has length at most c and η does not intersect the ball of radius R around πS ˝ γptq.
Now consider a single edge η0 of η. Since dSpη0, πS ˝ γptqq ą R “ λp2ν ` ϵ ` 1q and γ̄ “ f ˝ πS ˝ γ,
we have

(˚) dT pfpη0q, ρ
W
T q ě dT pfpη0q, γ̄ptqq ´ dT

`

γ̄ptq, ρWT
˘

ą
1

λ
R´ ϵ´ ν “ ν ` 1.

Since κ ě maxtλ, ϵu, fpη0q is a pκ, κq-quasi-geodesic in CT , thus (˚) implies that diampρSW pfpη0qqq ď
E. Since η has length c, this implies diampρTW pfpηqqq ď cE. From the proof of Lemma A.8, r is chosen
so that for any s P r0,8q we have

|s´ t| ě r ùñ dSpπS ˝ γpsq, πS ˝ γptqq ě R` 1.

Thus, our choice of R ensures that γ̄|r0,t´rs and γ̄|rt`r,8q do not intersect Nνpρ
W
T q. Thus,

diampρTW pγ̄pr0, t ´ rsqqq and diampρTW pγ̄prt ` r,8qqqq are both at most E by Lemma A.6. Since
diampρTW pfpηqqq ď cE, we have diampρTW pγ̄|r0,t´rsq Y ρTW pγ̄|rt`r,8qqq ď 2E ` cE.

Now πW pbq Ď ρTW pγ̄|r0,t´rsq because πW pbq “ ρTW pf ˝ πSpeqq. Since γ̄|rt`r,8q represents BfppSq and

does not intersect the ν-neighborhood of ρTW , Lemma A.6 says BρSW pBfppSqq is ν-close to ρ
T
W pγ̄|rt`r,8qq.

Hence
diampρTW pπT pbqq Y BρTW pBfppSqqq ď 2E ` cE ` ν.

Now assume 0 ď t ď 2r` 1. As in the previous case, our choice of R and r ensures that γ̄|r2r`1,8q

does not intersect Nνpρ
W
T q, which implies diampρTW pγ̄|r2r`1,8qqq ď E by Lemma A.6. Since ρTW ˝πT “

πW for each W P T´tT u, the distance formula for an HHS implies there is A “ ApEq ě 0 so that set
of possible domains where diampρTW pγ̄pr0, 2r ` 1sqqq ě A is finite. Hence there is some bound D ě 0
(depending on p and b) on diampρTW pγ̄qq. As in the previous case, this implies

diampρTW pπT pbqq Y BρTW pBfppSqqq ď D ` ν.

Taking C 1 “ maxtD ` ν, 2E ` cE ` νu, the above shows that πT pbq and BfppSq are C 1-bounded.
Hence, by Theorem A.7, there exists qp P B˚H so that BπT pqpq “ BfpBSppqq.

We now show that the map h : B˚G Ñ B˚H defined by hppq “ qp is a topological embedding. By
construction BπT ˝ h “ Bf ˝ BπS . Since Bf , BπS , and BπT are all topological embeddings, h must also
be a topological embedding.

Proof of (2): Let p, q P BCS be C-cobounded. By Theorem A.7, there exist p1, q1 P B˚G so that
BπSpp

1q “ p and BπSpq
1q “ q. We will show fppq and fpqq are C 1-cobounded for some C 1 depending

on λ, ϵ, C, and E.
By Theorem A.7, there exists a Morse gauge M “ MpC,Eq so that p1 and q1 are connected

by a bi-infinite M -Morse geodesic in G. Let γ : p´8,8q Ñ G be such an M -Morse geodesic and
let γ̄ “ f ˝ πS ˝ γ. Let W P T ´ tT u. By Theorem A.5, πS ˝ γ is a pκ, κq-quasi-geodesic in CS
for κ “ κpM,Eq. Lemma A.6 says there is ν “ νpλ, ϵ, κ, Eq so that if Nνpρ

W
T q X γ̄ “ H, then

diampρTW pγ̄qq ď E. Hence, we can assume there is t P Z so that γ̄ptq P Nνpρ
W
T q. Let R “ λp2ν` ϵ` 1q

and let r, c P N be as in Lemma A.8 for this choice of R and our given C. Thus, there exists a path
η in CS connecting πS ˝ γpt´ rq and πS ˝ γpt` rq so that η avoids the R-ball around πS ˝ γptq and η
has length at most c.

By arguing exactly as we did in the t ą 2r` 1 case of the proof of (1), we have diampρTW pηqq ď cE
plus

diampρTW pγ̄|p´8,r´tsqq ď E and diampρTW pγ̄|rr`t,8qqq ď E.

Continuing as in the proof of (1), this will imply Bfppq and Bfpqq are p2E ` cE ` 2νq-cobounded.
The fact that the homeomorphism h from (1) is 2-stable now follows due to the correspondence in

Theorem A.7 between being cobounded and being joined by a Morse geodesic.
Proof of (3): For distinct a, b, c, d P BCS, let ra, b, c, dsS denote the cross-ratio in BCS. By Lemma

A.3, f being a quasi-isometric embedding implies Bf is quasi-möbius with respect to the cross ratio on
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BCS. Proposition 7 of [MR19] shows that for each Morse gaugeM and each tuple pa, b, c, dq P B
p4,Mq
˚ G,

we have
ra, b, c, dsM — rBπSpaq, BπSpbq, BπSpcq, BπSpdqsS

with constants determined by E and M . Hence the map h from (1) is quasi-möbius. □

Our main result (Theorem A.1) is now a corollary of Theorem A.9.

Corollary A.10. If CS is one-ended and there is a pλ, ϵq-quasi-isometry f : CS Ñ CT , then there
exists a quasi-isometry F : GÑ H so that for all x P G, πT ˝ F pxq is uniformly close to f ˝ πSpxq.

Proof. Theorem 14.3 of [BHS17b] says G acts cobounded and acylindrically on CS. Thus, CS being
one-ended implies that B˚G contains at least 3 points.

Let f´1 : CT Ñ CS be a quasi-inverse for f . Applying Theorem A.9 to both f and f´1, we produce
a quasi-möbius homeomorphism h : B˚GÑ B˚H with quasi-möbius inverse so that Bf ˝BπS “ BπT ˝h.
By Theorem A.4 there is a quasi-isometry F : GÑ H so that BF “ h.

Because G acts cocompactly on X, there is a Morse gauge M and a constant KM ě 0 so that

for all x P G there is a triple pp, q, zq P B
p3,Mq
˚ G so that x is a KM -center for pp, q, zq. Now

pBF ppq, BF pqq, BF pzqq P B
p3,M 1

q
˚ H for some M 1 determined by M , λ, ϵ, and E. Moreover, F pxq is

uniformly close to all three sides of any ideal M 1-Morse triangle with vertices BF ppq, BF pqq, BF pzq.
Since Bf ˝ BπS “ BπT ˝ BF , this implies πT ˝ F pxq is uniformly close to f ˝ πSpxq. □

Remark A.11. There is a proof of Theorem A.1 that does not rely on the Morse boundary and quasi-
Möbius maps, but instead directly invokes the quasi-isometry on the Ď-maximal hyperbolic space CS.
This argument uses the fact that quasi-isometries of CS preserve the set of cobounded pairs in BCS
to show that quasi-isometries of CS produce “quasi-Möbius” maps on the set of cobounded tuples in
BCS. Thus, one can essentially repeat the arguments used in [CCM19] to build a quasi-isometry of G
with coboundedness and the distance formula replacing the role of Morse geodesics. As this approach
would result in a lengthier proof without any fundamentally new ideas, we have elected to give the
shorter proof using the established results from the literature.
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