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ABSTRACT. We show that quasi-isometries of (well-behaved) hierarchically hyperbolic
groups descend to quasi-isometries of their maximal hyperbolic space. This has two ap-
plications, one relating to quasi-isometry invariance of acylindrical hyperbolicity, and the
other a linear progress result for Markov chains. The appendix, by Jacob Russell, contains
a partial converse under the (necessary) condition that the maximal hyperbolic space is

one-ended.
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1. INTRODUCTION

In this paper we consider groups G acting on hyperbolic spaces X such that every quasi-
isometry of G induces a quasi-isometry of X. We have two main motivations for considering
this property, one relating to quasi-isometry invariance of acylindrical hyperbolicity, and the
other to Markov chains. We discuss these separately below.

Examples of group actions with this induced quasi-isometry property include relatively
hyperbolic groups whose peripheral subgroups are not relatively hyperbolic: the space X is
the coned-off Cayley graph. This can be deduced from [BDM09, Thm 4.1], which implies
that quasi-isometries map peripheral subgroups into uniform neighbourhoods of peripheral
subgroups. Results of this type originated in [DS05].

Our first result, essentially a special case of Theorem 6.10, shows that many hierarchically
hyperbolic groups (HHGs) also fit into this framework. That is, their quasi-isometries descend
to their maximal hyperbolic space. We refer to the HHGs in question as well behaved in
this introduction—all naturally occurring HHGs are well behaved with the right choice of
structure. See Definition 6.9.

Theorem 1. Let (G,S) be a well-behaved HHG, with mazximal hyperbolic space CS, and
let mg : G — CS be the associated projection. Every quasi-isometry f : G — G induces a

quasi-isometry f : CS — CS such that mgf and frg coarsely agree.
1
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In Appendix A, Jacob Russell proves a partial converse to Theorem 1. This is Theorem A.1,
which says that if CS is one-ended then all quasi-isometries of C.S come from quasi-isometries
of G. This generalises a result of Rafi-Schleimer [RS11]; see the appendix for more discussion.

Theorem 1 is a direct consequence of Lemma 7.11 and Corollary 6.11, and provides many
examples of pairs (G, X)) where quasi-isometries of G induce quasi-isometries of X. Indeed,
the class of HHGs includes many: extensions and quotients of mapping class groups [BHS17a,
BHMS20, DDLS21, Rus21]; cubical groups, such as special groups [HS20, Che20]; 3—manifold
groups [HRSS22]; Artin groups [HMS21]; and combinations thereof [BR20a, BR20b] (in each
case, either the HHG structure in the literature is already well-behaved, or it is easily modified
to be so). In the case of mapping class groups, the fact that quasi-isometries descend to the
curve graph is a consequence of QI rigidity results from [BKMM12, Bowl18|, but Theorem
1 is a significantly more direct route to the conclusion in this case. For right-angled Artin
groups, the fact that quasi-isometries descend to the contact graph of the universal cover
of the Salvetti complex is in many cases a consequence of results of Huang [Hual7, Hual6]
showing that quasi-isometries descend to the extension graph, along with an observation of
Kim-Koberda relating this to the contact graph [KK14], but it appears to be new for right-
angled Artin groups where the outer automorphism group is sufficiently complicated.

Groups quasi-isometric to acylindrically hyperbolic groups. It is arguably the main
open question on acylindrically hyperbolic groups whether being acylindrically hyperbolic is a
quasi-isometry—invariant property of groups, as asked, for example, in [DGO17, Problem 9.1]
and [Osil8, Question 2.20]. In fact, it is not even known whether acylindrical hyperbolicity is
a commensurability invariant, and to highlight how little is known about this question, even
the following are unanswered:

e Let G be acylindrically hyperbolic and let H be of the form G x Z/2. Is H necessarily
acylindrically hyperbolic?

e Can a torsion group be quasi-isometric to an acylindrically hyperbolic group?

e Let G be a group quasi-isometric to Out(F,), with n > 3. Is G necessarily acylindri-
cally hyperbolic?

It is quite possible that acylindrical hyperbolicity is not a quasi-isometry, or even com-
mensurability, invariant, making it quite interesting to obtain partial results in this direction.
We isolate properties leading to such partial results in our set-up, where we consider pairs
(G, X)) where quasi-isometries of the group G induce quasi-isometries of the hyperbolic space
X being acted on. The existence of induced quasi-isometries in itself is not sufficient, as
the hyperbolic space might be a point. However, it can be combined with some additional
restrictions into a short list of assumptions from which proving the next theorem is a fairly
routine matter. We state the assumptions on (G, X)) informally here, referring the reader to
Definition 7.1 for the precise version.

(1) The action of G on X is nonelementary and acylindrical.

(2) Quasi-isometries of G induce quasi-isometries of X.

(3) (Morse detectability) A geodesic in G is Morse if and only if it maps to a parametrised
quasi-geodesic in X.

We note that Morse detectability was abstracted in [RST22] (inspired by [ABD21, KLO§]
among others) as a sufficient condition to show the Morse local-to-global property.
The following combines Corollary 7.5 and Theorem 7.12 (see Remark 7.13).

Theorem 2. Let G be a group satisfying Definition 7.1 (for example, let G be a well-behaved
HHG which is non-elementary and has unbounded maximal hyperbolic space). Then any group
quasi-isometric to G is acylindrically hyperbolic.
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Application to Markov chains. The study of Markov chains on groups as a “quasi-
isometry invariant” generalisation of random walks was initiated in [GS21]. Given quasi-
isometric groups, G and H, and a simple random walk on H, there is no meaningful notion
of a random walk on G induced by the one on H. Markov chains resolve this issue for non-
amenable groups since the push-forward (see Section 2 for definitions) of a tame Markov
chain by a bijective quasi-isometry is again a tame Markov chain, and quasi-isometries be-
tween non-amenable groups are bounded distance from bijective ones [Why99].

For a group G acting on a hyperbolic space X with basepoint x¢, we say that a Markov
chain (or random walk) (w9), in G makes linear progress with exponential decay in X if there
is a constant C' > 0 such that for all n and 0 € G we have P[dx (ozo, wozq) = n/C] = Ce "/C.
In the case of random walks, establishing this property was done in [MT18] for weakly
hyperbolic groups. This property feeds into the proof of several results for random walks;
such as a Central Limit Theorem for the random walk [MS20], genericity of loxodromic
elements [MT18] or that random subgroups of weakly hyperbolic groups are free [TT15],
among many others.

In a similar spirit, the main result of [GS21] was establishing that tame Markov chains in
G make linear progress in the hyperbolic space X for many groups G acting on a hyperbolic
space X. Examples of groups admitting such an action on a hyperbolic space include (non-
elementary) relatively hyperbolic groups and acylindrically hyperbolic 3-manifold groups.
This enabled showing a Central Limit Theorem for random walks on groups quasi-isometric
to such groups, and this property is used in [GS23] to study random divergence (see below),
More generally, linear progress is intended as a crucial starting point for further study of
Markov chains.

One of the applications of Theorem 1 is in establishing linear progress in the case where
G is a hierarchically hyperbolic group and X is the maximal hyperbolic space in the HHG
structure of G. We work with a more restrictive class of Markov chains than in [GS21], as we
require a property that we call quasi-homogeneity, see Section 2. Importantly, this property is
satisfied by simple random walks and their push-forwards by bijective quasi-isometries. The
following is Theorem 5.1 (see Remark 7.13 for the verification of Assumption 2.1 for HHGs,
part of which is Theorem 6.10).

Theorem 3. Let G be a group acting on a hyperbolic space X and satisfying Assumption 2.1
(for example, let G be a well-behaved HHG which is non-elementary and has unbounded
mazimal hyperbolic space CS ). Then any tame, quasi-homogeneous Markov chain on G makes
linear progress with exponential decay in X.

One consequence is that, for a group G as in the theorem, the random divergence defined
in [GS23] (and chosen according to tame, quasi-homogeneous Markov chains) is the same
as the divergence of (G. This means that generic points, chosen according to these Markov
chains, realise the worst-case scenario for divergence, see [GS23, Thm 1.1]. Note that if G
satisfies the stronger Definition 7.1, then using only Theorem 3 and [GS21, Thm 7.7] one
can deduce a Central Limit Theorem on groups quasi-isometric to G. This also follows from
Theorem 2 and [MS20].

Questions. Several questions arise. First, it would be interesting to find more classes of
group actions on hyperbolic spaces such that quasi-isometries of the group descend to quasi-
isometries of the space, in the sense of Theorem 1. For short, we will say in this case that
quasi-isometries descend.

Problem 1.1. Find more classes of groups admitting non-elementary actions on hyperbolic
spaces with the property that quasi-isometries descend.

We highlight two specific instances of Problem 1.1.
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Question 1.2. Do CAT(0) groups with rank-one elements admit actions on hyperbolic spaces
such that quasi-isometries descend? Do small-cancellation groups (of various flavours)?

A candidate hyperbolic space for CAT(0) groups could be the hyperbolic model from
[PSZ22], while for -cancellation groups (say for C’(1/6) groups) it could be the space constructed in
[GS18]. For the CAT(0) question, any use of the model from [PSZ22] would have to use the geometric
group action on the CAT(0) space in an essential way in view of the example in [Ves23].

More strongly, it would be useful to identify more classes of groups such that Theorems 2 and
3 apply. But we would like to emphasise that variations of said theorems should be possible. For
instance, Theorem 2 does not apply to C’(1/6) groups for the candidate space given above as the
action is not acylindrical in general, but a more general theorem might. Also, it is not known whether
the action of a CAT(0) group on the hyperbolic model is acylindrical. A positive answer to either of
the following questions might come from a more general version of Theorem 2.

Question 1.3. Let G be a group quasi-isometric to an acylindrically hyperbolic CAT(0) group. Is G
necessarily acylindrically hyperbolic?

Let G be a group quasi-isometric to an infinitely presented C’(1/6) group. Is G necessarily acylin-
drically hyperbolic?

Of course, one can also ask about analogues of Theorem 3, whose conclusion we refer to as the
linear progress for Markov chains property.

Question 1.4. Do CAT(0) groups with rank-one elements admit non-elementary actions on hyper-
bolic spaces with the linear progress for Markov chains property? Do small-cancellation groups (of
various flavours)?

Finally, motivated by the appendix, it is natural to ask the following question.

Question 1.5. Which HHGs have an HHG structure with unbounded products and one-ended =—
maximal hyperbolic space?

Specifically, we believe that the answer is not known for extra-large type Artin groups and extensions
of lattice Veech groups, for instance. In fact, there is even no known classification of right-angled
Coxeter groups admitting an HHG structure as in the question. However, for right-angled Artin
groups, one can use [ABD21] together with the HHG structure with unbounded products and maximal
hyperbolic space a quasi-tree [BHS17b], to see that no HHG structure as in the question has one-ended
maximal hyperbolic space.

Outline of paper and proofs. Section 2 contains some general geometric group theory preliminaries,
as well as preliminaries on Markov chains. We also state the relevant assumptions on group actions
and Markov chains that we will need later.

The hardest theorem in this paper is Theorem 3, whose proof is contained in Sections 3-5. In
particular, in Sections 3 and 4, which contain the core of the geometric arguments involved, we will
show roughly that with positive probability the Markov chain has a bounded projection to the axis
of a fixed WPD element. This will be then used in Section 5 to check a criterion for linear progress
from [GS21].

The rough idea to show the bounded projection property is the following, and the reader might
want to look at Figure 1 for reference. If the property fails, then with overwhelming probability the
Markov chain creates a very large projection onto the axis. However, there is a positive probability
that the Markov chains starts off in a Morse direction different from the axis. If it does, it needs
to undo this second projection first, before creating the projection on the axis. We can also repeat
this argument with another Morse direction which has a very different Morse gauge. Therefore, the
Markov chain (from any basepoint due to quasi-homogeneity) has a large probability of creating a
large projection in two directions with very different Morse gauges. This is not yet a contradiction,
because we need to know that the two directions have different Morse gauges “close to the basepoint”
rather than, say, starting out in the same way and then diverging later. This is what the notion of
incompatible Morse rays from Section 3 is supposed to capture, and in that section we study it and
prove the required preliminary results.
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In Section 6 we show that quasi-isometries of well-behaved HHS descend to their maximal hyperbolic
space, and related results. There are two main ideas here. The first one is to use a result from [BHS21]
which says, roughly, that quasi-isometries between HHSs descend to quasi-isometries of “simpler”
HHSs (certain so-called factored spaces) obtained coning-off certain product regions. One can repeat
the procedure until the “simpler” HHSs are actually just hyperbolic spaces, but those will not in general
be the maximal hyperbolic spaces of the HHSs as there might be further (quasiconvex) subspaces to
cone-off to get there; this happens even for mapping class groups. The additional idea allows us to
recognise these subspaces, and roughly we show in Proposition 6.8 that two points are in the same
subspace to be coned-off if and only if their coarse fibres in the original HHS are “parallel”.

In Section 7 we show our results related to quasi-isometry invariance of acylindrical hyperbolicity.
The idea here is the following. If one has a group G acting on a hyperbolic space X with the
property that quasi-isometries descend, and if H is quasi-isometric to GG, then H quasi-acts on G and
therefore on X. The quasi-action on X can be promoted to an action on a space Y quasi-isometric
to X, which is also hyperbolic. This action admits a loxodromic element due to the classification of
actions on hyperbolic spaces, and what is left to show is that any loxodromic is WPD. This comes
from acylindricity of the original action, which can be translated into a geometric property about
preimages of balls being geometrically separated as in [Sis16].

Finally, the appendix by Jacob Russell contains the result about quasi-isometries of the maximal
hyperbolic space of an HHG coming from quasi-isometries of the HHG, under suitable conditions.
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interesting conversations. We are also grateful to the referee for numerous helpful comments.

2. BACKGROUND AND ASSUMPTIONS

To set notation, we recall some standard notions from geometric group theory. All hyperbolic
spaces considered in this paper will be geodesic.

2.1. Geometric group theory notions and definitions. A map f : ¥ — X between metric
spaces is called a (A, €)-quasi-isometric embedding, with A > 1,e¢ > 0, if for all z,y € Y we have:
ANy (z,y) — e < dx(f(z), f(y)) < My (z,y) + €. We say that f is a (), €)-quasi-isometry if, in
addition, for all x € X, there exists an element y € Y such that dx(f(y),z) <e. IfY is a segment of
R, we call the image of f in X a (), €)-quasi-geodesic.

We will call a (A, \)-quasi-geodesic a A-quasi-geodesic, and similarly for quasi-isometric embeddings
and quasi-isometries. A subset Y of a geodesic metric space X is quasi-convez if there is a constant
C = 0 such that all geodesics with endpoints in Y stay within the C-neighbourhood of Y. Further,
we say that a map f : X — Y between metric spaces is R-coarsely Lipschitz if dy (f(z), f(y)) <
Rdx(z,y) + R for all z,y € X.

Let M be a function [1,00) x [0,00) — [0,0). We say a (quasi)-geodesic « is M-Morse if any
(), €)-quasi-geodesic with endpoints on + stays within the M (A, €)-neighbourhood of . We call M the
Morse gauge of ~v. We can always assume that M takes values in N. Note that a Morse quasi-geodesic
is quasi-convex.

If a group G acts on a hyperbolic metric space X (with basepoint (), we say an element g is
lozodromic if the map Z — X given by n — ¢g™x¢ is a quasi-isometric embedding. In this case, {g)xg
is quasi-convex in X. We say that g satisfies the weak proper discontinuity condition, or that g is
WPD, if for all k > 0 and zg € X there exists N € N such that

#{he G| dx(xo,hro) <k, dx(g"zo,hg™zy) <K} < 0.

Each loxodromic WPD element g is contained in a unique maximal elementary subgroup of GG, denoted
E(g) and called the elementary closure of g, see [DGO17, Lemma 6.5].

Finally, all groups we consider are finitely generated, and whenever we consider a group G we
automatically fix a word metric dg on G coming from a finite generating set.
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2.2. Assumptions on the group action. Now that we recalled the relevant notions, we can state
our assumptions on the group action on a hyperbolic space that we will use for our result on linear
progress. The slightly different assumptions needed for the results on acylindrical hyperbolicity are
postponed to Section 7.

Let G be a group acting on a hyperbolic space X and fix zg € X. We write p : G — X for the
corresponding orbit map, though sometimes we shall suppress this.

Assumption 2.1. We assume the following.

(1) Some element of G acts on X as a loxodromic WPD.

(2) Quasi-isometries of G descend to X. This means that, for each v there exists A such that if
¢ : G — G is a v—quasi-isometry, then there is some \—quasi-isometry ¢ : X — X such that
dx (¢(g)x, ¢(gz)) < M forall ge G and z € X.

(3) Partial (Morse) detectability. This means: for every Morse gauge M there exists A such that
if v © G is an M-Morse geodesic, then py < X is a A-quasi-geodesic.

The notion of Morse detectability of G is [RST22, Def. 4.17], which is stated as an equivalence of
two properties, and the partial detectability hypothesis above is one of the two implications.

2.3. Projections. Given a group G acting on a hyperbolic space X, we will make use of X to define
‘projection maps’ to subsets of G. The following definition makes this precise.

Definition 2.2. ([GS21, Definition 3.2]) Let G act on a hyperbolic space X, and fix zp € X. For
A < G, an X-projection is a retraction m4 : G — A such that for all g € G the point m4(g)xo is a
closest point in Axg to gxg.

Given a subset B of a metric space X, we call a map 7 : X — B a closest-point projection if
dx(z,m(z)) = dx(x,B) for all z € X. The following lemma is a well-known exercise in hyperbolic
geometry, see e.g. [GS21, Lemma 2.1].

Lemma 2.3. Let X be a d-hyperbolic space. Let Q be a quasi-convezx set and g : X — @ a closest-
point projection. There exists a constant R > 0 depending only on & and the quasi-convexity constant
such that the following hold.

(1) mg is R-coarsely Lipschitz.

(2) Forallz,y e X with dx(mg(z),7q(y)) = R and for any geodesic [x,y| from x to y, there are
points mi, ms € [x,y] such that dx(mi,mq(x)) < R and dx(me,mo(y)) < R. Furthermore,
the subgeodesic of [x,y] from my to mq lies in the R-neighbourhood of Q.

(3) If m + X — Q is another closest-point projection, then dx (mq(z),7g(z)) < R for allz € X.

A particular consequence of the final part of Lemma 2.3 is that if a group G acts on a hyperbolic
space X, then whenever A ¢ G has quasiconvex orbit and 74 is an X—projection, we have a uniform
bound dx (74 (p)xo, Taz, (PTo)) < R.

The following lemma is well known. Inequalities of this type are often referred to as “Behrstock
inequalities”.

Lemma 2.4. Let X be a J-hyperbolic space and let Q)1 # Q2 be two quasi-convex sets and 7o, : X —
Q; be closest point projections. There is a constant B only depending on § and the quasi-convezity
constants of Q1 and Q2 such that for all x € X we have

dx (ﬂ’Ql ($>77TQ1 (QQ)) >B = dx (ﬂ-Qz(x)’ﬂ-Ch(Ql)) < B.

The following lemma is an exercise in hyperbolic geometry and it states that in a hyperbolic space
quasi-isometries and closest-point projections are coarsely compatible.

Lemma 2.5. Let X be a 6-hyperbolic space and f : X — X a A-quasi-isometry. Let Q < X be a
quasi-convex subspace and let mg : X — @Q be a closest point projection. Then there exists a constant
N, depending only on X\, 6, and the quasiconvexity constant, such that for all x € X,

dx (my()(f(x)), f(mq(x))) < N.
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Notation 2.6. For a group G acting on a hyperbolic space with fixed basepoint zy and corresponding
orbit map p, given a subset a € G (usually a quasi-geodesic), we will always implicitly fix an X-
projection m, : G — a. We also abbreviate the diameter of the union of two projections as measured
in X by

do(z,y) = diamy (p(wa(x) v wa(y))),

where x and y can be either points or subsets of G.

2.4. Markov chains. We refer the reader to [GS21] for more background information on Markov
chains, while here we describe the notion informally. A Markov chain on a group arises when transition
probabilities p(g, h) are assigned for all g, h € G. These encode the probability that the Markov chain
“jumps” from g to h in one step. The probability of going from g to h in n steps is a sum over
all possible trajectories, that is, sequences of jumps, of length n of executing that exact sequence of
jumps, and this is the product of the relevant transition probabilities.

We usually denote a Markov chain on a group by (w¥), where w? denotes the position of the Markov
chain starting at o after n steps, and we are usually interested in quantities such as P[w? = g], the
probability of getting from o to g in n steps.

The following notion of tameness was defined in [GS21].

Definition 2.7 (Tame). A Markov chain on G is tame if it satisfies the following:

(1) Bounded jumps: There exists a finite set S S G such that P[w{ = h] = 0 if h ¢ gS.

(2) Non-amenability: There exist A > 0 and p < 1 such that for all g,h € G and n = 0 we have
Plwd = h] < Ap™.

(3) Irreducibility: For each s € G there exist constants €5, K > 0 such that for all g € G we have
Plw] = gs] = € for some k < K.

For a bijection ¢ : G — H and a Markov chain (w}) on G, there is a natural push-forward Markov
chain on H, which we denote by ¢4 (w¥). This is the Markov chain such that P[¢x(w?) = h] =

n

]P’[w" = qﬁ’l(h)] for all h,o € H and n > 0. To clarify, ¢4 (w?) is the instance of the Markov chain

n n

starting at ¢(o).

Definition 2.8 (Quasi-homogeneous). A Markov chain (w}) is quasi-homogeneous if it has the fol-

lowing property for some v. For every p,q € G there is a bijective v—quasi-isometry ¢ : G — G with
¢(p) = q and ¢pu(wy) = (wf(o)) for all 0 € G.

Remark 2.9. A random walk driven by a measure whose support is bounded and generates the group
as a semi-group is a tame Markov chain, and moreover any push-forward of such a random walk by
a bijective quasi-isometry is a tame Markov chain by [GS21, Lemma 2.8]. Since any random walk is
group-invariant, it is readily seen that such a push-forward is in fact also quasi-homogeneous.

3. INCOMPATIBLE MORSE RAYS

In this section we consider a group G acting on a hyperbolic space X such that Assumption 2.1.(3)
holds, that is to say, Morse geodesics in G map to parametrised quasi-geodesics in X.

In particular, we are interested in a criterion to guarantee that two Morse rays in G travel in
genuinely distinct directions in X. The key definition to achieve this is the following, which roughly
describes a ray which, while being Morse, has an initial subgeodesic of controlled length which is “not
very Morse”.

Definition 3.1. Let Z be a metric space, let M : [1,00) x [0,00) — N be a Morse gauge, and let
k,L = 0. We say a Morse ray 8 : [0,00) — Z is (M, k, L)-incompatible if there exists a (k, c)-quasi-
geodesic 1 with endpoints on f3|jg 1], such that there is a point p € pu with d(p, 8) > M (k, c+2k) + 2k.

The main result in this section is Lemma 3.5, guaranteeing the existence of incompatible rays. We
need two preliminary results. The first one says that, given a Morse ray v and a quasi-geodesic ray
«a, either « is contained in a controlled neighbourhood of v, or o at some point starts diverging from
v at a linear rate.
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Lemma 3.2 ([CM19], Corollary 4.3). Let a be a M-Morse quasigeodesic ray and let 8 be an (a,b)-
quasi-geodesic ray, both in some proper geodesic metric space Z. There exist k1 = k1(M,a,b) and
Ko = Ka(K1,a,b) such that the following holds. If d(«(0), 8) < k1 then there are two possibilities.

e The ray B is contained in the ks-neighbourhood of «.
o There exists a last time Ty such that for all t € [0,00) we have

1
d(ﬂ(t),a) = %(t - To) — 2(b + :‘431).
We note that in [CM19] « is a geodesic ray, but since our « is Morse it lies within finite Hausdorff
distance of a geodesic ray.

The following result says that a geodesic triangle where two sides are Morse is thin.

Lemma 3.3. [Corl7, Lemma 2.2] For all Morse gauges My, My there is a constant A = A(My, Ms)
such that every geodesic triangle where two of the sides are respectively Mi- and My-Morse is A-thin.

The following lemma states that an M-Morse ray and an M-incompatible Morse ray have bounded
projection onto each other. The constant dependencies are rather involved, but they are crucial for
the proof of the key Proposition 4.1. Recall the notation that the orbit map p : G — X given by
g — gxo is K—Lipschitz.

Lemma 3.4. Suppose that G acts on a d—hyperbolic space X and that Assumption 2.1.8 holds. For
every Morse gauge M and constant v there exists k = k(M,v) such that for every Morse gauge M’
and constant L there exists D = D(M,v, M’ L) such that the following holds.

Let a = G be an M-Morse v-quasi-geodesic ray isswing from 1 € G. If § < G is an M’'-Morse ray
issuing from 1 € G that is (M, k, L)-incompatible, then

diamg (74(8)) < D and diamg (75(a)) < D.

Proof. Let k1 and ko be the constants given by applying Lemma 3.2 to the M —-Morse quasigeodesic «
and the geodesic §. According to Assumption 2.1.(3), there are Ay = Ao (M) and Ag = A\g(M’) such
that pa X is a A\,—quasigeodesic and pf < X is a Ag—quasigeodesic. Let R = R(\y) be given by
applying Lemma 2.3 to pa < X. and let A = A(M, M’) be the constant from Lemma 3.3.

We first bound diamg (74 (8)). For this, we shall consider sufficiently large constants

€ = €(A\ayAg,0) and U = UM, M’ R,e,A).
From these, we define
Dy = (U+ L+ R+ e+2A+2M(1,0) + 6r1) KXo + A2.

Suppose that, contrary to the desired result, there is some v € [ with the property that
de(1,mo(v)) > Dy. Since pa is a Ag—quasigeodesic, we have dx (2o, 7o (v)z0) > K(U+ L+ R+¢€). As
noted after Lemma 2.3, mq (v)zo differs from 7,4 (vzg) by at most R.

Since pf is a Ag—quasigeodesic, the Morse lemma implies that every geodesic from z( to vz stays

uniformly close to pf, so Lemma 2.3 provides a point u € § such that d(uzo, 7, (vro)) < €, where
€ = €(Aa, Ag, 0) is a uniform constant. Let us write u = 5(t). By the construction of u, we have

t—U = dg(l,u) — U = —dx(zg,uxo) = U

K
1
> ?(dx(mo,ﬁa(v)xo) — dx (7o (v)xo, Tpa(vTo)) — dX(ﬂ'pa(vxo),uxo)) - U
1
> ?(K(U+L+R+€+2A+2M(1,O)+6/~£1)—R—€)—U

= L+2A+2M(1,0) + 6k; > L.
Claim 1. We have 5[0, — U] € NF, 1 ().

Proof. Consider a geodesic [1,7,(v)] in G. Because « is M—Morse, [1,7,(v)] lies in the M(1,0)-
neighbourhood of «, and is M —Morse, where M, = M + M(1,0). Now consider a geodesic [u, 74 (v)]
in G. The geodesic triangle formed by [1, 74 (v)], [7a(v),u], and B[0,t] has two sides that are M’'—
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and M, —Morse, so, according to [Corl7, Lem. 2.3], the geodesic [u, 7 (v)] is uniformly Morse. As-
sumption 2.1.(3) then tells us that p[u, 7, (v)] is a N'—quasigeodesic, where X' = N (M’, M,). Since u
was constructed so that dx (uzg, 7o (v)z) < € + R, this implies that dg(u, mo(v)) < N(R+¢€) + .
Ensure that U is larger than this bound by at least A.

From Lemma 3.3, we know that the above geodesic triangle is A—thin. Thus, for s < ¢t — U, the
point B(s) must be A—close to [1,74(v)]. In turn, this means that it is (A + M(1,0))-close to a. <

We write t' =t —U — 2A — 2M(1,0) — 6x1. Note that by the above computation, ¢’ > L.
Claim 2. We have B[0,t'] € N (a).

Proof. If not, then by Lemma 3.2, there exists Ty < ¢’ such that for all s > 0 we have dg(8(s),a) =

(s — Tp) — 2k1. In particular, for s = ¢t — U, Claim 1 leads to

A+ M(1,0) > do(B(t—Usa)) > 3t~ U —To) — 26,

> —(t—U—-1t)—2k1 = A+ M(1,0) + £y,

a contradiction. &

Since « is a v—quasigeodesic and § is a geodesic, it follows from Claim 2 that there is an initial
subsegment o’ of « that stays k—close to 8[0,t'], where x is a uniform constant depending only on
ko and v. That is, k = k(M,v). In other words, the Hausdorfl-distance between o and j3[0,¢'] is at
most K.

Since t’ > L, the fact that 8 is (M, k, L)-incompatible means that there is some (k, ¢)-quasigeodesic
p with endpoints ¢~ and g on 3[0,t'] such that there is some p € u with dg(p, 8) > M (k, c+2k)+2k.
Let y~ and y* be closest points in o to = and u*, respectively. We have d(y*, uT) < . It follows
that the path

[y plopo ety
is a (k, c+2k)—quasigeodesic with endpoints on the M—Morse quasigeodesic . But this path contains
p € p, which is at a distance of more than M (k, ¢ + 2x) + 2k from S[0,t]. Since S[0,¢'] and o’ are
at Hausdorff-distance at most k, this contradicts the fact that a is M—Morse. We conclude from this
contradiction that dg (1, 74 (v)) < Dy for all v € 8.

We now turn to the other inequality. Given a point v € «, consider w = m5(v) and y = m (w). We
aim to bound dg (1, w). From the above, we know that dg(1,y) < Ds.

Letting Rg be given by applying Lemma 2.3 to pB, we have dx(wzo,m,s(vze)) < Rpg and
dx (yxo, Tpa(wzp)) < R by the comment after that lemma. Since pa and pf are uniform quasi-
geodesics in the d—hyperbolic space X issuing from the common point xg, there is a uniform bound on
dx (mp5(vx0), TpaTps(v20)). Lemma 2.3 also states that m,, is R—coarsely Lipschitz, so by combining
these bounds we obtain a uniform bound on dx (wzg, yxo).

Because the restrictions of o and 8 between 1 and y and between 1 and w are, respectively,
M- and M'-Morse, [Corl7, Lem. 2.3] tells us that a geodesic [w,y] in G is uniformly Morse. By
Assumption 2.1.(3), it follows that p[w,y] is a uniform quasigeodesic, and hence dg(w,y) is bounded
by some uniform constant €. We can now compute

dg(LU)) < dg(].,y) +dG(y,w) < Dy +¢€. O

We now show the existence of an (M, k, L)-incompatible ray, which combined with Lemma 3.4 will
be enough to show that we can find two Morse rays that diverge after a short distance.

Lemma 3.5. Let G be a non-hyperbolic group acting on a hyperbolic space X such that Assumption
2.1.(3) holds. For all Morse gauges M and constants k, there exist M', L such that there is an
M'-Morse ray which is (M, k, L)-incompatible.

Proof. Given M and k, let My(k,c) = M(k,c + 2x) + 2k. Since G is not hyperbolic, its Morse
boundary is not compact [CD19, Cor. 1.17], so there must be some Morse ray 3 that is not M;-Morse.
Let M’ be the Morse gauge of 8. As /3 is not Mi-Morse, there are some k,c > 0 such that there is a
(k, ¢)-quasi-geodesic p with endpoints on 8 that contains a point p with dg(p, 8) > Mi(k,c). Let L
be such that the endpoints of y lie in 8[0, L]. By definition, 8 is (M, x, L)—incompatible. d



INDUCED QUASI-ISOMETRIES 10

Corollary 3.6. Let G be a non-hyperbolic group acting on a hyperbolic space X such that Assumption
2.1.(3) holds. For every Morse gauge M there is a Morse gauge M', a constant D > 0, and an M'-
Morse ray p < G, issuing from 1 € G, such that if a is an M-Morse ray issuing from 1 € G then
diam (74(8)) < D and diam (7g(e)) < D.

Proof. Let k = k(M) be given by Lemma 3.4. By Lemma 3.5, there are M’ and L such that there is
an M'-Morse ray 3 that is (M, k, L)-incompatible. Now apply Lemma 3.4. O

4. BOUNDED PROJECTIONS TO AXES

The goal of this section is to prove Proposition 4.1, which is an important part of the proof of
Theorem 5.1 on linear progress in Section 5. It asserts that there is a definite probability that tame,
quasi-homogeneous Markov chains have bounded projection to any given loxodromic WPD.

Proposition 4.1. Let G be a non-hyperbolic group satisfying Assumption 2.1 and let (w}k) be a tame,
quasi-homogeneous Markov chain. Fix a loxodromic WPD element g € G. There exist C,e > 0 such
that for all p,h € G and for all n € N, we have

P[dhE(g)(p, wP) < C] > e

Recall from Section 2.1 that E(g) is the elementary closure of g. See Notation 2.6 for the definition
of dyp(g). For ease of notation, we write v = E(g) for the remainder of this section. Let us write v for
the quasi-homogeneity constant of (w}). Recall that p : G — X is the orbit map with basepoint xg.

Lemma 4.2. For each Morse gauge M and v = 1, there is a constant A > 0 such that the following
holds for all C > 1. Let £ € G be an M—Morse ray, and let p' € £, pe G. If ¢ : G — G is a bijective
v—quasi-isometry with ¢(p’) = p, then
1
doc(p (1) > —de(sf, ) — A
for all h e G. Moreover,
P|doe(p, 64(wh)) > C| = Plde(pf,wlf) > A(C + 4)).

Proof. The first statement is essentially a consequence of Assumption 2.1.(2), that ¢ descends to a
quasi-isometry of X, and Lemma 2.5, which states that “the translate (by a quasiisometry) of the
projection of a point to a quasigeodesic coarsely agrees with the projection of the translate (of the
point) to the translate (of the quasigeodesic)”. The nature of X—projections is such that a careful
argument requires additional small errors. We now give details.

Let A = 1, given by Assumption 2.1, be such that £x¢ and ¢(£)zo are A-quasi-geodesics. As noted
after Lemma 2.3, if Y < G has A—quasiconvex orbit then there is a uniform constant R such that the
maps pmy and 7wy, p differ by at most R. Thus

doe(p; &(h)) = dx (Te(e)zo (PT0)s To(e)zo (P(R)20)) — 2R

According to Assumption 2.1.(2), the maps p¢ and ¢p differ by at most A, so there is a uniform
constant R’ such that

d¢f (pu ¢(h)) > dx (’/T(E(gzo) (px())a W&(ga:g)(é(th))) - 2R

Using Lemma 2.5, there is now a uniform constant /N such that

d¢§(Pa¢(h)) > dx (éﬂgmo (qg_l(]?ffo))aqgﬂgzo(hxo)) — 2R —2N.

As p¢ and ¢p coarsely agree, ¢~ (pxg) is uniformly close to p'zg, because ¢(p') = p. Also note that, by
Lemma 2.3, the map 7¢,, is uniformly coarsely Lipschitz. Hence the fact that ¢ is a A—quasi-isometry
means that there is a uniform constant R” such that
1
d¢§ (p’ ¢(h)> = XdX (7‘(‘5300 (pISC()), T (hl’o)) - R
To complete the proof of the first statement, observe that since pme and m¢,,p differ by at most R,
we have

dx (ﬂ-fxo (pll'o), ez (h:l?o)) = df (p/7 h) —2R.
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For the second statement, let C' > 1. By the first statement, any h € G with d¢(p’, h) > A(C + A)
also satisfies dge(p, 9(h)) > C. We can therefore use quasi-homogeneity and the fact that ¢ is a
bijection to compute

Pde(p',w? ) > A(C + A)]

I
=
s

B~
I
=

de(p',h)>A(C+A)

Z ]P’[wﬁ/ =h|

dge(p,¢(h))>C

>, Plud =7t (0)]

dge (p,h')>C
= Pldge(p. e (wh))) > C]. u

The following lemma says that a tame Markov chain has a (small but) positive probability of
reaching a given point at distance d within a number of steps linear in d.

N

Lemma 4.3 ([GS21, Lemma 2.9]). If (w}) is a tame Markov chain on a finitely generated group G,
then there are constants U,eq > 0 such that the following holds. For each p,q € G with dg(p,q) = d
there exists t < dU such that

Plwi = p] > €.

As a final preliminary lemma, the following will allow us to “pivot away” certain quasi-geodesics
in X from a given translate hpy of py = E(g)zo. The lemma is inspired by [MS20, Lemma 9.5] (but
the proof is different and simpler).

Lemma 4.4. For all 0 there exist s, E such that the following holds. Given a 0-quasi-geodesic o € X
from pxg that passes through qxg, and given h € G, there exists ¢ € G with dg(p,q') < s such that

dhpy(d'q ', pro) S E - and  dgg-14(hpy,q'z0) < E.

Proof. To simplify notation, let us write o’ = pg~'a. The desired element ¢’ € G will be of the form

q = pf, where dg(1, f) < s. We shall then have ¢'¢ la = pfp~ta/.

Fix any two loxodromic WPD elements g;,g2 € G such that E(g1), E(g2), and E(g) = v are
pairwise distinct, the existence of which is given by the arguments in [BF02, Proposition 6] (see also
[DGO17, Corollary 6.12]). Observe that all three of these contain 1 € G. We shall choose f = g/ for
some ¢ and some bounded j.

At most one direction of E(g;)xo can have large coarse intersection with the initial subsegment
of p~la from ¢ 'pxy to g, so after inverting the g;, we may assume that the positive direction
has small coarse intersection with it. Write 4; for this positive direction of E(g;). There is some
constant Cy such that for any k, k" € G, both 7y, (k' pv;) and 7y py, (kpy) have diameter at most Co;
see [AMS16, Thm 3.9], for instance (said reference gives geometric separation, which is equivalent to
bounded projections). The conclusion of Lemma 2.4 (the Behrstock inequality) therefore holds, with
some constant B, for all distinct pairs of translates of pvy, py1, and pys.

We now show that there exists C such that a least one of the m,,,, () has diameter at most C.
If this were not the case, then there would exist z1, 22 € o such that dp,, (pzo, ;) were large. By
Lemma 2.3, we then also have that dx (pxo, x;) is large. Because the ppy; have small coarse intersection
with the initial subsegment of o between pg~!pxy and pxg, we can relabel so that z; lies between pxg
and z2. Because the conclusion of Lemma 2.4 holds for ppy; and ppys, the set '71/z = ppy1 U ppy2 is
quasiconvex. Lemma 2.3 therefore tells us that any geodesic from x; to zo must pass uniformly close
to pry. By the Morse lemma, this contradicts the fact that o' is a quasigeodesic.

After relabelling, we therefore have that diamx (7,5, (@’)) < C1. Because pgip™" acts on pE(g1)xo
with positive translation length independently of «, there is some uniformly bounded j such that
the set mppy, (pgip~ 1) = pgip ™ mppy, (@) lies at distance greater than B from mp,, (hpy). Setting

q¢ =pg] (e f= g{ ), the desired inequalities follow from the Behrstock inequality, Lemma 2.4.

1

O

We are now ready to prove the main proposition. Before doing so, we fix various constants and
Morse gauges. The dependencies are rather delicate, so we have to be quite careful here. The reader
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may prefer to skip this and refer back when checking that the various constants and Morse gauges
have the claimed properties.

Constants and Morse gauges. We fix the following.

e My is such that G contains an My—Morse ray (Assumption 2.1.(1)).

e v is the quasi-homogeneity constant (Definition 2.8).

M is the minimal Morse gauge such that whenever ¢, 1) are bijective v—quasi-isometries of G,

any My—Morse ray gets mapped by ¢+ to an M—Morse ray.

M’ and D are given by applying Corollary 3.6 to the gauge M.

A is given by applying Lemma 4.2 to the gauge max{My, M, M'}.

U and ¢ are as in Lemma 4.3.

6 is such that the X—orbit of any max{My, M, M'}-Morse geodesic in G is a §—quasiconvex 6

quasi-geodesic (Assumption 2.1.(3)).

s and E are given by applying Lemma 4.4 to 6.

e R and B are given by applying Lemmas 2.3 and 2.4, respectively, with quasi-convexity con-
stant 6.

e 1 =AB+A+D+1)and Cy = A(C1 + A).

e d=Cy+0(B+E+2R+0).

e J > 0 is a constant such that for any h,p € G, consecutive points in (7 w?) have distance
at most J. This exists by tameness of the Markov chain and Lemma 2.3.

e C=d+JU(d+ s).

Proof of Proposition 4.1. For a contradiction, assume that Proposition 4.1 does not hold. Hence there
exist p, h € G and n € N such that:

1
(1) B|duy (put) < C| < zef*™,

where C is as above. Let 8 be an M’-Morse ray issuing from p that satisfies the conclusion of
Corollary 3.6, and let o be an My-Morse ray issuing from p.

ma(

Thi(g) (Wh)

FIGURE 1. For a contradiction, we assume that with overwhelming probability
the Markov chain creates a large projection on hE(g). The dotted line is meant
to represent the sample path of the Markov chain and «, 3 are the two Morse
rays with very different Morse gauges.
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The main ingredient in producing a contradiction is the following claim, which states that if (1)
holds then in a definite number of steps, the Markov chain (wP) simultaneously travels a long way
along two Morse rays that are in very different directions.

Claim. There exists a natural number m such that there are bijective v—quasi-isometries ¢, ¢pg : G —

G with ¢, (p) = ¢5(p) = p such that
2

Pldg.a(p, wh,) > C1]| = ; and P[dg,s(p,wh,) > C1]| = 3

Proof. We first fix the value of m to be considered. Let ¢ € 8 have dg(p,q) = d, where d is as above.
According to Lemma 4.4, there is some ¢’ € G, with dg(p,¢') < s, such that diamx (75, (¢'q 1 pB)) <
E. Let p' = ¢'¢"p, so that da(p',q') = d(p, q) = d.

Because dg(p,p’) < d + s, Lemma 4.3 tells us that there is some ¢5 < (d + s)U such that Plwy, =

Pl = eg“". An analogous construction yields a corresponding number t, < (d + s)U. Observe that,
by (1) and the choice of J,

1
Pl (pr oy, 0,) < C = JUd+5) = d| < 2ef™.

Set m = n —t,. Let us write n = n+tg —t, and t = t3. We have m =n —t.

The above probability that dp(p,w?) is at most d is bounded below by the probability of the
Markov chain going to p’ in exactly ¢ steps and then making little distance along h~ for a further 72 —¢
steps. This gives us

€= P[wf = p'] ~]P’[d;w(p, wgft) < d] = eg+sP[dh7(p7 waDL;t) < d],

from which we deduce that P[d (p, wgit) < d] < i. Since m = f — t, we have established that

]P’[dm(pvwﬁ;) > d] > %

Now let us consider an arbitrary point k € G satisfying dj~(p, k) > d. Since hpy is a —quasigeodesic,
Lemma 2.3 tells us that dp,, (pzo, kzo) > % — 6 — R. By the choice of ¢’ via Lemma 4.4, we therefore
have

d
Ay (kzo,q'q " pB) > g ¢-R-E>B

By the Behrstock inequality, Lemma 2.4, we have dg,-1,5(hpy, kxg) < B. Now, using Lemmas 4.4
and 2.3, the fact that ¢'q~!pf is a #-quasigeodesic means that this leads to

dq/q—lﬂ(pl7 ]C) 2 dq/q—llg(pl7 q/) — dq/q—l/@(q/, k)
> d—0(dyg—1,5(q w0, kxo) + 2R+ 0)
>d-0B+FE+2R+06) = Cs.
In particular, our previous estimate on the Markov chain implies that
2

P[dq/q_lﬂ(p'7w£;) > Cg] > 3

By quasi-homogeneity, Definition 2.8, there is a bijective v—quasiisometry ¢ : G — G that respects
the Markov chain and has ¢(p’) = p. Applying Lemma 4.2 with £ = ¢’¢~!3, we therefore have

P|dygrgrs(p,wh) > C1 | = Pldgyg-15(p b (wih)) > €1
P[dgyr (0 wth) > ACr+ 4)|
2

Pl:dq/q—lﬁ(pl,wfr;) > CQ:I = g

The statement follows by letting ¢g be the quasiisometry ¢q’q~' of X, which depends on 3 because
q and ¢’ do.

\Y

\%

¢
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In view of the claim, there must be some g € G such that dy.(p,q) > C1 and dgg(p,q) > Ci. Let
o = ¢Bl¢aa and ¢’ = qbgl(q). Because ¢g(p) = p, the first part of Lemma 4.2 tells us that
1 4
dos (D, ¢ —dg.ap,q) — A > — — A.
(p.d') > Zdooalp,a) > —
The choice of 8 via Corollary 3.6 means that diam (7, (8)) < D, so since p € 8, we have dn/(¢',8) > B
by definition of C4. Similarly, dg(q¢’, o) > B. This contradicts the Behrstock inequality, Lemma 2.4.
O

5. LINEAR PROGRESS
Our main theorem on Markov chains is the following.

Theorem 5.1. Let G be a group acting on a hyperbolic space X with basepoint xo and satisfying
Assumption 2.1. If (w¥), is a tame, quasi-homogeneous Markov chain on G, then there exists a
constant C' such that for all o€ G and n € N we have:

P[dx(oxmngo) >n/C| > 1- Ce™ ™,

Recall that a Markov chain satisfying the conclusion of the above theorem is said to make linear
progress with exponential decay in the hyperbolic space X.

In this section, we prove Theorem 5.1. The main technical result that we establish in order to do
this is Proposition 5.6 below, the conclusion of which is the same as that of [GS21, Proposition 5.1].
Theorem 5.1 is a consequence of this by the following.

Theorem 5.2 ([GS21, §6]). Let G be a group acting on a hyperbolic space X. Every tame Markov
chain on G satisfying the conclusion of [GS21, Prop. 5.1] makes linear progress in X with exponential
decay.

Thus, in order to prove Theorem 5.1 it suffices to establish Proposition 5.6, because Proposition 4.1
shows that, under the assumptions of Theorem 5.1, the hypotheses of Proposition 5.6 are met. Before
we can state Proposition 5.6, we need to introduce some notation.

5.1. Notation and preliminary lemmas. Fix a group G acting on a hyperbolic space X, and a
basepoint zg € X. We extend the notation used in Notation 2.6 with the following lemma, which
states that, in the case of an axis of a WPD element, one can perturb closest-point projections to
make them satisfy a stronger version of the Behrstock inequality.

Lemma 5.3 ([BBFS20, Thm 4.1]). Let g € G be a loxodromic WPD. Writing v = E(g), there is a
constant B and a g-equivariant map w., : G — P(7) with the following property, where P(7) is the set
of all subsets of v. For all x € G and distinct translates hy # h'~,

if dx(7hy(2), Ty (R'Y)) > B, then my () = mwq (hy),
where we define Ty (z) = kny(k™12). Moreover, for all x € G the Hausdorff distance between 7., (x)
and any X -projection of x to {g) is bounded by B.

In view of this lemma and with an abuse of notation, for h,z,y € G we will denote

dh’y(xay) = diam(ﬂ—h'y(x) o ’/Th'y(y))a
where 7y, is the equivariant map of Lemma 5.3.
The following definition captures the set of cosets where two given elements have far away projec-
tions.

Definition 5.4 ([GS21, Def. 3.11]). Let g be a loxodromic WPD element of a group G acting on a
hyperbolic space. Given z,y € G and T = 0, we write

With g fixed, let o,p, z,y € G. We define the following “distance formula” expression:
Z [%y] = 2 dhE(g) (xvy)

Hr(o,p) hE(g) € Hr(o,p)
Thi(g) (%) # Thi(g) (¥)
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Remark 5.5 ([GS21, Rem. 3.12]). Since projection distances satisfy the triangle inequality, so do
these distance-formula expressions. That is, for all o,p, z,y, z,€ G we have

Y [l < Y lmyl+ Y vl
’HT(OJ)) ’HT(Orp) HT(OrP)

We can now state the main result of this section, the conclusion of which is the same as that of
[GS21, Prop. 5.1]. As discussed, Theorem 5.1 follows from it, Theorem 5.2, and Proposition 4.1.

Proposition 5.6. Let G be a group acting on a hyperbolic space X and fix a basepoint ro € X.
Suppose that the conclusion of Proposition 4.1 holds for some loxodromic WPD g € G. There exist
Ty, C’" such that the following holds for each T = Ty. For all o,pe G, neN, and t > 0,

P[Hr <n: Z [p,wP] = t] < 2¢tC
Hr(0,p)
Before proceeding to the proof, we collect two more preliminary lemmas that are needed in order

to choose the constant 7.

Lemma 5.7 ([BBFS20, Thm 4.1], [BBFS20, Thm 3.3(G)]). Fiz a lozodromic WPD element g € G,
and let o,p € G. Write v = E(g). For any sufficiently large T, the set Hr(o,p) u {07, py} is totally
ordered with least element oy and greatest element py. The order is given by hy < I~ if any one of
the following equivalent conditions holds, where B is as in Lemma 5.5.

dp~ (0, W'7y) > B.

Thiy(0) = Ty ().

dp~(p, hy) > B.

Thy(p) = Ty (R'Y).

Lemma 5.8 ([GS21, Lem. 3.14]). Let g € G be a lozodromic WPD and let xg € X. For all sufficiently
large T', we have the following for all a,b e G:

1
dx (axg, bxg) = B Z [a,b].
HT(a,b)

5.2. Proof of Proposition 5.6. Fix an element g € G satisfying the conclusion of Proposition 4.1.
Throughout the proof, we write v = E(g).

Constants. We fix the following quantities.

B is given by Lemma 5.3.

T’ > 10B is sufficiently large that the conclusions of Lemmas 5.7 and 5.8 hold.

L = L(T") is given by [GS21, Lem. 3.16].

J is such that for any p, h € G, consecutive points of both (wfxz¢) and (mp,wE) have distance
at most J. This exists by tameness, Definition 2.7.

C and € are as in Proposition 4.1. We can and will assume that C' > B.

To = max{T",2(C + B+ J + 1)}.

D=Ty+LJ+L~+C.

Fix 0,p,q € G and n € N. For ease of notation, given ¢ > 0 we define
gt)=P[3r<n: Y uwllzt| and JO) =P Y [pull>t|
Hr(0,p) Hr(o.p)

Thus our goal is to find a constant Cy, independent of ¢, such that g(t) < Coe~ 2. Fix T = Ty.
The main technical step in our proof of Proposition 5.6 is the following, which relates the probability
functions f(t) and g(t).

Lemma 5.9. For allt > D, we have eg(t) < f(t — D) — f(t + D).

Proof. For ease of notation, set D' = LJ + L+2C +2B. For t > D, let A? denote the set of all z € G
such that 3, (, ) [p,2] >t — D" and dp,(p,2) > 2C and dp (0, z) > 2C, where hy € Hr (o, p) is the
minimal coset contributing to the sum ZHT(O’p) [p, ], with respect to the linear order from Lemma
5.7 for Hr(o,p). For k < n and z € G, let .A’,;m denote the event
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“We have w} =z and x € A" and Vi <k :w! ¢ A"
That is, Aj, , is the event that wy = x is the first time that w} € A".

Claim 3. Forany k <n, xe G, andt > D, we have

P| Y [pwblelt—Dt+ Dl AL, | = Pldn,(ewi) <CJ.
Hr(o,p)

Proof of Claim. We fix k <n, z € G and t > D and assume that Aj, , holds. Let hy be the minimal
coset, with respect to the linear order from Lemma 5.7 for the set Hy(o,p) that contributes to the

suin ZHT(o,p) [p7 ’U)Z] :
Therefore

(2) Thy(P) # Ty (wy) and  mws(p) = mq(wy)  VA'y < hy.
By the Behrstock inequality (Lemma 5.3), any point y € G with dn(p,y) > B has mpry(y) =
Thoy(hy) = mhry(o) for all A"y > hy. Similarly, any point y € G with dp,(0,y) > B has

T (y) = Ty (hy) = T (p) for all A’y < hy (and in Hr(o,p)). Hence, if dj(w}, wP) < C, then
2tz (o) [Why Wh] = diey (w], wh) < C as wy € A'. Hence if Aj , holds and if dp, (wy, w}) < C' then

>kl = Y ] = ) [whwh] =t-D'—C >t-D,
Hr(0,p) Hr (0,p) Hr(0,p)
by the triangle inequality (Remark 5.5).
Now, by the triangular inequality (Remark 5.5) we also have that if dp~ (w},w?) < C, then

> il < ) [puwpl+C

Hr(0,p) Hr(o,p)
Therefore, in order to complete the proof of the claim we need to bound »,, ) [p, wh].

Subclaim 1. We have 333, (, [P wp] <t — D' +4C +2J.

Proof of Subclaim 1 Let hivy be the second minimal coset (with respect to the linear order from
Lemma 5.7 for Hr(o,p)) contributing to the sum 355, ., [P, wy]. Let r < k be the last time such
that dp,, (0, w?) > 2C. Then we have that dp,,(p, w?) = dp,~(0, ) —dp,~ (0, Wh 1) —dp o (W), 1, wWE) =
T —2C—J > 2C. Therefore, 3, (, [P, wl] <t— D’ otherwise w? € A" contradicting the minimality
of k. By the strong Behrstock inequality, we have that mpmy(0) = mpmy(wP) = whpmy(w}) for all
h"~ > hi7y. We also have that dp,(0,w?) > B and hence 7y (p) = mpiy(wP) = Th(w}) for all
h'y < hy. As dp,~(0,w?) > B and hy < hi7y we have that 7 (p) = mp (wP).

Therefore,

A

2 [p7wi]\ Z [p,wff]—&— Z [wngf]

Hr(o,p) Hr(o,p) Hr(o,p)
<t-D'+ dh’Y(wf? U)Z) + dhw(wgv U’Z)
<t—D'+ dh’y(wfvw@ + dhl’)’(w£+l7w€) + dhl’y(wf-&-l’wz)
<t— D'+ dpy(p,wh) + J + 2C.

By definition of Aj, ,, there is a last time s < k such that dp,(p,w?) < 2C. If s + 1 = k then
dpry (p, w}) < dpy(p,wP) + J < 2C + J and this proves the subclaim.

If s <k —1 then let u € (s + 1, k) be the last time such that >3, [p,w}] <t—D" lfu+l=k
then

D pwil< Y Ipwhl+ Y [whwh ] <t-D'+J
Hr(o,p) Hr(o,p) Hr(o,p)

and we have proved the subclaim. If not, then we consider w?, for i = k—1 or i = u+ 1 (these might
be equal but that’s fine), we have that & > ¢ > u. By definition of w}, we must have w! ¢ A’, but
i > max{s,u} hence Yy, (, [, w] =t — D" and dp, (p,w}) = 2C. Therefore d, (0, w}) < 2C for
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i=k—1ori=u+1. Now, by the fact that the projections of w? and w? coincide on cosets which
are not hy and by the triangular inequality (Remark 5.5), we get

> pwl < D) bkl DY) [whwh]
Hr(o,p) Hr(o,p) Hr(o,p)
<t —D' + dpy(wh, wh)
<t — D'+ dpy(wh, wh 1) + dpy(wh 1, 0) + diy (0, wh_1) + dpy (wh_;, w5)
<t—-D+J+2C+2C+J

and this proves the subclaim. ¢
Therefore, by Subclaim 1, if A} , holds then the event ”dj, (wy,w}, ;) < C” implies that

Z [p,wP] < 2 [p, wh] + Z [wh,wh] <t—D'+4C+2J+C <t+ D.
Hr(o,p) Hr(0,p) Hr(o.p)

Combining this with the result obtained earlier (above the subclaim), we get that

Pl Y [pwhlelt—D,t+ DAL, | = P|di, (w],wh) < ClAL, |
Hr(0,p)

= ]P’[dh,y(a:,wi_k,) < C’]
by the strong Markov property [GS21, Lemma 2.2]. &

Since the conclusion of Proposition 4.1 holds for g, with v = E(g), we have P[dj,~(z,w?_,) <
C] > €. Claim 3 above and the law of total probability therefore gives us

Jt=D)~f@t+D) =P Y [puwhlelt—Dt+ D]
Hr(o,p)

> N5 (P X wlelt— Do+ DAL, PLALL])
k<n zeG Hr(0,p)

> ey Y P[A,]

k<n ze@G

> dP’[Hk <n: wz eAt].

To complete the proof of the lemma, we show that g(t) < P[3k < n : w} € A’]. For this, suppose
that the defining event of g(¢) holds. That is, suppose that there exists r < n such that S =
2t (op) PswP] = t. Let hy, 'y € Hr(o, p) be the minimal and second-minimal elements contributing
to the sum S, respectively. Note that 7~ (0) = mpry (wP) for every b’y > hry.

If dpy (p, wP) = 2C and dp (0, wP) = 2C, then w? € A’. In particular, there exists k < n such that
wh € A" and we are done.

Otherwise, dp(p,w?) < 2C or dp(o,w?) < 2C. First, say that dp,(p,w?) < 2C. Since hy
contributes to the sum S, we have 7, (p) # 7 (w?), so by Lemma 5.3 we must have dp, (0, w?) < B,
and in particular dp(p, w?) > B. Because T' > 2(C' + B + J), there is a maximal ' < r such that
dh/fY(O, U)f,) > 2C > B.

By the choice of J, we have dj(p,w?,) > 2C > B. By the assumption that dj(p,w?) < 2C, we
have dp~ (0, w?) > B. By applying Lemma 2.4 using these various estimates, we can use the definition
of the linear order on Hr(o,p) to obtain:

o Tt (wh) = e (0) for all Aty > h'y;
o T (wh)) = mp—(p) for all K=y < h'y;
o Thin(wh)) =y, (0) for all ATy > h'y;
]

Thy (WP) = T (p) for all A"y < hry.
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In particular, 2’y is the minimal element of Hr (o, p) that contributes to 34, - [p, w?], and we have
dpy(p,wh)) > 2C and dps+ (0, w?,) > 2C. Moreover, Remark 5.5 lets us compute

Z [p7 wf’] = Z [p7 ’LU?] - Z [wf? ’U)f/]
Hr(o,p) Hr(0,p) Hr(o,p)
t — (dny (WP, w?)) + dpa (WP, w?)))
t — dpy (W2, p) = (diry(w?, 0) + dpiy(0,wF)))
t—20-B—(B+J)>t-D.

AR\

We have shown that w?, € A’. Thus, whenever the defining event of g(¢) holds, there is some k < n
such that w} € A"

If, instead, it is the case that dj- (0, w?) < 2C then let r’ be the last time that dy- (o, w?,) = 2C.
Then we have that dj (0, w?,) < 2C'+J by the choice of J, hence dp (p, w?)) = dp(p, 0)—dp~ (0, wh,)
2C by the choice of T'. Further, by Remark 5.5 we have

S ] > S [pwd] - di(ul,uwl) >t — (60 +7) 51— D,
Hr(o,p) Hr(o,p)

Thus, w?, € A'. Hence, we have shown that the defining event of g(¢) implies that there exists a k < n
such that w} € A’. This completes the proof of the lemma. O

We have shown that the probability g(t) is bounded above by a probability f(¢ — D). In order to
prove Proposition 5.6 it suffices to show that the function f decays exponentially.

Proof of Proposition 5.6. By definition, g(¢t) > f(t) = f(t + D) for all ¢t. Therefore for ¢t > D,
Lemma 5.9 gives us f(t—D)— f(t+D) > eg(t) = ef(t+ D). Hence f(t+ D) < %. For simplicity,
set €g = %ﬂ < 1. Rephrasing this, for every s > 0 we have f(s+2D) < eaf(s). If we write s = 2¢D +r
with ¢ € N and r € [0,2D), then iterating this estimate yields

s—r 1 _S _S_
f(s) < elf(r) < el = e < —e3P = (1+¢)e3P.
€2
Changing the base of the exponential completes the proof, with C’ = %.

6. DESCENT OF QUASI-ISOMETRIES IN HHSS

This section and the next one concern hierarchically hyperbolic spaces and groups. For more
detailed background on hierarchical hyperbolicity the reader is directed to any of several expository
treatments; see e.g. [Sis19] for a detailed conceptual explanation of the definition or [CHK22, Part
2] for a technical overview. For present purposes, we refer the reader to [BHS19, Def. 1.1] for the
definition of a hierarchically hyperbolic space (HHS).

We will sometimes require the following properties of an HHS (X, &):

o (X,6) is normalised if all maps ny : X — CU to the various hyperbolic spaces CU are
uniformly coarsely surjective; see [BHS19, Rem. 1.3] for why this can always be assumed.

e (X, ) has the bounded domain dichotomy if there is a constant B such that diam(CU) < B
for any U € & with CU bounded. For this and the next definition, see also [ABD21, Sec. 3].

e (X, G) has unbounded products if it has the bounded domain dichotomy and for all U € &~ {S}
such that CU is unbounded, there exists V' € & such that ULV and CV is unbounded. (Recall
that S denotes the unique C-maximal element of &.)

Note that every HHG satisfies the bounded domain dichotomy, as there are finitely many isometry
classes of domains. Other hierarchical hyperbolicity notions will be used incidentally and we will refer
to the relevant literature as we go.

Two key notions for us are standard product regions and factored spaces. The standard product
region Py associated to a domain U is a subspace of the HHS under consideration which is naturally
quasi-isometric to a product Fy x Ey, where moving in the Fy (resp. Ey) factor only changes
projections to domains nested into (resp. orthogonal to) U; see [BHS19, Sec. 5] and [CHK22, Sec.
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15]. Similarly, there are product regions associated to collections of pairwise orthogonal domains
(which is the coarse intersection of the various standard product regions).

Regarding factored spaces, the idea is that starting with an HHS, we can cone off standard product
regions and obtain another HHS, where the associated index set is obtained from the original index set
by removing all indices “relevant” for the product regions we coned-off (and the rest of the structure,
in particular the hyperbolic spaces, remains the same). In particular, the new HHS is somewhat
“simpler”. We now make this more precise.

Let (X,d,S) be an HHS and let ¥V < & be downwards-closed in the nesting poset (6,Z). In
[BHS17a], a metric d¥ < d is constructed on X such that (X,dY,& \ V) is an HHS. We call d¥ the
factored metric and (X,dY) the factored space of (d,V). HHS automorphisms descend to factored
spaces [CHK22, Proposition 19.1].

Definition 6.1. Given an HHS (X, &), let I's be the graph with a vertex for each element of & and
an edge joining U to V whenever ULV and both CU and CV are unbounded.

Remark 6.2 (Arranging unbounded products). If (X, &) has the bounded domain dichotomy, then
I's has an edge whenever CU and CV have diameter more than B and ULV. We mainly use the
bounded domain dichotomy indirectly, via the construction in [ABD21, Sec. 3]: if (X, &) is an HHS
with the bounded domain dichotomy, then there is an HHS structure (X, &) with unbounded products.

The following proposition says roughly that quasi-isometries of HHSs descend to quasi-isometries
of the factored spaces where we cone-off the product regions with the maximal number of factors. A
clique in a graph is said to be largest if its cardinality agrees with the clique number of the graph.

Proposition 6.3 ([BHS21, Cor. 6.3]). Let (X,d, &) be an HHS with the bounded domain dichotomy,
and let V be the downwards-closure of the union of all largest cliques of I's. If there is some D such
that for each E-—mazximal U € V, every pair of points in Fy lies on some biinfinite D—quasigeodesic of
Fy, then every quasiisometry of (X,d) is a quasiisometry of (X,dY).

After applying the above proposition, we have an HHS (X,d", &\ V). Since V contained all U € &
belonging to a largest clique in I'g, the maximum size of a clique in I'g.y is strictly smaller than
in I's, while the bounded domain dichotomy persists since the cone-off construction does not modify
the CU.

Applying the proposition repeatedly, we therefore obtain HHSs where the maximal number of
factors of a product regions decreases until there are no products with at least two factors left. The
space obtained in this way is an HHS X that is hyperbolic in view of [BHS21, Cor. 2.16]. Moreover,
quasi-isometries of the original HHS descend to this HHS.

However, this hyperbolic space is not necessarily the maximal hyperbolic space associated to the
original HHS. This is explained more concretely in the following remark.

Remark 6.4. Let S € & be the maximal element. By [BHS17a, Cor. 2.9], the maximal hyperbolic
space CS is naturally quasi-isometric to the factored space (X, ds—1{s }). This is in general not naturally
quasi-isometric to X , as the HHS structure of the latter contains more domains than just S.

To illustrate this, skipping all technical details but hopefully still conveying the picture, consider
the group

G = (Z*+17) x Z.
Notice that G has a splitting with two vertex groups, a copy of Z3 and a copy of Z, and two edge
groups with vertex group Z, one edge being a loop while the other connects the two vertices. The
first step of the procedure cones-off quasiflats of rank 3, resulting in a space quasi-isometric to the
Bass-Serre tree T' for the aforementioned splitting; in particular this is already a hyperbolic space.
The action on T is not acylindrical, so T is not the top-level hyperbolic space for any HHG structure
on G.

To illustrate this in a different way, we describe a factored space on the mapping class group that,
whilst not giving exactly X , gives the idea of how it can differ from C.S, where S is a closed connected
oriented surface of genus at least 3. Namely, let U be the set of subsurfaces that are neither S nor the
complement of a curve. Then I's.z has no edges, so (X,d¥) is hyperbolic. But it is not naturally
quasiisometric to CS, and it has loxodromic isometries that are not pseudo-Anosovs of S, namely
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partlal pseudo-Anosovs supported on the complement of a single curve. The iterative construction
of X gives an even “bigger” space than (X,d") as above, meaning that X has an HHS structure
containing more domains than S and complements of single curves. For instance, complements of
four-holed spheres are also part of the HHS structure for X (four-holed spheres get “removed” at the
first iteration of the construction, so after then their complements are never involved in quasiflats of
dimension at least 2).

More abstractly, Figure 2 shows how applying the iterative procedure to & can result in X having

a nontrivial HHS structure.

N . .

FIGURE 2. If the leftmost graph is part of I'g (with non-adjacent vertices
transverse), then it yields the second graph in I'g.y, which is obtained by
applying Proposition 6.3. Repeating yields the third graph, and we termi-
nate with the fourth graph, which has vertices representing non-maximal un-
bounded domains. Hence X is not quasiisometric to CS' in this case.

‘We record the iterative construction described above here:

Lemma 6.5. Let (X,d, &) be an HHS with the bounded domain dichotomy and the following property:
if Fy is unbounded then every pair of points of Fy lies on a uniform biinfinite quasigeodesic of Fy.
There is a downwards-closed set U = & — {S} such that (X,d") is hyperbolic and every quasiisometry
of (X,d) is a quasiisometry of (X,d").

Note that, in view of the HHS structure on (X, d"), the map 7g : X — CS is still coarsely Lipschitz
and coarsely surjective when X is endowed with the metric d“.

Proof. Let w be the clique number of I's. Let &° = &, d° = d. Given &' and d', let U’ be the
downwards-closure of the union of all maximal cliques of I'gi. Let d**! be the factored metric of
(d',U?), and let &+ = &'\ U’. Because (X, d', &%) is an HHS with the bounded domain dichotomy,
so is (X,d"*!, &), Moreover, the clique number of I'sg: is at most w — 4. Thus there is some
minimal n < w such that I's» has no nontrivial cliques. Let & = & ~ &™. By Proposition 6.3, every
quasiisometry of (X, d) is a quasiisometry of every (X,d?), in particular of (X,d") = (X, d"). O

From now on, U, 4?, and &’ denote the subsets of & constructed in proving Lemma 6.5.

Remark 6.6. The proof of Lemma 6.5 did not need every U € & to have the property that each
pair of points in Fy lies on a uniform quasigeodesic: it only needs this to hold for those U that
are C-maximal in some U’. Moreover, it does not need to hold for the full space Fy; obtained by
considering U € G, only the F& obtained by considering U € &*.

Lemma 6.7. Let (X,8) be an HHS with unbounded products. If for all unbounded U € &, every
x € CU lies on a uniform biinfinite quasigeodesic, then every quasiisometry of (X, d) is a quasiisometry
of (X,d").

Proof. As noted in Remark 6.6, it suffices to show that if U is T-maximal in some U/?, then each pair
of points of F}; lies on some uniform quasigeodesic of F},, where F}; is the space of nested partial
tuples in (X, d?, &%).

Let U € U* be C-maximal, and let z;,z5 € Ff] Consider the set 8 = Hp,(z1,z2). By the
definition of %, no two unbounded elements of &}, = &' " Sy are orthogonal, so 3 < F}; is a uniform
quasigeodesic. Moreover, this implies that F}; is hyperbolic, for instance by [Bow13, Thm 2.1].

By [BHS19, Lem. 2.8], the set Religogr (21, 22) &}, is totally ordered. Let V3 and V be the minimal
and maximal elements, respectively. By assumption, there are uniform biinfinite quasigeodesics a; <
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CV; through 7y, (z;), respectively. Although the a; might not be coarsely connected subsets of the
hyperbolic space Fy;, their convex hulls &; therein are uniform biinfinite quasigeodesics. By the
distance formula [BHS19, Thm 4.5] and the choice of the Vj, the quasigeodesic &; passes uniformly
close to z; € F;. We can therefore take subrays &) such that & u 8 U &5 is a uniform biinfinite
quasigeodesic in Fy; through x; and z». O

The hyperbolic space (X, d") to which quasi-isometries descend is set-theoretically unchanged from
X, so still admits a map g : X — CS, where S € G is the maximal element. Moreover, as explained
in the factored space construction in [BHS17a], this map is coarsely lipschitz. However, it need not
be a quasi-isometry, as explained in Remark 6.4. We will need to further cone off (X,d") to get a
quasi-isometry to CS.

We now informally explain how to do this. We have to identify the (quasiconvex) subspaces that
need to be coned off, which from the construction, come from product regions (with at least two
factors) of the original HHS: they are isolated vertices as in Figure 2. That is, in the original HHS
there is a subspace of the form U x V, and only one of the factors, say V, gets coned off when
constructing (X, d"). To recognise those subspaces, we look at preimages of points in (X, d") and
notice that if two points lie in the remnant of a product region, their preimages have unbounded coarse
intersection. In the notation above, preimages are of the form {u} x V, and any two such subsets lie
at finite Hausdorff distance (we stated bounded coarse intersection because we will take preimages of
balls, not points, and we emphasise that the Hausdorff distance is finite but depends on the subsets
in question). In fact, this characterises pairs of points in remnants of product regions, once this is
properly quantified. We make this precise after setting notation.

If (X,6) is an HHS with K-unbounded products, then we can and shall assume that K >
max{l, Ko, K1, Ko, K3}, where the K, are the constants appearing in the statement of [BHS21,
Lem. 1.20]. Recall the function 6, from the uniqueness axiom of HHSs: if (X,d, &) is an HHS
and d(z,y) = 0,(r), then there is some U € & with dy(z,y) = r. Also recall that every element
V € &\ {S} has an orthogonal container V1. Finally, recall (see [BHS19, Lem. 6.2]) that for each
HHS (X, &) there is a constant 6, such that for any A ¢ X, the 6p—hull Hy, A, defined in [BHS19, Sec.
6], is hierarchically quasiconvex in the sense of [BHS19, Def. 5.1] (meaning roughly that its projections
in all hyperbolic spaces are quasiconvex, and it is coarsely maximal with those projections). We will
also use the notion of a gate map gg to a hierarchically quasiconvex set H [BHS19, Def. 5.4], defined
by assembling all closest-point projections in the associated hyperbolic spaces.

Proposition 6.8. Suppose that (X,d, &) is an HHS with K —unbounded products. There is a constant
C' such that the following holds. If U ¢ U u {S} has Fy unbounded, then every x,y € Py lie in
unbounded subsets I, I, < (X, d), respectively, that are at finite Hausdorff distance and have diameter
at most C in (X, d").

Conversely, for each C there exists D such that the following holds. Suppose that x,y € X lie in
unbounded subsets I, I, < (X,d) that are at finite Hausdorff-distance and have diameter at most C
in (X,d"). Either d(z,y) < 2C + 0,(K), or there is some V € U such that x and y are both D—close
to Py in (X, d¥).

Proof. For the first statement, define I, = {z} x Ey < Py and I, = {y} x Ey < Py. These are
unbounded because (X, &) has unbounded products, and they are clearly at finite Hausdorff-distance.
Moreover, the fact that U ¢ U implies that every unbounded W_LU is in U. There is some such W
because U # S, so I, and I, have uniformly bounded diameter in (X, d4).

Now let us consider the converse statement, in which we start with subsets I, and I, containing
x and y, respectively. Since I, and I, are at finite Hausdorff-distance, so are their projections to
each CW, and hence so are the convex hulls of these projections. This shows that the hierarchically
quasiconvex hulls Hy,I, and Hy I, are at finite Hausdorff-distance, and it follows that the gates
9H,, 1,1y and gm, 1,1, are unbounded. Let Il = OH,, 1,1y and let Iz,/ = 9Hp, 1, Ls-

Because I, is unbounded, the uniqueness axiom implies the existence of a pair of points a,a’ € I,
with d(a,a’) < 260,(K) and a domain V € Relg(a,a’) such that Relk(a,a’) € Sy. Consider b =
9y, 1,0- If d(a,b) < 0,(K), then

d(z,y) < d¥(x,a) + d*(a,b) + d"(b,y) < 2C + 0, (K).
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Otherwise, the set Relk(a,b) is nonempty. According to [BHS21, Lem. 1.20(5)], we have ULV
for all U € Relk(a,b). Now suppose that W € & has V. = W or VAW. Using the fact that
dy(a,a’) = K, consistency and bounded geodesic image tell us that at least one of 7w (a), 7w (a’) is
E—close to pY;,. This shows that d(a, Py) is bounded by some uniform constant D’ defined in terms
of d(a,a’) < 20, (K) and the uniqueness function. Because of [BHS21, Lem 1.20], we can use a similar
argument with slightly different constants to obtain a uniform bound D” on d(b, Py) in terms of
d(b, g, 1,0"), which is itself bounded in terms of d(a,a’) < 260,,(K). We can now compute

d(z,Py) < d“(x,a) + d*(a,Py) < C+ D/,

and d“(y, Py) is bounded similarly. Since V € Relg(a,a’), it is unbounded, and the condition that
diamx quy I, < C implies that V e U. O

We can now prove the main theorem of this section, after collecting all required hypotheses in the
following definition.

Definition 6.9. We call an HHS (X, &) well behaved if it is normalised, has unbounded products,
and any one of the following holds for all U € &:

e If Fy; is unbounded then each pair of points of Fy lies on a uniform biinfinite quasigeodesic
of FU.

e If CU is unbounded, each p € CU lies on a uniform biinfinite quasigeodesic of CU.

e CU has uniformly cobounded isometry group.

Theorem 6.10. Let (X, 6) be a well-behaved HHS. Then every quasiisometry f of X induces a
quasiisometry ' of CS such that f'ws and wsf coarsely agree.

Proof. Let f be a quasiisometry of (X, d). Under the first assumption, Lemma 6.5 shows that f is a
quasiisometry of (X,d). Under the second assumption, this is given by Lemma 6.7, and the third
assumption implies the second.

Let V = (6 \U) ~ {S}. By the distance formula, the map 7g is a quasiisometry from the HHS
(X, (d¥)V,{S}) to CS (here we use that the HHS is normalised, otherwise the map would only be
a quasi-isometric embedding). It therefore suffices to show that f is a coarsely lipschitz map of
(X, (d4)V), for then the same will apply to a quasiinverse of f.

Let us write d’ = (d¥)Y. By the definition of d’, we just have to check that if x and y both lie in some
Fy < (X,d",6 \U) with U € V then d'(f(z), f(y)) is uniformly bounded. If diam x ) (Fy) < o0,
then d¥(z,y) is uniformly bounded by the bounded domain dichotomy, and hence so is d'( f(x), f(y)),
because f is a quasiisometry of (X,d¥) and d’ < d¥.

Otherwise, the forward direction of Proposition 6.8 provides a pair of unbounded subspaces
I.,I, < (X,d) that are at finite Hausdorff distance and lie in bounded d4-neighbourhoods of z
and y, respectively. These properties are preserved by quasiisometries, so applying the reverse direc-
tion of Proposition 6.8 with fI, and fI, tells us that either d(f(z), f(y)) is uniformly bounded or
there is a domain V € & \ {S} such that f(x) and f(y) are uniformly close to Py with respect to d".
In the latter case, the definition of d’ gives a uniform bound on d'(z, y). O

In the case of hierarchically hyperbolic groups, we can remove the unbounded product assumption
using results from [ABD21], at the expense of working in the slightly more general category of G-
HHSes; see Definition 7.6.

Corollary 6.11. Let (G, &) be an HHG and suppose that the action of Stabg(U) on CU is cobounded
for every U € &, and that G is not wide. Then G admits a G-HHS structure (G,&') such that
the following holds, where S € &’ is the unique E-mazximal element: CS is unbounded and every
quasiisometry f of G induces a quasiisometry [’ of CS such that f'ms and wsf coarsely agree.

Proof. This is a consequence of Theorem 6.10 together with Lemma 7.11 below (which follows from
[ABD21]), which can be used to remove the unbounded products hypothesis, and Lemma 7.9, which
relates non-wideness to unboundedness of CS. (]

The conclusion of Theorem 6.10 is not true without some extra hypothesis beyond unbounded
products, as illustrated by the following example.
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Example 6.12. Let X be the universal cover of the plane minus an open square, which is a CAT(0)
cube complex whose hyperclosure (see [HS20]) & is a factor system in the sense of [BHS17b], so that
(X,6) is an HHS with unbounded products. However, there are self-quasiisometries of X, modelled
on the logarithmic spiral map, that do not induce quasiisometries of the contact graph of X. See the
discussion in [Casl6, §3].

7. ACYLINDRICAL HYPERBOLICITY AND QUASI-ISOMETRIES

Throughout this section, we still work with a fixed finitely generated group G and word metric
dg. We start with a stronger version of Assumption 2.1, which strengthens partial detectability to full
Morse detectability and the WPD property to acylindricity.

Definition 7.1 (Geometrically faithful pair). Let G act on a d—hyperbolic geodesic space (X, dx).
Fix a basepoint zg € X and let p : G — X be the corresponding orbit map. Assume that the action
is cobounded, i.e. X < Ns(p(G)). Suppose that the following conditions all hold:

(1) (Acylindricity.) G acts on X acylindrically and non-elementarily.

(2) (QIs descend.) For each v there exists some X such that for each v—quasi-isometry ¢ : G — G
there exists a A\-quasi-isometry ¢ : X — X such that dx(¢(g)(z), #(gz)) < A for all g € G
and z € X.

(3) (Morse detectable.) For every Morse gauge M there exists A such that if v < G is an
M—-Morse geodesic, then p o7y is a A—quasigeodesic. Conversely, for each A there is a Morse
gauge M such that if v < G is a geodesic such that p o« is a A—quasigeodesic, then = is
M—-Morse.

Then the pair (G, X) is geometrically faithful . We refer to the constant ¢, the map v — X implicit
in condition (2), and the maps A — M and M — X implicit in condition (3) as the parameters of the
geometrically faithful pair (G, X).

A related coarse version (targeted at our applications) is as follows:

Definition 7.2 (Quasi-geometrically faithful pair). Let (X,dx) be a d—hyperbolic space and let p :
(G,dg) — (X, dx) be a d—coarsely surjective d—coarsely lipschitz map. Suppose that the following all
hold:

(1) (Morse ray.) G contains a Morse geodesic ray.

(2) (QIs descend.) For each v there exists some A such that for each v—quasi-isometry ¢ : G — G
there exists a A\-quasi-isometry ¢ : X — X such that dx(p(¢(9)), d(p(g))) < A for all ge G
and z € X.

(3) (Morse detectable.) For every Morse gauge M there exists A such that if v < G is an
M-Morse geodesic, then p oy is a A-quasigeodesic. Conversely, for each A there is a Morse
gauge M such that if v < G is a geodesic such that p o v is a A-quasigeodesic, then 7 is
M-Morse.

(4) (Geometrically separated fibres.) For all » > 0 there exists R > 0 such that for all
x,y € X such that dx(z,y) = R,

diam (N (p~ (N (2))) 0 p~H (VY () < o0
for all s > 0, where N& and N¥X respectively denote neighbourhoods in G and X.

Then the pair (G, X) is quasi-geometrically faithful. We refer to the constant §, the map v — A
implicit in condition (2), and the maps A — M and M +— X implicit in condition (3) as the parameters
of the quasi-geometrically faithful pair (G, X).

We relate the definitions, and show that Definition 7.2 is quasi-isometry invariant:

Lemma 7.3. Let H be a finitely generated group such that there exists a quasi-isometry ¥ : H — G,
and suppose that (G, X) is a quasi-geometrically faithful pair, with p : G — X the coarsely lipschitz
map from Definition 7.2. Then (H,X) is a quasi-geometrically faithful pair, with map p o ¢ and
parameters depending only on the parameters of (G, X) and the quasi-isometry constants of 1.

Also, if (G, X) is a geometrically faithful pair, then it is a quasi-geometrically faithful pair.
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Proof. Let (G, X) be a quasi-geometrically faithful pair, with p as in the statement, andlet ¢ : H — G
be a quasi-isometry. Hence py : H — X is a coarsely surjective coarsely lipschitz map. Existence of
a Morse ray is a quasi-isometry invariant property, so Definition 7.2.(1) holds for H.

Suppose that ¢ : H — H is a quasi-isometry. Then by Definition 7.2.(2) we have a coarsely
commutative diagram

H—wg "k
% I
H—> G — X

(constants depending only on the parameters of (G, X) and the quasi-isometry constants for ¢), where
¢ = wdnﬁ and 1& is a quasi-inverse of 1. By construction, using pi in place of p, we have verified
Definition 7.2.(2) for (H, X).

Next, we check Definition 7.2.(3) for (H, X), using the map pt. This follows since the corresponding
property holds for (G, X), and in fact the same property, with geodesics replaced by quasigeodesics,
also holds in (G, X), using e.g. [RST22, Lem. 2.8], and we can move quasigeodesics between G and
H using .

Finally, we verify the geometric separation for fibers, i.e. that (H,X) satisfies Definition
72.(4). Let s = 0 and let z,y € X. Let us fix points a,b,a’,b’ € H such that we have
drr(a,a'), dia (b, ) < 5 and dx (pu(a), 2), dx (puo(b), ) < 1 and dx (pb(a’), ), dx (po(b), ) < r. Then
da(¥(a),¥(a’)), da(¥(b), (b)) are bounded in terms of s and v, and so Definition 7.2.(4), applied to
(G, X), bounds dg(¢(a’), ¥ (b)) (the bound is allowed to depend on z,y, s), and we therefore get the
required bound on dg(a’,b).

Now we prove the second assertion, that geometrically faithful implies quasi-geometrically faithful.
Suppose that (G, X) is a geometrically faithful pair, with orbit map p. Then Definition 7.2.(2),(3)
are immediate from Definition 7.1.(2),(3). Let g € G be a loxodromic WPD element, so that n —
p(g™)xo = p(g™) is a quasi-isometric embedding Z — X, and hence n — g" is a Morse quasigeodesic
Z — G, because of Definition 7.1.(3). Restricting to N gives a Morse ray in G, so Definition 7.2.(1)
holds. Definition 7.2.(4) follows from Definition 7.1.(1) along with [Sis16, Lem. 3.3]. Indeed, the
acylindricity assumption guarantees that G acts acylindrically along X in the sense of [Sis16, Def.
3.1] (viewing X as a subspace of itself), and the property of preimages of balls mentioned in Definition
7.2 coincides with geometric separation in the sense of [Sis16, Def. 2.1]. O

The main technical result of this section is:

Proposition 7.4 (Acylindrical hyperbolicity from quasi-geometrically faithful pair). Let (G, X) be
a quasi-geometrically faithful pair. Then there exists a hyperbolic geodesic space Y such that G acts
on Y, there exists g € G acting on Y as a lozodromic element, and every loxodromic g € G is a
WPD element for the G-action on Y. In particular, if G is nonelementary, then G is acylindrically
hyperbolic.

Before the proof, we note:

Corollary 7.5. Let G be a nonelementary finitely generated group such that there is a hyperbolic space
X making (G, X) a geometrically faithful pair, and let H be a finitely generated group quasi-isometric
to G. Then H is acylindrically hyperbolic.

Proof. By Lemma 7.3, (G, X), and hence (H,X), is a quasi-geometrically faithful pair, so applying
Proposition 7.4 implies that H is acylindrically hyperbolic. (]

We now prove the proposition:

Proof of Proposition 7.4. Fix a quasi-geometrically faithful pair (G, X) with map p and parameters
as in Definition 7.2.

Once we produce a hyperbolic space Y on which G acts with a loxodromic WPD element, then,
under the additional assumption that G is nonelementary, acylindrical hyperbolicity follows from
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[Osil6, Thm. 1.2]. In particular, the conclusion that every loxodromic g € G is WPD is stronger than
necessary, but we included it in the statement since it introduces no extra complexity to the proof.

Quasi-action of G on X: Each g € G can be regarded as a left-multiplication isometry g : G —
G, so by Definition 7.2.(2), there is a constant A such that for all g, we have a A—quasi-isometry
A(g) : X — X such that dx(A(g)(p(z)), p(gz)) < A for all 2 € G. Up to uniformly increasing A, this
implies that dx (A(gh)(y), A(g)(A(h)(y))) < A for all y € X and g,h € G. Here we have used coarse
surjectivity of p.

Moreover, for any y € X, we can choose z € G with dx(p(z),y) < A, and then
dx(A(z7 Y (p(x)), p(1)) < A, so since A(z~1) is uniformly coarsely lipschitz, we have, up to uni-
formly enlarging A, that dx (y, A(g)(p(1))) < A for some g € G. Thus far, we have produced a uniform
A such that A : G — XX is a A-cobounded Aquasi-action of G on X by \-quasi-isometries.

The space Y: Using any of the various “Milnor-Svarc for quasi-actions” statements in the liter-
ature, we now replace the quasi-action by an action. For instance, [Man05, Prop. 4.4] provides, up
to uniform enlargement of & and A, a d—hyperbolic graph Y, a A—quasi-isometry ¢ : X — Y, and a
homomorphism C : G — Isom(Y') such that

e (' is A—cobounded, and
* sup,ex dy (C(9)(q(2)), q(A(g)(z))) < A for all g € G.

Since the action is cobounded, in particular the orbits are quasiconvex and from, e.g., [CCMT15,
Prop. 3.2], there exists g € G acting on Y loxodromically, because Y is unbounded in view of Definition
7.2.(1),(3). Let 7 : G = Y be 7(g) = C(g)(g(p(1))), which A—coarsely coincides with ¢(A(g)(p(1)))
and so with ¢(p(g)).

Checking WPD: We now verify that g is a WPD element. In our notation, this means we must
show that for each € > 0, there exists n € Z such that |H(n,€)| < oo, where

H(n,€) ={heG:dy(C(h)(7(1)),7(1)) < & dy (C(h)(7(9")), T(9")) < €}

There exists r, depending only on ¢ and ¢, but not on n, such that h € H(n,e) implies
dx(p(1),A(h)(p(1))) < r and dx(p(g™), A(h)(p(g™))) < r. So by the triangle inequality,

dx(p(1),p(h)) <7+ A
and
dx(p(g"), p(hg"™)) <7+ A

Definition 7.2.(4) provides an R = R(r+\) such that dx (p(1), p(¢™)) = R implies that the p-preimages
of NX,(p(1)) and N;X,(p(g™)) are geometrically separated.

For n e N, let 7, be a geodesic in G joining 1 to g". Since g is loxodromic, the composition 77, is
a quasi-isometric embedding with constants depending on A,d, and g but not on n. Hence the map
P 1s also a quasi-isometric embedding with constants independent of n, so for sufficiently large n we
have dx(p(1), p(¢"™)) > R. Fix such an n.

If h € H(n,e), then from the earlier discussion we have h € p~'(NX,(p(1))) and hg" €
p~H(NX\(p(g™))). Thus h e NE(p~ (NX\(p(9™)))), where s = d(1,¢") is independent of h. So

r+A
Definition 7.2.(4) allows only finitely many possibilities for h, as required. O

7.1. Application to hierarchically hyperbolic groups. We now use Theorem 6.10 to apply
Proposition 7.4 to hierarchically hyperbolic groups. We first recall the definition of an HHG (see
e.g. [PS20] for the following modern formulation and [DHS20] for why it is equivalent to the original
definition from [BHS19)):

Definition 7.6 (Hierarchically hyperbolic group, G-HHS). Let G be a finitely generated group.
Suppose that G, with the quasi-isometry class of word metrics associated to finite generating sets,
admits an HHS structure (G, &). Suppose, moreover, that G acts cofinitely on & preserving =, 1, A,
and that the following hold for all U,V € &:

for each g € G, there is an isometry g : CU — CgqU such that for all g,h € G,

the composition CU LNV Y g AN CghU agrees with the isometry gh, and
mgu(gx) = g(my(x)) for all x € G and
pgg = g(p¥) whenever UhV or U & V.
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Then (G, &) is a hierarchically hyperbolic group.

Following [ABR22, Def. 3.3|, we say the pair (G, &) is a G-HHS if it has all of the above properties,
except weakened in the following way: we do not require & to contain only finitely many G-orbits,
but we do require (G, &) to satisfy the bounded domain dichotomy.

Remark 7.7. The reason to work with G-HHSes is twofold: first, various results about HHGs hold in
the slightly more general context of G-HHSes, and second, the mazimisation procedure from [ABD21],
used to produce an HHS with the bounded domain dichotomy into one with unbounded products,
will in general convert an HHG structure on G into a G-HHS structure that does not necessarily have
finitely many orbits. See [ABR22, Rem. 3.4].

Our main result is about acylindrically hyperbolic HHGs where the top-level hyperbolic space
witnesses acylindrical hyperbolicity. We formulate this is follows:

Definition 7.8 (Irreducible). The G-HHS (G, S) is irreducible if G has unbounded orbits in CS,
where S € G is the unique E—maximal element.

Irreducibility is related to acylindrical hyperbolicity, and various other properties by assembling
various results in the literature:

Lemma 7.9 (HHG irreducibility criteria). The following are equivalent, for a normalised G-HHS
(G, 6) with unbounded products and G nonelementary:

(1

) (G, ®) is irreducible.

(2) G is acylindrically hyperbolic.

(3) G has a Morse element.

(4) G is not wide, i.e. asymptotic cones of G have cut-points.

(5) G is not quasi-isometric to the product of two unbounded metric spaces.
(6)

G has no nonempty finite orbit in & — {S}.
Proof. Since the action of G on CS is always acylindrical [BHS17b, Thm. 14.3], and we are assuming
G is nonelementary, (1) implies (2). Item (2) implies (3) and (4) by [Sis16], and both of the latter
imply (5). If there exists U € & — {S} such that G -U is finite, then G virtually stabilises the standard
product region Py which, by the unbounded products assumption, is quasi-isometric to the product
of two unbounded metric spaces (see [CHK22, Sec. 15] for the quasi-isometry computation). Hence
(5) implies (6). Finally, using the normalisation assumption, [DHS17, Cor. 9.9] says that (6) implies
(1). The latter implication also follows from [PS20, Thm. 5.1]. O

For what follows, in view of results from [ABD21] we can work with more general HHSs than
well-behaved ones. Essentially, we can drop the unbounded products assumption:

Definition 7.10 (Reasonably behaved). The HHS (X, &) is reasonably behaved if it is normalised, it
satisfies the bounded domain dichotomy from [ABD21, Def. 3.2] and for all U € &, Isom(CU) acts on
CU coboundedly.

The next lemma is an application of results in [ABD21], used to avoid having to add the hypothesis
of unbounded products to the final statements:

Lemma 7.11. Let (G, S) be a reasonably behaved irreducible G-HHS. Then there is a G-HHS struc-
ture (G, %) that is well behaved and irreducible.

Proof. Applying [ABD21, Cor. 3.8] yields a G-HHS structure (G,T) with unbounded products.
Examining the proof of the aforementioned theorem, each element U € ¥ is of one of three types.

First, U can be a dummy domain coming from the application of [ABD21, Thm. A.1], and in this
case CU is a single point.

Second, U can correspond to an element of &, with stabiliser Stabg(U) and associated hyperbolic
space CU unchanged from the original HHG/HHS structure.

Third, we could have U = S. In this case, CS is replaced by a hyperbolic space 7S which is an
electrification of G, so there is a coarsely lipschitz map G — T.5, and the construction makes the
original map 7g : G — CS factor as G — TS — CS, where the latter map is also coarsely lipschitz.
So TS is unbounded if CS was. All of the maps involved are G—equivariant, and the action of G on
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TS is cobounded since the latter is an equivariant electrification. We take T'= S and CT = TS in
the new HHG structure.

Thus (G, %) has unbounded products and is therefore a well-behaved HHG structure, with un-
bounded maximal hyperbolic space by Lemma 7.9. (]

Now we can state and prove the HHG part of Theorem 2 from the introduction, along with a
slightly more general version:

Theorem 7.12 (AH from QI to G-HHS). Let G be a nonelementary finitely generated group that
s not quasi-isometric to the product of two unbounded spaces. Suppose that G admits a reasonably
behaved G-HHS structure. Then any finitely-generated group H quasi-isometric to G is acylindrically
hyperbolic.

Proof. First suppose that (G, &) is a reasonably behaved G-HHS structure. Using Lemma 7.11 and
Lemma 7.9, we can assume that (G, &) is well behaved and irreducible. Let S € & be the maximal
element. By [BHS17b, Thm. 14.3], G acts on CS acylindrically. By Theorem 6.10, along with the
well-behaved assumption, quasi-isometries of G descend through mg to CS (since, by Definition 7.6,
mg is an orbit map), in the sense of Definition 7.1.(2). Finally, equivalence of Morseness of geodesics in
G and quasi-geodesicity of their compositions with 7g is given by [ABD21, Cor. 6.2]. Hence (G,CS)
is a geometrically faithful pair as in Definition 7.1. By Corollary 7.5, any H as in the statement is
acylindrically hyperbolic. O

Remark 7.13. The proof of Theorem 7.12 shows that any group G that admits a reasonably behaved
irreducible HHG structure (G, &) admits an action on a hyperbolic space X such that (G, X) is a
geometrically faithful pair, and in particular, (G, X) satisfies Assumption 2.1. If the original HHG
structure had unbounded products, then we can take X = CS. And, moreover, the preceding holds
in the slightly more general setting of a G-HHS, not just an HHG.

A. APPENDIX: QUASI-ISOMETRIES OF HHGS WITH ONE-ENDED MAXIMAL HYPERBOLIC SPACES,
BY JACOB RUSSELL

In this appendix, we prove a converse of Theorem 6.10 when (X, &) is a hierarchically hyperbolic
group and the E-maximal space CS is one-ended.

Theorem A.1l. Let (G,8) be a hierarchically hyperbolic group with unbounded products. If CS is
one-ended, then every quasi-isometry f of CS induces a quasi-isometry F of G so that f o g and
s o F' coarsely agree. In particular, if (G, S) is well-behaved as described in Definition 6.9, then
f — F induces a group isomorphism QI(CS) — QI(G).

Remark A.2. We prove Theorem A.1 under looser hypotheses than an HHG. All one needs is that
the Cayley graph has an HHS structure on which the group acts by automorphisms. See Section A.6.

Our proof of Theorem A.1 uses the machinery of quasi-mobius maps on the Morse boundary
developed by Charney, Cordes, and Murray [CCM19] and independently by Mousley and Russell in
the case of HHGs [MR19]. The idea is that the quasi-isometry f of C.S will induce a quasi-mébius map
on the boundary 0CS. Using a result of Abbott, Behrstock, and Durham about unbounded products,
this quasi-m6bius map on 0CS can be upgraded to a quasi-mobius map on the Morse boundary of G.
The results of Charney, Cordes, and Murray (or Mousley and Russell in the HHG case), then say that
this quasi-mo6bius map on the Morse boundary is induced by a quasi-isometry of the group.

One-endedness of CS comes into play in being able to upgrade the map on dCS to a map on the
Morse boundary. Being one-ended allows us to adopt an idea of Rafi and Schleimer for the curve
graph and the mapping class group [RS11].

Theorem A.1 can fail when CS is not one-ended. For example, both the the fundamental group
of a non-geometric graph manifold and any non-relatively hyperbolic right angled Artin group have
HHG structures with unbounded products and where the E-maximal hyperbolic space is a quasi-tree.
However, these examples are known to not all be quasi-isometric [BN12].
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A.1. The Morse Boundary. We briefly recall the relevant properties of the Morse boundary that
we shall need. We direct the reader to [Corl7] for a more detailed account.

Let X be a proper geodesics metric space and fix a basepoint xg € X. As a set, the Morse boundary
of X is the collection of all Morse geodesic rays based at xp up to asymptotic equivalence. We will
topologize this boundary with the topology introduced by Cordes and denote this topological space
by 04+X.,; see [CorlT7] for details. The primary fact we need about this topology is that any quasi-
isometry f: X — Y of proper geodesic metric spaces has a continuous extension to a homeomorphism
Of: 0xXuy — 0xY}(z,). This shows that the boundary is not affected by the choice of basepoint.
Moreover, there is a well defined Morse boundary for a finitely generated group G by identifying it
with the Morse boundary of any proper geodesic space on which it acts geometrically—usually its
Cayley graph. We denote the Morse boundary of G by 0,G and will always assume it is identified
with the Morse boundary of some finitely generated Cayley graph. The Morse boundary is visual in
the sense that for any two points p, ¢ € 04 X;,, there is some bi-infinite Morse geodesic between p and
q (the specific Morse gauge will depend on p and q).

A.2. Cross-ratio in hyperbolic spaces. Let X be a (not necessarily proper) d-hyperbolic space.
Every pair of distinct points a,b € 0X is joined by a bi-infinite (1,200)-quasi-geodesic. A point € X
is a K-center for the triple (a,b,c) € (0X)? if z is within K of any (1,200)-quasi-geodesic between
any two of a,b,c. There exists Ks, so that for every triple (a,b,c) € (0X)3 the set of Ks-centers is
non-empty provided a,b, ¢ are all distinct. Let m(a,b, c) be the set of Kj-centers for (a,b,c). There
exists D = D(0) so that diam(m(a,b,c)) < D whenever m(a, b, ¢) is non-empty.

For distinct points a, b, ¢,d € 0X define the cross-ratio [a, b, ¢,d] to be

[a,b,¢,d] := diam(m(a,b,c) v m(a,d,c)).

This cross ratio is an additive error away from the absolute value of the cross ratio defined by Paulin;
see [Pau96, Lemma 4.2] for the proper case and [MR19, Proposition 4] for the non-proper case.

The next lemma is proved by Paulin when X is proper [Pau96]. The same proof works in the
non-proper case if you replace geodesics with (1,20§)-quasi-geodesics.

Lemma A.3. Let X and Y be 6-hyperbolic spaces where 0X has at least 4 points. If f: X - Y isa
(\, €)-quasi-isometric embedding, then there exist N > 1 and € = 0 determined by A, €, and § so that

[0f(a),0f(b),0f(c), 0f(d)] < Na,b,c,d] + €
for all a,b,c,de 0X.

A.3. Cross-ratio on the Morse boundary. Let G be a finitely generated group and X a finitely
generated Cayley graph. Let 0,G denote the Morse boundary of a group identified with 0,X. For

ke N, let (9,(kk’M)G denote k-tuples of distinct elements of the Morse boundary so that every pair of
points in the k-tuple are joined by a bi-infinite M-Morse geodesic in X (this set is G-invariant). The
next set of definitions are from [CCM19] or [MR19].

Let H be a second finitely generated group. A map h: 0,G — 04 H is 2-stable if for each Morse M
there is a Morse gauge M’ so that h((?f’M)G) c 6;2’M/)H.

For each triple (a,b,c) € 6,(,<3’M)G a point x € G is a K-center for (a,b,c) if z is within K of all
three sides of any M-Morse ideal triangle with endpoints a, b, c. For each M, there is number Kj; so
that for any (a,b,c) € 6&3’M)G the set of K ps-centers is non-empty. Moreover, there exist D = D(M)
so that for each (a,b,c¢) € ﬁf”M)G, the set of Ky/-centers, m(a, b, c), has diameter at most D. For any
tuple (a,b,c,d) € 8,&4’M)G, the M -cross ratio is

[a,b,c,d]p := diam(m(a,b,c) Um(a,d,c)).
A 2-stable map h: 0,G — 04H is quasi-mébius if for every pair of Morse gauges M and M’ with
h(&f’M)G) - af’M )H there exists an increasing function 1) so that

[h(a)7 h(b)v h’(c)7 h(d)]M’ < w([a" b,c, d]M)

Charney, Cordes, and Murray established that quasi-m6bius maps on the Morse boundary charac-
terize quasi-isometries of the group.
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Theorem A.4 ([CCM19, Theorems 3.7 and 4.5]). Let G and H be finitely generated groups so that
0+G contains at least 3 points.

(1) If F: G — H is a quasi-isometry, then the induced map OF: 04.G — 04+ H is a quasi-mdébius
homeomorphism with quasi-mobius inverse.

(2) If h: 0.G — 0+ H is a quasi-mobius homeomorphism with quasi-mobius inverse, then there
exist a quasi-isometry F': G — H so that 0F = h.

A.4. The Morse boundary and unbounded products. For the remainder of the appendix, we
fix a finitely generated group G and a finitely generated Cayley graph, X, of G. We assume X has an
HHS structure & with unbounded products and let S € & be the E-maximal domain. As described in
[ABD21, Section 3], we can assume that CS is a graph obtained from X by adding additional edges
between the vertices. In this case, mg: X — CS is taken to be the inclusion map.

Abbott, Behrstock, and Durham showed that in the presence of unbounded products, Morse geo-
desic are characterized by projecting to (parameterized) quasi-geodesics in CS.

Theorem A.5 ([ABD21, Corollary 6.2]). Let (X, &) be an HHS with unbounded product and S € &
be the =-maximal domain. Let v be a geodesic in X.
(1) If mg o is a parameterized (X, \)-quasi-geodesic in CS, then v is M -Morse for some Morse
gauge M determined by A and &.
(2) If v is M-Morse, then there exists A = A(M, &) = 1 so that wg o7y is a parameterized (A, X)-
quasi-geodesic in CS.

Theorem A.5 implies there is a continuous injection dwg: 0x X — 0CS, which is a continuous
extension of mg: X — CS, see [Rus21, Lemma A.6].

A.5. Downward relative projections and coboundedness. For each W € & — {S} define
pyy: CSO — CW by pii;(v) = 7w o mg'(v). To extend this to points in CS we need the next
lemma, which is a basic consequence of the bounded geodesic image axiom of an HHS.

Lemma A.6. Let (X,8) be an HHS with hierarchy constant E and S be the E-mazximal domain of
S. For each k = 1 there exist v = v(k, E) so that for all W € & — {S} we have:

(1) if v is a (k, k)-quasi-geodesic in CW so that v " N, (p%) = &, then
diam(pyy (7)) < E.

(2) if y1,72 = CS are (k, k)-quasi-geodesic rays that both represent p € 0CS, and v; "N, (p¥ ) = &
fori =1 and 2, then dpaus(piy (1), 5 (12)) < V.

Now for each p € 0CS, define dpj;, as follows: let Z be the set of (1,20E)-quasi-geodesics from the
basepoint of dCS to p. Let v = v(E) be the constant from Lemma A.6 for k = 20E. For W € & —{S},
let Zy be the subset of Z that is at least v far from p¥ . Define dp;, (p) to be the v-bounded diameter
set iy (Zuw).

If p is a point in the Morse boundary 04X, we define dmw (p) as dp3, (dms(p)).

If x,y are are points in any combination of X, 0, X, CS, or dCS, we say = and y are C-cobounded
if the union of their projections to CW for each W € & — {S} has diameter at most C. Here the
projection is under myw, omy, pi, or dpj;, depending on which space z and y are in.

In the language of coboundedness, Corollary 6.2 of [ABD21] becomes the following.

Theorem A.7 (Restatement of [ABD21, Corollary 6.2]). Let (X, &) be a proper HHS with unbounded
products and hierarchy constant E. Let S € & be the E—maximal domains and x,y € X U 0: X .

(1) For all Morse gauges M, there exist a constant C = 0, depending on M and E, so that if x
and y are joined by an M-Morse geodesic, then x and y are C-bounded.

(2) For all C =0, there exists a Morse gauge M, depending on C and E, so that if x and y are
C-cobounded, then there exists an M-Morse geodesic from x to y.

(3) For allC =20 and pe dCS, if mrs(x) and p are C-cobounded, then there exists a Morse gauge
M, depending on C and E, and z € 04X so that Oms(z) = p and the geodesic from x to z is
M-Morse.
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A.6. Quasi-md6bius maps induced by quasi-isometry of CS. For our final section, we require
that G is a group of automorphisms of the HHS (X, &). This means that G acts on & by =-, 1-, and
AM-preserving bijections, and for each W € & and g € G, there exists an isometry gy : CW — CgW
satisfying the following for all VW € & and g,h € G.

e The map (gh)w : CW — CghW is equal to the map gpw o hy: CW — CghW.
e For each z € X, gw (mw (x)) uniformly coarsely equals mgw (g - x).
o If VAW or V & W, then gw (pY,) uniformly coarsely equals pg“,/v.

This equivariance hypothesis is required to establish the next lemma, which is the important technical
step in establishing that quasi-isometries of C.S preserve being cobounded when CS is one-ended.

Lemma A.8. Let G be a finitely generated group and X any Cayley graph with respect to a finite
generating set. Let & be an HHS structure for X with hierarchy constant E and suppose G is a group
of automorphisms of (X, &). Let S € & be the E-maximal domains and assume CS is one-ended. For
all C, R € N, there exists c¢,r € N so that the following holds: Suppose z,y are elements of G that are
C-bounded, and let z be the midpoint of a M -Morse geodesic from x to y in X, where M is determined
by C and E as in Theorem A.7. If dx(x,y) = 2r, then

(1) ws(z) and ws(y) are at least R+ 1 far from wg(z) and
(2) there is a path n in CS of length less than ¢ that connects ws(x) to ws(y) in CS — Br(mws(z)).

Proof. Let x and y be elements of G that are C-bounded and z be the the midpoint of a M-Morse
geodesic from z to y, where M is determined by C' and F as in Theorem A.7. Thus, z, z and y, z are C'-
cobounded for some C’ depending on C. Hence the uniqueness axiom of an HHS implies that for each
R > 0, there exists r = r(R, E, C) so that dx(z,z) = dx(y,z) = r implies ds(z, 2),ds(y,2) = R + 1.
Since CS is one-ended, we can connect 7g(z) to mg(y) by a path 7, that avoids Br(ms(2)).

Now, since balls in X contain finitely many elements of G, for each r, there only exists finitely
many G-orbits of triples of z,y, z so that dx(x,y) = 2r and x,y are joined by an M-Morse geodesic
with midpoint z. Since mg is coarsely equivariant with respect to the the action of G, for each R and
C, we can pick 1, so that its length in CS is at most ¢ = ¢(R, C, E). d

We now fix two finitely generated groups G and H, and let X and Y, respectively, be Cayley graphs
with respect to finite generating sets. We assume there are HHS structures & and ¥ for X and Y
respectively so that & and ¥ have unbounded products and that G and H are groups of automorphism
of (X,6) and (Y, T) respectively. Let S € & and T € T be the respective E-maximal domains, and
let E be the hierarchy constant for both & and ¥.

We now prove that when CS is one-ended, quasi-isometries CS — CT will preserve coboundedness
and hence induce a quasi-mobius map on the Morse boundary. Our proof of Theorem A.9 is inspired
by work of Rafi and Schleimer in the case of the mapping class group [RS11].

Theorem A.9. Suppose f: CS — CT is a (A, €)-quasi-isometric embedding, and let df: 0CS — 0CT
be the topological embedding induced by f. If CS is one-ended, then:

(1) There exists a topological embedding h: 0.G — 0y H so that

onr o h(p) = df o oms(p)

for all p € 0,G.

(2) If p,q € 0CS are C-cobounded, then 0f(p) and df(q) are C'-cobounded for some C' =
C'(C, N\ €, E). In particular, the map h from (1) is 2-stable.

(3) The map h from (1) is quasi-mdobius with increasing function v determined by X, €, and E.

Proof. Without loss of generality, we can assume the image of f is contained in the vertices of CT.
Let e be the identity in G and b be the element of H so that wr(b) = f owg(e). Let e and b be the
base points for the Morse boundaries of G and H respectively.

Proof of (1): Let p € 0,G and ps = dng(p). We will first show that 0f(ps) = 0mr(g,) for some
point g, € 0xG. By Theorem A.7, it suffices to show that df(ps) and 7r(b) are cobounded (although
not necessarily uniformly).

Let v: [0,00) — G be the M-Morse geodesic ray from e to p and let W € ¥. There exist C =
C(M,E) so that any two points on 7 are C-cobounded by Theorem A.7. By Theorem A.5, 5 =
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fomgoxy:[0,00) — CT is a (k, k)-quasi-geodesic for some k = k(A e, M, E) = 1. Without loss of
generality, we can assume k > max{\,¢,20F}. Let v = v(E, k) = 0 be the constant from Lemma
A.6 so that diam(p, (7)) < E whenever ¥ is not within v of p}¥'. Let R = A\(2v + € + 1) and let
r,c € N be as in Lemma A.8 for this choice of R and our given C. Hence, we can assume there exists
t € [0,00) N Z so that dr(3(t), p¥) < v.

To start, assume ¢t > 2r + 1. By Lemma A.8, there exists a path n from mgovy(t—7) to mgoy(t +r)
in CS so that n has length at most ¢ and 7 does not intersect the ball of radius R around mg o (t).
Now consider a single edge 19 of 1. Since dg(no,ms0Y(t)) > R=A2v+e+ 1) and ¥ = fomgor,
we have

(+) o (F0), ) = dr (F(m0),7(0) — dr (300, ) > TR—e—v=v 1.

Since x > max{\, €}, f(no) is a (k, x)-quasi-geodesic in CT', thus () implies that diam(pg, (f(10))) <
E. Since 7 has length ¢, this implies diam(p?}, (f(n))) < cE. From the proof of Lemma A.8, r is chosen
so that for any s € [0, 0) we have

s —t| =1 = ds(rsovy(s),msov(t)) = R+ 1.

Thus, our choice of R ensures that 7[jg;—,; and 7|pir.) do not intersect N, (p}Y). Thus,
diam(pf, (3([0,¢ — r]))) and diam(pf;, (5([t + r,20)))) are both at most E by Lemma A.6. Since
diam(pfy (f (1)) < cE, we have diam(piy, (F][0,t-r)) © piy ([t 4r.00))) < 2E + cE.

Now 7w (b) = piy (Fljo,e—r]) because my (b) = piy (f o ws(€)). Since 7|14r,q0) represents 0f(ps) and
does not intersect the v-neighborhood of pf},, Lemma A.6 says dp5y, (0f (ps)) is v-close to ply, (3] 14,00))-
Hence

diam (pfy (77 (b)) U pty (0f (ps))) < 2E + cE + v.

Now assume 0 <t < 27 + 1. As in the previous case, our choice of R and r ensures that ¥|[2;41,00)
does not intersect N, (p}/ ), which implies diam(pfy, (¥][2r11,00))) < E by Lemma A.6. Since pfy, omp =
mw for each W e T — {T'}, the distance formula for an HHS implies there is A = A(F) = 0 so that set
of possible domains where diam(p, (¥([0,2r + 1]))) > A is finite. Hence there is some bound D > 0
(depending on p and b) on diam(pf;;(7)). As in the previous case, this implies

diam(pfy (r7-(8)) L 0% (2f (ps))) < D + 1.

Taking C" = max{D + v,2F + cE + v}, the above shows that 77 (b) and df(ps) are C’-bounded.
Hence, by Theorem A.7, there exists g, € 0 H so that drr(gp) = 0f(0s(p)).

We now show that the map h: 0,G — 0, H defined by h(p) = g, is a topological embedding. By
construction dnrpoh = 0f o Omg. Since 0f, dng, and O are all topological embeddings, A must also
be a topological embedding.

Proof of (2): Let p,q € 0CS be C-cobounded. By Theorem A.7, there exist p’, ¢ € .G so that
ors(p’) = p and 0rg(q") = q. We will show f(p) and f(q) are C’-cobounded for some C’ depending
on A\, ¢, C, and E.

By Theorem A.7, there exists a Morse gauge M = M(C,E) so that p’ and ¢ are connected
by a bi-infinite M-Morse geodesic in G. Let v: (—0,00) — G be such an M-Morse geodesic and
let ¥ = fomgoy. Let W € T — {T}. By Theorem A.5, wg o v is a (k, k)-quasi-geodesic in CS
for Kk = k(M,E). Lemma A.6 says there is v = v(\, ¢, 5, E) so that if N, (p¥) n5 = &, then
diam(p{}; (7)) < E. Hence, we can assume there is ¢ € Z so that 5(t) € N,,(p}¥). Let R = A\(2v+€e+1)
and let r,c € N be as in Lemma A.8 for this choice of R and our given C. Thus, there exists a path
7 in CS connecting 7g o y(t — r) and 7g o y(¢t + r) so that n avoids the R-ball around 7g o v(¢) and 7
has length at most c.

By arguing exactly as we did in the ¢ > 2r + 1 case of the proof of (1), we have diam(pf;,(n)) < cE
plus

diam (pFy (3] orr—1)) < B and diam(ply (7]prs1.0))) < -
Continuing as in the proof of (1), this will imply 0f(p) and df(q) are (2E + cE + 2v)-cobounded.

The fact that the homeomorphism A from (1) is 2-stable now follows due to the correspondence in
Theorem A.7 between being cobounded and being joined by a Morse geodesic.

Proof of (3): For distinct a,b,¢,d € dCS, let [a,b, ¢, d]s denote the cross-ratio in dCS. By Lemma
A.3, f being a quasi-isometric embedding implies ¢ f is quasi-mobius with respect to the cross ratio on
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0CS. Proposition 7 of [MR19] shows that for each Morse gauge M and each tuple (a,b,c,d) € 8;4’M)G,
we have

[a,b,c,d]y = [0ms(a), Omg (D), Oms(c), Oms(d)]s
with constants determined by E and M. Hence the map h from (1) is quasi-mébius. O

Our main result (Theorem A.1) is now a corollary of Theorem A.9.

Corollary A.10. If CS is one-ended and there is a (), €)-quasi-isometry f: CS — CT, then there
exists a quasi-isometry F': G — H so that for all x € G, wp o F(x) is uniformly close to f o mg(x).

Proof. Theorem 14.3 of [BHS17b] says G acts cobounded and acylindrically on CS. Thus, CS being
one-ended implies that 0,G contains at least 3 points.

Let f~1': CT — CS be a quasi-inverse for f. Applying Theorem A.9 to both f and f~!, we produce
a quasi-mobius homeomorphism h: 0.G — 0, H with quasi-mdbius inverse so that df odmg = dnroh.
By Theorem A.4 there is a quasi-isometry F': G — H so that 0F = h.

Because G acts cocompactly on X, there is a Morse gauge M and a constant Kj; > 0 so that
for all x € G there is a triple (p,gq,2) € (3,(5’M)G so that = is a Kjs-center for (p,q,z). Now

(0F(p),0F(q),0F(z)) € 8;3’M/)H for some M’ determined by M, A, €, and E. Moreover, F(z) is
uniformly close to all three sides of any ideal M’-Morse triangle with vertices 0F (p),0F (q), 0F(z).
Since 0f o dmg = Omp o OF, this implies 7w o F'(z) is uniformly close to f o wg(x). O

Remark A.11. There is a proof of Theorem A.1 that does not rely on the Morse boundary and quasi-
Mobius maps, but instead directly invokes the quasi-isometry on the E-maximal hyperbolic space CS.
This argument uses the fact that quasi-isometries of CS preserve the set of cobounded pairs in 0CS
to show that quasi-isometries of CS produce “quasi-M6bius” maps on the set of cobounded tuples in
0CS. Thus, one can essentially repeat the arguments used in [CCM19] to build a quasi-isometry of G
with coboundedness and the distance formula replacing the role of Morse geodesics. As this approach
would result in a lengthier proof without any fundamentally new ideas, we have elected to give the
shorter proof using the established results from the literature.
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