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ABSTRACT. We study the boundaries of relatively hyperbolic HHGs. Using the simplicial structure
on the hierarchically hyperbolic boundary, we characterize both relative hyperbolicity and being
thick of order 1 among HHGs. In the case of relatively hyperbolic HHGs, we show that the Bowditch
boundary of the group is the quotient of the HHS boundary obtained by collapsing the limit sets
of the peripheral subgroups to a point. In establishing this, we give a construction that allows one
to modify an HHG structure by including a collection of hyperbolically embedded subgroups into
the HHG structure.

1. INTRODUCTION

Boundaries play a central role in the coarse geometry of groups and spaces exhibiting aspects
of non-positive curvature. For example, the dynamics of the action on the Gromov boundary and
the Bowditch boundary completely characterize hyperbolic and relative hyperbolic groups respec-
tively [Bow14, Yam04]. Moreover, the quasi-conformal structure of these boundaries completely
determines the coarse geometry of these groups [Pau96, Bou95, BS00]. CAT(0) groups, particu-
larly cubulated groups, have a variety of different boundaries that capture different aspects of the
geometry of these groups at infinity; see, e.g., [Hagl3, BF21, MR99].

In this paper, we examine the connection between the boundary of hierarchically hyperbolic
groups and relative hyperbolicity. Hierarchical hyperbolicity is a coarse notion of non-positive
curvature introduced by Behrstock, Hagen, and Sisto, which is enjoyed by a large number of groups
including mapping class groups, virtually special groups, most 3—manifold groups, and extra large
type Artin groups [BHS17, BHS19, HMS]. The main idea behind hierarchical hyperbolicity is
that the geometry of the group G can be well understood via a collection of projection maps
S = {mw: G —» CW} of the group onto various hyperbolic spaces CW.

Durham, Hagen, and Sisto introduce a boundary for hierarchically hyperbolic groups [DHS17].
The boundary combines the Gromov boundaries, {dCW}, of the various hyperbolic spaces into a
simplicial complex—denoted 0a (G, &)—that captures naturally occurring product regions in the
group. This simplicial structure is analogous to the simplicial boundary of a CAT(0) cube complex
introduced by Hagen [Hagl4].

Our first result uses this simplicial complex to characterize when a hierarchically hyperbolic
group is relatively hyperbolic. This type of result has a long history. One of the first such results
was by Hruska and Kleiner who proved a classification for CAT(0) spaces with isolated flats [HK05];
our formulation below is a direct analogue of a result of Behrstock and Hagen characterizing relative
hyperbolicity in cubical groups using the simplicial boundary [BH16].

Theorem 1.1. Let (G,S) be a hierarchically hyperbolic group. The group G is hyperbolic relative
to a collection of infinite index subgroups {Hi,...,Hy} if and only if each H; is hierarchically
quasiconvex and there is a collection {A1, ..., i} of subcomplexes of OA(G,S) so that

(1) each A; is the limit set of H;;
(2) any two translates gA; and hA; are either disjoint or equal;

(8) the complement of the orbit of A1 U -+ U Ay is a non-empty set of isolated vertices.
1
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Complementary to Theorem 1.1, we use the simplicial structure on the boundary to understand
when a hierarchically hyperbolic group is thick of order 0 or 1 relative to hierarchically quasiconvex
subsets. Thickness is a powerful obstruction to relative hyperbolicity that can also provide upper
bounds on the divergence of a space.

Theorem 1.2. Let (G,S) be a hierarchically hyperbolic group.

(1) A hierarchically quasiconvex subgroup of G is thick of order 0 if and only if its limit set in
oA(G,S) is a join.

(2) If G is thick of order 1 with respect to a finite collection of hierarchically quasiconvex
subgroups, then Oa(G,S) is disconnected and contains a positive dimensional G—invariant
connected component.

(8) If OA(G, &) is disconnected and contains a positive dimensional G—invariant connected com-
ponent, then G is thick of order 1 with respect to hierarchically quasiconver subsets.

In addition to the simplicial structure, Durham, Hagen, and Sisto equip the hierarchically hy-
perbolic boundary with a more sophisticated topology. Using this topology, we show that the
Bowditch boundary of a relatively hyperbolic HHG is a natural quotient of the hierarchically hy-
perbolic boundary. Analogous results have been shown for relatively hyperbolic CAT(0) groups by
Tran [Tral3] and for relatively hyperbolic structures on hyperbolic groups by Spriano [Spr18a] and
Manning [Man].

Theorem 1.3. Let G be a hierarchically hyperbolic group that is hyperbolic relative to a finite
collection of subgroups P. The Bowditch boundary of the G relative to P is the quotient of the HHS
boundary of G obtained by collapsing the limit set of each coset of a peripheral subgroup to a point.

A particularly interesting case of Theorem 1.3 is the case of a closed, irreducible, non-geometric
3—manifold with at least one hyperbolic piece in its JSJ decomposition. The fundamental group
of such a manifold is hyperbolic relative to the fundamental groups of the maximal tori and graph
manifold pieces. While these groups are not always CAT(0), they are always hierarchically hyper-
bolic [BHS19, HRSS]. Hence we have the following.

Corollary 1.4. Let M be an irreducible, non-geometric closed 3—manifold with at least one hyper-
bolic piece in its JSJ decomposition. Let Ny, ..., Ny be the mazimal graph manifold and tori pieces
of the JSJ decomposition. The Bowditch boundary of mi (M) relative to m1(N1),...,m1(Ng) is the
quotient of the hierarchically hyperbolic boundary of (M) obtained by collapsing the limit set of
each coset of each w1 (N;) to a point.

Both Theorem 1.1 and Theorem 1.3 are facilitated by a pair of technical results that allow us
to ensure compatibility of the relatively hyperbolic and hierarchically hyperbolic structures we are
considering on our group. The first is our previous work in [ABR], which shows that performing
a particular “maximization procedure” on the projection structure of a hierarchically hyperbolic
group does not change the simplicial or topological structure of the boundary. The second is
the following result, which shows that given a hierarchically hyperbolic group one can augment
the hierarchically hyperbolic structure by adding in any hyperbolically embedded subgroup; see
Section 3 for a more precise statement.

Theorem 1.5. Let G be a hierarchically hyperbolic group and {H,...,Hy} be a hyperbolically
embedded collection of subgroups of G. There exists a hierarchically hyperbolic structure for G so

that the cosets of the H; index hyperbolic spaces whose associated product regions are the cosets of
the HZ

Readers familiar with hierarchically hyperbolic groups will know that every hierarchically hy-
perbolic group admits many different hierarchically hyperbolic structures. It is an open question
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whether or not different hierarchically hyperbolic structures produce topologically distinct bound-
aries. However, as a consequence of our work in [ABR], Theorems 1.1, 1.2, and 1.3 all apply
regardless of which hierarchically hyperbolic structure is being considered.

1.1. Organization of the paper. In Section 2, we define relatively hyperbolic and hierarchically
hyperbolic spaces and collect some result from the literature. In Section 3, we prove our main
technical tool (Theorem 1.5) showing that hyperbolically embedded subgroups can be added into a
hierarchically hyperbolic structure. Sections 4 and 5 establish our theorems on the HHS boundary
of relatively hyperbolic group. In Section 4, we characterize relative hyperbolicity via the simplicial
structure on the hierarchically hyperbolic boundary (Theorem 1.1), and in Section 5, we show the
Bowditch boundary is a quotient of the HHS boundary (Theorem 1.3). In Section 6, we recall the
notion of a thick metric space and establish the connection between the HHS boundary and being
thick of order 0 or 1 (Theorem 1.2).

Acknowledgments. We thank Davide Spriano for explaining how to apply the results of [PS23]
in the setting of Section 6.

Abbott was supported by NSF grants DMS-1803368 and DMS-2106906. Behrstock was sup-
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2. BACKGROUND ON HIERARCHICAL AND RELATIVE HYPERBOLICITY

2.1. Coarse Geometry. Let (X,dx) be a metric space. For Y € X and any constant C' > 0, we
denote the closed C—neighborhood of Y in X by

Ne(Y)={zxe X :dx(z,Y) < C}.

Two subsets Y, Z © X are C-coarsely equal, for some C > 0, if Y € Ng(Z) and Z < Ng(Y).
When Y and Z are C—coarsely equal, we write ¥ =¢ Z.

A function f: X — 2Y is a C—coarse map if f(x) is a non-empty set of diameter at most C' for
all z € X. The C—coarse map f: X — 2Y is C—coarsely onto if Y € Ng(f(X)).

A (N e)—quasi-geodesic is a (A, €)—quasi-isometric embedding of a closed interval I < R into X,
and a geodesic is an isometric embedding of I into X. In the case of quasi-geodesics, we allow f to
be a coarse map.

A (coarse) map f: [0,7] — X is an unparametrized (\,e)—quasi-geodesic if there exists a non-
decreasing function g: [0,7'] — [0, T] such that the following hold:

* 9(0) =0,

o g(T") =T,

e fog:[0,T7] > X is a (), €)—quasi-geodesic, and

e for each j € [0,7'] n N, the diameter of f(g(j)) U f(g(j + 1)) is at most e.

A geodesic metric space X is d—hyperbolic if any geodesic triangle with sides 71,9, y3 satisfies
v3 © Ns(y1 U 72). A subset Y of a é—hyperbolic space X is p—quasiconvez if every geodesic in
X between points in Y is contained in N, (Y). When Y is p—quasiconvex, there is a well defined,
coarsely Lipschitz coarse map py: X — Y with constants depending only on 0 and u so that

py(z) ={yeY ::dx(z,y) <dx(x,Y)+ 1}.
We call the map py the closest point projection onto Y.

Given any subset Y of a d—hyperbolic space X, the convex hull H(Y) of Y is the union of all
geodesics between pairs of points in Y. For any subset, the convex hull is u—quasiconvex for some
u depending only on 6. If Y is itself p'—quasiconvex, then Y and H(Y) are coarsely equal with
constant depending only on § and y'. In this case, py () is uniformly coarsely equal to pzyy(z) for
all z € X, and the path metric on H(Y) is a geodesic metric that is quasi-isometric to the subset
metric on Y.
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2.2. Hierarchical hyperbolicity.

Definition 2.1 (HHS). Let £ > 0 and X be an (E, E)-quasi-geodesic space. A hierarchically
hyperbolic space (HHS) structure with constant E for X is an index set & and a set {CW : W € &}
of E-hyperbolic spaces (CW, dy ) such that the following axioms are satisfied.

(1) (Projections.) For each W € &, there exists a projection my: X — 2°W that is a (E, E)-
coarsely Lipschitz, EF—coarsely onto, F—coarse map.

(2) (Nesting.) If & # ¢J, then & is equipped with a partial order = and contains a unique
E-maximal element. When V E W, we say V is nested in W. For each W € &, we denote
by G the set of all V € & with V & W. Moreover, for all VW € & with V & W there is
a specified non-empty subset p‘V/V C CW with diam(pg/) < E.

(3) (Orthogonality.) & has a symmetric relation called orthogonality. If V and W are
orthogonal, we write V' L W and require that V and W are not E—comparable. Further,
whenever V E W and W L U, we require that V' L U. We denote by GJW the set of all
Ve6withV LW.

(4) (Transversality.) If V,W € & are not orthogonal and neither is nested in the other, then
we say V and W are transverse, denoted V m W. Moreover, for all VW € & with V i W
there are non-empty sets p% c CW and pI{,V C CV each of diameter at most FE.

(5) (Finite complexity.) Any set of pairwise E—comparable elements has cardinality at most
E.

(6) (Containers.) For each W € & and U € &y with Sy n &3 # &, there exists Q € Gy
such that V E @) whenever V € Gy n ij. We call Q the container of U in W.

(7) (Uniqueness.) There exists a function 0: [0,00) — [0, 00) so that for all » > 0, if z,y € X
and dx(z,y) = 0(r), then there exists W € & such that dy (7w (z), 7w (y)) = r.

(8) (Bounded geodesic image.) For all VW € & and for all z,y € X, if V = W and
dy(my(x),mv(y)) = E, then every CW-—geodesic from my (z) to my(y) must intersect
Ne(py)-

(9) (Large links.) For all W € & and z,y € X, there exists {V1,...,V,} € Sy — {W} such
that m is at most Edw (mw (z), 7w (y)) + E, and for all U € Gy — {W}, either U € &y, for
some i, or dy(my(z), 7y (y)) < E.

(10) (Conmsistency.) For allz € X and V,W,U € &:
o if V. W, then min {dw (mw (2), p}},), dv (mv (z), p{ )} < E,
o if UCSV and either V. W or Vh W and W £ U, then dw (oY, ply) < E.
(11) (Partial realization.) If {V;} is a finite collection of pairwise orthogonal elements of &
and p; € CV; for each 7, then there exists x € X so that:
o dy (my,(x),p;) < E for all i;
e for each ¢ and each W e &, if V; = W or W th V;, we have dw(ww(:v),pl‘//{',) < E.

We use & to denote the hierarchically hyperbolic space structure, including the index set &,
spaces {CW : W € &}, projections {my : W € &}, and relations =, 1, h. We call the elements of
G the domains of & and call the maps p% the relative projections from V to W. The number F
is called the hierarchy constant for G.

A quasi-geodesic space X is a hierarchically hyperbolic space with constant E if there exists a
hierarchically hyperbolic structure on X with constant E. The pair (X', &) denotes a hierarchically
hyperbolic space equipped with the specific HHS structure &.

When writing the distances in the hyperbolic spaces CW between images of points under myy, we
will frequently suppress the 7y notation. That is, we will use dyy (x, y) to denote dyw (7w (z), 7w (y))
for x,y e X.

When two domains are nested, V = W, the above axioms only require an “upward” relative
projection pg/. However, the coarse surjectivity of the projection maps plus the bounded geodesic
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image axiom allows us to define a “downward” relative projection that is well behaved away from
the p},/v. This downward relative projection is used in defining the topology on the HHS boundary
in Section 5.

Lemma 2.2 ([BHS19, Proposition 1.11]). Let (X, &) be a hierarchically hyperbolic space with
constant E. For all W,V € & with V &= W, there exists a map p&V: CW — CV and a constant
E' > 0, depending only on E, so that

o if a CW —geodesic v does not intersect N (ply,), then diamey (p}Y (7)) < E'; and

o for all x € X, min {dw (mw (z), p}/ ), diam(mv (z) U p}y, (7v (2)))} < E'.

For a hierarchically hyperbolic space (X,S), we are often most concerned with the domains
W € & whose associated hyperbolic spaces CW have infinite diameter. Hence, we often also
restrict to HHSs with the following regularity condition.

Definition 2.3 (Bounded domain dichotomy). Given an HHS (X, &), we let &® denote the set
{W e & : diam(CW) = oo}. We refer to the domains in &% as unbounded domains and the
domains not in & as bounded domains. We say that (X, &) has the bounded domain dichotomy
if the diameter of each CW is either infinite or uniformly bounded, i.e., there is some D > 0 such
that for all W e & — &* we have diam(CW) < D.

The bounded domain dichotomy is a natural condition as it is satisfied by all hierarchically
hyperbolic groups (HHG ), which is a condition requiring equivariance of the HHS structure. In this
paper, we work with a class of finitely generated groups that is slightly more general than being an
HHG (see Remark 2.5); these are groups that have an HHS structure compatible with the action
of the group in the following way.

Definition 2.4 (G-HHS). Let G be a finitely generated group. A hierarchically hyperbolic space
(X, 6) with constant E that has the bounded domain dichotomy is a G-HHS if the following hold.

(1) X is a proper metric space with a proper and cocompact action of G by isometries.
(2) G acts on & by a £—, 1—, and rh-preserving bijection, and &% has finitely many G-orbits.
(3) For each W € & and g € G, there exists an isometry gy : CW — CgW satisfying the
following for all VW € & and g,h € G.

e The map (gh)w: CW — CghW is equal to the map gpw © hy: CW — CghW.

e For each x € X, gw (mw () =g mew (g - x).

« If V. Wor VZ W, then gw(ply) =g plyy-
We can and will assume that X is G equipped with a finitely generated word metric. We say that
S is a G-HHS structure for the group G and use the pair (G, &) to denote the group G equipped
with the specific G-HHS structure &.

Remark 2.5 (G-HHS versus HHG). The difference between the above definition of a G-HHS and
a hierarchically hyperbolic group (HHG) is that a hierarchically hyperbolic group is required to
act with finitely many orbits on & instead of &*. In particular, each HHG is also a G-HHS. As
the definition of the hierarchically hyperbolic boundary does not involve the uniformly bounded
diameter domains, it is natural for us to work in the slightly more general G-HHS setting. Moreover,
many of our arguments will rely upon a “maximization procedure” introduced in [ABD21] to
transform a given hierarchically hyperbolic structure into one with desirable properties; see Section
2.5. The maximization procedure introduces a large number of uniformly bounded domains into
the HHS structure, and the result of maximizing an HHG is a G-HHS and not necessarily an
HHG. Working with G-HHSs from the outset is therefore simpler as they are closed under this
maximization procedure.

One of the most prominent features of hierarchically hyperbolic spaces is that every pair of
points can be joined by a hierarchy path—a quasi-geodesic that projects to an unparametrized
quasi-geodesic in each hyperbolic space CW.
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Definition 2.6. A A-hierarchy path in a hierarchically hyperbolic space (X, S) is a (A, A)—quasi-
geodesic v in X’ so that my o7 is an unparametrized (A, \)—quasi-geodesic for all W € &.

Theorem 2.7 ([BHS19, Theorem 4.4]). For all E > 0, there exists X\ = 1 so that every pair of
points in a hierarchically hyperbolic space with constant E is joined by a A—hierarchy path.

2.3. Hierarchical quasiconvexity and standard product regions. The analogue of quasi-
convex subsets of a hyperbolic space in the setting of hierarchical hyperbolicity are the following
hierarchically quasiconvexr subsets. We refer the reader to [BHS19, Section 5] for details on any of
the background material in this subsection.

Definition 2.8. Let k: [0,00) — [0,00). A subset ) of an HHS (X, &) is k—hierarchically quasi-
convex if

(1) mw () is a k(0)—quasiconvex subset of CW for each W € &; and
(2) if x € X satisfies dy (x,)) < r for each W € &, then dx(z,)) < k(r).

A subgroup H of a G-HHS (G, &) is hierarchically quasiconver if H is a hierarchically quasiconvex
subset of G equipped with a finitely generated word metric.

Whether or not a subset is hierarchically quasiconvex can depend on which HHS structure is put
on the space, hence ) is a hierarchically quasiconvex subset of (X, &) and not just X

Hierarchical quasiconvexity is equivalent to the property that every hierarchy path with endpoints
on the subset stays uniformly close to the subset.

Proposition 2.9 ([RST18, Proposition 5.7]). A subset Y of an HHS (X,8) is k-hierarchically
quasiconvez if and only if there is a function @Q: [0,00) — [0,00) so that for each A > 1, every
A—hierarchy path with end points on Y is contained in the Q(\)-neighborhood of Y. Moreover, the
functions k and Q) each determine the other.

Proposition 2.9 implies that the definition of a hierarchically quasiconvex subgroup is independent
of the choice of finite generating set for the ambient group. Moreover, by mimicking the proofs in
the case of quasiconvex subgroups of hyperbolic groups (with hierarchy paths replacing geodesics),
we have that hierarchically quasiconvex subgroups are finitely generated and undistorted.

Lemma 2.10. Let (G,6) be a G-HHS. If H < G s hierarchically quasiconvex, then H is finitely
generated and undistorted.

Each hierarchically quasiconvex subset ) comes equipped with a gate map denoted gy: X — V.
While this map might not be the coarse closest point projection, it has a number of nice properties
that we summarize below.

Lemma 2.11 ([BHS19, Lemma 5.5]). Let (X,&) be an HHS with constant E. Suppose Y € X is
k—hierarchically quasiconvex. There is a coarse map gy: X — Y and a constant k = 1 depending
only on k and E, so that the following hold.

o Forallye), we have dx(y, 9y(y)) < K.
e The map gy is (k, k)—coarsely Lipschitz.
e Foreachxe X and W € G, we have

Tw (8y(2)) =k Pry () (7w (2))-

Each domain in an hierarchically hyperbolic space has an associated hierarchically quasiconvex
subset Pyy:

Definition 2.12. Let (X', &) be an hierarchically hyperbolic space with constant E. For each
W € &, define the standard product region for W to be the set

Py ={zeX dy(z,p)) <Eforal VAW or W V}.
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The main properties of Py that we shall need are given in the following proposition.

Proposition 2.13. Let (X, S) be a hierarchically hyperbolic space with constant E.

(1) There ezists k: [0,00) — [0,00) depending only on E so that Py is k—hierarchically quasi-
convez for all W € G.

(2) For all W,V € &, if diam(my (Pw)) > 3E, then W € &y U &¢.

(8) Suppose Y € X is k—hierarchically quasiconvex and W € &. For all C > 0 there ezists v =
v(C, E, k) = 0 so that if mw|y is C—coarsely onto for all W € &y u &y, then Py € N, (V).

(4) If G N &% and Gﬁ/ N &% are both non-empty, then Py is uniformly quasi-isometric to
the direct product of two infinite diameter, quasi-geodesic metric spaces.

While we will not need this structure directly, there are two additional hierarchically quasiconvex
subsets, Fyy and Eyy, so that Py is naturally quasi-isometric to the product Fyy x Eyy (this is
the quasi-isometry in Item (4)).

2.4. The boundary of a hierarchically hyperbolic space. Durham, Hagen, and Sisto defined
a boundary for an HHS (X, &) that is built from the boundaries of the hyperbolic spaces in &;
[DHS17] is the reference for this subsection.

We first recall the construction of the boundary of a hyperbolic space. Let X be a d—hyperbolic
metric space. For any x,y, z € X, the Gromov product of x and y with respect to z is

1
(@] y)z = 5 (dx(z,2) + dx(y,2) — dx(2,9)).
Given a fixed basepoint 2y of X, a sequence of points (z,,) in X converges to infinity if
(xn | xk’)mo — ©

as n,k — . Two sequences (z,,) and (y,) are asymptotic if (x, | Yn)z, — © as n — 0. Note,
this is equivalent to requiring that (z, | yx)z, — © as n,k — 0. The Gromov boundary 0X of
X is the set of sequences in X that converge to infinity modulo the equivalence relation of being
asymptotic.
The Gromov product extends to z,y € X U 0X and z € X by taking the supremum of
liminf(z, | yx)-
n,k

over all sequences (x,,) and (yx) that are either asymptotic to x or y when they are boundary points
or converge to x or y when they are points in X. We topologize X U 0X by declaring a sequence
(zp,) in X U 0X to converge to z € dX if and only if

nlfgo(xn | x)ro = .

Definition 2.14. For each p € 0X, the sets
M(rip) ={ze X vdX :(p|x)g >}
where r > 0 form a neighborhood basis for p in X U0X. Note that if r < v/, then M (r'; p) € M (r;p).

Despite the presence of the basepoint in the above definitions: convergence to infinity, being
asymptotic, the Gromov boundary, and the topology of X U 0X are all independent of the choice
of basepoint.

We now describe the boundary of a hierarchically hyperbolic space. The points in the HHS
boundary are organized in a simplicial complex that we denote da(X,S). The vertex set of
OA(X,6) is the set of all boundary points of all the hyperbolic spaces CW for W € &*. That
is, the set of vertices is the set of points | Jyyege OCW. The vertices pi,...,p, of oa(X,S) will
form an n-simplex if each p; € 0CW; and W; L W; for each ¢ # j. This means the set of points
making up the HHS boundary can equivalently be described as the set of all linear combinations

> weaw @wpw where
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e 2 is a pairwise orthogonal subset of &%,
e pyw € OCW for each W € 9, and
. ZWG% aw = 1 and each ay > 0.

Definition 2.15. For each p € da (X, S), we define supp(p), the support of p, to be the pairwise
orthogonal set 20 € & so that p = >y cop awpw. Equivalently, the support of p is the pairwise
orthogonal set 20 € & so that the smallest dimensional simplex of da(X, &) that contains p has
exactly one vertex from 0CW for each W € 20.

Durham, Hagen, and Sisto equip the HHS boundary with a topology beyond that coming from
the simplicial complex described above. We use 0(X,S) to denote the HHS boundary equipped
with this topology, while da (X, &) will denote the simplicial complex that is the underlying set of
boundary points.

The definition of the topology on d(X, &) is quite involved, combining the standard topology
on the boundaries of the hyperbolic spaces CW with projections of boundary points onto certain
domains of the HHS structure. When X happens to be hyperbolic, this topology is naturally
homeomorphic to the Gromov boundary 0X. As we will not need the full definition of the boundary,
we will cite the relevant properties as we need them and direct the curious reader to [DHS17] for
the definition of the topology.

The topology on d(X, &) can be extended to a topology on X U d(X, S) so that sequences in X
can converge to points in d(X', &). This allows us to define the limit set of a subset of X'.

Definition 2.16. Let (X, S) be an HHS and Y € X. Define the limit set of J in (X, &) to be
A(Y) :={pe d(X,S) : there is a sequence (y,,) S ) converging to p}.

As with the topology on the boundary, we will forgo a complete description of the topology on
X U d(X,6) in favor of citing specific properties that we will need. For example, one immediate
consequences of the definition of the topology is that sequences that converge to boundary points
in X will project to sequences that converge to boundary points in the hyperbolic spaces CW:

Lemma 2.17. Let (X,8) be an HHS. If (z,,) is a sequence of points in X that converges to a point
p = Y awpw € 0(X,S), then for each W € supp(p) and z!, € mw(xy,), the sequence x), converges
to pw in CW v 0CW.

Just as in the Gromov boundary, pairs of sequence in X at uniformly bounded distance will
converge to the same point in the boundary.

Lemma 2.18 ([ABR, Lemma 3.20]). Let (X,S) be an HHS. Let (x,) be a sequence of points in
X that converges to p e d(X,6). If (yn) is a sequence in X with dx(x,,ys) uniformly bounded for
all n € N, then y, also converges to p.

When X is proper, the space X U d(X, &) is compact and Hausdorff [DHS17, Proposition 2.17
and Theorem 3.4]. When & is a G-HHS structure, the action of G on (X, &) extends continuously
to an action on d(X, &) by homeomorphisms and simplicial automorphisms [DHS17, Corollary 6.1].

2.5. Maximization of HHS structures. The authors of [ABD21] described a process that takes
an HHS structure & and produces a new HHS structure ¥ with the following desirable properties.

Theorem 2.19 ([ABD21, Theorem 3.7]). Let (X,&) be an HHS with the unbounded domain di-
chotomy. There exists another HHS structure € for X so that

(1) ¥ has the unbounded domain dichotomy.

(2) For all W € T, both Ty n T and Ty, 0 TP are non-empty.

(8) For all W € T, the standard product region Py is quasi-isometric to the product of two
infinite diameter, quasi-geodesic spaces.
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(4) If T € ¥ is the E-mazimal domain, then CT is the space obtained from X by adding edges
ezy Of length 1 between every pair of points x,y with x,y € Py for some W e T — {T'}.

Moreover, if G is a G-HHS structure for some finitely generated group G, then % will also be a
G-HHS structure.

We call the structure ¥ produced from & in Theorem 2.19 the mazimization of &. We will say
that an HHS structure on X is mazimized if it is obtained by applying Theorem 2.19 to some HHS
structure.

In [ABR], we showed that the maximization process in Theorem 2.19 does not change the HHS
boundary nor which subsets are hierarchically quasiconvex.

Theorem 2.20 ([ABR, Theorem 4.1 and Proposition 4.9]). Let (X, &) be an HHS with the un-
bounded domain dichotomy, and let ¥ be the mazximization of S.

(1) If X is proper, then the identity map X — X continuously extends to a map 0(X,S) —
0(X,%) that is both a homeomorphism and a simplicial automorphism.

(2) A subset Y € X is hierarchically quasiconvex with respect to & if and only if it is hierarchi-
cally quasiconvex with respect to . Moreover, the function of hierarchical quasiconvezity
in either & or T will determine the function in the other.

In light of Theorem 2.20, we will frequently assume that the HHS structures we are working with
are maximized. When working with maximized structures, we will commonly make use of the
properties in Theorem 2.19, particularly Item (2), without comment.

2.6. Relative hyperbolicity. Several equivalent formulations of (strong) relatively hyperbolicity
exist in the literature. We will work with one in terms of the addition of combinatorial horoballs.
The equivalence of this definition with other common definitions is shown in [Sis12].

We first establish our model for horoballs.

Definition 2.21. Let I' be a connected graph with vertex set V and edge set E. Suppose each
edge of I" has length 1. The combinatorial horoball H(T') is the graph with vertex set V' x Z=( and
two types of edges:
e for each n € Z>y and v € V, there is an edge of length 1 between (v,n) and (v,n + 1);
e for each n € Z=o and v, w € V with (v, w) € E, there is an edge of length e~" between (v, n)
and (w,n).

The combinatorial horoball H(T") is always a hyperbolic space with a single boundary point. The
constant of hyperbolicity is independent of I'.

Since our horoballs are only defined for graphs, we use the following approximation graphs to
construct horoballs for arbitrary subsets.

Definition 2.22. A subset P of a geodesic metric space X is C'—coarsely connected if every pair
of points in P can be joined by a path that is contained in Ng(P). For a C—coarsely connected
subset P, a C—net N in P is a subset of points of P so that every point of P is within 2C of a
point in N and every pair of points in N are at least C' apart. An approximation graph for P is
the graph whose vertex set is a C—net in P with an edge of length 1 between two points if they are
2C apart.

Finally, we define a relatively hyperbolic space as one that produces a hyperbolic space after
attaching a collection of horoballs to subsets.

Definition 2.23. Let X be a geodesic metric space and P a collection of C'—coarsely connected
subsets of X. For each P € P, let Np be a C—net for P, and let I'p be the approximation graph
for P whose vertex set is Np. A cusped spaced for X relative to P is the space obtained from
X u | pep H(I'p) by adding an edge of length one between each point v € Np and the vertex
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(v,0) € H(I'p). We say X is hyperbolic relative to P if some (hence any) cusped space for X
relative to P is Gromov hyperbolic.

We use cusp(X, P) to denote the cusped space of X relative to P. Up to quasi-isometry, this space
does not depend on the choice of approximation graph for elements of P. When X is hyperbolic
relative to P, we use H(P) to denote the union of the horoball H(I'p), the subset P, and the edges
between them. As with the cusp space, up to quasi-isometry, the horoballs are independent of the
choice of approximation graph for P. The subsets of P are called the peripheral subsets of X.

In the case of finitely generated groups, we will require that the peripheral subsets of a relatively
hyperbolic group are the cosets of a collection of subgroups. While a priori this appears to be a
strong condition, Drutu showed in [Dru09, Theorem 1.5] that every finitely generated group which
is a relatively hyperbolic space is in fact hyperbolic relative to the cosets of a finite collection of
subgroups as described in the next definition.

Definition 2.24. A group G is hyperbolic relative to subgroups Hi, ..., Hy if some (hence any)
Cayley graph of G with respect to a finite generating set is hyperbolic relative to the collection of
coset of Hiy,...,Hi. The subgroups Hi, ..., Hy are the peripheral subgroups of GG. In this case,
we use cusp(G, {H1, ..., H}) to denote the space obtained by attaching combinatorial horoballs to
each coset of a peripheral subgroup in the Cayley graph of G.

The basic idea of relative hyperbolicity is that all of the non-negative curvature must lie inside
the individual peripheral subsets. This next result makes that explicit for subsets that are quasi-
isometric to products.

Theorem 2.25 ([DS05, Corollary 5.8]). Let X be a geodesic metric space that is hyperbolic relative
to a collection of subsets P. If Y is a subset of X so that Y, equipped with the subset metric,
18 quasi-isometric to a product of two infinite diameter metric spaces, then Y is contained in the
C'—neighborhood of some P € P, where C' depends only on X, P, and the quasi-isometry constants.

For hierarchically hyperbolic spaces, the following criterion can be used to verify relative hyper-
bolicity.

Definition 2.26. Let (X, &) be an HHS with the unbounded domain dichotomy. We say & has
orthogonality isolated by J < & if

(1) J does not contain the E-maximal element of &;
(2) if VW e & and V L W, then there exists I € J so that V,W & I; and
(3) if W e & and there exist I1, I € J so that W & Iy, I, then I} = I.

Theorem 2.27 ([Rus22, Theorem 4.2]). Let (X, &) be an HHS with the bounded domain dichotomy.
If & has orthogonality isolated by I < &, then X is hyperbolic relative to {Py: I € J}.

When G is a relatively hyperbolic G-HHS, not every G-HHS structure for G must have isolated
orthogonality. However Corollary 3.11 will show that every relatively hyperbolic G-HHS has at
least one G-HHS structure with isolated orthogonality. Russell originally established this result
for hierarchically hyperbolic groups satisfying the additional hypothesis of clean containers; see
[Rus22, Section 5.

2.7. Hyperbolically embedded subgroups. A key feature of the peripheral subgroups of rela-
tively hyperbolic groups is that they are hyperbolically embedded. As we will not need the precise
definition of a hyperbolically embedded subgroup, we forgo it in favor of Theorem 2.30 below, which
provides a characterization of hyperbolically embedded subgroups of G-HHSs.

Definition 2.28. A collection of subgroups {Hi,..., Hi} of a group G is almost malnormal if

|9Hig_lﬁHj| =0 = ¢ =7 and g € H;.
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Definition 2.29. A subset Y of a metric space X is M —strongly quasiconvex if there exists a
function M: [1,00) x [0,00) — [0,00) so that every (\,e)—quasi-geodesic with endpoints in Y is
contained in the M (A, e)-neighborhood of Y. A subgroup H of a finitely generated group G is
strongly quasiconver if H is a strongly quasiconvex subset of the Cayley graph of G with respect
to a finite generating set.

Theorem 2.30 ([DGO17, Sis16], [RST18, Theorem 8.1]). Let {Hi,...,Hy} be a collection of
subgroups of a finitely generated group G. If {Hx,...,Hy,} is hyperbolically embedded, then it is an

almost malnormal and each H; is strongly quasiconvex. Moreover, the converse holds when G is a
G-HHS.!

The next definition and result describe how strong quasiconvexity can be detected using the
hierarchically hyperbolic structure.

Definition 2.31. A subset ) of a hierarchically hyperbolic space (X, &) has the B-orthogonal
projection dichotomy if whenever there exists W € & satisfying diam (7 ()))) > B, the projection
my|y is B—coarsely onto for all V € &

Theorem 2.32 ([RST18, Theorem 6.2]). Let (X,&) be an HHS with the bounded domain di-
chotomy.

(1) Given k: [0,00) — [0,00) and B > 0, there exists M: [1,00) x [0,00) — [0,00), so that
if Y € X is k—hierarchically quasiconver and has the B-orthogonal projection dichotomy,
then Y is M —strongly quasiconver.

(2) Given M: [1,00) x [0,00) — [0,00), there exists k: [0,00) — [0,00) and B = 0, so that
if Y € X is M—strongly quasiconvex, then Y is k—hierarchically quasiconvex and has the
B-orthogonal projection dichotomy.

Lastly, we record a simple but handy fact about the intersection of cosets of almost malnormal
collections of subgroups. Since every hyperbolically embedded collection of subgroups is almost
malnormal, this lemma applies to any hyperbolically embedded collection, which is how we will

apply it.
Lemma 2.33 ([HrulO, Proposition 9.4]). Let G be a finitely generated group and {Hy,...,Hy} be
an almost malnormal collection of subgroups. For each C = 0 and any two cosets gH; and hH;,
we have

diam (NC(gHZ) N Nc(hHJ)) =0 = gH,; = th
3. ADDING HYPERBOLICALLY EMBEDDED SUBGROUPS TO A STRUCTURE

In this section, we show that any collection of hyperbolically embedded subgroups of a maximized
G-HHS can be naturally associated to a set of domains in an G-HHS structure on the group. We
begin by describing the structure.

Construction 3.1. Let & be a maximized G-HHS structure for the finitely generated group G.
Let S € & be the E-maximal element of &. Let {Hi,...,Hy} be a collection of hyperbolically
embedded subgroups of G. Let £ be a set indexing the set of cosets of Hi,...,H;. For each
Q € Q, we will use P(Q) to denote the coset in G that is indexed by Q. We describe a new G-HHS
structure for G whose index set includes .

e Index set: H =6 U Q.

e Hyperbolic spaces: For S, the space CyS is obtained from CgS by adding an edge between
every pair of points in wg(P(Q)) for each @ € Q. Following [Far98], we call this the
electrified space. For V € & — {S}, define CyV := CsV. For @ € Q, let CyQ be the convex
hull of 7¢(P(Q)) in the space CgS.

n [RST18], this result is stated for HHGs, but the proof goes through as is for G-HHSs.
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e Projection maps: We use 7, to denote the projection maps in $ and 7, to denote the
projection maps in &. For V € 6—{S}, let 7y := my. For S, the map 7g is the composition of
mg with the inclusion CeS' — CyS. For Q € Q, the map 7¢ is the composition pr(p(g))o7s-

e Relations: For all V,W € &, the relation in ) between V' and W is the same as the relation
between V and W in &. Each @ € 9 is properly $—nested into S. For V € & — {S} and
Q € 9, we define V & @ if there exist W € & n & so that Tw|p(g) is coarsely onto;
otherwise Q h V. If Q, R € 9 are not equal, then Q M R.

e Relative projections: We use 8} to denote the relative projections in $ and p} to denote
them in &. For all V,W € &,if V& W or V th W, then 3}, := p};,. For Q € Q, the relative

projection Bg is the electrified subset 7¢(P(Q)) in CyS. For Ve S and Qe Q,if V £ Q
or V h @, then the relative projection 55 is pﬁs(p(Q))(pg). If @ MW for any W € 9, then

B = mw (P(Q)).

While the reader should think of the set Q as the set of all coset of Hy,..., H;, we note again
that formally, the element @ € 9 is an element of the index set Q < $ while P(Q) refers to the
actual coset of a H; in the group G. We choose this notation because the coset P((Q) coarsely
coincide with the product region Pg in §) as follows.

Remark 3.2 (Product regions for §)). For each non-E-maximal V € &, the set &y (resp. &y)
and the corresponding collection of hyperbolic spaces and projection maps is identical to the set
v (resp. .6%/) and its corresponding collection of hyperbolic spaces and projection maps. Hence,
the product regions for V with respect to both ) and & are identical. For @) € Q, the product
region P with respect to §) is finite Hausdorff distance from the coset P(Q), because

P(Q) is uniformly hierarchically quasiconvex with respect to $ (Corollary 3.3);

5’)5 = (J by construction;

the projection of P(Q) to every domain of §)¢ is uniformly coarsely onto (Lemma 3.4); and
the projection of P(Q) to every domain of $) —§)¢ is uniformly bounded (shown in the proof
of Theorem 3.8) .

We now collect some results we will need to show that the structure $ is in fact a G-HHS struc-
ture. We will frequently use the following properties of the cosets of the hyperbolically embedded
subgroups. The first is a direct consequence of Theorems 2.30 and 2.32, while the second was shown
during the proof of Theorem 2.30; see [RST18, Proposition 8.6].

Corollary 3.3. Let (G,6) be a G-HHS and {H,...,Hy} a hyperbolically embedded collection of
subgroups. Let £ be the set indexing the cosets of the H; as in Construction 3.1. There exists
k:]0,00) — [0,00) and B = 0 so that

(1) for each Q € Q, the coset P(Q) is k—hierarchically quasiconvexr and has the B-orthogonal

projection dichotomy; and
(2) for distinct Q, R € 9, the diameter of pry(r(qy)(ms(P(R))) is at most B.

The nesting relation in ) is defined in order to facilitate the following key lemma.

Lemma 3.4. Let (G, &) be a mazimized G-HHS. Suppose {H1, ..., Hi} is a hyperbolically embedded
collection of subgroups of G, and let § be the structure described in Construction 3.1. There exists
B =0 so that for each V € & and Q € 9, the following are equivalent.

(1) VEQin$.

(2) There is W € & with diam(mw (P(Q))) > B.

(8) There is U € &y n &% with my|p(qy coarsely onto.

(4) There is U € &y with diam(my(P(Q)) > B.

(5) The product region Py is contained in the B—neighborhood of the coset P(Q).

(6) The product region Py is contained in a finite neighborhood of the coset P(Q).
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Proof. By Corollary 3.3, for each @ € Q the coset P(Q) has the By—orthogonal projection dichotomy
for some By determined by (G, &) and {Hj, ..., Hy}. Moreover, we can assume By is large enough
that for all V € &, if diam(CgV') > By, then diam(CsV) = .

We will first prove that (1) implies (2) through (4) for any B > By.

Claim 3.5. ltem (1) = Item (2) = Item (3) = Item (4).

Proof. A domain V' € & nests into @ € Q in the structure $) if and only if there exists W € G‘Lf NnG*
so that my|pq) is coarsely onto. Since diam(CeW) = 00, Item (2) holds.

Now, if diam(mw (P(Q))) = By for some W € & n &%, then mu|p(q) is Bo—coarsely onto for
any domain U orthogonal to W, and, in particular, for all U € &y,. Since G is maximized, we know
Sy N 6% # . Thus Item (3) follows from (2). Item (4) follows immediately from Item (3), as
Ue&™. O

Next we show that Item (4) implies that Py is contained in the Bj—neighborhood of P(Q) for
some B determined by By and the hierarchy constant for &.

Claim 3.6. Item (4) = Item (5).

Proof. Let V € & and @ € 9, and assume diam (7 (P(Q))) > By for some U € &y. By Corollary
3.3, P(Q) is uniformly hierarchically quasiconvex. By Proposition 2.13(3), if we can show | p(q)
is By—coarsely onto for each W e Gy u G‘L/, then there will be a constant B; > 0 depending on By
so that Py is contained in the Bj—neighborhood of P(Q).

First suppose that W e 6%/. Since U E V, we have U 1. W. By the Bp—orthogonal projection
dichotomy, diam (7 (P(Q))) > Bo implies 7w |p(q) is Bo—coarsely onto.

Now consider W € &y. Since & is maximized, there must exist Z € &% n G‘L/. As shown in the
proceeding paragraph, mz| P(Q) s Bo—coarsely onto. However, since diam(CsZ) = o0 and W L Z,
the Bp—orthogonal projection dichotomy implies that 7| P(Q) is Bo—coarsely onto, as well. O

Since Item (5) automatically implies Item (6), it remains to show Item (6) implies V E Q.
Claim 3.7. Item (6) = Item (1).

Proof. Let V € & and Q € 9. Assume that Py is contained in a regular neighborhood of P(Q).
Since P(Q) does not coarsely equal all of G, it must be the case that V is not E-maximal. By
Lemma 3.4, the restriction of my to Py is coarsely onto for all W € Gy u 6%/. In particular,
w| p(@) must also be coarsely onto, because my is coarsely Lipschitz and Py is contained in a
regular neighborhood of P(Q). Because & is maximized, we know & n G‘L/ # . Hence V E Q
because there must exist W € &* n &3 with my| p(Q) coarsely onto. t

Lemma 3.4 now holds with B = max{By, B1}. O

We now turn to the main result of this section, in which we establish that the structure in
Construction 3.1 is a G-HHS structure.

Theorem 3.8. Let (G, S) be a mazimized G-HHS. Let S € & be the =-mazimal element of & and
{Hq,...,H} be a hyperbolically embedded collection of subgroups of G. The structure §) described
in Construction 3.1 is a G-HHS structure.

Moreover, if (G, &) is a hierarchically hyperbolic group for which & is a mazimized structure,
then $) is a hierarchically hyperbolic group structure for G.

Remark 3.9. The moreover clause applies to a number of natural examples, including the stan-
dard HHG structures on RAAGs and on mapping class groups, since these are maximized HHG
structures.



14 CAROLYN ABBOTT, JASON BEHRSTOCK, AND JACOB RUSSELL

Before proving Theorem 3.8 we record two short observations. First, adding the hyperbolically
embedded subgroups to the structure does not change the HHS boundary. Second, when G is
hyperbolic relative to the H;, the structure $ has isolated orthogonality.

Corollary 3.10. Let (G,S) be a mazimized G-HHS, then let $) be the HHG structure from Con-
struction 3.1 for a collection of hyperbolically embedded subgroups {Hu,...,Hy}. There is a home-
omorphism ®: G U 0(G,8) —> G U d(G, $) so that @ restricts to the identity on G and to both a
homeomorphism and a simplicial isomorphism 0(G,S) — 0(G, 9H).

Proof. Since $ has the same orthogonality relations as &, the maximization of § is identical to
the maximization of &; see [ABD21, Theorem 3.7]. The corollary is therefore a consequence of
Theorem 2.20(1). O

Corollary 3.11. Let (G,S) be a mazimized G-HHS that is hyperbolic relative to a finite collection
of subgroups {Hx, ..., Hy}. Let $ be the G-HHS structure of Construction 3.1 obtained by adding
the cosets of the subgroups {Hi,...,Hy}. The structure $ has orthogonality isolated by 9, and
every non-=-maximal domain in $) nests into some @ € .

Proof. Let W,V € $ with W L V. Since no two elements of 9 are orthogonal, W and V must both
be in &. Since & is maximized, each Py is uniformly quasi-isometric to the product of two infinite
diameter quasi-geodesic spaces (Theorem 2.19(3)). Hence, Theorem 2.25 says each Py must then
be contained in a regular neighborhood of a coset P(Q) for some @) € Q. Thus, 7| P(Q) 1s coarsely
onto for all U € Sy. Since Sy n &® # ¢ and every element of Gy is orthogonal to V, this
implies that W,V & @ by Lemma 3.4.

Now suppose W € §) is nested into both @, R € . Since all elements of 9 are transverse, W
must be in &. By Lemma 3.4, this implies Py is contained in a regular neighborhood of both
P(Q) and P(R). Because diam(Py) = o0, Lemma 2.33 says P(Q) = P(R). Hence Q = R.

For the last clause, note that because & is maximized, every non-E—maximal element of & is
orthogonal to some domain of &. Thus, the first paragraph above shows that every non-E—maximal
W € G nests into some @ € Q. O

We now prove Theorem 3.8. A reader focused on the applications to the boundary, may skip it
without a loss of continuity for the remainder of the paper.

Proof of Theorem 3.8. The desired equivariance and finite orbit properties in Definition 2.4 of a G-
HHS are satisfied for $) by a combination of the fact that & is a G-HHS, the closet point projection
in a hyperbolic spaces is coarsely equivariant under isometries, and that Q indexes a collection of
cosets of a finite number of subgroups. Thus, it suffices to prove that $ is an HHS structure for G.

We start by observing that CsS can be equipped with an HHS structure using the subsets
ms(P(Q)). For each Q € 9, the set mg(P(Q)) is uniformly quasiconvex in CsS because each
P(Q) is uniformly hierarchically quasiconvex in (G,&). Further, if @Q # R, then the closest point
projection of wg(P(Q)) onto wg(P(R)) is uniformly bounded in CgS by Corollary 3.3. Hence,
the collection {mrg(P(Q)) : Q € Q} forms what Spriano calls a factor system of CsS; see [Sprl8a,
Section 3]. In particular, Spriano proves that CgS has a hierarchically hyperbolic structure with
index set § = {S} U Q, where the hyperbolic spaces are either the electrified space CyS or CyQ,
the convex hull of 7g(P(Q)). Each element of £ is nested into S and every pair of elements of Q
are transverse. The projections and relative projections are all given by either inclusion or closest
point projection in CgS. This proves that CyS and each Cy(@ are uniformly hyperbolic, and will
be useful when verifying the remaining axioms for $) to be an G-HHS structure for G.

Since $ inherits many of the spaces, projection, and relations from &, we only need to verify
the HHS axioms for the domains in {S} U Q. Let B be larger than the constant from the bounded
domain dichotomy for & and the constants from Corollary 3.3 and Lemma 3.4. Let £ > 1 be the
maximum of the hierarchy constants from both & and §.
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Hyperbolic spaces and projections: The hyperbolicity of CyS and each Cy(@ are shown
above, and 7¢ is uniformly coarsely Lipschitz because the maps mg and pr¢(p(q)) are.

Nesting and finite complexity: We need to verify that E is still a partial order. It suffices
to check that T is still transitive when V & W in & and W & @ in $ for some @ € . In this
case, there exists U € 6‘%[, N 6% so that 7rU|p(Q) is coarsely onto. Since V = W, we have V 1 U as
well. Hence V' E @ as desired. The maximal length of a E=—chain in § is at most 1 longer than the
maximal length of a E=—chain in &.

The new upward relative projection are all bounded diameter, as they are either electrified
subsets or the closest point projection of a bounded diameter subset of Cg.S.

Orthogonality and containers: Since the orthogonality relations in & and $) are identical,
these axioms are inherited from 6.

Transversality: We only need to verify that Bg, Bg , and ﬂg have uniformly bounded diameter
whenever Q, ReQ and QM RorQe N, VeSS, and Qrh V.

e Since diam(pg) < E, the coarse Lipschtizness of p. (p(qg)) ensures 55 = Prs(P(Q)) (pg) is
uniformly bounded.

e For Bg = 1v(P(Q)) = mv(P(Q)), observe that because B is larger than the constant from
Lemma 3.4, diam(7y (P(Q))) > B would imply V = Q). Hence diam(ﬁg) = diam(7y (P(Q)))
B when V h Q.

e By Corollary 3.3, diam(ﬁg) = diam(pr¢(p(@)) (Ts(P(R))) < B.

Uniqueness: Let x,y € G, and suppose there exists D > 0 so that dy (v (z),7v(y)) < D for
each V € §. By the uniqueness axiom in (CgS,¥), there exists a bound D’ = D'(D,§) on the
CsS—distance between mg(z) and wg(y). Since 7y = 7y for all V € & — {S}, the uniqueness axiom
for (G, &) then implies there exists a D” = D"(D, &) bounding the distance between x and y in G.

Bounded Geodesic Image: We only need to verify the axiom when one of the two domains
involved is either S or Q € Q. Let z,y € G.

We first handle the case of @) = S for some @ € Q. Assume that dg(1g(z),7g(y)) > E. By the
bounded geodesic image axiom in (CgS,§), the CyS-geodesic from 7g(z) to 75(y) passes E—close
to the electrified subset 75(P(Q)) = Bg.

Next we verify the axiom when V € & and V & S in §). Assume that dy (v (x), 7v(y)) > E. The
bounded geodesic image axiom in (G, &) implies the CgS—geodesic from mg(x) to wg(y) intersects
the E—neighborhood of pg. Since CgS is hyperbolic, every geodesic in CgS' is a uniform hierarchy
path in (CsS, §); see [Spr18b, Proposition 3.5]. Thus this geodesic, when viewed as a path in Cg S, is
a uniform quality quasi-geodesic connecting 7g(z) and 7s(y), and it intersects the E—neighborhood
of ﬂ‘S/ = pg as the map CgS — CyS is 1-Lipschitz. Again using that Cy.S is hyperbolic, this implies
every CgS—geodesic from 75(z) to 75(y) will intersect a uniform neighborhood of 3¥.

The last case is when V = @ for some V € & and Q € Q. Assume dy (7yv(x),7v(y)) > E. Let
v be a CgS—geodesic from mwg(x) to mg(y). As described in the previous paragraph, v intersects
the E-neighborhood of pY. Since geodesics in CgS are uniform hierarchy paths in (CgS,F), the
path pro(p(@) ©7 = 7@ ©7 is a uniform quality unparametrized quasi-geodesic in CyQ. As p
is uniformly Lipschitz, the projection pr,(p(g)) © 7 passes through a uniform neighborhood of
ﬁg = pﬁs(p(Q))(pg). Since CyQ is hyperbolic, this implies every CyQ-geodesic from 1o (z) to 7o (y)
passes through a uniform neighborhood of 55 .

Large Links: For all W e & — {S}, this axioms follows immediately from the large link axiom
in (G,8). Thus, we only need to verify the axiom for S and domains in Q.

Let z,y € G and consider first @ € Q. Since P(Q) is hierarchically quasiconvex in (G, &), there
exists a gate map gp(g): G — P(Q). Let 2’ = gp(g)(z) and y' = gp(g)(y). For all W e & — {S},
if W E @, then 7'W|p(Q) = 7TW|P(Q) is coarsely onto by Lemma 3.4. Hence there exists C' = 0,

<
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depending only on & and {Hy,..., Hy}, so that
diam(my (z') U T (7)) < C and diam(rw (v') U T (y)) < C
for each W € . We can further assume that
diam(rg(z) U T@(2')) < C and diam(7g(y) v To(y')) < C

because 7g o gp(q) uniformly coarsely agrees with 7¢ = pr,(p()) © 7s-
By applying the large links axiom of & to z’ and y', we produce Vi,...,V,, € & — {S} so that
m < Edegs(ms(z'), ms(y’)) + E and, for all W e & — {S}, either W £ Vj for some i € {1,...,m} or

dw (mw (&), 7w (y')) < E + B.

Without loss of generality, we can assume that for each i € {1,...,m}, there exist W £ V; so that
dw (mw (2'), 7w (y')) > E + B. In particular, by Lemma 3.4, we may assume each Vj is nested into
@ in $. Since

dw (rw (), 7(y)) = dw (mw (@), 7w () — 2C,
for every W e 9, either dw(Tw( ), Tw(y)) < E+ B+2C or W £ V. Since

) <
dq(o(2"), 7q(y") = degs(ms(2'), ms(y'))
and
do(1q(x), 7q(y)) = do(rq(a'), 7q(y")) — 2C,
we have m < Edg(rg(x), 79(y)) + E + 2C, which completes the proof of the large links axiom for
QeN.

Now consider the domain S. Since & is maximized, CsS is the graph that has the elements of
G as vertices with edges between two vertices x; and x9 if 21,22 € Py for some W € & — {S}; see
Theorem 2.19(4). Moreover, CyS is a copy of this graph CgS with additional edges between two
vertices x1 and xg if 21,29 € P(Q) for some @ € Q.

Let z,y € X and let 75(z) = vg,v1,...,vm = Ts(y) be the vertices of the CyS-geodesic from
Ts(x) to Ts(y). Each edge between v;_; and v; then corresponds to either a coset P(Q) or a product
region Pyy. Let V; be the elements of § corresponding to the edge between v; 1 and v;. If V; € &,
let U; be a container for V; in & (note, 6%/1_ # (J because & is maximized). By construction
2m = 2dc,s(7s(x), 7s(y)). We will show that for every W € $ — {S}, either W is nested into some
Vi or U;, or dw (tw (), 7w (y)) is uniformly bounded.

Since we have already verified that $) satisfies the bounded geodesic image axiom, let C' = 0
be the maximum of the constant from the bounded geodesic image axiom for $) and the bound
on the diameters of 8% for each W € $§ — {S}. Let W € $§ — {S}. Since & has the bounded
domain dichotomy, we can assume W e &*. If d¢ 5(v;, Bgv) > C' + 3 for all v; € {vg,...,vn}, then
dw (tw(x), 7w (y)) < C by the bounded geodesic image axiom. Otherwise, let j be the minimal
element of {0,...,m} so that dcﬁg(vj,ﬁg/) < C + 3. By construction, if 1 < j or i = j + 3C + 6,
then deg 5(vi, ﬁgy) > C + 3. Hence, the bounded geodesic image axiom says

diam(myw () U T (vi)) < C for i < j

and
diam(mw (y) v 7w (v;)) < C for i = j + 3C + 6.

Thus we have
j+3C+6

dw (tw (2), 7w (1)) < Z diam (7w (v;) U 7w (vig1)) + 2C.
i=j
Hence, there exists C' > 0 depending only on C' and & so that if dw (rw (z), 7w (y)) > C’, then for
at least one i € {j,...,7 + 3C + 6}, we have diam (7w (v;) v 7w (viy1) > 3E + B.
If Vis1 = Q € Q, then v; and v;41 are in the coset P(Q), implying diam(my (P(Q))) = B. By
Lemma 3.4, this implies W £ Q = V;;1. On the other hand, if Vi, € &, then v;,v;1; € Py,
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Hence diam(rw (Pvy,,,)) > 3E, which implies W £ Vj;; or W L Vi1 by Proposition 2.13(2).
Thus, for all W € $ — {S}, either dw (rw(z), 7w (y)) < C’ or there is i € {1,...,m} so that
W eSSy, v ﬁ‘L/iH. Since U;.1 is a container for V;.1 when .6%/1,“ # (&, this means W is nested
into either V; 11 or U; 41 whenever dy (1w (z), 7w (y)) > C".

Consistency: Because many of the relative projections in §) are the same as the relative pro-
jections in either & or §, we only need to verify the first inequality for V € & — {S} and Q € Q
with V' h Q. Suppose z € X with dV(TV(:r),B‘C,?) > FE. Let y be any point in P(Q). Since
ﬁg = 17y (P(Q)), we have dy(rv(x),7v(y)) = dy(my(z), 7y (y)) > E. By the bounded geodesic
image axiom in &, this implies every CgS—geodesic from wg(z) to a point in mg(P(Q)) passes
E—close to pg. Hence p,rs(p(Q))(pg) = 55 is uniformly close to pr¢(p(@))(z) = 7@(z), and the first
inequality holds.

For the second inequality, we only need to check the case where V' = @) and there is a domain
W € $ so that either Q & W or Q M W and W £ V. By Lemma 3.4, Py is contained in a
regular neighborhood of P(Q) as V & Q. Now, the only way for @ &= W is if W = S. In this
case, Bfg/ = pg and 5? = 75(P(Q)) are uniformly close in CgS because Py is contained in a regular
neighborhood of P(Q). If instead Q W, then 7y (Py) is contained in a uniform neighborhood
of BIC/QV = 1w (P(Q)). Since ply; = By is uniformly close to my (Py) = 7w (Py) this implies Y, and
ﬁI?V are uniformly close.

Partial Realization: Since $) has no new orthogonality, we only need to verify this axiom
for a single domain in . However, the definition of 7, plus the relations on $ make this axiom
automatically satisfied for these domains. O

4. THE BOUNDARY OF RELATIVELY HYPERBOLIC G—HHSSs

In this section, we characterize the simplicial structure of the boundaries of relatively hyperbolic
G-HHSs. We start with the more straightforward part, which describes the boundary of a relatively
hyperbolic G-HHS. We will then show that whenever this description of the boundary of a G-HHS
holds, the group is relatively hyperbolic (Theorem 4.3). Recall that A(-) denotes the limit set of a
subset of an HHS in the HHS boundary.

Theorem 4.1. Let (G,S) be a G-HHS. If G is hyperbolic relative to a finite collection of infinite
index subgroups {H1, ..., Hy}, then there exist disjoint subcomplexes A1, ..., A of OA(G,S) so that
(1) each H; is hierarchically quasiconver and A; is the limit set of H; in 0(G,S);
(2) for all1 <i<j <k and g,h € G we have g\; " hA; = & unlessi = j and g~ *h € H;; and

k
(3) oA(G,6) —G - (|_| AZ) is a non-empty set of isolated vertices.
i=1

The proof of Theorem 4.1 will rely on the following classification of the limit sets of hyperbolically
embedded subgroups in the HHS boundary for the structure ) from Construction 3.1.

Lemma 4.2. Let (G, 8) be a mazimized G-HHS and {Hj, ..., Hy} be a hyperbolically embedded
collection of subgroups. Let $) be the G-HHS structure from Construction 3.1 such that Q < § is
the set indexing the cosets of the H;. For all Q € Q, a point p € OA(G, ) is in the limit set of the
coset P(Q) if and only if every element of supp(p) is nested into Q in .

Proof. We use the notation of Construction 3.1 for & and .

If p e A(P(Q)) and W € supp(p), then diam(my (P(Q))) = . By Lemma 3.4(4), this implies
that W E Q.

For the other direction, recall that W & @Q implies W € & and Py is contained in a regular
neighborhood of P(Q) by Lemma 3.4. In particular, 7y |p(q) is coarsely onto for all V € Gy u S,
and so 0CyV < A(P(Q)). Thus, if supp(p) = {Wi,..., Wy} and each Wy is nested into @), then
p € A(P(Q)) because the join of all the dCyWy is contained in A(P(Q)). O
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Proof of Theorem 4.1. If G is hyperbolic relative to {Hy, ..., Hi}, then {H;,..., Hi} is a hyper-
bolically embedded collection of subgroups. In particular, each H; is hierarchically quasiconvex in
every G-HHS structure for G by Theorem 2.30.

If ¥ is the maximization of &, then Theorem 2.20(1) says that there is a homeomorphism

¢: GUIG,6) > GuiG,%)

that restricts to the identity on G and is both a homeomorphism and simplicial isomorphism on
the boundary. In particular, the limit set of each H; in (G, &) is mapped homeomorphically by ®
to the limit set of H; in 0(G,T). Hence, we can assume & is a maximized HHS structure.

Now that & has been maximized, we can apply Theorem 3.8 to produce the G-HHS structure
$H for G as described in Construction 3.1. By Corollary 3.10, there is a homeomorphism

U:GuiG,9H) - GuiG,6)

that restricts to the identity on G and is both a homeomorphism and simplicial isomorphism on
the boundary. As before, the limit set of each H; in (G, $)) is mapped homeomorphically by ¥ to
the limit set of H; in 0(G, S). Taken together, this means it suffices to prove the result for 0(G, )
instead of 0(G, G).

Let A; be the limit set of H; in 0(G, $), so that gA; is the limit set of the coset gH; in 0(G, 9).
Let Q € $ be the set indexing the cosets of the H; as in Construction 3.1. We will continue to
use P(Q) to denote the coset in G indexed by Q. We use Lemma 4.2 to verify the conclusions of
Theorem 4.1.

To see that each A; is a subcomplex, let @ € Q with P(Q) = H;, and let p,q be vertices of A;
that are joined by an edge, e,q, of da(G,$). This means there are domains V, W € §) such that
supp(p) = {W}, supp(q) = {V}, and W L V. Since no element of £ is orthogonal to any other
domain, we have W,V € &. Thus W,V & @ by Lemma 4.2. The support of any point on the edge
epq is contained in {W, V}. Thus, Lemma 4.2 says epq S A;.

For the second item, Lemma 4.2 says that if gA; n hA; # (&, then there is W € $Hp n Hg,
where P(Q) = gH; and P(R) = hH;. However, this would imply Py is contained in a regular
neighborhood of both P(Q) = gH; and P(R) = hH; by Lemma 3.4. Since diam(Py) = oo because
G is maximized, this implies i = j and g~ 'h € H; by Lemma 2.33.

Finally, because $ has orthogonality isolated by £ (Corollary 3.11), Lemma 4.2 says every
p € 0A(G, ) is either in some gA; or has supp(p) = {S}, where S is the E—maximal element of &.

Hence, the set
k
oa(G,6) - G- <|_| AZ->
i—1

is a collection of isolated vertices in da (G, $) because each point in it has support {S}. O

We now show that the only way for the boundary of a G-HHS to decompose as described in
Theorem 4.1 is for the group to be relatively hyperbolic.

Theorem 4.3. Let (G,8) be a G-HHS. Let A1, ..., Ay be disjoint subcomplezes of Oa(G,S), and
let H; = Stabg(A;). Suppose

(1) each H; is hierarchically quasiconver and has infinite index in G;

(2) for each i, A; is the limit set of H; in 0(G,S);

(3) foralll <i<j<kandg,heG, wehave g\; nh\; = & unless i = j and g 'h € H;; and

k
(4) oA(G,6) — G - (|_| AZ) is a non-empty set of isolated vertices.
i=1
Then G is hyperbolic relative to the subgroups Hy,. .., H.

Proof. First we explain why we can assume & is maximized. Let T be the maximization of &.
By Theorem 2.20(2), each H; is hierarchically quasiconvex with respect to both & and ¥, and
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Theorem 2.20(1) provides a map ®: G u d(G,8) —» G u d(G,T) that is the identity on G and both
a homeomorphism and a simplicial isomorphism on the boundary. In particular, (G, ) satisfies the
hypotheses of Theorem 4.3 with respect to the complexes ®(A;). Hence, without less of generality
we may assume & is already maximized.

The bulk of our proof will be showing that {H7, ..., Hy} is a hyperbolically embedded collection
of subgroups. This will allow us to use Theorem 3.8 to create an HHS structure for G with isolated
orthogonality.

For the remainder of the proof, let supp(gA;) denote the union of the support sets of all the
elements of gA;, where g € G.

Step 1:
The set {H1,...,Hy} is an almost malnormal collection of subgroups.
Suppose H; n gH; ¢~ ! is infinite. There then exists an infinite sequence

(hn) € H; N gng*1

so that (hy,) converges to a point in (G, &). Because each h,, is in gHjg~! = Stabg(gH;), we have
hng € gH; for each n. Since dg(hn, hng) = da(e, g), we have that (hy) and (hy,g) converge to the
same point in (G, &) by Lemma 2.18. The limit of (k) is in A;, while the limit of (h,g) is in gA;,
so by Hypothesis (3), we must have i = j and g € P;.

Step 2: Each H; is uniformly strongly quasiconvex.
For this step we need several auxiliary claims.

Claim 4.4. Suppose W € supp(A;) is not E-mazximal in S. Then 0CW is contained in A;, as is
OCV for any Ve & with W L V.

Proof. If W € supp(4;), there is a point in A; whose support set includes W. Such a point is in
a simplex that has a vertex p with supp(p) = {W}. Since A; is a subcomplex, the vertex p must
also be in A;. Because & is maximized and W is not T—maximal, there must exists V € 6* with
V L W. Let q be any point in dCV. The edge in da(G,S) between p and ¢ is contained in some
gAj by Hypothesis (4). Since this implies p € gA; n A;, we must have gA; = A; by Hypothesis (3).
Hence, ¢ € A; as well. Thus dCV < A;. By repeating the argument with the roles of W and V'
reversed we have that 0CW < A; as well. O

Claim 4.5. If W e supp(A;) is not E-mazimal in &, then Ty |g, is uniformly coarsely onto.

Proof. By Claim 4.4, if W € supp(4A;) is not E-maximal, then dCW < A;. Since A; is the limit
set of H;, 0CW must be the limit set of my (H;) in CW (Lemma 2.17). Since my (H;) is uniformly
quasiconvex in CW, the only way for this to happen is if some uniform neighborhood of 7y (H;)
covers CW. O

Claim 4.6. There exists v = 0 so that for any W € supp(A;), if W is not E-maximal in S, then
the product region Py is contained in the v—neighborhood of H;.

Proof. Let W € supp(A;) be non-E-maximal in &. Because & is maximized, Sy n & and
&if; N & are both non-empty. Let U € &y n &® and V € & n &®. Since W L V and
U c W, we have U L V. Thus, by applying Claim 4.4 twice, we have both V.U € supp(A;).
By Claim 4.5, both 7y and 7y are uniformly coarsely onto when restricted to H;. Since H;
is hierarchically quasiconvex, this implies Py is contained in a uniform neighborhood of H; by
Proposition 2.13(3). O

We are now ready to show that each H; is uniformly strongly quasiconvex. Let S be the =—
maximal element of &.
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Since each H; is hierarchically quasiconvex, it suffices to show that each H; has the orthogonal
projection dichotomy (Definition 2.31). In light of Claims 4.4 and 4.5 and the bounded domain
dichotomy of &, the subgroup H; will have the orthogonal projection dichotomy if the projection of
H; to every element of G® — (supp(A;) u {S}) has uniformly bounded diameter. For the purposes
of contradiction, suppose not. We can then find a sequence of points (z,) in H; and a collection of
unbounded domains W,, € & — (supp(A;) u {S}) so that dw, (e,x,) — 00 as n — .

Because 6 is maximized, W,, # S implies there are domains V,, € 6* with W,, L V,,. This
means that for each n, the join dCW,, x 0CV,, is a subcomplex of da(G,S). Hence, by Hypothesis
(4), there is g, € G so that W, € supp(gnA;,) for each n. By Hypothesis (2), either j, # ¢ or
gn ¢ H; for each n e N.

By [RST18, Proposition 4.24], there exists constants A, v, and D depending only on &, so that
whenever dy, (e, z,) = D, there is a A-hierarchy path 7, connecting e and z,, with a subinterval
ay, so that

e o, is contained in the r—neighborhood of Py, ; and
e the diameter of oy, is bounded below by v=1 - dy, (e, x,) — v.

Because dyy, (e, z,,) — 00, we can assume n is large enough so that dy, (e, x,) = D, and hence such
a hierarchy path ~, exists.

Since H; is hierarchically quasiconvex and z, € H;, the hierarchy path =, stays uniformly close
to H; by Proposition 2.9. Because W), € supp(gn4A\;,), the product region Pyy, is also contained in
some uniform neighborhood of g, Hj, by Claim 4.6. Hence, there is a uniform constant v’ so that
the interval «,, is contained in

N (Hi) 0 Ny (gnHj,)
for each n.

It follows that there exists h,, € H; so that each coset h,, Lo H jn is uniformly close to the iden-
tity e € H;. Since either j, # i or g, ¢ H; for each n € N, we have H; # h;lgnHjn for each
n € N. Corollary 3.13 of [HHP20] proved that hierarchically quasiconvex subgroups have bounded
packing, hence {h, g, H;, } must be a finite collection of cosets. The intersection of N,/ (H;) and
Ny(hitgnHj,) contains hylay,, which gets arbitrarily large as n — oo. Thus, there is some ng
so that N,/(H;) and Ny (hylgn, H jng) have infinite diameter intersection and H; # bl InoHj,,, -
However, this violates the fact that {H,..., Hx} is almost malnormal (Lemma 2.33). Thus, there
must a uniform bound on diameter of my (H;) for each W € & — (supp(A;) u {S}), as desired.

Step 3: G is hyperbolic relative to {H1, ..., Hg}.

Since {H1,...,Hy} is an almost malnormal collection of strongly quasiconvex subgroups, it is
hyperbolically embedded in G by Theorem 2.30. Let $) be the G-HHS structure from Theorem 3.8
that adds the cosets of the H; to &. We will show that $) has orthogonality isolated by £, the set
indexing the cosets of Hy,..., Hy. As in Construction 3.1, for each Q € Q, let P(Q) denote the
coset in G indexed by Q.

Suppose V, W € $ with V' L W. Since the only orthogonal elements of £ come from &, we have
V,W € & — {S}. Because & is maximized, there exist V' £ V and W/ = W with V', W' € &%.
Since V" and W' are orthogonal, the join CV' x CW’ must be contained in some gA;. Thus my|g4m,
and 7y |gm, are both coarsely onto. Since V' L W and W' L V, this implies V, W T @ where @ is
the element of Q with P(Q) = gH;.

Now suppose there is V € £, and Q,R € Q with V = Q and V £ R. By Lemma 3.4, the infinite
diameter product region Py is then contained in a uniform neighborhood of both P(Q) and P(R)
in G. By Lemma 2.33, this can only happen if P(Q) = P(R). Hence, Q = R.

Since £ does not contain the E—maximal element of $) by construction, the above two paragraphs
show that £ isolates the orthogonality of §), making G hyperbolic relative to the product regions
of the elements of 9, by Theorem 2.27. However, for each @ € 9, the product region for @) in £
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is within finite Hausdorff' distance of the coset P(Q) by Remark 3.2. Hence, by [Dru09, Theorem
1.5], the group G is hyperbolic relative to {Hi,..., H}.
O

5. THE BOWDITCH BOUNDARY

If a finitely generated group G is hyperbolic relative to a collection of subgroups P, then the
Gromov boundary of the hyperbolic space cusp(G, P) is called the Bowditch boundary of the pair
(G,P). In this section, we prove the following theorem, which establishes the Bowditch boundary
of a relatively hyperbolic G-HHS as a quotient of the HHS boundary.

Theorem 5.1. Let (G,S) be a G-HHS, and suppose G is hyperbolic relative to a finite collection of
subgroups P. There is a quotient map ¥: o(G, &) — 0 cusp(G, P) so that for distinct p,q € 0(G,S),
we have ¥(p) = Y(q) if and only if there exists g € G and H € P so that p and q are both in the
limit set of gH in 0(G,S). Moreover, the inclusion G — cusp(G,P) extends continuously to V.

Before proving Theorem 5.1, we will collect some additional preliminary results on the distances
in combinatorial horoballs (Section 5.1) and on the topology on the HHS boundary (Section 5.2).
We will then prove Theorem 5.1 in the special case where & has isolated orthogonality (Section
5.3). Finally, we reduce the general case to the case of isolated orthogonality using Corollary 3.10,
which adds hyperbolically embedded subgroups to the structure without changing the boundary
(Section 5.4).

5.1. Distances in combinatorial horoballs. The following result of Mackay and Sisto provides
a formula for computing distances in combinatorial horoballs.

Lemma 5.2 ([MS20, Lemma 3.2]). Let ' be a graph and H(I') the combinatorial horoball over T.
There exist ¢ = 0 so that for all (z,n), (y,m) € H(T'), we have

e — max{n,m
dyyry((w,n), (y,m)) = 2log (dp(x,y)e fnm} 4 1) + |m —n|.

Using this distance formula, we can show that as points in the base of the horoball move farther
away from the basepoint they move closer to the single boundary point at infinity.

Lemma 5.3. Let Y be a (A, \)—quasi-geodesic space. Let N be a 10A-net in' Y and T' be an
approximation graph for Y with vertexr set N. Let H(Y') be the combinatorial horoball obtained
by attaching each vertex (v,0) € H(T') to v € N €Y by an edge of length 1. Let £ be the single
boundary point of the hyperbolic space H(Y). There is a increasing function f: [0,00) — [0, 00),
depending only on X, so that

dy (zo,z) = f(r) = (x| &)z > 1,

where the Gromov product is in H(Y). In particular, dy(xo,z) = f(r) implies x is contained in
the basis neighborhood M (r;&) for the compactification H(Y) with basepoint xg.

Proof. For each n € Zxg, let z,, be the vertex (zg,n) € H(I'). Because I' is quasi-isometric to ¥
and H(I") is quasi-isometric to H(Y'), each with constants depending only on A, it suffices to prove
the result for H(I"). In fact, this is the only source for the dependency of f on .
By definition, (x | £)4, is the limit of (x | x,)z, as n — 0. Letting ¢ > 0 be the constant from
Lemma 5.2, which we apply to three different pairs of points, we have:
dyyry(z, z0) = 2log(dr(z,20) + 1) — ¢
dyy(ry(Tn, T0) = 2log(dr(zo, zo)e™ " +1) +n—c=n—c;

dyy(ry(Tn, ) < 2log(dr(z,zo)e " +1) +n +c.
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Which implies:
2(x | @n)wy = dayr) (2, 20) + dayry(Tn, 20) — dayr) (Tn, T)
> 2log(dr(z, x0) + 1) — ¢+ (n —¢) — (2log(dr(zg, z)e ™ + 1) + n—c) .
Hence, for any € > 0, there exists a sufficiently large n such that
2(z | £)z, = 2log(dr(x,z0) +1) —e — 3c.
Therefore, (z | £)z, is bounded below by a function of dr(zg,z) as desired. O

5.2. Open sets in the HHS boundary. We now describe a way to construct open sets around
points in the HHS boundary. For each p € 0(X, &) and r > 0, we will define a set A, (p). While the
sets A, (p) may not be open themselves, they are constructed so that they each contain a element
of the basis of the topology on d(X, S).

To define A, (p) we need to extend the HHS projection maps to points in the boundary.

Definition 5.4. Fix a point ¢ = ZWeSupp(q) awqw € 0(X,8). For each U € & such that there
exists W € supp(q) with U & W, we define the boundary projection 0wy (q) of ¢ into CU as follows.
o If W = U, define ory(q) := qu = qw -
e IfWEZUorWmU,let V={Vesupp(q): VMUorV U}, and define
oru(q) = | ol-
Vey

o If W 2 U, we will use the map pf/ : CW — CU from Lemma 2.2 to define dmy(q). Let
o = 0 be the constant so that any two (1,20F)-quasi-geodesics with the same endpoints in
a F-hyperbolic metric space are o—close together. Let Z € CW be the set of all points on
all (1,20F)—quasi-geodesics from a point in p% € CW to qw € 0CW that are at distance at
least 2F + o from p%. Define

omu(q) == pf (2).
The definition of A, (p) is divided into two parts depending on the relationship with the support

of p.
Definition 5.5. Let (X,S) be a hierarchically hyperbolic space, and let p € 0(X,&). A point
q € 0(X,S) is remote to p if:

(1) supp(p) N supp(q) = ; and

(2) for all @ € supp(q), there exists P € supp(p) so that P and @ are not orthogonal.
Definition 5.6. Given r = 0 and p = >, awpw € 0(X,S) define two sets of points:

o A7 (p) is the set of points ¢ € (X, S) that are remote to p and have

orw(q) € M(r; pw)

for all W e supp(p);
o A" (p) is the set of points ¢ € (X, S) that are not remote to p and have

omw (q) S M(r; pw)

for all W € supp(p) n supp(q).
Define A, (p) := A7°™(p) U A" (p).

In [DHS17, Section 2], Durham, Hagen, and Sisto describe a basis of neighborhoods for d(X, G).
These basis sets are subsets of the A, (p) defined by putting restrictions on the coefficients of points
4 = Dwesupp(q) W Iw € Ar(p); see [DHS17, Section 2] for details. We therefore have Lemma 5.7
below. The hyperbolic case of Lemma 5.7 is a consequence of the fact that a hyperbolic HHS
cannot have a pair of unbounded domains that are orthogonal; see [DHS17, Lemma 4.1].
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Lemma 5.7. For each r =0 and p € (X, S), the set A,(p) contains an open set containing p. If
X is hyperbolic, then the sets A,(p) form a basis for the topology on o(X,S).

5.3. The case of isolated orthogonality. For this subsection, let (X, &) be an HHS with the
bounded domain dichotomy, and let S be the E—maximal element of &. Moreover, assume that &
has orthogonality isolated by J € & and that every non-E—maximal element of & is nested into a
domain in J.

By Theorem 2.27, this implies X" is hyperbolic relative to the collection {P; : I € J}. Let cusp(X)
be the cusped space obtained by attaching a combinatorial horoball to P; for each I € 3. We will
prove that 0 cusp(X) is the quotient of (X, S) formed by collapsing the limit set of each product
region P to a point.

To define the quotient map, we equip cusp(X’) with the following HHS structure fR; the fact that
this is an HHS structure is a direct consequence of [Rus22, Theorem 3.2 and 4.2].

The index set is R = {S} U J, where S is the =-maximal element of &.

The E-maximal element of R is S and all elements of J are transverse to each other.

The hyperbolic space for I € J is the horoball H(P;) and the hyperbolic space for S is CS.
The projection maps in R are denoted 7,. For S, the projection 7g: cusp(X) — CS is an
extension of g to the horoballs over the P so that 7g(H(P;)) = pk and 7g(z) = ms(x)
for z € X. For each I € J, the projection 77: cusp(X) — H(P;) is defined using the gate
map, gp,, from (X, &) as follows:

— if z € X < cusp(X), then 77(x) = gp,(x), and

—if o ¢ X, then x € H(Py) for a unique J € J. In this case, 77(z) = gp, (P ).

e The relative projections in R are denoted by p%. For each I,J € J, we have ﬁ{q = p{q and
p{ = ap,(Py).

Since cusp(X) is hyperbolic, the Gromov boundary ¢ cusp(X’) is naturally homeomorphic to the
HHS boundary d(cusp(X),R) by [DHS17, Lemma 4.2]. Hence, we will build a quotient map from
(X, 6) to d(cusp(X),R). For each I € J, let £ denote the single element of 0H(Py).

Let z9 € X be the basepoint for d(X', &) and choose z to also be the basepoint of d(cusp(X), R).
If p = > awpw € d(X,8), then M(r;py) will denote the standard basis neighborhood in CW
of pw, and A.(p), A" (p), and A" (p) will denote the sets describe in Definition 5.6. For
p € 0(cusp(X),R), the support of p is a single domain W € fR. Thus, we will use M\(r;p) to denote
the basis neighborhood for p in CW, which is either CS or H(P;) depending on whether W = S
or W eJc R Similarly A, (p), A7*™(p), and A""(p) will denote the sets from Definition 5.6
applied to the HHS (cusp(X'),R). Since cusp(X) is hyperbolic, the sets A, (p) form a basis for the
topology on d(cusp(X'),R) by Lemma 5.7.

We say a subset U © & is entirely nested into a domain W € G if V & W for each V € 4.
Because every domain of & — {S} is nested into an element of J and J isolates orthogonality, for
each p € 0(X, &) either supp(p) = {S} or supp(p) is entirely nested in some I € J.

Proposition 5.8. The map ®: d(X, &) — d(cusp(X),R) given by
s(p) = |7 suep(p) = {5}
& if supp(p) is entirely nested in [ €7

is continuous and surjective. Moreover, if 1: X — cusp(X) is the inclusion map and (x,) is a
sequence of points in X that converges to p, then (t(xy)) converges to ®(p).

Proof. We first prove two claims that describe the images of A" (p) and A}°"(p) under ®. The
claims are divided based on the support of p, which must either be equal to {S} (Claim 5.9) or
entirely nested in some I € J (Claim 5.10). Let E be the hierarchy constant for & and fR.
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Claim 5.9. Suppose p € 0(X,S) with supp(p) = {S}. For all r = 0, there exist ' = 0 so that
(I)(Ar’ (p)) = Ar (p)

Proof. Since supp(p) = {S}, we have ]T/[\(r;p) = M (r;p) for all » > 0. For each r > 0, there exists
r’ = r so that whenever z € M(r';p) n CS, then N3g(x) € M(r;p). Such an ' depends only on r
and F.

Let g € A (p). If supp(q) = {S}, then g € M(r';p) € M(r;p). However M\(r;p) = M (r;p), and
S0 q € A, (p). If instead supp(q) is entirely nested in I € J, then for each V' € supp(q), we have
V E T S. The consistency axiom in & ensures that each such pg is contained in NVop (pé) Since
0ms(q) is the union of the pY¥ over all V € supp(q), we have p5 € Nog(dns(q)). Since g € A, (p)
and supp(p) = {S}, the set drs(q) must be contained in M (r';p). Thus Nog(drs(q)) S M(r;p).

—

Since M (r;p) = M(r;p), we have

A Pk = Pk < M(r;p),
and thus ®(q) = &7 € A, (p). O
Claim 5.10. Suppose p € 8(?{,6) withA supp(p) entirely nested into I € 3. For all r = 0, there
ezists ' = 0, so ®(A(p)) € Ar(&r) = A (2(p)).
Proof. Let q € A, (p) for some ' > 0. The proo£ is divided into three cases. In each case, we will
show that if ' is sufficiently large, then ®(q) € A, (&1).

Case 1: q € A'Y"(p). Because of isolated orthogonality, if ¢ is not remote to p, then either
supp(p) = supp(q) = {S} or there is a single I € J so that supp(p) and supp(q) are both entirely
nested into I. Since we are working under the assumption that supp(p) is entirely nested in I € J,

the same must be true of supp(q), and we conclude that ®(q) = &7 € .Zr(&).
Case 2: g€ A7 (p) and supp(q) is entirely nested in I. In this case ®(q) = & € jr(&).

Case 3: q € A7 (p) and supp(q) is not entirely nested in I. Each Py is uniformly a quasi-geodesic
space by virtue of being uniformly hierarchically quasiconvex and Proposition 2.9. Let f: [0,00) —
[0,00) be the function from Lemma 5.3 for H(P;). Fix W € supp(p). By the assumptions of Claim
5.10, W = I. Since ¢ is in A7f™(p), we have dmw (q) S M (r';pw). Under the assumptions of this
case, either the support of ¢ is entirely nested into some J € J — {I} or supp(q) = {S}. We will
deal with each possibility in a separate subcase.

In both subcases, the strategy of the proof is to show that 07 (®(q)) < Z/\J\(r; &r). To do this, let
y be a point in X so that 7;(y) € 07 (®(q)). If we can show that dy (mw (xo), mw (y)) is sufficiently
large, then since the maps my are coarsely Lipschitz, we can conclude that

dp, (gp, (o), gp; (y)) > f(r).

By Lemma 5.3, this would show that 7;(y) € ]Té[\(r; &), as desired.
Case 3a: supp(q) is entirely nested into some J € 3 — {I}. In this case, ®(q) = £s, and &; is
remote to & because supp(&s) = {J}, supp(&r) = {I}, and J M I. By definition,

071(&5) = b1 = gp,(PJ).
Since supp(q) is entirely nested in .J, the projection pi;, is coarsely equal to dm (q), which is con-
tained in M (r'; pw) by assumption. Moreover, my (gp, (P)) is uniformly close to pij, S M (r'; pw).
Therefore, letting y be any point in P; and choosing 7’ large enough, we can ensure that

dw (mw (20), Tw (1)) = dw (mw (o), M (r'; pw))
is large enough so that dp,(gp,(x0),gp,(y)) > f(r). Therefore, as described above,

07 1(®(q)) = 071(£)) = gp, (Ps) S M(r; 1),
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and we conclude that ®(g) € A, (¢;), as desired.

Case 3b: supp(q) = {S}. In this case, ®(q) = ¢, and ¢ is remote to & because S is not orthogonal
to I. For any U # S, we have p% = p¥ and pf;(ms(y)) S 07 (q) for any y € X where mg(y) lies on
a quasigeodesic ray from ﬁg to g € 0C'S that is sufficiently far from ﬁlS] .

Since W E [ E S, the upward projections ng and pé are coarsely equal. Thus there exists y € X
such that mg(y) lies on a quasigeodesic from pg to ¢ and is sufficiently far from both ng and pé SO
that pl, (1s(y)) S dmw(q) and p?(ms(y)) S d71(q). In particular, the first inclusion implies that
Py (Ts(y)) € M(r'; pw).

By Lemma 2.2, myy (y) and pﬁ,(ws(y)) are uniformly coarsely equal. Since W E I, the projections
mw (y) and mw (gp, (y)) are also uniformly coarsely equal. Since

piv(Ts(y)) < omw(g) = M (s pw),
there is some ¢ > 0 depending only on E such that my (gp,(y)) S M (' — ¢;pw).
As in the previous subcase, choosing ' sufficiently large ensures that dp,(gp, (o), gp,(y)) is
greater than f(r). Therefore,

gp, (y) € M(r;&r)-
By our choice of y, we have gp,(y) S 07(q), which has uniformly bounded diameter. Thus by
making 7’ even larger, we can ensure that

oR1(q) = M(r; ).
We conclude that ®(q) = q € A, (&1), completing the proof of the claim. O

The proof that ® is continuous is now a direct applicatAion of the above claims. Let O be an
open subset of d(cusp(X),R) and p € ® 1(0). Since the A, (-) sets form a basis for the topology
on d(cusp(X), M), there exists r = 0 so that A,(®(p)) € O. By Claims 5.9 and 5.10, there then
exists 7' > 0 so that ®(A(p)) < A, (®(p)) < O. This shows & 1(0) is open, as A, (p) contains an
open set containing p by Lemma 5.7.

Lastly, we prove the moreover claim of the proposition. Let (z,) be a sequence of points in X
that converges to the boundary point p € (X, S).

Suppose first that supp(p) = {S}. Lemma 2.17 implies that for each » > 0, we have wg(z,) S

o~

M (r; p) for all but finitely many n. Since ®(p) = p, M (r;p) = M (r;p), and 7s((xy)) = ms(xy), we
have Ts(¢(zy)) S J/\Z(r;p) for all but finitely many n. This shows that (c(x,)) converges to ®(p) = p
in cusp(X) u d(cusp(X),R) because the sets /AlT() form a basis for the topology on d(cusp(X)).
Now suppose supp(p) is totally nested into I € J. For each V' € supp(p), the distance dy (xg, )
goes to infinity as n — c0. Since any such V is nested into I, the coarse Lipschitzness of the
projection maps in & says dp, (gp,(x0), gp,(r)) also goes to infinity as n — oo. Hence by Lemma

5.3, for all but a finite number of n, we have gp, (z,,) € M (r; &;) for any r. Since 77(1(zp)) = gp, ()
and &7 = ®(p), this shows (t(x,)) converges to ®(p) in cusp(X) u d(cusp(X), R). O

5.4. Proof of Theorem 5.1. Let (G,S) be a G-HHS that is hyperbolic relative to the finite
collection of subgroups P. Let T be the maximization of &, and let $) be the G-HHS structure for
G that comes from adding the cosets of the peripheral subgroups to ¥ as described in Construction
3.1 and Theorem 3.8. By Corollary 3.11, $ has orthogonality isolated by £, the set of domains
indexing the cosets of the peripheral subgroups. Moreover, every non-E—maximal element of §) is
nested into an element of 9.

As described in Section 5.3, there is an HHS structure for cusp(G, P) with index set R = {S}uQ
and a continuous surjection of HHS boundaries ®: d(G, $) — d(cusp(G, P),R).

Since the Cayley graph of G is a proper metric space, cusp(G, P) is also proper. In particular,
(G, $H) and d(cusp(G, P),R) are both compact, Hausdorff spaces. Hence, every surjective contin-
uous map between these HHS boundaries is a quotient map. In particular, Proposition 5.8 shows
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that ® is a quotient map. By construction, ®(p) = ®(q) if either p = ¢ or supp(p) and supp(q) are
both totally nested into a domain @ € Q. By Lemma 4.2, a point in d(G, $) has support totally
nested into @ € Q if and only if that point lies in the limit set of the coset P(Q) indexed by Q.
This implies ®(p) = ®(q) for distinct p and ¢ precisely when p and ¢ are in the limit set of the
same coset of a group in P.

The homeomorphisms J(G,8) — (G, %) and d(G,%) — (G, H) from Theorem 2.20(1) and
Corollary 3.10 pointwise preserve the limit set of each coset of the peripheral subgroups because
they are continuous extensions of the identity. By composing these maps and then following with
the map ®, we have the desired quotient map ¥: (G, &) — d(cusp(G, P),R). Since cusp(G, P) is
hyperbolic, the Bowditch boundary 0 cusp(G, P) is homeomorphic to d(cusp(G, P), R).

Since the homeomorphisms from Theorem 2.20(1) and Corollary 3.10 are continuous extensions
of the identity map on GG, the moreover clause of Proposition 5.8 says that when a sequence of point
in G converges to a boundary point p € d(G, &), the inclusion of that sequence into cusp(G, P) will
converge to the image of p in the quotient of the boundary. Hence, we have completed the proof of
Theorem 5.1.

6. THE BOUNDARY OF THICK G—HHSs

In this section, we examine the connection between the simplicial structure on the HHS bound-
ary and a geometric obstruction to relative hyperbolicity called thickness. We start with some
background on thick metric spaces in Section 6.1. We then use the HHS boundary to characterize
when G-HHSs, and their hierarchically quasiconvex subgroups, are thick of order 0 in Section 6.2.
Finally, we give a characterization of when a G-HHS is thick of order 1 in Section 6.3.

6.1. Thick metric space. Behrstock, Drutu, and Mosher introduced the notion of thickness as
a geometric obstruction to a space being relatively hyperbolic [BDMO09]. Thickness is defined
inductively with the following spaces forming the base level of the induction.

Definition 6.1 (Wide metric space). A quasi-geodesic metric space X is wide if none of its as-
ymptotic cones have cut points. A subset Y of X is wide if the restriction of the metric of X to Y
makes Y a wide metric space. A finitely generated group is wide if the word metric with respect
to a finite generating set is wide.

A basic example of a wide space is one which is quasi-isometric to a product of two infinite
diameter, quasi-geodesic metric spaces. A more subtle example is provided by Baumslag—Solitar
groups.

To every thick space there is an associated non-negative integer, which is its order of thickness.
Wide spaces are the spaces that are thick of order 0. Higher orders of thickness are obtained by
inductively chaining together thick spaces of lower order. In the present paper, we only consider
spaces that are thick of order 0 or 1; see [BDMO9] for further details about higher orders of thickness.

Definition 6.2 (Thick of order 1). A quasi-geodesic metric space X is thick of order 0 if it is wide.
A quasi-geodesic metric space X is thick of order 1 if it is not wide and there exists a constant
C > 0 and a collection of wide subsets {P,}qes so that:
(1) (Coarse Cover) The space X is contained in the C-neighborhood of | J ; Pa-
(2) (Thick Chains) For any P, and P, that both intersect N3c(x) for some x € X, there exists
a sequence
P,=Py,P,...,P. =Py
such that Ng(P;) n Ng(P;+1) has infinite diameter for all 0 < ¢ < k — 1. We call the
sequence Py, Py, ..., Py a thick chain from P, to P,.
When X is a finitely generated group G equipped with a word metric and the collection of subsets

{P,} is the set of left cosets of a finite number of undistorted subgroups Hi, ..., Hy, then we say
G is thick of order 1 relative to Hy,...,H,
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While the above definition of thickness is sufficient to obstruct relative hyperbolicity, the defi-
nition below of strongly thick was introduced by Behrstock and Drutu to yield lower bounds on
divergence from thickness; see [BD14].

For the remainder of the section, we say a subset Y of a metric space X is quasiconvex if there
is A > 1 and € > 0 so that for every pair of points z,y € Y there is a (\, £)—quasi-geodesic v from x
to y with v € N.(Y'). This notion of quasiconvexity is preserved by quasi-isometries of the space.
The original setting in which quasiconvexity was defined is for hyperbolic spaces. There, since
quasi-geodesics are uniformly close to geodesics, it is equivalent to use geodesics rather than quasi-
geodesics when defining quasiconvexity, and indeed, this is the standard way in which quasiconvexity
is defined. Outside of the hyperbolic setting, using geodesics one would not obtain a notion which
is preserved by quasi-isometries, which is why the definition using quasi-geodesics is more natural
in the study of coarse geometry and thus what we use in this section.

Definition 6.3 (Strongly thick of order 1). Let X be a metric space that is thick of order 1 with
respect to the constant C' > 0 and the collection of subsets {Py,}aer. We say X is strongly thick of
order 1 if each P, is uniformly quasiconvex and there exists a number 7 > 0 so that if P, and P,
intersect NV3o(x) for some x € X, then any thick chain P, = Py, Py,..., P, = P, has k < 7 and
each coarse intersection No(P;) n No(Pi11) is 7—coarsely connected and intersects N ().

The next result gives some fairly general conditions for deducing strong thickness from thickness.
The special case where the collection P is the collection of left cosets of a finite set of quasiconvex
subgroups H follows immediately from [BD14, Proposition 4.4].

Proposition 6.4. Let X be thick of order 1 with respect to a collection P. Let G be a finitely
generated group acting coboundedly on X by isometries so that:

o the elements of P are each uniformly quasiconvex;

e the infinite diameter coarse intersection of any two elements of P in the Thick Chains
condition is uniformly coarsely connected; and

o P is G—invariant with respect to the action of G on X.

Additionally, assume that either one of the following conditions are satisfied:

(1) every closed ball in X intersects a finite number of elements of P.
(2) the induced action of G on P x P has finitely many orbits.

Then X is strongly thick of order 1 with respect to P.

Proof. Let C' = 0 be the thickness constant, and let B > 0 be the diameter of the quotient X /G.

Two of the requirements of strong thickness hold by our bulleted assumptions: uniform qua-
siconvexity of the subsets in P and uniformly coarse connectedness of the coarse intersections of
successive elements of any thick chain. What remains to be shown is that there exists a uniform
7 = 0 so that for any two elements P, P’ € P that intersect N3¢ (z) for some x € X, there exists a
thick chain P = Py, Py ..., Py = P’ with k < 7 and where N¢(P;) n No(Pi41) intersects N (z) for
each i € {0,...,k — 1}. For this we will need one of the two numbered hypotheses.

Suppose first that we assume hypothesis (1): every closed ball in X intersects a finite number of
elements of P. Fix g € X and let Ry, ..., R, be all of the elements of P that intersect N3c125(20)-
Since X is thick of order 1, for each pair R;, R; there exists a thick chain of subsets of P from R;
to R;. For each 4, j pair, fix one such chain, &; ;. Let 7 > k be large enough so that 7 > |€; ;| and
the intersections of the C-neighborhood of consecutive elements of the chain €; ; intersect N (o)
for each i, j pair.

Now, let P, P’ be elements of P that intersect N3c(x) for some z € X. There exists g € G so
that gP and gP’ intersect N3ci2p(z0). Hence gP = R; and gP' = R; for some i, j. Thus, 971@2’4‘
is the desired thick chain from P to P’.
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Now assume instead hypothesis (2): the action of G on P x P has finitely many orbits. Let
{(R1,Q1),...,(Rm,Qm)} be representatives of the finitely many G-orbits in P x P. By the equiv-
ariance in the third bullet point, without loss of generality, we can assume each R; is within B of a
fixed point xp € X. For each i € {1,...,m}, there is a thick chain of elements of P from R; to Q;.
For each i, fix one such thick chain €;. Let 7 be large enough so that 7 > |&;| and the intersections
of the C—neighborhood of consecutive elements of the chain €; intersect N;(zq) for each i.

Now let P, P’ be elements of P that intersect N3o(x) for some x € X. There is g € G so that
gP = R; and gP' = Q; for some i. Hence, g~ 1¢; is the desired thick chain. 0

6.2. Wide hierarchically quasiconvex subgroups. In this subsection, we characterize wide
hierarchically quasiconvex subgroups as those whose limit sets are non-trivial joins.

Theorem 6.5. Let (G,S) be a G-HHS and let H < G be an infinite, hierarchically quasiconvex
subgroup. The group H is wide if and only if the limit set A(H) in oa(G,S) is a non-trivial join.
In particular, G is wide if and only if Oa(G, &) is a join.

For the entire G-HHS, Theorem 6.5 is direct consequence of the Rank Rigidity Theorem [DHS17,
Theorem 9.13] (see also [PS23, Corollary 4.7]). For subgroups, however, there are some subtleties
which need to be addressed before results from the literature can be applied. These arise from the
fact that unlike the entire group, the subgroup H might have projections that are bounded but
arbitrarily large.

The starting point in our proof of Theorem 6.5 is the theorem of Petyt and Spriano below, which
applies to hierarchically quasiconvex subgroups as they are always finitely generated (Lemma 2.10).
In the sequel, we will use &% to denote the set of domains {V € & : diam(my (H)) = oo} for any
subgroup of H of a G-HHS (G, S). The set of domains {W7, ..., W,} obtained in Theorem 6.6 are
called the eyries for H.

Theorem 6.6 (Special case of [PS23, Theorem 5.1]). Let (G,&) be a G-HHS. For every infinite,
finitely generated subgroup H < G, there exists a non-empty, pairwise orthogonal set of domains
{Wh,...,W,} € &% so that for all V e &% we have V E W; for some i€ {1,...,n}.

Since the vertices of the limit set of H are supported on domains in &%, the limit set of H is a
join if and only if H has multiple eyries. The challenge, then, is to show that having multiple eyries
is equivalent to the hierarchically quasiconvex subgroup being wide. The key technical step is to
establish that there is a uniform bound for the diameter of the projection of H onto any domain
not nested into an eyrie.

Lemma 6.7. Let (G,S) be a G-HHS and H < G be an infinite, hierarchically quasiconvex sub-
group. There exists D > 0, depending on H, so that diam(wy(H)) < D whenever V € & is not
nested into an eyrie for H.

Our proof of Lemma 6.7 requires three tools from the literature. The first is a basic technique
in the theory of hierarchically hyperbolic spaces that allows one to convert many large projections
into a bigger projection higher up the E-lattice.

Lemma 6.8 (Passing-up lemma, [BHS19, Lemma 2.5]). Let (X, &) be a hierarchically hyperbolic
space with constant E. For every C = 0, there is a positive integer p = p(C) so that for all x,y € X,
if there exist p domains {Uy,..., Uy} € & with dy,(x,y) > E for each U;, then there is a domain
W e & so that dw(x,y) > C and there is some U; properly nested into W.

The second result combines two technical lemmas from the work of Petyt and Spriano. We state
the version of their work that we apply and describe how to translate from the statements in [PS23]
to the statement below.

Lemma 6.9 (Special case of [PS23, Lemmas 3.4 and 3.5]). Let (G,S) be a G-HHS with constant
E and H < G a subgroup. Suppose there exist domains Vo, V3 € G and ¢ = 1 so that:
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o Vi Vo

o 7wy, (H) is e—coarsely connected for i =0,1;

o diam(my, (H)) > 105+ (e + d\/i(p“g,H)) for (i,7) = (0,1) or (1,0); and

e diam(my, (H)) > 10E.
Then there exist a sequence of domains (U;)°, and a sequence of points (z;)i°g S H so that each
U; is in the H-orbit of either Vo or Vi and dy,(z0,2;) > 8E for all j < i.

Proof. First we remark that while Lemmas 3.4 and 3.5 of [PS23] are stated for HHGs and not
G-HHSs, their proofs do not use the finiteness of orbits of domains. Hence the conclusions of
both lemmas hold equally well for G-HHSs. The first three bullet points ensure that each of Vj
and V7 satisfy hypothesis (b) of [PS23, Lemma 3.4] with respect to the other. The fourth bullet
point ensures that there exist zgp € H so that dy; (2o, p“%) > 2F. Together, this implies (H, Vp, V1)
satisfies the hypothesis of [PS23, Lemma 3.5] required to produce the desired sequences of domains
and elements of H. O

The last tool implies that large projections for a hierarchically quasiconvex subset implies close
proximity to the corresponding product region. This is a straightforward consequence of [RST18,
Proposition 4.24] and Proposition 2.9.

Lemma 6.10. Let Y be a k-hierarchically quasiconver of an HHS (X,&). There exists v = 0,
depending only on k and the hierarchy constant of (X,8), so that for any domain V € &, if
diam(my (Y)) = v, then dx (Y, Py) < v.

We now prove Lemma 6.7.

Proof of Lemma 6.7. Let H be a hierarchically quasiconvex subgroup of the G-HHS (G, &). Let
E be the hierarchy constant for (G,&). We want to show that there exist D > 0 so that for all
V € G, if V is not nested into an eyrie for H, then diam(my (H)) < D.

For the purposes of contradiction, assume that there exists a sequence of domains (V;) so that:

(I) no V; is contained in an eyrie for H (and hence diam(my, (H)) < 00); and

(II) diam(my; (H)) — o as i — 0.

We then define the level, (W), of the domain W € & to be the maximal length of a descending
E—chain in & terminating at W (i.e., the E—maximal domain has level 1, the domains one step
down have level 2 and so forth). Because the length of E=—chains are bounded by FE, there must
exist some level ¢y € N where a sequence of domains satisfying (I) and (II) exists, but no such
sequence exists for any level strictly less than fy. In particular, there is a number C' > 0 and a
sequence of domains (V;) that satisfy (I), (IT), and also:

(IIT) if W € & satisfies V; & W for some i, then diam(my (H)) < C — 1.

Let (V;) and C' = 0 be the sequence and constant constructed above. The remainder of the proof
by contradiction proceeds as follows. First we use the sequence (V;) to produce a pair of domains
where we can apply Lemma 6.9. We then use the Passing-up Lemma (Lemma 6.8) to produce a
domain W that properly contains one of the V; and has diam(my (H)) > C, contradicting (III).

Let v > 0 be the constant from Lemma 6.10 for the hierarchically quasiconvex subset H in
the HHS (G, &). Since H is hierarchically quasiconvex, it is also finitely generated (Lemma 2.10).
As the projection maps 7wy are (E, E)—coarsely Lipschitz, there exists ¢ > 0 so that my (H) is
e—coarsely connected for all W € &.

By passing to a subsequence, we can assume that for each V; both

dg(H,Py,) < v and diam(my, (H)) > 105 (e + Ev + 2E).
Since every infinite set of domains contains a pair of transverse elements [BHS19, Lemma 2.2], there
exists V; and V; that are transverse. In particular dy, (H, pgj) < Ev+2F and dy, (H, p“;;) < Ev+2FE.
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Relabeling V; = Vp and V; = Vi, we satisfy the hypothesis of Lemma 6.9 and therefore have a
sequence of elements (z;)72, € H and a sequence of domain (U;)72; so that each U; is in the
H-orbit of ether Vg or Vi and dy, (20, z;) > 8F whenever j < .

Let p = p(C) be the natural number from the Passing-up Lemma (Lemma 6.8). Because
du,(z0,2p) > 8E for each j € {1,...,p}, the Passing-up Lemma says there is a domain W € &
so that dy(20,2p) > C and U; = W for some j € {1,...,p}. There exists h € H so that hU; is
equal to either Vjy or Vi. However, this creates a contradiction with (III) as dpw (hzo, hzp) > C and
hU; = hW. There must therefore exist a constant D > 0 so that diam(7y (H)) < D whenever V is
not nested into a eyrie of H. O

To use Lemma 6.7 and Theorem 6.6 to prove that wide hierarchically quasiconvex subgroups must
have multiple eyries, we use the induced hierarchically hyperbolic structure on a hierarchically qua-
siconvex subset shown in [BHS19, Propostion 5.6]. This construction applies to any hierarchically
quasiconvex subset, but we will describe it for subgroups for simplicity. A hierarchically quasicon-
vex subgroup H of a G-HHS (G, &) has an HHS structure &y that is the following restriction of
G to H:

e the index set for Gy is © and the relations are the same as in GS;

e the hyperbolic spaces for &y are the convex hulls of the quasiconvex subsets my (H);

e the projection maps are the restriction of the projection maps to H;

e for V.h W or V. & W, the relative projection from V to W in Sy is the closest point
projection of plj, onto my (H).

The set 8§ = {V € & : diam(my (H)) = oo} is precisely the set of unbounded domains for the HHS
structure Gy when H is hierarchically quasiconvex. Thus, the notation &% is consistent with our
past usage of the superscript o to denote the set of unbounded domains in an HHS structure.

Using the above structure and Lemma 6.7, we establish that wide hierarchically quasiconvex
subgroups are characterized by having multiple eyries.

Proposition 6.11. Let (G,S) be a G-HHS and H < G be an infinite, hierarchically quasiconvex
subgroup.

(1) If H has a single eyrie, then H is not wide as it is either virtually 7 or is acylindrically
hyperbolic.

(2) If H has multiple eyries, then H is wide, and, moreover, it is quasi-isometric to the product
of two infinite diameter quasi-geodesic spaces.

Proof. Assume first that H has a single eyrie W. By Lemma 6.7, there is a number D > 0 bounding
the diameter of my (H) for each V' € & not nested into W. This implies that H has an HHS structure
with index set &g N Gy and not just all of G; that is, we can remove all the domains from Sy
that are not nested into W without violating any of the HHS axioms. Importantly, the E-maximal
domain of the structure (H,&py n Sy) is W. Thus, [BHS17, Theorem 14.3] says that H acts
acylindrically on the hyperbolic space associated to W in &g n Gy. As this space has infinite
diameter by Theorem 6.6, this implies H is either virtually cyclic or acylindrically hyperbolic
[BHS17, Corollary 14.4]. Either of these imply H is not wide by [Sis16, Theorem 1].

Now assume H has multiple eyries Wy,..., W, with n > 2. Let Py, be the product region
for Wy in the HHS (H,&p). By Theorem 6.6, W1 and W5 are both unbounded domains in &g
and Wy L Ws. Thus Py, is quasi-isometric to the product of two infinite diameter quasi-geodesic
spaces by Proposition 2.13(4). Because there is a bounded D > 0 on the diameter of 7y (H) for
each V' € G that is not nested into one of the W;, the distance formula for hierarchically hyperbolic
spaces [BHS19, Theorem 4.5] says H is quasi-isometric to Py, and hence wide. ]

Combining Proposition 6.11 with Theorem 6.6 yields our proof of Theorem 6.5.
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Proof of Theorem 6.5. Let H be an infinite, hierarchically quasiconvex subgroup of a G-HHS
(G, 6). We want to show that H is wide if and only if its limit set A(H) in 0a(G, &) is a non-trivial
join. In the case when H = G, this implies G is wide if and only if da (G, S) is a non-trivial join.
Let Wi, ..., W, be the eyries of H. If V}, is the single domain in the support of a vertex p € A(H),
then diam(7y, (H)) = co. Thus, Theorem 6.6 says V, © Wi or V, L Wy. Since edges in da (G, S)
correspond to orthogonality, this implies A(H) is a non-trivial join if and only if n > 2 (the two sides
of the join are all vertices with support nested into Wj and all vertices with support orthogonal to
W1). By Proposition 6.11, n > 2 if and only if H is wide. O

6.3. Thick of order 1. We now turn characterize G-HHSs that are thick of order 1.

Theorem 6.12. Let (G,S) be a G-HHS.
If G is thick of order 1 relative to a collection of hierarchically quasiconver wide subgroups, then
oA(G,S) is disconnected and contains a positive-dimensional G—invariant connected component.
Conversely, if Oa(G,S) is disconnected and contains a positive-dimensional G—invariant con-
nected component, then G is thick of order 1 relative to a set of wide hierarchically quasiconvex
subsets.

Proof. Suppose first G is thick of order 1 relative to a collection {Hi,...,Hy,} of hierarchically
quasiconvex wide subgroups. As G is not wide, G has exactly one eyrie W by Proposition 6.11.
Theorem 6.6 says that CW is infinite diameter and no unbounded domain of & is orthogonal to
W. Hence, da(G,S) is disconnected as the points in 6CW give isolated vertices of oa (G, S).

Since each H; is hierarchically quasiconvex and wide, Theorem 6.5 say the limit set, A(H;), of
each H; is a non-trivial join. In particular, each A(H;) has positive dimension.

Let @ = (U, G- A(H;). As Q is a positive dimensional, G-invariant subset of da(G, &), it
remains to show that  is connected. Fix points £ and ¢ in 2. We will exhibit a path in 2 from &
to (.

We have £ € gA(H;) and ¢ € ¢’A(H;) for some 1 < 4,j < n and g,¢' € G. Since G is

thick of order one relative to {Hi,...,H,}, there is a constant C' > 0 and sequence goH;, =
gHi,ngil, c. 7gT*1Hir—1’g7”Hir = g/Hj so that Nc(nglk) M NC(Q’H-IHZ';H.l) has infinite diam-
eter for each k = 0,...,7 — 1. So, for each such k, there is a sequence of points (y*)2, in

Ne(grHi,) 0 Ne(grs1Hi,,,) that limits to a point 7, € ANc(9xHr)) 0 AN (ger1Hi+1))- By
Lemma 2.18,
AWNc(grHy)) 0 ANC(gk+1Hy+1)) = geA(Hi) 0 gre1A(Hg1)-

Each gy A(Hy) is connected as it is a non-trivial join. Hence, there is a path contained in giA(Hy)
from 7, to nre1. The concatenation of these paths is a path from 7y = & to i, = ¢ which is
contained in €2, as desired. Since {2 is a connected, positive dimensional, G—invariant subset of
oa(G, G), it is contained in a positive dimensional, G-invariant connected component of da (G, &).

We now turn our attention to the backwards direction, and assume that da (G, &) is disconnected
and contains a positive-dimensional G-invariant connected component 2. Now da(G, &) cannot
be a join as it is disconnected. Thus, G is not wide by Theorem 6.5.

Each vertex ¢ € Q) is a point in 0CUy for some Ug € &. Let

P ={Py, : £€ QO}.

We claim that G is thick of order one with respect to the collection of subspaces P. Note that the
elements of P are each uniformly hierarchically quasiconvex by Proposition 2.13.

To see that each Py, € P is wide, observe that {2 being connected means the vertex { is joined
by an edge to a vertex ¢ € 2. This implies Ug L U¢. Since 0CUg and 0CU; are non-empty, the
domains U and U, are both unbounded. Thus, Py, is wide by Proposition 2.13(4).

That P satisfies the Thick Chains condition is a consequence of the fact that €2 is connected and
the following claim: whenever &,¢ € QO are joined by an edge, the intersection Py, n Py, has
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infinite diameter. To prove this claim, choose sequences of points (x,);_; in CUg and (yn),—; in
CU¢ such that dy, (w0, r,) > n and dy, (Yo, yn) > n. Applying the partial realization and uniqueness
axioms (Definition 2.1(11)(7)) to the pairs {zo,yo} and {x,,y,} yields points py,p, € G so that
da(po;pn) — o as n — 0. Moreover, partial realization ensures that po,p, € Py, n Py, which
proves the claim.

It remains to show that there exists C' > 0 such that G = (Jgeq) Neo(Py,). Let g € G, fix any

¢ € QO and let h e Py,. Then g € gh~'Py, = Py, 1, Since Q is G-invariant, gh™'¢ € QO and
the statement holds with C' = 0. This completes the proof of thickness. O

The thick structure in the converse direction of Theorem 6.12 consists of product regions in
the G-HHS. We can therefore use Proposition 6.4 to state natural conditions where the converse
direction can be promoted to strong thickness.

Corollary 6.13. Let (G,8) be a G-HHS and suppose Oa(G,S) is disconnected and contains a
positive-dimensional G—invariant connected component ). Let 4 € & be the minimal G—invariant
subset of domains so every point in £ has support contained in M. If either

(1) every closed ball in G intersects at most finitely many elements of {Py : U € U}, or
(2) the action of G on L x Ll has finitely many orbits,

then G will be strongly thick of order 1 relative to hierarchically quasiconvex subsets. In particular,
G will have quadratic divergence.

Proof. The proof of Theorem 6.12 established that G is thick relative to {Py : U € {}. The bulleted
assumptions from Proposition 6.4 hold as follows:

e Hierarchically quasiconvex subsets are all quasiconvex by Proposition 2.9.
e Proposition 2.9 also implies the intersection of two hierarchically quasiconvex subsets are
hierarchically quasiconvex, and hence coarsely connected.
e The definition of a G-HHS ensures that gPy = Py for all g € G and W € &. Since U is
G-invariant, {Py : U € U} is G-invariant.
Thus, Corollary 6.13 is just a special case of Proposition 6.4.
The result about quadratic divergence now follows immediately, as Behrstock and Drutu showed
that strongly thick of order k& implies the divergence is at least n**! [BD14, Corollary 4.17]. O

Remark 6.14. The converse direction of Theorem 6.12—and hence Corollary 6.13—do not need
the full power of a G-HHS. The given proofs hold for any HHS (X, &) with a cobounded action by
a group G so that G also acts on & by relation-preserving bijections that satisfy the equivariance
properties of Definition 2.4. An example where this occurs is the action of the mapping class group
on the pants graph of the surface.
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