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Abstract—Earth exploration satellite service (EESS) plays a
crucial role in environmental monitoring and weather forecasting
by utilizing passive sensing technologies. However, the rapid
expansion of terrestrial and satellite communication networks
has introduced significant interference challenges, particularly
in frequency bands that overlap with or are adjacent to EESS
sensors. In this work, we develop a system model that explicitly
characterizes EESS interference by considering reflected signal
effects and spatial interference accumulation. Based on this
model, we propose a EESS-aware resource allocation (EARA)
framework that jointly optimizes power allocation and user
association, while ensuring that interference to EESS sensors
remains within acceptable limits. A non-convex joint optimization
problem is formulated and efficiently solved leveraging the
Lagrangian dual transform and Dinkelbach’s method. Simulation
results demonstrate that the proposed EARA scheme achieves
up to 26.3% higher sum rate compared to genetic algorithm
and binary whale optimization algorithm, while strictly satisfying
the ITU-defined interference threshold. This work establishes a
foundation for future research on the coexistence of communica-
tion networks and passive Earth observation systems, offering
practical strategies for interference mitigation and spectrum
sharing in next-generation networks.

Index Terms—Earth exploration satellite, LEO satellites, ter-
restrial networks, resource allocation, mixed-integer optimiza-
tion.

I. INTRODUCTION

The Earth exploration satellite service (EESS) is a program
that consists of a series of satellites, sensors, and ground-
based systems designed to monitor the Earth’s atmosphere,
land, and oceans [1]. The primary goal of EESS is to provide
scientists, researchers, and decision-makers with real-time
data on weather patterns, and environmental changes. Passive
remote sensing technologies play a pivotal role in EESS by
detecting natural radiation emitted or reflected from the Earth’s
surface without actively emitting signals. These sensors are
critical for weather forecasting and environmental monitoring
by measuring key atmospheric parameters, such as water vapor
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[2]. However, the effectiveness of such sensors is increasingly
threatened by interference from emerging wireless networks
operating in adjacent frequency bands.

Recent research shows that signals from wireless networks
can overlap with the frequencies used by passive sensors [3],
[4]. Such interference reduces its accuracy and may lead to
errors in weather predictions or environmental monitoring.
Paper [5] examines the interference between 5G mm-wave
networks and weather satellites operating in the 23.8 GHz
band. The findings indicate that the cumulative interference
from an entire network, particularly in urban areas, could
exceed acceptable limits for satellite passive sensing. The
authors in [6] models the interference between 6G networks
and passive sensing systems. In [7], the authors study spectrum
sharing above 100 GHz, addressing interference to Earth
observation satellites via band switching. Nevertheless, the
above-mentioned studies only focus on channel modeling
and radio frequency interference (RFI) analysis. They do not
address how, in real-world scenarios, radio resources can
be intelligently allocated to minimize interference to EESS
satellites.

While existing studies have primarily focused on mitigating
interference in passive sensing systems, research on intelligent
resource allocation to minimize such interference remains
limited. Most prior work has instead explored various aspects
of communication performance and resource management
in terrestrial networks. For instance, [8] addresses resource
allocation challenges in multiple terrestrial base station (TBS)
orthogonal frequency division multiplexing (OFDM) systems
under high-speed scenarios. In [9], the authors address energy-
efficient resource allocation in OFDM access (OFDMA) net-
works with massive TBS antennas, aiming to optimize the
energy efficiency (EE) of TBS operations. However, these
solutions are designed for terrestrial networks and do not
account for the unique constraints of satellite-based sensing
systems like EESS. To overcome the coverage limitations of
TBS networks, low Earth orbit (LEO) satellite systems have
emerged as a promising solution for providing global and
seamless communication services.

In [10], the authors propose a hierarchical multi-agent
framework for dynamic power, beam, and channel allocation
in multi-LEO satellite systems. Similarly, [12] focuses on
enhancing EE and beam alignment accuracy while reducing
latency, optimizing on power allocation and beam resource
management. While TBS excels in delivering high-capacity,
low-latency communication in localized areas, particularly in
urban and high-speed scenarios, LEO satellites provide exten-



Fig. 1: System architecture of proposed EESS-aware communication system.
Ground reflection interference to EESS is considered.

sive global coverage and can serve remote regions with min-
imal ground infrastructure. By integrating the wide coverage
of LEO satellites with the high-capacity capabilities of TBS,
communication networks can achieve improved performance,
flexibility, and scalability, addressing both localized and global
connectivity needs.

However, these studies overlook the challenges of coex-
istence between communication networks and EESS sen-
sors, which require strict interference regulations to maintain
sensing accuracy. This gap highlights the need for novel
frameworks that can simultaneously optimize communication
network performance while mitigating interference to EESS
sensors, thereby enabling their harmonious coexistence. To
address the aforementioned challenges, this paper proposes
a dynamic resource allocation framework that intelligently
balances the requirements of both communication networks
and EESS passive sensors. The contribution of this paper are
as follows.

• We propose a EESS-aware resource allocation (EARA)
scheme that optimizes power allocation, user association,
and channel allocation for LEO-TBS system. Addition-
ally, We consider reflected signal interference by model
it as a reflected area, considering the worst-case scenario
to ensure a conservative interference estimation.

• A non-convex joint optimization problem is formulated
to maximize the system data rate while adhering to in-
terference threshold for EESS sensors. By leveraging the
Lagrangian dual transform and Dinkelbach’s method, the
proposed EARA approach efficiently solves the problem
under complex constraints.

• Simulation results demonstrate the effectiveness of the
EARA scheme in balancing user demands while meeting
EESS interference thresholds. We evaluate the EARA
scheme under varying user densities to better simulate
real-world conditions. Compared to GA and BWOA, the
EARA scheme achieves up to a 26.3% improvement in
overall system performance.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
As demonstrated in Fig. 1, we consider a LEO-TBS coop-

erative communication network under EESS remote sensing

tasks. The system employs OFDM to enhance spectral effi-
ciency and minimize interference. It consists of Kleo LEOs,
denoted by the set Kleo = {1, ..., k, ...,Kleo}, and Ktbs TBSs,
denoted by Ktbs = {1, ..., k, ...,Ktbs}. These LEOs and
TBSs serve a set of U randomly distributed users, denoted
as U = {1, ..., u, ..., U}. We consider Jleo and Jtbs as
the number of the beam cells of each LEO and TBS with
the respective set indexed by Jleo = {1, ..., j, ..., Jleo} and
Jtbs = {1, ..., j, ..., Jtbs}. Both LEOs and TBSs share an
identical number of sub-channels S, utilizing OFDM. The
system bandwidth, denoted by W , is divided into S sub-
channels, each sub-channel s with a bandwidth of Ws =W/S.
For the EESS satellite, we denote heess as its orbit altitude.
As the satellite’s sensor scans the area, its sensitivity deteri-
orates due to harmful interference caused by ground-reflected
transmission signal from the LEO-TBS cooperated network.
The detailed analysis will be elaborated later.

B. Dynamic User Association Variables
We assume that each user can be served by either a LEO

satellite or a TBS, but not both simultaneously. To represent
this, we define a binary variable aχk,j,u,s, which is set to 1 if
user u is served by the k-th LEO or TBS in cell j using sub-
channel s, and 0 otherwise. The superscript variable χ ∈ V =
{leo, tbs} indicates whether the system is LEO (χ = leo) or
TBS (χ = tbs). These variables form the set a = {aχk,j,u,s |
∀χ, k, j, u, s}, which enables dynamic resource allocation and
helps to minimize interference between users.

To enforce that each user is exclusively served by either
a single LEO or a single TBS, we introduce the following
constraint as∑

χ∈V

∑
k∈Kχ

∑
j∈Jχ

∑
s∈S

aχk,j,u,s ≤ 1, ∀χ, u, (1)

C. Communication Model
The beamforming gain for each LEO is defined as [11]

Gleo(θ) = G0

[
J1(µ(θ))

2µ(θ)
+ 36

J3(µ(θ))

µ(θ)3

]2
, (2)

where θ is the angle measured from the boresight, and G0

denotes the maximum beamforming gain. J1(·) and J3(·) are
the Bessel functions of the first and third kinds, respectively,
and µ(θ) = 2.01723 · sin(θ)/sin(θleo), where θleo is the 3-dB
angle. For TBS beamforming gains, the mainlobe and sidelobe
beam gains are given by [12]

Gtbs(θ) =


2π − (2π − θ)ε

θtbs
, if θ ≤ θtbs

2 ,

ε, otherwise.
(3)

Note that the angle measured from the boresight of the
TBS beam is denoted as θ and θtbs represents the mainlobe
beamwidth. The parameter 0 < ϵ≪ 1 depends on the antenna
hardware design. We define the set of power allocations
denoted as P = {Pχ

k,j,s | ∀χ, k, j, s}, where power is allocated
to sub-channel s of beam j from either LEO or TBS k. The
received signal strength of the ground user u served by beam j
on sub-channel s from either LEO or TBS k can be expressed
by

Y χ
n = Pχ

k,j,sGχ(θ
χ
k,j,u)G

R
uH

χ
k,j,u,sa

χ
k,j,u,s, (4)



where n = (k, j, u, s) denotes the tuples of indices and GR
u

is the receiver antenna gain and Hχ
k,j,u,s = 10−Lχ

k,j,u,s/10

represents the channel gain from LEO or TBS k. Note that
Lleo
k,j,u,s = FLleo

k,j,u,s +ALleo
k,j,u,s + SLleo

k,j,u,s denotes the total
path loss from LEO in dB [10], including free-space path
loss FLleo

k,j,u,s, gas absorption loss ALleo
k,j,u,s, and tropospheric

scintillation loss SLleo
k,j,u,s. Similarly, the total path loss from

TBS in dB is Ltbs
k,j,u,s = FLtbs

k,j,u,s. For a user u served by
LEO or TBS k, the interference from other beams of LEOs
and TBSs is given by

Iχn =

Jχ∑
j=1

U∑
u′=1

Pχ
k,j,sGχ

(
θχk,j,u

)
GR

uH
χ
k,j,u,sa

χ
k,j,u′,s

+

Kχ∑
k ̸=k

Jχ∑
j=1

U∑
u′=1

Pχ
k,j,sGχ

(
θχk,j,u

)
GR

uH
χ
k,j,u,sa

χ
k,j,u′,s

+

Kχ′∑
k=1

Jχ′∑
j=1

U∑
u′ ̸=u

Pχ′

k,j,sGχ′

(
θχ

′

k,j,u

)
GR

uH
χ′

k,j,u,sa
χ′

k,j,u′,s, (5)

where the tuple (χ, χ′) ∈ {(leo, tbs), (tbs, leo)}. There-
fore, we can acquire the signal-to-interference-plus-noise-ratio
(SINR) of user u served by beam j on sub-channel s from the
k-th LEO or TBS as

Γχ
n =

Y χ
n

Iχn + σ2
, (6)

where σ2 = N0Ws represents sub-channel white noise power.
The total achievable rate for all downlink (DL) users in the
system is

Rtot =
∑
χ∈V

∑
n∈Ωχ

Wslog2(1 + Γχ
n), (7)

where Ωχ = Kχ × Jχ × U × S, ∀χ is the Cartesian product
of parameter spaces.

D. EESS Model
We consider a currently operating weather satellite in low

Earth orbit at an altitude of approximately 835 km, equipped
with a passive microwave sensor F6 [13]. However, if the
sensor’s orientation is directed toward regions with active
communication, it may experience unavoidable interference.
To assess this impact, we model the interference received by
the EESS sensor, which requires capturing the real antenna
pattern of the passive sensor [14]

Geess (ψ)

=


Gmax − 1.8× 10−3

(
D
λ ψ

)2
, (0o≤ψ≤ψm)

max
(
Gmax − 1.8×10−3

(
D
λ ψ

)2
,

−5 log
(
D
λ

)
− 25 log (ψ)

)
, (ψm<ψ ≤ 69o)

−13−5 log
(
D
λ

)
, (69o<ψ≤180o),

(8)

where ψ is the off-axis angle measured from the boresight,
ψm is the 3-dB beamwidth, D is the sensor antenna aperture,
λ is the wavelength, and Gmax is the maximum beam gain.
Different from existing works, we consider the impact of the
interference on EESS due to the beam reflection area on the
ground, which is not perfectly circular. Accurately computing
the interference area is complex. Therefore, we assume a

worst-case interference scenario, where the calculated area
is slightly larger than the actual reflection area to provide a
conservative estimate of the interference impact. The receive
interference of the EESS passive sensor is formulated as [6]

Ieess =
∑
χ∈V

∑
k∈Kχ

∑
j∈Jχ

∑
s∈S

Pχ
k,j,sGeess(ψ

χ
k,j)H

′χ
k,jA

χ
k,j , (9)

where ψχ
k,j denotes the angles between the ground reflection

points from beam j of LEO or TBS k and the boresight of
the EESS beam. H ′χ

k,j = 10−L′χ
k,j/10 represents the channel

gains of the reflection links for LEO or TBS beams, where
L′χ
k,j = FLχ

k,j + ALχ
k,j + SLχ

k,j + RL denotes the total path
loss of the reflection link in dB. Note that FL′χ

k,j represents the
total free-space path loss of the reflection link from LEO or
TBS. RL denotes the ground reflection loss, which is assumed
to be 4.7 dB [6]. The amplification factors Aχ

k,j in (9) capture
the interference caused by the reflection areas Zχ

k,j , which are
the regions illuminated by beam j of the k-th LEO or TBS:

Aχ
k,j =

∫∫
Z

χ
k,j

Gχ

(
ϕχ
k,j(z)

)
dz ≈

∫ R
χ
k,j

0

Gχ

(
θ′χk,j(r)

)
2πr dr, (10)

where ϕχk,j(z) represents the angles between ground position z
and the boresight direction of EESS sensor from LEO or TBS
k’s beam j. The reflection areas are approximated as circles,
where their radii are defined as Rχ

k,n = hχk,j tan(θχ). The
terms θ′χk,j(r) = tan−1(r/hχk,j) describes the angles between
the beam boresight and a point at distance r within the beam
footprint. These approximations simplify the computation of
Aχ

k,j for practical application while maintaining accuracy in
interference estimation.

E. Problem Formulation
Our objective is to maximize the system data rate while

ensuring that the interference to the EESS passive sensor re-
mains within acceptable limits. This is achieved by optimizing
user association and power allocation of LEOs and TBSs. The
optimization problem can be formulated as

max
a,P

Rtot (11a)

s.t. (1), (11b)
Ieess ≤ ηITU, (11c)

0 ≤
∑

j∈Jleo

∑
s∈S

P leo
k,j,s ≤ P leo

max, ∀k ∈ Kleo, (11d)

0 ≤
∑
s∈S

P leo
k,j,s ≤ P leo

beam, ∀k ∈ Kleo, ∀j ∈ Jleo, (11e)

0 ≤
∑

j∈Jtbs

∑
s∈S

P tbs
k,j,s ≤ P tbs

max, ∀k ∈ Ktbs, (11f)

0 ≤
∑
s∈S

P tbs
k,j,s ≤ P tbs

beam, ∀k∈Ktbs, ∀j∈Jtbs, (11g)

where constraint (11b) ensures that each user can only be
served by either one LEO or one TBS, constraint (11c) ensures
that the EESS interference remains below ηITU [13], and
(11d) and (11e) respectively constrain the total transmit power
for LEO must not exceed P leo

max and the power allocated to
each LEO beam is limited by P leo

beam. Similarly, for TBS, the
maximum total transmit power is constrained by P tbs

max, and



the power budget per beam is limited to P tbs
beam, as given in

(11f) and (11g), respectively. We observe that problem (11)
is non-convex and nonlinear due to the presence of fractional
terms. Additionally, the optimization of coupled continuous
and discrete variables further increases the complexity of the
original problem. Therefore, we propose an effective solution
to address this issue, which will be discussed in the following
section.

III. PROPOSED EESS-AWARE RESOURCE ALLOCATION
(EARA) SCHEME

We observed that the objective function of (11) is a sum-
mation of logarithmic terms, each contains a fractional SINR.
To solve this, we apply the Lagrangian dual transform [15]
and Dinkelbach method [16]. Firstly, the constraint (11c) is
convex due to the linear relationship between Ieess and power
allocation variables Pχ

k,j . The approximated terms Aχ
k,j in (9)

are precomputed based on the geographical positions and beam
patterns of LEO and TBS systems. Based on Lagrange dual
transform, we can convert (11a) to a sum-of-ratio form. The
new objective function F is formulated as

F =
∑
χ∈V

∑
n∈Ωχ

(
(1 + Γχ

n)Y
χ
n

Y χ
n + Iχn + σ2

+ log2(1 + Γχ
n)− Γχ

n

)
, (12)

where Γ = {Γχ
n | ∀χ, n} denotes the set of SINR values.

We find that F is a differentiable with respect to Γχ
n when

{aχ,Pχ}. By solving ∂F
∂Γχ

n
= 0, we can obtain the optimal

values Γχ,∗
n . By substituting Γχ,∗

n into Γχ
n in (12), we can

observe that the terms non-fractional terms remain constant.
Consequently, we can reformulate F into an iterative objective
function as

F =
∑
χ∈V

∑
n∈Ωχ

(1 + Γ
χ,(i−1)
n )Y χ

n

Y χ
n + Iχn + σ2

. (13)

In i-iteration, Γ
χ,(i−1)
n represents the optimal SINR values,

which can be obtained by substituting solution from (i − 1)-
iteration {a(i−1),P(i−1)}. However, the received power and
interference terms in (13) contain quadratic bilinear products,
making direct optimization difficult. To address this, we apply
first-order Taylor expansion for a general bilinear function
w(x, y) = xy around reference point (x0,y0) as

w(x, y) ≈ x0y0 + y(x− x0) + x(y − y0). (14)

We can utilize (14) to linearize the bilinear terms Pχ
k,j,s·a

χ
k,j,u,s

in Y χ
n and Iχn as

Pχ
k,j,s · a

χ
k,j,u,s ≈ P

χ,(i−1)
k,j,s · aχ,(i−1)

k,j,u,s

+ aχ
k,j,u,s · (P

χ
k,j,s−P

χ,(i−1)
k,j,s )+Pχ

k,j,s · (a
χ
k,j,u,s−a

χ,(i−1)
k,j,u,s ). (15)

Here, the expansion is centered around a reference point(
P

χ,(i−1)
k,j,s , a

χ,(i−1)
k,j,u,s

)
to iteratively approach a stable conver-

gence point. After substituting these linearized expressions
into (4) and (5), the objective function is reformulated as a
convex function, and the equivalent optimization problem is
expressed as

max
a,P

F , (16a)

s.t. (11b), (11c), (11d), (11e), (11f), (11g). (16b)

Since the robjective function in (16) still contains fractional
terms, it remains non-convex. To address this, we apply
Dinkelbach’s method [16] to transform the fractional expres-
sions into a sequence of solvable programs:

F̃ =
∑
χ∈V

∑
n∈Ωχ

(
(1+Γχ,(i−1)

n )Y χ
n −tχ,(i−1)

n (Y χ
n +Iχn+σ2)

)
, (17)

where the SINR values Γχ,(i−1)
n are obtained from the previous

iteration. Note that tχ,(i−1)
n represents the optimal Lagrange

multipliers in the i-th iteration, which can be calculated as

tχ,(i−1)
n =

(1 + Γ
χ,(i−1)
n ) Y

χ,(i−1)
n

Y
χ,(i−1)
n + I

χ,(i−1)
n + σ2

, (18)

where Y χ,(i−1)
n and I

χ,(i−1)
n can be obtained from previous

iteration. The updated optimization problem is then formulated
as

max
a,P

F̃ s.t. (16b). (19)

The current problem is still non-convex due to the binary
user association variable aχk,j,u,s. Motivated by [17], to solve
binary variable problem, we relax the user association variable
between 0 and 1, and formulate an additional constraints as

0 ≤ aχk,j,u,s ≤ 1, ∀χ, k, j, u, s. (20)

To enforce the relaxed variables to remain close to 0 or 1,
we transform the relaxed terms into penalty functions, which
are denoted as Gχ(a) =

∑
χ∈V

∑
n∈Ωχ

aχn(1 − aχn). Since
Gχ(a) is quadratic and non-convex, we apply a first-order
Taylor approximation to linearize the expression of Gχ(a) as

G′
χ(a) = Gχ(a

(i−1))+(a(i)−a(i−1)) · ▽T
aGχ(a

(i−1)), (21)

where the partial derivatives in (21) are derived as ∂Gχ(a)
∂ak,j,u,s

=

1− 2aχk,j,u,s with superscript T indicating the transpose oper-
ation. Consequently, we can rewrite our ultimate optimization
problem as

max
a,P

F̃ − βleoG
′
leo(a)− βtbsG

′
tbs(a) (22a)

s.t. (16b), (20), (22b)

where βleo and βtbs are the penalty factors. The final for-
mulation in (22) results in a convex optimization problem,
which we solve using C.V.X. [18]. The complete steps of
the proposed EARA scheme are described in Algorithm 1.
In practical scenarios, the algorithm can be implemented in a
ground control center to manage LEO and TBS. The procedure
iterates until the convergence condition |R(i)

tot −R
(i−1)
tot | ≤ ρR

is met and the maximum number of iterations i = I is reached,
where ρR denotes the convergence threshold of data rate and
I represents the iteration limit.

IV. PERFORMANCE EVALUATION

We adopt a realistic map of the United States for our
simulation and focus on California as the study region. The
LEO satellite constellation and movement parameters are
based on [11]. TBSs are deployed randomly within the study
area. For user distribution, a portion of the total users is placed
non-uniformly near the TBSs, while the remaining users are
randomly distributed across the area. The system parameters



Algorithm 1: Proposed EARA Scheme

1: Input: Initial user association set set {a(0)}, and power allocation
set {P(0)}.

2: Output: Optimized solution set {a,P} and data rate Rtot.
3: Initialize iteration index i = 1 and compute the initial system data

rate R
(0)
tot using {a(0),P(0)}.

4: repeat
5: Solve the optimization problem with fixed {a(i−1), P(i−1)},

and obtain current solution set {a(i), P(i)}.
6: Calculate current data rate R

(i)
tot.

7: if |R(i)
tot −R

(i−1)
tot | ≤ ρR then

8: Break: Convergence criteria met.
9: end if

10: until iteration index i reaches I .

TABLE I: Setting Parameters
System Parameters Value
Carrier frequency (fc) 20 GHz
Total system bandwidth 100 MHz
Number of sub-channel (S) 8
Number of beams in a LEO (M ) 7
Altitude of LEO (hleo) 550 km
Noise power spectral density (N0) −174 dBm/Hz
LEO/beam power budget (P leo

max,P leo
beam) 30, 10 dBW

TBS/beam power budget (P tbs
max,P tbs

beam) 10,−10 dBW
Antenna aperture 10c/fc
EESS interference threshold (ηITU) [13] −166 dBm
LEO 3dB beamwidth/transmitter gain (θleo,G0) 0.058 rad, 40 dBi
TBS antenna parameter (ϵ) 0.01
Receiver antenna gain of user (Gr

u) 40 dBi
Maximum beam gain of EESS sensor (Gmax) [13] 34.4 dBi
Altitude of EESS (heess) 835 km

are summarized in Table I. We simulate an EESS satellite
conducting an Earth observation mission.

The convergence behavior of the proposed EARA scheme
is illustrated in Fig. 2(a). We compare two scenarios: one
with the EESS interference constraint enforced and the other
without, under different TBS density. We can observe that
the data rates converge within five iteration. When EESS
constraints are enforced, increasing TBS density yields only
marginal improvements in data rate. This is because TBS
interference contributes more significantly to EESS impacts
than LEO interference. As a result, EARA scheme tends to
prioritize LEO-based communication over TBS in order to
mitigate interference.

Fig. 2(b) illustrates the relationship between TBS density
and data rate. Without EESS constraints, increasing TBS
density leads to higher data rates due to improved network
capacity. Since TBS generally provides better channel con-
ditions than LEO, the algorithm allocates more traffic to
TBS to maximize overall performance. However, when EESS
constraint are active, the data rate saturates beyond a certain
TBS density. This indicates that EESS interference regulations
impose significant limitations on the potential benefits of
dense network deployments, highlighting the need for adap-
tive resource allocation strategies to balance communication
performance and interference mitigation.

In Fig. 3, we evaluate the impact of EESS interference on
data rate performance. The EESS travels along the California
coastline, starting near Los Angeles (approximately 34°03’ N),
passing through the South Bay Area near San Jose (37°20’ N),
and reaching San Francisco (37°46’ N), continuing northwest
thereafter. The x-axis in Fig. 3 represents EESS latitude, with
the Bay Area at the midpoint, where most user is located.
As the EESS approaches the Bay Area, interference increases,
causing a significant drop in sum rate. The effect is most severe
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Fig. 2: Convergence and data rate performance of EARA under different
TBS densities with and without EESS constraints. (a) Convergence over
iterations for different TBS densities. (b) Relationship between TBS density
and achievable data rate.
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Fig. 3: Data rate performance of EARA under varying EESS satellite latitudes
and interference thresholds.

when the EESS is directly overhead. As it moves northwest,
the interference decreases, leading to performance recovery.
Different curves in Fig. 3 correspond to EESS interference
thresholds η = {−166,−176,−186,−196} dBW. Higher
thresholds (i.e., more relaxed constraints) result in better data
rates, while tighter thresholds like η = −196 dBW cause more
severe degradation, especially in densely populated regions.
These results highlight the trade-off between interference
mitigation and communication efficiency, underscoring the
need for adaptive resource allocation that accounts for EESS
movement.

In Fig. 4, we observe the impact of different LEO and
TBS beam power budgets on system data rate under varying
population densities. The configurations include LEO beam
power settings P leo

beam = {10, 15, 20} dBW and TBS beam
power settings P tbs

beam = {−10, 0} dBW. As population density
increases, data rate declines due to intensified resource con-
tention and interference, particularly the interference imposed
by EESS constraint. Higher LEO beam power enhances data
rates, especially in low-density areas, by increasing signal
gain. Lower TBS power also enhances performance by re-
ducing interference, particularly in regions with overlapping
beams. However, as population density continue to rise, the
performance gap between configurations narrows, indicating
that interference and resource constraints dominate in highly
populated areas.
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Fig. 4: Data rate performance of EARA under varying population densities
and different power allocations budget for LEO and TBS beams.
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Fig. 5: Performance comparison of EARA with existing benchmarks: data
rate versus number of user.

Fig. 5 compares the proposed EARA scheme with two
benchmark algorithms and two random allocation strategies,
i.e, Benchmark 1: the genetic algorithm (GA) [19], and
Benchmark 2: binary whale optimization Algorithm (BWOA)
[20]: Random Power optimizes only user association a,
Random Association optimizes only power allocation P.
The EARA scheme consistently achieves the highest sum
rate, 26.3% over Benchmark 2. Benchmark 2 outperforms
Benchmark 1, demonstrating its advantage in handling mixed-
integer optimization problems. However, both benchmarks
suffer from scalability issues. As the search space for power
allocation and user association expands, they are more prone
to local optima and suboptimal performance. Random Power
outperforms Random Association, indicating that user associa-
tion has a greater impact on performance due to its larger and
more complex search space. Fully random allocation yields
the lowest performance, underscoring the necessity of joint
optimization in both user association and power allocation.

V. CONCLUSION

In this paper, we evaluated how terrestrial communication
systems can coexisit with EESS operations by considering
the worst-case interference scenario. Our proposed EARA
scheme maximizes downlink data rate while ensuring that
interference to EESS sensors remains below the ITU-defined
threshold. We applied Lagrange’s dual transform and Dinkle-
bach’s method to solve the resulting non-convex optimization

problem. Simulation results demonstrate the effectiveness of
proposed framework in balancing communication performance
and interference mitigation. The results highlighted the superi-
ority of the EARA scheme over existing algorithms, including
GA and BWOA. Furthermore, the analysis emphasized the
critical trade-offs between interference constraints and com-
munication efficiency, especially when the EESS satellite is
in close proximity to dense user regions. This work provided
a foundation for future research on the harmonious coexis-
tence of next-generation communication networks and Earth
observation systems.
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