
Reimagining Parameter Space Exploration with
Diffusion Models

Lijun Zhang
University of Massachusetts Amherst
lijunzhang@cs.umass.edu

Xiao Liu
University of Massachusetts Amherst
xiaoliu1990@umass.edu

Hui Guan
University of Massachusetts Amherst

huiguan@cs.umass.edu

Abstract

Adapting neural networks to new tasks typically requires task-specific fine-tuning,
which is time-consuming and reliant on labeled data. We explore a generative
alternative that produces task-specific parameters directly from task identity, elimi-
nating the need for task-specific training. To this end, we propose using diffusion
models to learn the underlying structure of effective task-specific parameter space
and synthesize parameters on demand. Once trained, the task-conditioned diffusion
model can generate specialized weights directly from task identifiers. We evaluate
this approach across three scenarios: generating parameters for a single seen task,
for multiple seen tasks, and for entirely unseen tasks. Experiments show that diffu-
sion models can generate accurate task-specific parameters and support multi-task
interpolation when parameter subspaces are well-structured, but fail to generalize
to unseen tasks, highlighting both the potential and limitations of this generative
solution.

1 Introduction

Exploring high-dimensional parameter spaces is a fundamental problem in machine learning [1]. A
core challenge is to identify a set of parameters that enable high task performance – that is, parameters
that encode inductive biases aligned with the target task and generalize well to new inputs. The
traditional approach for this parameter exploration is gradient-based optimization, such as stochastic
gradient descent (SGD), which iteratively updates parameters to minimize task-specific loss. For
example, when adapting a pre-trained network to a new task, it is common to fine-tune lightweight,
task-specific modules (e.g., adapters or heads) via gradient descent on task-specific data [6].

While effective, this approach has two key limitations. First, fine-tuning is time-consuming, often
requiring multiple training epochs per task. Second, it relies heavily on access to sufficient labeled
training data for each new task, an assumption that may not hold in practice, especially in low-resource
or privacy-sensitive settings.

In this work, we explore a generative alternative to task-specific fine-tuning. Instead of using
gradient descent to search for parameters that perform well on a given task, we ask: can we learn
a generative model that directly outputs good parameters for a task, conditioned only on a
task description? We hypothesize that diffusion models, a class of generative models known for
learning complex, high-dimensional distributions, can capture the underlying structure of effective
task-specific parameter spaces. If this hypothesis holds, then we can bypass optimization entirely:
given only a task identifier or embedding, we can sample well-performed parameters directly, enabling
efficient task adaptation without access to task-specific training data.

First Exploration in AI Today Workshop at ICML (EXAIT at ICML 2025).

To test this hypothesis, we frame our investigation around three key research questions:

• RQ1 (Task-Specific Generation): Can diffusion models generate accurate parameters when
conditioned on known tasks?

• RQ2 (Inter-Task Interpolation): Can they generate parameters that generalize across multiple
tasks by blending task conditions?

• RQ3 (Unseen Task Generalization): Can they generate parameters for entirely new, unseen tasks?

We study this problem in the context of wildlife classification from camera trap data [9], a real-world
scenario that naturally induces task-specific variation. Camera traps, widely used in ecological
studies, are deployed in diverse environments, each with its own background, lighting, and animal
distributions, effectively making each location a distinct domain or task. This domain is well-suited
for evaluating task-specific adaptation: it features inter-task variability, limited labeled data per task,
and a strong need for efficient, on-device adaptation. In practice, parameter-efficient fine-tuning
(PEFT) methods such as LoRA are commonly used [6], and our study explores the possibility of
replacing this process with generative parameter inference.

Our experimental results yield three key findings:

• Finding 1 (RQ1): Diffusion models can generate task-specific adapter parameters that achieve
high accuracy on individual tasks seen during training.

• Finding 2 (RQ2): Interpolating across task conditions enables generating parameters that generalize
across multiple related tasks, especially when the underlying parameter subspaces are aligned.

• Finding 3 (RQ3): Generalization to unseen tasks remains limited, highlighting challenges in
modeling out-of-distribution task embeddings.

These findings suggest that diffusion-based parameter generation is a promising direction for scalable,
data-free task adaptation. While generalization to unseen tasks beyond the training distribution
remains an open challenge, our findings demonstrate the feasibility of using generative models as a
new tool for efficient parameter space exploration.

2 Preliminary and Related Work

We begin by defining the parameter space exploration problem for task specialization, followed by a
review of relevant research on parameter generation.

Task-Specific Parameter Space Exploration. Parameter space exploration aims to identify task-
specific parameters that yield strong performance on a given task. In this setting, the search space is
the high-dimensional space of all possible task-specific parameter vectors. Formally, given a model
architecture f , task-specific data Dω , and a loss function Lω , our goal is to identify parameters ωω
that minimize the task loss, minεω Lω (fεω ,Dω), where ωω denotes task-adaptive parameters that
specialize the shared model f to task ε . These task-specific parameters typically correspond to
lightweight modules such as prediction heads or parameter-efficient adapters.

Parameter Generation. Generating model parameters has been explored in various contexts. Early
approaches like HyperNetworks [4] learn to generate weights dynamically for variable architectures.
SMASH [2] introduces a memory-based generation scheme for architecture search. More recently,
G.pt [8] employs diffusion models to generate new weights conditioned on existing parameters
and target objectives. However, their generated models often underperform compared to directly
trained counterparts. Recent studies [18, 19, 14] have pioneered the use of diffusion models for
high-performance parameter generation, showing that generated parameters can achieve accuracy
comparable to explicitly trained ones. Unlike these works that emphasize generative quality, our
work examines diffusion models’ ability to generate parameters under interpolated and unseen task
conditions, which holds the potential to become data- and optimization-free alternative to fine-tuning.

3 Explored Method: Wild-P-Diff

This section introduces Wild-P-Diff (Wildlife Classification Parameter Diffusion Model), our pro-
posed framework for task-specific parameter generation. Our design follows the structure of latent
diffusion models commonly used for image synthesis [10], but repurposes them to treat model
parameters as a new generative modality.

2

Parameter Encoding

Parameter Generation

… 𝑤

𝜉𝑤

Flatten

+ Concate
ℰ

𝑧 𝜉𝑧

𝒟 ෝ𝑤

Parameter 1D-VAE

𝐿2 Loss

𝑤

෥𝑤

ℰ
𝑧

Diffusion Process

𝑧𝑇

𝑧𝑇𝑧 Denoising UNet

× 𝑇

𝒟

Condition

CLIP Vision Encoder

Location
Background

Image

Figure 1: The framework of Wild-P-Diff with two processes: parameter encoding and parameter
generation. A parameter VAE aims to extract the latent representations and reconstruct model
parameters via the decoder. The extracted representations are used to train a denoising UNet of the
diffusion model. The conditional version aims to synthesize high-performance parameters based on
the CLIP representation of a specific location background image.

3.1 Overview of Wild-P-Diff

Figure 1 presents the overall structure of the Wild-P-Diff framework, which consists of two main
components: Parameter Encoding and Parameter Generation, along with an optional conditioning
mechanism for task-specific adaptation.

The parameter encoding process begins with a set of high-performing task-specific parameters. These
parameters are flattened and concatenated across layers into a one-dimensional vector, which is then
passed through a parameter encoder to obtain a compact latent representation. A corresponding
decoder is trained to reconstruct the original parameters from this latent space.

To enable parameter generation, a diffusion model is trained in the latent space to synthesize
embeddings of effective task-specific parameters. To support conditional generation, task-related
information is incorporated into the denoising UNet of the diffusion model during training. At
inference time, the model samples a latent vector conditioned on task context, which is then decoded
into a parameter vector using the trained decoder.

As introduced in Section 1, we evaluate our approach in the context of wildlife classification from
camera trap data, in which tasks correspond to different deployment locations. Hence, the goal be-
comes to generate location-specific parameters conditioned on location’s visual context. Specifically,
we use a pre-trained CLIP vision encoder to extract features from the background image of the camera
trap site. These embeddings are then injected into the denoising UNet, guiding the generation toward
location-adaptive parameters.

3.2 Parameter Encoding

To enable parameter generation in the latent space, we first train a parameter Variational Autoencoder
(VAE) that maps between full parameter vectors and their latent representations.

Training Dataset. To construct the training dataset, we fine-tune the selected location-specific
parameters of a pre-trained wildlife classification model across different locations. For each of the
T locations, we save N fine-tuned checkpoints, yielding a dataset of parameter vectors denoted as
! = [ω1, ..., ωn, ..., ωN→T]. Details of the task-specific parameters collection procedure are provided
in Sections 4.1.

Each parameter vector ωn is flattened and concatenated across layers into a single one-dimensional
vector wn → RK→1, where K is the total number of parameters. To standardize the data, we apply
Z-score normalization [3] independently to each layer following [18].

3

Encoding Architecture. The VAE is trained from scratch to encode the parameter vector into a
latent space and reconstruct it from its latent representation. The encoding and decoding processes
are defined as:

zn = E(wn + ϑwn), ϑwn ↑ N (0,ϖ2
wI); ŵn = D(zn + ϑzn), ϑzn ↑ N (0,ϖ2

zI), (1)

where E and D represent the encoder and decoder respectively, and ŵn denotes the reconstructed
output from the decoder. To enhance the robustness and generalization capabilities of the VAE,
Gaussian noise is added to both the input vector wn and the latent representation zn during training,
with noise levels controlled by ϖ2

w and ϖ2
z . The VAE is optimized using an L2 reconstruction loss

between wn and ŵn.

3.3 Parameter Generation

To enable task-specific parameter synthesis, we train a diffusion model to generate latent parameter
representations following the denoising diffusion implicit model (DDIM) [13]. Background on
diffusion models is provided in Appendix Section A.

During training, the diffusion process progressively adds noise to the latent representation Z obtained
from the parameter encoder, transforming it into a noisy latent state ZT . The denoising UNet then
learns to recover the clean latent representation Z from ZT through an iterative refinement process
spanning T timesteps. Once trained, the model can generate new latent by sampling from a Gaussian
prior and reversing the diffusion process. The generated latent is then decoded into a parameter vector
using the trained parameter decoder. These generated task-specific parameters are combined with the
fixed, task-agnostic backbone of the wildlife classification model to produce a complete model for
downstream evaluation.

The core component of the diffusion model is the denoising UNet, specifically adapted for processing
the latent of neural network parameters. Since parameter vectors lack inherent spatial structure [18],
we replace conventional 2D convolutions in diffusion models for image generation with 1D
convolutional blocks throughout the U-Net architecture. For location-aware parameter generation,
we incorporate a conditioning mechanism using contextual visual cues. Specifically, a pre-trained
and frozen CLIP vision encoder extracts semantic features from the background image corresponding
to each camera trap deployment site. These features are injected into the denoising U-Net by directly
adding them to the input latent Zt, following the same positional encoding strategy used for timestep
conditioning.

4 Experimental Results

We first validate the capability of Wild-P-Diff to generate high-performing parameters without
conditioning, assessing whether it can model and reproduce the underlying parameter distribution
(Section 4.2). We then address the three research questions posed in Section 1 (Section 4.3).

4.1 Experiments Settings

Wildlife Classification Dataset and Architecture. We conduct our experiments on the Serengeti
Safari Camera Trap dataset [15], a benchmark for wildlife monitoring. This dataset contains wildlife
images, including an “empty” class representing background scenes without animals. Following [9],
we select the 18 most frequent animals along with the empty class, forming a 19-way classification
task. As summarized in Appendix Table 4, the dataset is split by location. The train set includes 110
locations and is used to train the wildlife classification model and construct the parameter dataset
for the VAE and diffusion UNet in Wild-P-Diff. The test set includes 5 locations, which are used to
assess generalization to unseen tasks. We adopt EfficientNet-B0 [16] pre-trained on ImageNet as the
backbone for the wildlife classification model.

Parameter Dataset Preparation. To train the parameter VAE and the diffusion model in Wild-P-Diff,
we construct a dataset of task-specific parameters across locations. We begin by pretraining the
classification model on images from the first 100 locations in the train set. Since the dataset is
imbalanced, with most images belonging to the empty class, we apply an upsampling strategy by
reweighting samples based on class frequency during training.

4

We then fine-tune only the LoRA adapters of the first six layers on the remaining 10 locations
to obtain location-specific parameters. All other weights in EfficientNet are frozen. Table 5 in
the Appendix provides detailed statistics for these locations, where 10% of each location’s data is
reserved for evaluation on seen tasks. Justification for the selected parameter subset is provided in
Section B.3.

To form the training dataset for Wild-P-Diff, we continue fine-tuning beyond convergence and save
300 checkpoints per location, yielding a total of 3,000 parameter vectors. In practice, we set the
interval at which fine-tuned checkpoints are saved, denoted as the Saving Interval, as 100 unless
noted differently to maintain high intra-location diversity for the saved checkpoints (see analysis
in Section 4.2). For the conditional generation setting, we assign each location a representative
background image to serve as the conditioning input, capturing the environmental context of the
deployment site.

Training and Inference. The detailed architectures for the parameter VAE and diffusion UNet are
provided in Appendix B.2, and key training hyperparameters are summarized in Table 6. Besides, for
the VAE, the noise scales ϖw and ϖz in Equation 1 are set to 0.001 and 0.1, respectively, to control
the Gaussian noise added to the input and latent representations during training.

During inference, we generate 100 sets of task-specific parameters by sampling random noise inputs
and passing them through the trained diffusion model and decoder. For conditional generation,
location-specific embeddings are injected into the diffusion model, guiding the synthesis of location-
adapted parameters. The generated parameters are then combined with the fixed, location-agnostic
backbone weights to form a complete classification model.

Baselines. We compare Wild-P-Diff with:

• Pretrain: The classification accuracy of the original pre-trained model on each location.
• FTed: The average accuracy of all fine-tuned checkpoints for a given location.
• Ensemble: Accuracy from the weighted ensemble of the fine-tuned checkpoints [20].

Metrics. We report the mean and standard deviation of classification accuracy on each location’s
validation set, capturing the overall performance of both fine-tuned and generated models. To assess
parameter similarity, we use cosine similarity as a distance metric.

4.2 Unconditional Parameter Generation

Table 1: The mean and standard deviation of clas-
sification accuracy for 100 sets of generated pa-
rameters, comparing them against two baselines,
Pretrain and FTed. The Saving Interval refers to
how frequently we save the fine-tuned checkpoints.

Saving
Interval Pretrain FTed Wild-P-Diff ! Acc.

1
81.43

92.29 ± 0.0137 93.80 ± 0.0137 +0.0151
10 92.68 ± 0.0139 93.66 ± 0.0067 +0.0098
100 94.19 ± 0.0147 93.80 ± 0.0137 ↑0.0039

We begin by evaluating the unconditional ver-
sion of Wild-P-Diff, trained on task-specific pa-
rameters from a single location, R10. Since the
diffusion model is trained exclusively on param-
eters fine-tuned for this location, we expect it
to generate weights that perform well on the
same task. Table 1 reports the mean and stan-
dard deviation of classification accuracy over
100 generated parameter samples. We compare
task performance against two baselines: Pre-
train, the original pre-trained model without task
adaptation, and FTed, the average performance of fine-tuned checkpoints. Remarkably, the generated
parameters match the accuracy of the fine-tuned checkpoints on R10.

To further investigate the model’s generative behavior, we vary the diversity of the training set by
evaluating different Saving Interval. Specifically, a smaller interval (e.g., every 10 iterations) yields
many similar checkpoints, while a larger interval (e.g., every 100 iterations) results in more diverse
training samples (see Figure 4 in the Appendix). Wild-P-Diff consistently generates parameters
with competitive accuracy as the fine-tuned checkpoints regardless of the input diversity. More
importantly, as shown in Figure 5 in the Appendix, we find that higher input diversity leads to more
novel parameter generation in Wild-P-Diff. When the training set contains more distinct parameter
instances, the diffusion model is better able to generalize beyond memorized patterns and synthesize
new parameters different from the training samples. Detailed analysis of this diversity effect is
presented in Appendix C.

5

4.3 Conditional Parameter Generation

Parameters Similarity across Locations. This section answers the three research questions in
Section 1. Specifically, we investigate how the similarity between task-specific parameters from
different locations affects the model’s ability to generate new parameters under conditioning, as
detailed in Appendix D.

• Low Similarity (L): Task-specific parameter sets across locations are nearly orthogonal, with
cosine similarity ↓ 0.

• Medium Similarity (M): Parameters exhibit moderate similarity across locations, with cosine
similarity around 0.5.

• High Simiarity (H): Parameters are highly similar across locations, with cosine similarity ap-
proaching 0.98.

RQ1: Task-Specific Generation. Table 2 reports the classification accuracy for each location for both
fine-tuned checkpoints and diffusion-generated parameters across all three cross-location similarity
settings: Wild-P-Diff-L, Wild-P-Diff-M, and Wild-P-Diff-H. As in the unconditional setting, we
find that task-conditioned diffusion models can generate high-performing parameters for each
location regardless of the parameter similarity in the training dataset, guided by the background
images for each location. This confirms that the model can differentiate seen tasks and produce
task-specific parameters based on contextual input.

Table 2: The mean and standard deviation of location-specific accuracy on seen locations for 100 sets
of generated parameters, comparing them against two baselines, Pretrain and FTed, across all three
cross-location similarity settings (Wild-P-Diff-L, Wild-P-Diff-M, and Wild-P-Diff-H).

Loc.
ID

Accuracy

Pretrained Low Similarity: random LoRA init Medium Similarity: from same LoRA init High Similarity: from converged LoRA

FTed Wild-P-Diff ! Acc. FTed Wild-P-Diff ! Acc. FTed Wild-P-Diff ! Acc.

R10 0.81 94.19 ± 1.47 93.83 ± 1.17 -0.36 94.66 ± 1.11 94.32 ± 1.22 -0.34 96.48 ± 0.96 95.51 ± 2.11 -0.97
R12 0.85 93.63 ± 1.17 93.68 ± 1.04 +0.05 93.86 ± 0.96 93.23 ± 2.49 -0.63 95.88 ± 1.11 95.02 ± 1.44 -0.86
U11 0.45 98.56 ± 2.17 98.51 ± 3.27 -0.05 97.20 ± 2.45 95.41 ± 5.82 -1.79 98.26 ± 2.31 95.54 ± 4.69 -2.72
Q08 0.57 87.66 ± 3.29 87.40 ± 2.92 -0.26 86.43 ± 3.17 84.46 ± 5.77 -1.97 86.61 ± 3.10 83.99 ± 3.39 -2.62
M08 0.65 99.93 ± 0.57 99.80 ± 0.97 -0.13 99.90 ± 0.81 99.80 ± 0.97 -0.1 99.91 ± 0.64 99.80 ± 0.97 -0.11
D09 0.87 97.48 ± 2.23 97.56 ± 2.83 +0.08 97.87 ± 2.20 97.69 ± 3.10 -0.18 98.31 ± 2.14 98.69 ± 1.99 +0.38
H13 0.78 92.24 ± 4.10 91.16 ± 4.45 -1.08 92.14 ± 4.26 91.16 ± 4.01 -0.98 92.46 ± 3.37 91.27 ± 3.26 -1.19
S09 1.00 95.89 ± 4.40 97.26 ± 3.78 +1.37 96.53 ± 4.30 95.06 ± 5.93 -1.47 96.84 ± 3.82 96.80 ± 4.36 -0.04
U13 0.17 99.90 ± 0.52 99.87 ± 0.53 -0.03 99.89 ± 0.54 99.65 ± 1.19 -0.24 99.84 ± 0.88 99.73 ± 0.96 -0.11
S12 0.95 98.81 ± 2.06 98.80 ± 2.27 -0.01 99.13 ± 1.84 98.76 ± 2.39 -0.37 97.55 ± 2.37 97.23 ± 2.35 -0.32

Figure 2: The accuracy of generated parameters
when blending two locations’ conditions at various
interpolation weights (i.e., the solid lines), and that
of a baseline method that naively fuses the corre-
sponding fine-tuned parameters of each location
called Ensemble (i.e., the dashed lines). The values
next to the line represent the interpolation weight.

These results also suggest that generative pa-
rameter inference can serve as a compact alter-
native to storing large numbers of task-specific
parameter sets. For example, with 1,000 unique
tasks, storing separate LoRA parameters for
each (0.34M parameters per task) would re-
quire approximately 1.33GB (0.34M ! 4 bytes
! 1,000). In contrast, a single trained diffu-
sion model with 282.42M parameters requires
around 1.10GB—yielding a 15% memory sav-
ing while enabling flexible, on-demand genera-
tion. While Wild-P-Diff relies on task-specific
fine-tuning during training to construct the pa-
rameter dataset, it eliminates the need to store
these parameters explicitly at deployment time.
Instead, a single generative model enables ef-
ficient retrieval of task-adaptive parameters on
demand (↑ 0.81 seconds per generation pass).
This highlights diffusion-based parameter gen-
eration as a promising solution for compact and
flexible task specialization at scale.

RQ2: Inter-Task Interpolation. We next eval-
uate whether Wild-P-Diff can generate parame-
ters that perform well across multiple tasks by interpolating between task conditions. Specifically,

6

we blend the background features of two known locations at different ratios and use the resulting
interpolation as the conditioning input to the diffusion model. The goal is to synthesize parameters
that generalize to both locations simultaneously.

Figure 2 shows the classification accuracy of the generated parameters (solid lines) under different
interpolation weights between two location conditions. For comparison, the dashed lines indicate
the performance of a naive baseline (Ensemble) that directly fuses the corresponding fine-tuned
parameters from each location. We visualize two representative location pairs under all three Wild-P-
Diff variants; additional examples are provided in the Appendix.

Table 3: The mean and standard deviation
of location-specific accuracy on five unseen
locations for the three Wild-P-Diff variants
and the pre-trained model.

ID Accuracy

Pretrain Wild-P-Diff-L Wild-P-Diff-M Wild-P-Diff-H

D03 96.63 96.64 ± 0.05 96.36 ± 0.22 95.62 ± 0.46
D04 82.61 82.49 ± 0.09 82.57 ± 0.26 81.43 ± 0.42
E03 70.18 70.18 ± 0.08 69.49 ± 0.48 70.13 ± 0.49
E01 97.90 97.74 ± 0.04 97.13 ± 0.31 96.21 ± 0.48
F05 85.81 86.01 ± 0.08 86.13 ± 0.27 83.05 ± 0.33

Our results show that Wild-P-Diff-L and Wild-P-Diff-
M fail to generate parameters that perform well across
both locations, as indicated by the concave shape
of their solid curves. In contrast, Wild-P-Diff-H,
where task-specific parameters exhibit high cross-
location similarity demonstrates moderate success.
For instance, when interpolating between R10 and
R12, the green solid line shows that the generated
parameters achieve high accuracy on both locations,
even outperforming the Ensemble baseline. These
findings suggest that when task-specific parameters
in the training dataset form a coherent and aligned
subspace, the diffusion model is able to leverage that structure to interpolate effectively. In
such cases, the model does not merely memorize discrete solutions but learns to sample from a
well-behaved region of the parameter space.

Figure 3: Convergence speed with different
LoRA initialization, Gaussian and Wild-P-
Diff-H, on unseen location D03. The accuracy
after fine-tuning is reported in the legend.

RQ3: Unseen Task Generalization. Table 3 reports
the validation accuracy on five unseen locations, for
which no location-specific parameters are available
during training. We observe that none of the Wild-
P-Diff variants are able to generate parameters that
outperform the pre-trained baseline, suggesting lim-
ited generalization to out-of-distribution tasks. The
generated LoRA weights yield performance compa-
rable to the pre-trained model, functioning more as
an initialization than as a performance gain.

To assess whether these generated parameters can
still offer value after fine-tuning, we compare them
against a standard Gaussian-initialized LoRA base-
line [5]. Figure 3 presents the training loss curves
and final classification accuracy for an unseen loca-
tion D03 (more examples see Appendix Figure 8).
While both initialization strategies lead to rapid con-
vergence, Wild-P-Diff-H achieves slightly lower final
loss and higher final accuracy, indicating a modest improvement. These results suggest that although
diffusion-based parameter generation is not effective for direct deployment on unseen tasks in the
current format, it may serve as a useful initialization strategy for downstream fine-tuning, offering
mild improvements over traditional random initialization.

5 Conclusion

This work explores the use of diffusion models for task-specific parameter generation, where model
weights are treated as a new generative modality. By conditioning on task identity, the model
can reliably generate high-performing parameters for individual tasks seen during training, and
moderately support parameter synthesis across multiple tasks via interpolated conditions when the
training parameters form a well-aligned subspace. However, the model fails to generalize to unseen
tasks, highlighting a key limitation in its ability to capture out-of-distribution parameter distributions.
As such, while this framework reduces deployment-time memory costs and enables on-demand
adaptation for known tasks, it does not yet achieve true data-free task adaptation.

7

References
[1] Yoshua Bengio et al. Learning deep architectures for ai. Foundations and trends® in Machine Learning,

2(1):1–127, 2009.

[2] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot model architecture
search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017.

[3] Nanyi Fei, Yizhao Gao, Zhiwu Lu, and Tao Xiang. Z-score normalization, hubness, and few-shot learning.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 142–151, 2021.

[4] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

[5] Soufiane Hayou, Nikhil Ghosh, and Bin Yu. The impact of initialization on lora finetuning dynamics.
Advances in Neural Information Processing Systems, 37:117015–117040, 2024.

[6] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. International Conference on Learning
Representations, 1(2):3, 2022.

[7] Pramod Kaushik Mudrakarta, Mark Sandler, Andrey Zhmoginov, and Andrew Howard. K for the price of
1: Parameter-efficient multi-task and transfer learning. arXiv preprint arXiv:1810.10703, 2018.

[8] William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A Efros, and Jitendra Malik. Learning to learn
with generative models of neural network checkpoints. arXiv preprint arXiv:2209.12892, 2022.

[9] Mohammad Mehdi Rastikerdar, Jin Huang, Hui Guan, and Deepak Ganesan. In-situ fine-tuning of wildlife
models in iot-enabled camera traps for efficient adaptation. arXiv preprint arXiv:2409.07796, 2024.

[10] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10684–10695, 2022.

[11] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention–MICCAI 2015: 18th
international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, pages 234–241.
Springer, 2015.

[12] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning, pages
2256–2265. PMLR, 2015.

[13] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020.

[14] Bedionita Soro, Bruno Andreis, Hayeon Lee, Wonyong Jeong, Song Chong, Frank Hutter, and Sung Ju
Hwang. Diffusion-based neural network weights generation. International Conference on Learning
Representations, 2025.

[15] Alexandra Swanson, Margaret Kosmala, Chris Lintott, Robert Simpson, Arfon Smith, and Craig Packer.
Snapshot serengeti, high-frequency annotated camera trap images of 40 mammalian species in an african
savanna. Scientific data, 2(1):1–14, 2015.

[16] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In
International conference on machine learning, pages 6105–6114. PMLR, 2019.

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, "ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[18] Kai Wang, Dongwen Tang, Boya Zeng, Yida Yin, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell,
Zhuang Liu, and Yang You. Neural network diffusion. arXiv preprint arXiv:2402.13144, 2024.

[19] Weilun Wang, Jianmin Bao, Wengang Zhou, Dongdong Chen, Dong Chen, Lu Yuan, and Houqiang Li.
Sindiffusion: Learning a diffusion model from a single natural image. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2025.

[20] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S
Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model soups: aver-
aging weights of multiple fine-tuned models improves accuracy without increasing inference time. In
International Conference on Machine Learning, pages 23965–23998. PMLR, 2022.

8

A Diffusion Model Preliminary

Diffusion models [12], which our parameter space exploration approach build on, are a class of generative AI
models that generate high-resolution images. Here we introduce the necessary background about the diffusion
model.

Forward Diffusion Process. To explain diffusion models, we first explain the forward diffusion process,
in which a data point sampled from a real data distribution x0 → q(x) is gradually converted into a noisy
representation xT through T steps of progressive Gaussian noise addition. This transformation yields xT as an
isotropic Gaussian noise, i.e., xT → N (0, I). Specifically, the transformation follows the Markov Chain,

q(xt|xt→1) = N (xt;
√

1↑ ωtxt→1,ωtI), (2)

where ωt ↓ (0, 1) is the scheduled noise variance that controls the step size. Here, N (x;µ,!) denotes the
probability density function of a Gaussian distribution at the random variable x, with mean µ and covariance
matrix !. Therefore, the above transformation states that the conditional distribution of xt given xt→1 is
Gaussian, with mean

↔
1↑ ωtxt→1 and covariance matrix ωtI.

Then a direct generation of xt from x0 is:

xt =
↔
ε̄tx0 +

↔
1↑ ε̄tϑ, (3)

where ε̄t =
∏t

i=0(1 ↑ ωi), ωi ↓ (0, 1) is the scheduled noise variance that controls the step size, and
ϑ → N (0, I).

Reverse Process. Diffusion models reverse this forward process, learning to retrieve the original image x0 from
the noise xT by estimating the noise at each step and iteratively performing denoising. The Denoising Diffusion
Implicit Model (DDIM) [13] is a prominent denoising method, known for its efficiency and deterministic output.
It requires fewer steps, sometimes only 50, to replicate the denoising achieved by the standard 1000-step process,
and consistently reproduces x0 from a given xT , providing deterministic reconstruction. Formally, for each
denoising step t, a learned noise predictor ϑω(·) estimates the noise ϑ added to x0, leading to an approximation
of x0.

x↑
0 =

xt ↑
↔
1↑ ε̄tϑω(xt, t)↔

ε̄t
. (4)

Then DDIM reintroduces ϑω(xt, t) to determine xt→1:

xt→1 =
↔
ε̄t→1(x

↑
0) +

√
1↑ ε̄t→1ϑω(xt, t). (5)

In this way, DDIM could deterministically recover the same image x0 from the specified noise xT .

Diffusion Model Training and Inference. Diffusion models approximate the reverse diffusion process through
a neural network ϑω(·), which is trained to estimate the noise component at each denoising step. The model
takes a noisy input xt and its timestep t to predict the noise added at that step. During training, the noisy sample
is generated using Equation 3 from the clean training dataset. The model is then trained with the following
objective:

L(ϖ) = Et↓[1,T],ε↓N (0,I)||ϑ↑ ϑω(xt, t)||22, (6)

where t is sampled uniformly from 1 to T . The typical architecture of the noise estimator is a UNet [11].

During inference, we first sample a random Gaussian noise xT → N (0, I) and then iteratively compute xT→1

using Equation 5 until the clean output x0 is obtained. For stable diffusion, the key difference lies in operating
within the latent space rather than the image space. Specifically, all x variables are replaced by their latent
representations Z, with a pre-trained Variational Autoencoder (VAE) performing the transformation between the
original space and the latent space.

B Additional Experimental Settings

B.1 Data Statistics

Table 4: Serengeti Safari Camera Trap dataset with train and test split.
Train Test

Locations # Images # Locations # Images

110 100,289 5 15,051

9

Table 5: Fine-tuning locations and their data statistics. The locations are sorted with the number of
animal images (i.e., #images w/o empty).

Location ID #images #train #evalw/ empty w/o empty

R10 2795 1766 2515 280
R12 2803 1683 2522 281
U11 306 210 275 31
Q08 291 201 261 30
M08 195 156 175 20
D09 228 153 205 23
H13 171 96 153 18
S09 147 57 132 15
U13 403 51 362 41
S12 208 51 187 21

B.2 Model Architecture Details

Parameter Encoding VAE. In practice, the encoder E is a 1D CNN-based architecture with channel configura-
tions of (64, 128, 256, 256, 32). At the final layer, the features are flattened and projected to a latent dimension
of 2048 via a linear transformation. The decoder D employs transposed convolutions with the same channel
configuration to reconstruct the original parameter vector.

Parameter Generation UNet. The architecture follows a standard encoder-decoder structure, consisting
of multiple 1D convolutional layers with batch normalization (BN). The channel configuration is set as (1,
64, 128, 256, 512, 256, 128, 64, 1), ensuring progressive downsampling and upsampling within the latent
space. Additionally, the timestep t is encoded using positional encoding [17] and directly added to the latent
representation Zt to guide the model in predicting noise distributions across different timesteps.

Table 6: Training recipe for parameter autoencoder and diffusion model.

Config Parameter
Autoencoder

Diffusion
UNet

Optimizer AdamW
Learning rate (LR) 1e↑5 1e↑4

Weight decay 1e↑5

Training iterations 20000 30000
Batch size 16 50
LR schedule Cosine decay

B.3 The Selection of Task-Specific Parameters

We empirically identify which subset of parameters should be treated as task-specific to achieve accuracy
comparable to fine-tuning the entire pre-trained model.

Table 7 reports the validation accuracy and parameter counts for location R10, exploring different strategies for
selecting location-specific parameters. We consider (1) assigning several initial or final layers as location-specific,
(2) designating only the Batch Normalization layers [7], and (3) introducing LoRA adapters [6]. We observe that
selecting location-specific parameters in the initial layers yields superior accuracy compared to using the last
two or three layers, despite involving fewer parameters.

Most importantly, we find that the optimal approach is to insert location-specific LoRA adapters in the first six
layers, obtaining an accuracy of 95%, nearly identical to fine-tuning all parameters, while requiring only 8.8%
number of the entire parameters. Table 8 further confirms the high accuracy achieved for different locations.
Therefore, in the following experiments, we focus on generating these identified LoRA parameters with diffusion
models for each location.

10

Table 7: Impact of location-specific parameter selections for location R10. Incorporating LoRA
adapters in the first 6 layers (i.e., First 6 layers LoRA) achieves a validation accuracy comparable to
fully fine-tuning all parameters (i.e., ALL) with only 8.8% trainable parameters (i.e., 0.34/3.85).

Fine-tuned Param. #Params. (M) Accuracy

ALL 3.85 0.9571
BN 0.04 0.8107

First 5 layers 0.29 0.8893
First 6 layers 0.81 0.9179
First 7 layers 2.74 0.9500
Last 1 layer 0.39 0.8071
Last 2 layers 1.08 0.8393
Last 3 layers 3.01 0.9321

First 6 layers LoRA 0.34 0.9500

Table 8: Validation accuracy with introducing location-specific LoRA adapters in the first six layers
for different locations, comparing with fine-tuning all parameters (i.e., ALL).

Location ID Accuracy
Pretrain ALL First 6 layers LoRA

R10 0.81 0.96 0.95
R12 0.85 0.96 0.95
U11 0.45 1.00 1.00
Q08 0.57 0.97 0.90
M08 0.65 1.00 1.00
D09 0.87 1.00 1.00
H13 0.78 0.94 0.94
S09 1.00 1.00 1.00
U13 0.17 1.00 1.00
S12 0.95 1.00 1.00

C Unconditional Parameter Generation Cont.

Fine-Tuned Models Diversity. Recall that after each location-specific model converges, we continue fine-tuning
for additional iterations and save 300 checkpoints. Let M0 denote this initial, converged model before additional
fine-tuning begins. A saving interval of 1 stores a checkpoint at every iteration (300 total), while intervals of
10 or 100 accumulate 3,000 or 30,000 extra iterations, respectively. Intuitively, larger saving intervals provide
more substantial perturbations in the parameters between consecutive checkpoints, thus increasing the fine-tuned
model diversity in the train set.

(a) Similarity between each fine-tuned model and
M0, along with the model index.

(b) Maximum and minimum similarity between 300 fine-
tuned checkpoints.

Figure 4: Input diversity for location R10 for different saving intervals, i.e., SI = 1, SI = 10, SI=100.

11

Figure 4 illustrates how these varying saving intervals influence the diversity of the 300 fine-tuned checkpoints
for location R10. In Figure 4(a), we plot the similarity between each checkpoint and M0, revealing that
larger saving intervals lead to more deviation from the original converged model, boosting overall diversity.
Correspondingly, Figure 4(b) shows the maximum and minimum similarity among those 300 checkpoints.
Here, for each checkpoint, we compute the cosine similarity to all other checkpoints and record its maximum
and minimum values. This provides a measure of how close or distant each checkpoint is relative to the rest,
reflecting the overall spread and diversity of the parameter set. The results confirm that checkpoints derived
using higher saving intervals exhibit more spread, i.e., higher diversity.

Having clarified how saving intervals modulate the variety of fine-tuned checkpoints, we now explore whether
Wild-P-Diff simply memorizes these reference models or truly generates novel parameters under different
configurations.

Generated Models Novelty and Diversity. To address whether Wild-P-Diff merely reproduces existing fine-
tuned checkpoints or creates genuinely new parameters, we measure both output novelty and output diversity for
the generated models. Specifically, as introduced in Section 4.1, we compute (1) the maximum similarity of
each generated parameter to every fine-tuned checkpoint, and (2) the maximum similarity among the generated
parameters themselves.

Figure 5: The output novelty and diversity are influenced by the different saving intervals used when
collecting the training checkpoints.

In Figure 5, our results reveal a clear distinction based on the input diversity. When the saving interval is small
(the red points), i.e., the input diversity is low, the generated parameters exhibit high similarity (almost 1) to
the fine-tuned checkpoints, which suggests memorization, and also to one another, which indicates limited
variety. However, when the saving interval is larger (the blue points), namely the input diversity is higher, the
generated parameters have lower similarity to the fine-tuned checkpoints for about 0.89. This gap implies that
Wild-P-Diff is sampling genuinely new samples from the learned parameter distribution rather than simply
replicating existing models. In this case, the output diversity also increases, as reflected by lower similarity
among generated parameters.

Overall, these findings show that high diversity among fine-tuned checkpoints facilitates novel parameter
generation in Wild-P-Diff. By varying the saving interval, we can tune the input model diversity, which in turn
influences whether the diffusion model memorizes or creatively explores the parameter distribution.

D Conditional Parameter Generation Cont.

Parameter Similarity across Locations We vary the initial converged model, denoted M0, from which
fine-tuning checkpoints are derived for each location, thereby inducing different cross-location similarities:

• Wild-P-Diff-L: Each location has an independent M0, meaning each LoRA component is initialized
randomly for each location.

• Wild-P-Diff-M: Locations share a similar M0, with all LoRA parameters initialized identically across
locations before location-specific fine-tuning.

• Wild-P-Diff-H: Locations use the same M0 precisely, i.e., the LoRA parameters are first fine-tuned
on one particular location and then used as a starting point for all the others when saving multiple
checkpoints per location.

By modifying how M0 is set for different locations, we obtain three different levels of cross-location similarity.
Specifically, for any pair of locations loc1 and loc2, we compute the maximum similarity across their respective

12

fine-tuned checkpoints and then average these values. Figure 6 summarizes the cross-location similarity under
each variant of Wild-P-Diff, where we have three observations. First, Wild-P-Diff-L yields minimal similarity
across locations (close to 0), implying almost orthogonal LoRA parameters across locations in the space. Second,
Wild-P-Diff-M increases the cross-location similarity to around 0.5. Last, Wild-P-Diff-H raises it further to
approximately 0.98, indicating that location-specific parameters are extremely close to each other.

Figure 6: Pairwise similarity of input checkpoints across different locations. Wild-P-Diff-L, Wild-P-
Diff-M, and Wild-P-Diff-H correspond to the three cross-location similarity strategies used when
collecting location-specific fine-tuned checkpoints, respectively.

RQ2: Inter-Task Interpolation. Figure 7 exhibits more examples for generating parameters that work for
multiple tasks. As mentioned in the main paper, by interpolating the condition of two locations, Wild-P-Diff-H
could successfully interpolate the parameter space to generate parameters for multi-task use.

Figure 7: More examples for Inter-Location Interpolation.

RQ3: Unseen Task Generalization. We provide more examples when using diffusion-generated parameters as
the LoRA initialization weights for two additional unseen locations, D04 and E03, in Figure 8. As mentioned in
the main text, we observed that Wild-P-Diff-H leads to slightly lower final training loss and higher validation
accuracy compared to the conventional Gaussian initialization, indicating the potential of using diffusion-
generated parameters for unseen tasks as a new initialization strategy.

13

Figure 8: Convergence speed with different LoRA initialization, Gaussian and Wild-P-Diff-H, on two
additional unseen locations, D04 and E03. The accuracy after fine-tuning is reported in the legend.

14

	Introduction
	Preliminary and Related Work
	Explored Method: Wild-P-Diff
	Overview of Wild-P-Diff
	Parameter Encoding
	Parameter Generation

	Experimental Results
	Experiments Settings
	Unconditional Parameter Generation
	Conditional Parameter Generation

	Conclusion
	Diffusion Model Preliminary
	Additional Experimental Settings
	Data Statistics
	Model Architecture Details
	The Selection of Task-Specific Parameters

	Unconditional Parameter Generation Cont.
	Conditional Parameter Generation Cont.

