
Towards Cost Sensitive Decision Making

Yang Li Junier B. Oliva
UNC-Chapel Hill UNC-Chapel Hill

Abstract

Many real-world situations allow for the ac-
quisition of additional relevant information
when making decisions with limited or un-
certain data. However, traditional RL ap-
proaches either require all features to be
acquired beforehand (e.g. in a MDP) or
regard part of them as missing data that
cannot be acquired (e.g. in a POMDP).
In this work, we consider RL models that
may actively acquire features from the en-
vironment to improve the decision quality
and certainty, while automatically balanc-
ing the cost of feature acquisition process
and the reward of task decision process. We
propose the Active-Acquisition POMDP and
identify two types of the acquisition process
for different application domains. In order
to assist the agent in the actively-acquired
partially-observed environment and allevi-
ate the exploration-exploitation dilemma, we
develop a model-based approach, where a
deep generative model is utilized to cap-
ture the dependencies of the features and
impute the unobserved features. The im-
putations essentially represent the beliefs of
the agent. Equipped with the dynamics
model, we develop hierarchical RL algorithms
to resolve both types of the AA-POMDPs.
Empirical results demonstrate that our ap-
proach achieves considerably better perfor-
mance than existing POMDP-RL solutions.

1 Introduction

Recently, machine learning models for sequential de-
cision making have made significant progress due to

Proceedings of the 28th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2025, Mai Khao,
Thailand. PMLR: Volume 258. Copyright 2025 by the au-
thor(s).

the development of reinforcement learning (RL). These
models have achieved remarkable success in many ap-
plication domains, such as games (Mnih et al., 2015;
Silver et al., 2016, 2017), robotics control (Finn et al.,
2016; Levine et al., 2016; Polydoros and Nalpantidis,
2017; Haarnoja et al., 2018; Niroui et al., 2019) and
medical diagnosis (Ling et al., 2017; Peng et al., 2018;
Coronato et al., 2020; Yu et al., 2021). However,
the current RL paradigm is incongruous with the
expectation of many real-world decision-making sys-
tems. First, for fully-observed Markov decision pro-
cesses (MDPs), the features at each decision step are
assumed to be fully observed. In situations like med-
ical diagnosis, some features, such as MRI, might be
expensive to obtain; some features might even pose
a risk to the patient, such as X-Ray. Furthermore,
acquiring all features at each step may create redun-
dancy, as some features will not change within the ad-
jacent time frames. Therefore, the intelligent decision-
making systems are expected to automatically balance
the cost of feature acquisition and the improvement
of decision by acquiring only the necessary informa-
tion. Second, for partially-observed Markov decision
processes (POMDPs), the observation at each step is
determined by an unknown observation model of the
environment, thus no additional information (features)
may be obtained to improve the decision.

In stark contrast to the current RL paradigm, human
agents routinely reason over instances with incomplete
features and decide when and what additional infor-
mation to obtain. For example, consider clinicians
in intensive care units (ICUs), which have to make
sequences of treatment decisions for patients at risk.
Typically, all of the (dynamic) patient information is
not known, however, and while knowledge of the pa-
tient is critical when deciding what treatment deci-
sions to make, due to time/cost/risk constraints the
clinician must carefully decide what additional patient
attributes (e.g. stemming from a blood sample, or
biopsy, etc.) are most worth their cost for better down-
stream treatment decisions. In order to more closely
match the needs of many real-world applications, we
propose a active acquisition partially observed Markov
decision process (AA-POMDP) and develop several

Towards Cost Sensitive Decision Making

novel RL techniques to solve it. Our agent not only
makes decisions with incomplete/missing features, but
also dynamically determines the most valuable subset
of features to obtain at each decision step.

In this work, we identify two types of AA-POMDPs
based on how features may be acquired. First, Se-
quential AA-POMDP, where features are acquired
sequentially before a task action is conducted. Here,
the later acquisitions will depend on the values of pre-
viously acquired features. This type of AA-POMDP is
applicable when the feature acquisition actions do not
modify the underlying state (such as non-invasive test
in medical scenario) and the feature acquisition pro-
cess takes negligible time compared to the task state
changing. Second, Batch AA-POMDP, where fea-
tures are acquired simultaneously in a batch. This
type of POMDP is suitable for situations where the
feature acquisition actions can modify the state or the
state changes so quickly relative to acquisition that
there is not enough time for a sequential acquisition.

The agent can only observe part of the underlying fea-
tures when making a decision for the task. Therefore,
our model is essentially partially observed and inher-
its all the difficulties for solving POMDP (Monahan,
1982; Spaan, 2012). Meanwhile, in contrast to typi-
cal POMDP in RL literature, here the observation is
controlled by the agent itself, which introduces addi-
tional challenges. First, the action space for feature
acquisition is exponential to the number of candidate
features. That is, for a d-dimensional feature space,
there are 2d possible acquisition actions in total. The
large action space makes it difficult for RL agents to
explore efficiently. Second, the feature acquisition pro-
cess and the task decision process are intimately corre-
lated. The feature acquisition process must collect in-
formative features so that appropriate decisions can be
made for the task. Moreover, the task decisions should
transit the underlying MDP into appropriate states so
that acquisitions can be performed effectively.

In order to deal with the aforementioned challenges, we
propose a model-based approach in which a generative
model is utilized to capture the dependencies between
features (see § 3.1). Given a sequence of acquired fea-
tures and corresponding task actions, the generative
model predicts the possible state at the next decision
step by imputing the missing features, which repre-
sents the beliefs of our agent. The acquisition action
and the task action are both determined based on the
belief states, which help the agent learn better policy
with partial observation. Furthermore, the generative
model can assist the agent with an intrinsic reward
by assessing the imputation quality of the underlying
state, which essentially provides guidance to the ac-
quisition process. In addition, we decompose the ac-

quisition process and the task decision process into a
hierarchy, where the high-level task policy takes inputs
from the low-level acquisition policy and provides re-
ward signal in return based on its policy uncertainty
and value estimates (see § 3.3 for details).

Our contributions are as follows: 1) We propose the
active acquisition partially observed Markov decision
process (AA-POMDP), which integrates the feature
acquisition process with the task decision process to
make decisions taking into account the cost of fea-
ture acquisition. 2) We identify two types of the
AA-POMDP, Sequential AA-POMDP and Batch AA-
POMDP, to accommodate different application re-
quirements. 3) We develop a novel generative model
for partially observed sequences that captures the de-
pendencies across features and across time steps. The
generative model serves as a surrogate of the task state
transition model and assists the agent by estimating
the beliefs. We then develop model-based RL agents
for both types of the AA-POMDP. 4) We formulate
the feature acquisition process and the task decision
process into a hierarchical structure and propose hi-
erarchical RL approaches that automatically balance
the feature acquisition cost and task reward. 5) We
demonstrate the effectiveness of our approach on sev-
eral benchmark environments and achieve state-of-the-
art performance compared to baselines. Our code is
released at https://github.com/leao1995/CostRL.

2 Active Acquisition POMDP

A discounted AA-POMDP is an environment defined
by a tuple M = ⟨S,A, T ,O,R, C, γ⟩, where S is the
state space and A = Af∪Ac is the joint action space of
feature acquisition actions Af and task control actions
Ac. T : S × A → S represents the state transition
kernel, which can be deterministic or stochastic. As in
ordinary POMDP, the observation space O is related
to S by the observation/emission model p(o | s′, a),
which defines the probability of observing o when the
agent takes action a resulting in a state s′. In AA-
POMDP, however, the observation model is specified
as p(o | s′, af). I.e., the observation is controlled only
by the feature acquisition action af . For a state s′

with underlying d-dimensional measurable features x′

that are unknown beforehand, the feature acquisition
action af will result in acquiring a subset of features
x′
v, v ⊆ {1, . . . , d}, where v is decoded from action af .

The features x′
u, u = {1, . . . , d} \ v remain unobserved

to the agent. The reward function R : S × Ac →
R specifies the reward structure for the original task
MDP; the cost function C : S ×Af → R≥0 defines the
cost of acquisitions. γ ∈ [0, 1] is the discount factor.

Given the partial observation history and the action

Yang Li, Junier B. Oliva

history, we let b represent a belief distribution over pos-
sible states. When the agent takes an action a based
on its policy π(a | b), it receives the immediate reward

r = R(s, a)I(a ∈ Ac)− C(s, a)I(a ∈ Af). (1)

Our goal is to learn a policy π(a | b) that maximizes
the expected cumulative discounted reward

Eπ,T

[
H∑

h=1

γhr

]
, (2)

where H represents the horizon of an episode. Next,
we describe two types of the AA-POMDP that ac-
quires features in different manners.

Batch AA-POMDP In the above AA-POMDP
formulation, the action space consists of feature ac-
quisition actions af ∈ Af and task control actions
ac ∈ Ac. The policy π(a | b) can be decomposed
into two sub-policies: πf , which controls what acqui-
sition actions to perform, and πc, which controls what
task-level actions to perform,

π(a | b) = πf (af | b)πc(ac | b′), (3)

where the belief b′ is updated after acquiring the fea-
tures indicated by the acquisition action af . This for-
mulation implies that the features are acquired simul-
taneously in a batch. For the d-dimensional feature
space, the acquisition action space Af = 2[d] is the
powerset of all features, where [d] represents the set
{1, . . . , d}. Each action af ∈ Af indicates the sub-
set of features being acquired. That is, the acquired
features are xv, v = af ⊆ {1, . . . , d}.

The batch acquisition paradigm is useful when fea-
tures are so time-critical that all acquisitions need to
be performed in parallel to save time. For example, in
an emergency, the doctor might need to acquire cer-
tain features as soon as possible to decide on a first
aid strategy. Another situation where the batch ac-
quisition may help is when the acquisition action can
modify the underlying state or the state may change
between two acquisitions, such as invasive procedures.

Sequential AA-POMDP In addition to batch ac-
quisition, we also introduce the sequential acquisition
scheme, where the features are acquired one-by-one.
Each acquisition action will acquire one of the features
{1, . . . , d}. We also introduce a special acquisition ac-
tion ϕ to indicate the termination of the acquisition
process. Therefore, the acquisition action space be-
comes Af = {1, . . . , d} ∪ {ϕ}. Given the sequential
acquisition process, we can further decompose (3) to

π(a | b) =
∏K

k=1 πf (a
(k)
f | b′k−1)πc(ac | b′K), (4)

where b′k is the belief after k acquisition steps (b′0 = b),
K is the number of acquired features, and the last

acquisition action is always ϕ. Note that the beliefs
b′k are updated based on all the previously acquired
features; the updated belief represents a more accurate
distribution of the underlying state, and thus enabling
better acquisition plan.

The sequential acquisition scheme may further reduce
redundancy due to the awareness of the values from
previous acquisitions, but at the expense of increased
acquisition time due to its sequential nature. There-
fore, this formulation is only applicable when the ac-
quisition action is fast relative to the state changing.
Another implication of this formulation is that the ac-
quisition action will not change the underlying state,
otherwise, the previous observations will be outdated
when making the task decisions.

3 Methods

In this section, we introduce a generative model to
capture the features dependencies along the state tran-
sition trajectory. The sequential generative model is
leveraged afterwards to impute the missing features,
which represent the agent’s belief. We then construct
the feature acquisition policy and the task control pol-
icy in a hierarchical way based on the belief estimation.

3.1 Partially Observed Sequence Modeling

Let t ∈ {1, . . . , T} denote a time step where state tran-

sition happens due to the execution of task action a
(t)
c

in the environment. At each time step t, the agent ob-

serves a subset of features x
(t)
v from state s(t), while the

features x
(t)
u remain unobserved. In order to model the

state transitions and estimate the beliefs about the un-
derlying state, we build a generative model to impute
the unobserved features conditioned on the observed
ones and the action sequence:

p(x(1:T)
u | x(1:T)

v , a(0:T−1)
c). (5)

To simplify notation, we denote a
(0)
c as a dummy ac-

tion that initializes the environment. Note that the
conditionals could be evaluated on an arbitrary sub-
set of features since the agent may acquire different
features for different instances. The conditionals es-
sentially capture dependencies between the subset of
features and across time steps.

One way to model the conditional in (5) is to exploit
its sequential nature and factorize it by

p(x(1:T)
u | x(1:T)

v , a(0:T−1)
c)

=
T∏

t=1

p(x(t)
u | x(1:t−1)

u , x(1:t)
v , a(0:t−1)

c).
(6)

Towards Cost Sensitive Decision Making

(a) Sequential Formulation (b) Set Formulation

Figure 1: Graphical model of a 3-step trajectory, with
dashed arrows for inference and solid arrows for gen-
eration.

A sequential latent variable z(t) can be introduced to
simplify the model as in many sequential VAEs (Chung
et al., 2015; Igl et al., 2018; Zhu et al., 2020; Yin et al.,
2020). Please see Fig. 1(a) for an illustration. How-
ever, the sequential formulation has several drawbacks:
First, the latent variable is updated sequentially, which
means the latent only depends on previous time steps,
therefore the training signals coming from later time
steps cannot be leveraged. Second, due to the limita-
tion of recurrent models, the previous time steps might
not have significant influence at the current time step,
especially when the episode is long. Third, in order to
make a prediction at a distant time step, the model
has to unroll the latent multiple times, which could
make the error accumulated and result in erroneous
predictions.

In order to overcome those drawbacks, we draw in-
spiration from set modeling (Bender et al., 2020; Li
et al., 2020b; Li and Oliva, 2021b; Kim et al., 2021;
Biloš and Günnemann, 2021) and Transformer (Shan
et al., 2021; Fang et al., 2021; Petrovich et al., 2021)
literature and formulate our generative modeling task
in (5) as a conditional set generation problem. Specif-
ically, we concatenate the time index with the cor-
responding features and actions as a tuple and then
the sequence becomes a permutation invariant set

{(t, x(t)
v , x

(t)
u , a(t−1))}Tt=1. We can reformulate (5) as

p({x(t)
u }Tt=1 | {(t, x(t)

v , a(t−1)
c)}Tt=1) ≡ p(xu | axv), (7)

where we denote xu := {x(t)
u }Tt=1 and axv :=

{(t, x(t)
v , a

(t−1)
c)}Tt=1 for notation simplicity. Our Par-

tially Observed Set models for Sequences (POSS) pre-
cisely overcomes the shortcomings of the aforemen-
tioned sequential generative models. Based on the
set formulation, we can now draw samples at arbi-
trary time points without having to rolling out the se-
quence step-by-step. During training, later time steps
can propagate gradients to early ones and even dis-
tant time points can influence each other. Please see
Fig. 1(b) for an illustration.

To learn the conditional distribution over sets, we em-
ploy De Finetti’s theorem (Diaconis and Freedman,

1980; Kerns and Székely, 2006; Edwards and Storkey,
2017; Li and Oliva, 2021b) and introduce a latent vari-
able z. Given the latent variable, the conditionals can
be decomposed:

p(xu | axv) =
∫ ∏T

t=1 p(x
(t)
u | z, t, x(t)

v , a
(t−1)
c)p(z | axv)dz.

(8)
However, optimizing (8) is still intractable due to the
high dimensional integration over z. Therefore, we
propose to utilize a variational approximation and op-
timize a lower bound:

log p(xu | axv) ≥
T∑

t=1

Eq(z|ax) log p(x
(t)
u | z, t, x(t)

v , a(t−1)
c)

−DKL(q(z | ax)∥p(z | axv)),
(9)

where ax denotes the set {(t, x(t)
u , x

(t)
v , a

(t−1)
c)}Tt=1,

which includes all of the features in x(t). q(z | ax)
and p(z | axv) are variational posterior and prior re-
spectively, and they are permutation invariant w.r.t.

the conditioning set inputs. p(x
(t)
u | z, t, x(t)

v , a
(t−1)
c)

is the decoder distribution, which could be shared for
each time step t. Note that different from typical VAE
models, the decoder operates over arbitrary subset of
features. That is, the decoder takes in a subset of
observed features along with other conditional infor-
mation and outputs the distribution for the remaining
subset of unobserved features. Please see Appendix A
for detailed derivations and model illustration.

To deal with the arbitrary dimensionality for feature

subsets x
(t)
u and x

(t)
v , we impute the missing features

with zeros and introduce a binary mask to indicate
whether the corresponding dimensions are observed or

not. That is, for the prior and the decoder, x
(t)
v is

represented as the concatenation of a d-dimensional
features and a d-dimensional binary mask, where the
missing features are replaced by zeros; while for the

posterior, we combine x
(t)
u and x

(t)
v and regard all fea-

tures as observed.

Given the complexity of set based inputs and arbitrary
dimensionality of observed features, modeling the pos-
terior and prior using a simple distribution family, such
as Gaussian, may not be optimal. Therefore, we pro-
pose to use normalizing flows for both prior and poste-
rior distributions. Following the best practice in nor-
malizing flow literature (Kingma et al., 2016; Durkan
et al., 2019a), we model the posterior using inverse
autoregressive flow for its fast sampling speed. The
prior is modeled using a coupling flow with spline net-
works. The base distribution for both distributions
are Gaussian conditioned on their corresponding set
representations. However, the ELBO in (9) is now not
analytically available due to normalizing flow based
posterior and prior distributions. We instead using

Yang Li, Junier B. Oliva

a Monte Carlo estimation by sampling multiple (M)
latent zm from the posterior:

1

M

T∑
t=1

M∑
m=1

[
log p(x(t)

u | zm, t, x(t)
v , a(t−1)

c)

− log q(zm | ax) + log p(zm | axv)

]
.

(10)
During training, we assume access to both the ob-

served features x
(t)
v and the unobserved features x

(t)
u .

Therefore, we can directly optimize the ELBO in (10).
During sampling, given a set of observed features

{x(t)
v }Tt=1 and the corresponding actions {a(t−1)

c }Tt=1,
we can impute the unobserved features at any time
steps, even at time steps beyond T .

3.2 Belief State Estimation

In order to solve the aforementioned AA-POMDP, our
agent will need to determine an optimal acquisition
plan and an optimal task action sequence based solely
on the partially observed information. Fortunately,
the sequential generative model can impute the miss-
ing features and thus estimate the belief about the
underlying state.

At any specific time step h, suppose the agent has exe-

cuted task actions a
(<h)
c ≡ {a(i−1)

c }hi=1 resulting in the
underlying state s(h), the agent has access to the ob-

servation history o(<h) ≡ {x(i)
v }h−1

i=1
1. The acquisition

sub-policy will begin with x
(h)
v = ∅. In the sequen-

tial setting x
(h)
v shall be updated with each acquisi-

tion sub-step (with the acquired feature values from
state s(h)); in the batch acquisition setting, the ob-

servation x
(h)
v is updated only once after all specified

acquisitions are made. Given the available informa-
tion, we utilize the sequential generative POSS model
(§3.1) to predict the unobserved features for state s(h),

i.e., x
(h)
u . We first sample a latent code from the prior

p(z | {(i, x(i)
v , a

(i−1)
c)}hi=1), then pass the latent code

through the decoder only for state s(h) to obtain the

distribution p(x
(h)
u | z, t, x(h)

v , a
(h−1)
c), to sample the

unobserved features x
(h)
u .

The distribution over the unobserved features may
have multiple modes, therefore, using one sample may
not accurately represent the beliefs. We instead per-
form multiple imputations by sampling multiple la-
tent codes. The belief at time step h can then be
represented as a set of imputed features, i.e., b(h) =

1At time i − 1, the agent might have taken a feature

acquisition action, so a
(i−1)
c might be undefined. For no-

tation simplicity, here a
(i−1)
c actually means the last task

action the agent have taken before time i− 1.

(a) Batch Acquisition (b) Sequential Acquisition

Figure 2: Illustrations of the batch acquisition process
and the sequential acquisition process. The dashed
lines indicate the update of the belief. The red arrows
represent the hierarchical policy execution processes.

{(x(h)
v , x̂

(h)
u)n}Nn=1, where N is the number of samples

of the unobserved features.

3.3 Cost Sensitive Reinforcement Learning

Given the sequential transition model and the belief
estimates, we now build the RL agent to solve the
AA-POMDP. We decompose the agent into two poli-
cies, the feature acquisition policy πf and the task
policy πc, which are then combined in a hierarchical
fashion. Both policies take the belief estimation set
b(h) as inputs and derive the action distribution in a
permutation invariant manner.

At any underlying state s(h), we first run the feature
acquisition policy πf to collect information. The fea-
tures are acquired either in a batch or one-by-one de-
pending on the acquisition setting. In the batch ac-
quisition setting, the acquisition policy is ran once to
determine the set of features to be acquired, while in
the sequential acquisition setting, the acquisition pol-
icy is run multiple times sequentially. The belief esti-
mations are updated after acquiring the features. The
task policy πc is then executed based on the updated
belief using the acquired features (see Fig. 2 for illus-
trations).

Our goal in the AA-POMDP is to maximize the task
reward while minimizing the feature acquisition cost.
In the hierarchical setting, we decompose the goal as
well. The high-level task policy aims at achieving as
high task reward as possible based on the acquired
features, while the low-level acquisition policy aims
at providing sufficient information and minimizing the
acquisition cost. Therefore, the reward for the task

policy at time step h is defined as r
(h)
c = R(s(h), a(h)c),

which is the same as the original task reward. For the
acquisition policy, in addition to the acquisition cost,
we desire the acquired features to support the task
policy. First, the task policy should produce confident
action choice based on the acquired features. There-

Towards Cost Sensitive Decision Making

fore, we use the negative entropy of the task policy as
a reward to the acquisition policy, i.e., −Ent(πc(b

(h))).
Second, the acquired features as inputs to the task pol-
icy should lead to a high value estimation indicating
high long-term return of the task policy. Therefore, we
employ the task value estimation, Vc(b

(h)), as an ad-
ditional reward. Third, the acquired features should
be indicative of the unobserved features so that the
belief estimation is accurate. We hence use the impu-
tation accuracy as one of the acquisition rewards, i.e.,

Acc(x
(h)
u , x̂

(h)
u). For discrete features, the accuracy is

evaluated as the average exact mach accuracy of the N
belief samples. For continuous features, the accuracy
is evaluated as the average negative MSE of the N be-
lief samples. In total, the reward for the acquisition
policy at time step h is defined as

r
(h)
f =− C(s(h), a(h)f)− ωe · Ent(πc(b

(h)))

+ ωv · Vc(b
(h)) + ωa ·Acc(x(h)

u , x̂(h)
u),

(11)

where ωe, ωv and ωa are hyperparameters for weight-
ing the corresponding terms. In the batch acquisi-

tion setting, all features in x
(h)
v are acquired simul-

taneously, thus the rewards are received immediately
after the acquisition. In the sequential acquisition set-
ting, however, each acquisition action will only receive
its cost as immediate reward, while the other reward
terms are granted only when the agent selects the ter-
mination action ϕ.

3.4 Implementation

In this section, we describe several important imple-
mentation details. We use PPO (Schulman et al.,
2017) for both the acquisition policy and the task pol-
icy. The actor and the critic networks are implemented
as an ensemble over the belief sets, where the action
probabilities and values are averaged over the belief set
elements. The sequential generative model is imple-
mented as a VAE with normalizing flow based poste-
rior and prior, of which the base distribution are Gaus-
sian conditioned on the corresponding sets. We use Set
Transformers (Lee et al., 2019) to extract the set rep-
resentations. The time indexes are embedded using
sinusoidal functions as in other Transformer models
(Vaswani et al., 2017). For continuous actions and fea-
tures, we directly concatenate them. For discrete ac-
tions and features, we learn their embeddings jointly.
During training, we first train the sequential gener-
ative model with trajectories obtained by randomly
acquired features and random task actions; then we
pre-train the task policy with fixed generative model
and random acquisitions; finally we train the genera-
tive model and both policies jointly.

4 Related Works

Active Feature Acquisition Active feature acqui-
sition involves acquiring features at a cost to predict
a target variable. Prior works (Zubek and Dietterich,
2002; Rückstieß et al., 2011; Shim et al., 2018; Yoon
et al., 2019; Chang et al., 2019) formulate AFA as an
MDP and develop various RL approaches to optimize
the acquisition plan. Li and Oliva (2021a) further pro-
pose a model-based solution by leveraging ACFlow (Li
et al., 2020a) to model the AFA dynamics. Zannone
et al. (2019) propose to learn the acquisition policy us-
ing augmented data sampled from a pretrained Partial
VAE (Ma et al., 2019). He et al. (2012) and He et al.
(2016) instead employ the imitation learning approach
guided by a greedy reference policy to learn the ac-
quisition policy. In addition to RL based approaches,
Ling et al. (2004), Chai et al. (2004) and Nan et al.
(2014) propose decision tree, naive Bayes, and maxi-
mum margin based classifiers, respectively, to jointly
minimize the misclassification cost and feature acqui-
sition cost. Ma et al. (2019), Gong et al. (2019) and Li
and Oliva (2020) propose to acquire features greedily
using mutual information as the estimated utility. Un-
like previous AFA works, our setting does not contain
a specific target variable; instead, we focus on opti-
mizing the cumulative reward of MDP. Furthermore,
our agent learns the feature acquisition policy and the
task policy simultaneously.

POMDP and Temporal Dynamics Modeling
Learning in POMDPs without an environment model
is more challenging than in MDPs (Papadimitriou and
Tsitsiklis, 1987). Many works focuse on planning in
POMDPs with known environment model (Littman
et al., 1995; Hauskrecht, 2000; Pineau et al., 2003; Ross
et al., 2007a, 2008; Kurniawati et al., 2008; Silver and
Veness, 2010; Somani et al., 2013; Bai et al., 2014;
Sunberg and Kochenderfer, 2018). Bayes-Adaptive
POMDP (Ross et al., 2007b, 2011; Katt et al., 2018)
instead learn the environment model in a Bayesian
fashion by assuming access to an informative prior over
the observation model and plan using posterior be-
lief distributions over states. Instead of planing with
an environment model, Deep Recurrent Q-Networks
(DRQN) (Hausknecht and Stone, 2015) and its vari-
ants (Zhu et al., 2017) parameterize the value function
with a recurrent neural network that takes in the ac-
tion and observation history. Deep Variational Rein-
forcement Learning (DVRL) (Igl et al., 2018) uses the
action and observations history to learns a VAE model,
where the latent variable is interpreted as the belief.
TD-VAE (Gregor et al., 2018) builds a VAE model
to predict the belief state for time points separated
by random intervals. Their jumpy state modeling en-
ables the prediction of belief at arbitrary future time

Yang Li, Junier B. Oliva

without the step-by-step rollout.

Outside of POMDP literature, there is a number of
works that consider jumps when modeling temporal
dynamics. Koutnik et al. (2014) and Chung et al.
(2016) equip recurrent neural network with skip con-
nections, which makes it easier to bridge distant time
steps. Buesing et al. (2018) temporally sub-sample
the data with fixed jump interval and build models on
the subsampled data. One of the limitations of the
subsampling is that the model cannot leverage infor-
mation contained in the skipped observations. Neitz
et al. (2018) and Jayaraman et al. (2018) predict se-
quences with variable time-skips, by choosing the most
predictable future frames as target.

Due to the feature acquisition, our setting makes the
agent observe only a subset of features, thus following
a POMDP, but with the difference that the observation
is controlled by the agent itself rather than the envi-
ronment. In order to infer the belief and assist policy
learning, we develop a VAE model to impute the miss-
ing features. In our model, the action and observation
history together with their timestamps are treated as a
permutation invariant set. The set perspective enables
our model to directly predict the belief at arbitrary
time step without resorting to the stepwise rollout.

Cost Sensitive Reinforcement Learning Previ-
ous works have considered learning agent to decide
what and when to observe when the observation has a
cost. Zubek and Dietterich (2000) introduce even-odd
POMDP, assuming full observability every other step.
They then convert it into an equivalent MDP, whose
value function captures the sensing costs of the orig-
inal POMDP. Zubek et al. (2004) propose the Cost
Observable MDP (COMDP), where the actions are
partitioned into state-changing actions and pure ob-
servation actions. The reward function is modified to
incorporate observation costs. The COMDP is concep-
tually similar to our AA-POMDP, but their algorithm
focuses solely on tabular environments and the batch
acquisition scenario. Yin et al. (2020) study the batch
acquisition scenario in continuous-state POMDP, us-
ing sequential VAE model to extract representation
form the action and observation history, which is then
used to guide the RL policy. Bellinger et al. (2020) pro-
pose to learn a policy and a state estimator in parallel,
allowing the agent to either pays the cost for full ob-
servation or rely on the estimated state for free. Nam
et al. (2021) introduce Action-Contingent Noiselessly
Observable MDPs (ACNO-MDPs), where the agent
can fully observe the state at a cost or act based on
past observations. Bellinger et al. (2021) consider a
similar intermittently observed scenario and provide a
in-depth qualitative analysis of agents’ measurement
patterns. In contrast, our work generalizes ACNO-

MDPs by allowing agents to observe an arbitrary sub-
set of features in both batch and sequential acquisition
scenarios.

5 Experiments

We evaluate batch acquisition and sequential acqui-
sition scenarios on several benchmark environments.
For context, we provide the rewards stemming from a
task policy on fully observed states. Additionally,
we also tested a typical POMDP setting where a ran-
dom subset of features were observed (random*). We
vary the cost per acquisition to demonstrate the trade-
off between acquisition cost and task reward. We eval-
uate both the batch acquisition setting and sequential
acquisition setting with our proposed cost-sensitive hi-
erarchical PPO (CS-HPPO) (§ 3.3), where the belief
state is estimated by POSS (§ 3.1). In order to ver-
ify the benefits of our belief estimation, we compare
to the variants that replace belief with the observa-
tion history, which is a typical practice in POMDP
literature (McCallum, 1993), i.e., PPO agents select
an action at each step based on either the belief es-
timation (belief) or the observation history (hist).
Inspired by (Nam et al., 2021), we compare our batch
acquisition models to a setting where the action space
is the Cartesian product of task control actions and
feature acquisition actions (joint*). In this setting,
the acquisition action controls what will be observed in
next state. For sequential acquisition setting, we also
compare to a setting that concatenates feature acqui-
sition actions and task control actions into a larger
action space (concat*). We attempted to evaluate a
generic POMDP-RL algorithm, DRQN (Hausknecht
and Stone, 2015), in the setting of concatenated ac-
tion space as well, but found that it fails to learn ef-
fective acquisition policy. Please find more details in
Appendix D.

Partially Observed CartPole First, we evaluate
on a modified OpenAI gym CartPole-v1 environment,
where the features of a state can be dynamically ac-
quired with a cost. In the batch acquisition setting,
the action space contains 16 acquisition actions and 2
task control actions, while in the sequential acquisition
setting, the acquisition action spaces contains the four
measurable features plus a termination action.

Sepsis Simulator This environment simulates a
Sepsis patient and the effects of several common treat-
ments (Oberst and Sontag, 2019). The task is to ap-
ply three treatment actions, antibiotic, ventilation and
vasopressors, to the ICU patients. Therefore, the task
action space is the powerset of the three treatments.
Each patient has eight features including one indica-
tor of the patent’s diabetes condition, three indicators

Towards Cost Sensitive Decision Making

(a) batch (b) sequential

Figure 3: CartPole results

(a) batch (b) sequential

Figure 4: Sepsis results.

of the current treatment state and four measurable
states over heart rate, sysBP rate, percoxyg state and
glucose level. We only allow the agent to acquire the
four measurable states and regard the rest of features
as given. Therefore, in the batch acquisition setting,
the acquisition action space contains the powerset of
the four measurable features, i.e., 16 acquisition ac-
tions in total; in the sequential acquisition setting, the
acquisition action space contains the four measurable
features plus a termination action. We limit the max-
imum treatment steps to 30. The patient will be dis-
charged if his/her measurement states all return to
normal values, which gives the agent a 1.0 reward. An
episode will also terminate upon mortality with a re-
ward −1.0.

Results Figure 3 and 4 demonstrate the results for
CartPole and Sepsis respectively. We run each acqui-
sition setting with three acquisition costs and three
random seeds. For each acquisition cost, we plot
the average task reward for the original control task
against the average number of acquired features for
each task control action. We can see that in every
acquisition setting (either batch acquisition, sequen-
tial acquisition, random acquisition, acquisition in con-
catenated action space, or acquisition in joint action
space), the agent equipped with the belief estimation
performs much better than the ones using observa-
tion history. During training, we also observed the
belief estimation help stabilize the training and con-
verges to the optimal policy quickly. Please see Fig. 5
for an example of the training curve. For agents that
have access to the belief estimation, our proposed CS-
HPPO almost always outperforms the non-hierarchical
policies in both batch acquisition and sequential ac-
quisition settings. One exception is the batch ac-
quisition setting in CartPole environment, where ac-

Table 1: Prediction accuracy for in-distribution (ID)
and oud-of-distribution (OOD) time steps.

ID OOD

Seq-PO-VAE 93.32 75.12
POSS 94.49 78.54

quisition in the joint action space performs better.

Figure 5: Training curve.

We believe it is due to
the relatively small ac-
tion space (only 32 ac-
tions in the joint action
space) so that the non-
hierarchical policy is
good enough to explore
the space while the
hierarchical one intro-
duces additional com-
plexity.

Ablation Studies As an ablation study, we com-
pare the prediction accuracy of our proposed sequen-
tial generative model (POSS) to the Seq-PO-VAE pro-
posed in (Yin et al., 2020). For a fair comparison,
we augment Seq-PO-VAE with normalizing flow based
prior and posterior distributions as in POSS. We train
both models on 1000 trajectories collected from Sepsis
simulator with random acquisition policy and random
task policy and test on the held-out 100 trajectories.
To evaluate the generalizability, we train models using
only observations from the first 15 trajectory steps and
test the prediction accuracy on both in-distribution
(ID) time steps (≤ 15) and out-of-distribution (OOD)
time steps (> 15). Table 1 shows that POSS outper-
forms Seq-PO-VAE on both ID and OOD time steps,
verifying the superiority of our proposed set based se-
quence modeling approach. Please see Appendix D.5
for additional ablation studies on the intrinsic rewards.

6 Conclusion

In this work, we study the sequential decision making
problems with feature acquisition costs. We present
a special MDP named AA-POMDP and identify two
types of the feature acquisition settings, batch acqui-
sition and sequential acquisition, which are applicable
under different conditions. To help solve the partially
observed problem, we develop a sequential generative
model to capture the state transitions multiple im-
putation of the unobserved features. The agent then
takes a set of imputed observations as the belief esti-
mation. In order to balance the acquisition cost with
the task reward, we propose a hierarchical formula-
tion of the policy, where the low-level policy is respon-

Yang Li, Junier B. Oliva

sible for acquiring features and the high-level policy
maximizes the task reward based on the acquired fea-
ture subsets. The entire framework, including both
the generative model and two levels of the policies, is
trained jointly. We conduct extensive experiments and
demonstrate state-of-the-art performance.

Acknowledgements

This research was partly funded by NSF grants
IIS2133595, DMS2324394, and by NIH grants
1R01AA02687901A1, 1OT2OD032581-02-321,
1OT2OD038045-01.

References

Bai, H., Hsu, D., and Lee, W. S. (2014). Integrated
perception and planning in the continuous space:
A pomdp approach. The International Journal of
Robotics Research, 33(9):1288–1302.

Bellinger, C., Coles, R., Crowley, M., and Tamblyn,
I. (2020). Active measure reinforcement learning
for observation cost minimization. arXiv preprint
arXiv:2005.12697.

Bellinger, C., Drozdyuk, A., Crowley, M., and Tam-
blyn, I. (2021). Scientific discovery and the
cost of measurement–balancing information and
cost in reinforcement learning. arXiv preprint
arXiv:2112.07535.

Bender, C., O’Connor, K., Li, Y., Garcia, J., Oliva,
J., and Zaheer, M. (2020). Exchangeable gener-
ative models with flow scans. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 10053–10060.

Biloš, M. and Günnemann, S. (2021). Scalable nor-
malizing flows for permutation invariant densities.
In International Conference on Machine Learning,
pages 957–967. PMLR.

Buesing, L., Weber, T., Racaniere, S., Eslami, S.,
Rezende, D., Reichert, D. P., Viola, F., Besse, F.,
Gregor, K., Hassabis, D., et al. (2018). Learning
and querying fast generative models for reinforce-
ment learning. arXiv preprint arXiv:1802.03006.

Chai, X., Deng, L., Yang, Q., and Ling, C. X.
(2004). Test-cost sensitive naive bayes classification.
In Fourth IEEE International Conference on Data
Mining (ICDM’04), pages 51–58. IEEE.

Chang, C.-H., Mai, M., and Goldenberg, A. (2019).
Dynamic measurement scheduling for event fore-
casting using deep rl. In International Conference
on Machine Learning, pages 951–960. PMLR.

Chung, J., Ahn, S., and Bengio, Y. (2016). Hierar-
chical multiscale recurrent neural networks. arXiv
preprint arXiv:1609.01704.

Chung, J., Kastner, K., Dinh, L., Goel, K., Courville,
A. C., and Bengio, Y. (2015). A recurrent latent
variable model for sequential data. Advances in neu-
ral information processing systems, 28.

Coronato, A., Naeem, M., De Pietro, G., and Paragli-
ola, G. (2020). Reinforcement learning for intelligent
healthcare applications: A survey. Artificial Intelli-
gence in Medicine, 109:101964.

Diaconis, P. and Freedman, D. (1980). Finite ex-
changeable sequences. The Annals of Probability,
pages 745–764.

Durkan, C., Bekasov, A., Murray, I., and Papamakar-
ios, G. (2019a). Neural spline flows. Advances in
neural information processing systems, 32.

Durkan, C., Bekasov, A., Murray, I., and Papa-
makarios, G. (2019b). Neural spline flows. ArXiv,
abs/1906.04032.

Edwards, H. and Storkey, A. (2017). Towards a neural
statistician. In International Conference on Learn-
ing Representations.

Fang, L., Zeng, T., Liu, C., Bo, L., Dong, W., and
Chen, C. (2021). Transformer-based conditional
variational autoencoder for controllable story gen-
eration. arXiv preprint arXiv:2101.00828.

Finn, C., Levine, S., and Abbeel, P. (2016). Guided
cost learning: Deep inverse optimal control via pol-
icy optimization. In International conference on ma-
chine learning, pages 49–58. PMLR.

Gong, W., Tschiatschek, S., Nowozin, S., Turner,
R. E., Hernández-Lobato, J. M., and Zhang, C.
(2019). Icebreaker: Element-wise efficient informa-
tion acquisition with a bayesian deep latent gaussian
model. In Advances in Neural Information Process-
ing Systems, pages 14820–14831.

Gregor, K., Papamakarios, G., Besse, F., Buesing,
L., and Weber, T. (2018). Temporal differ-
ence variational auto-encoder. arXiv preprint
arXiv:1806.03107.

Haarnoja, T., Pong, V., Zhou, A., Dalal, M., Abbeel,
P., and Levine, S. (2018). Composable deep rein-
forcement learning for robotic manipulation. In 2018
IEEE international conference on robotics and au-
tomation (ICRA), pages 6244–6251. IEEE.

Hausknecht, M. and Stone, P. (2015). Deep recurrent
q-learning for partially observable mdps. In 2015
aaai fall symposium series.

Hauskrecht, M. (2000). Value-function approximations
for partially observable markov decision processes.
Journal of artificial intelligence research, 13:33–94.

He, H., Eisner, J., and Daume, H. (2012). Imitation
learning by coaching. In Advances in Neural Infor-
mation Processing Systems, pages 3149–3157.

Towards Cost Sensitive Decision Making

He, H., Mineiro, P., and Karampatziakis, N. (2016).
Active information acquisition. arXiv preprint
arXiv:1602.02181.

Igl, M., Zintgraf, L., Le, T. A., Wood, F., and White-
son, S. (2018). Deep variational reinforcement learn-
ing for pomdps. In International Conference on Ma-
chine Learning, pages 2117–2126. PMLR.

Jayaraman, D., Ebert, F., Efros, A. A., and Levine,
S. (2018). Time-agnostic prediction: Predict-
ing predictable video frames. arXiv preprint
arXiv:1808.07784.

Katt, S., Oliehoek, F., and Amato, C. (2018). Bayesian
reinforcement learning in factored pomdps. arXiv
preprint arXiv:1811.05612.

Kerns, G. J. and Székely, G. J. (2006). Definetti’s
theorem for abstract finite exchangeable sequences.
Journal of Theoretical Probability, 19(3):589–608.

Kim, J., Yoo, J., Lee, J., and Hong, S. (2021). Set-
vae: Learning hierarchical composition for genera-
tive modeling of set-structured data. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 15059–15068.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen,
X., Sutskever, I., and Welling, M. (2016). Im-
proved variational inference with inverse autoregres-
sive flow. In Advances in neural information process-
ing systems, pages 4743–4751.

Koutnik, J., Greff, K., Gomez, F., and Schmidhu-
ber, J. (2014). A clockwork rnn. In International
Conference on Machine Learning, pages 1863–1871.
PMLR.

Kurniawati, H., Hsu, D., and Lee, W. S. (2008). Sar-
sop: Efficient point-based pomdp planning by ap-
proximating optimally reachable belief spaces. In
Robotics: Science and systems, volume 2008. Cite-
seer.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S.,
and Teh, Y. W. (2019). Set transformer: A frame-
work for attention-based permutation-invariant neu-
ral networks. In Proceedings of the 36th Inter-
national Conference on Machine Learning, pages
3744–3753.

Levine, S., Finn, C., Darrell, T., and Abbeel, P.
(2016). End-to-end training of deep visuomotor poli-
cies. The Journal of Machine Learning Research,
17(1):1334–1373.

Li, Y., Akbar, S., and Oliva, J. (2020a). ACFlow:
Flow models for arbitrary conditional likelihoods.
In Proceedings of the 37th International Conference
on Machine Learning.

Li, Y. and Oliva, J. (2021a). Active feature acquisition
with generative surrogate models. In International

Conference on Machine Learning, pages 6450–6459.
PMLR.

Li, Y. and Oliva, J. (2021b). Partially observed ex-
changeable modeling. In International Conference
on Machine Learning, pages 6460–6470. PMLR.

Li, Y. and Oliva, J. B. (2020). Dynamic feature ac-
quisition with arbitrary conditional flows. arXiv
preprint arXiv:2006.07701.

Li, Y., Yi, H., Bender, C., Shan, S., and Oliva, J. B.
(2020b). Exchangeable neural ode for set model-
ing. Advances in Neural Information Processing Sys-
tems, 33.

Ling, C. X., Yang, Q., Wang, J., and Zhang, S. (2004).
Decision trees with minimal costs. In Proceedings of
the twenty-first international conference on Machine
learning, page 69.

Ling, Y., Hasan, S. A., Datla, V., Qadir, A., Lee, K.,
Liu, J., and Farri, O. (2017). Learning to diagnose:
assimilating clinical narratives using deep reinforce-
ment learning. In Proceedings of the Eighth Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 895–905.

Littman, M. L., Cassandra, A. R., and Kaelbling, L. P.
(1995). Learning policies for partially observable en-
vironments: Scaling up. In Machine Learning Pro-
ceedings 1995, pages 362–370. Elsevier.

Ma, C., Tschiatschek, S., Palla, K., Hernandez-
Lobato, J. M., Nowozin, S., and Zhang, C. (2019).
Eddi: Efficient dynamic discovery of high-value in-
formation with partial vae. In International Con-
ference on Machine Learning, pages 4234–4243.
PMLR.

McCallum, A. (1993). Overcoming incomplete percep-
tion with utile distinction memory. In International
Conference on Machine Learning.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,
Veness, J., Bellemare, M. G., Graves, A., Ried-
miller, M., Fidjeland, A. K., Ostrovski, G., et al.
(2015). Human-level control through deep reinforce-
ment learning. nature, 518(7540):529–533.

Monahan, G. E. (1982). State of the art—a survey of
partially observable markov decision processes: the-
ory, models, and algorithms. Management science,
28(1):1–16.

Nam, H. A., Fleming, S., and Brunskill, E. (2021).
Reinforcement learning with state observation costs
in action-contingent noiselessly observable markov
decision processes. Advances in Neural Information
Processing Systems, 34:15650–15666.

Nan, F., Wang, J., Trapeznikov, K., and Saligrama,
V. (2014). Fast margin-based cost-sensitive classifi-
cation. In 2014 IEEE International Conference on

Yang Li, Junier B. Oliva

Acoustics, Speech and Signal Processing (ICASSP),
pages 2952–2956. IEEE.

Neitz, A., Parascandolo, G., Bauer, S., and Schölkopf,
B. (2018). Adaptive skip intervals: Temporal ab-
straction for recurrent dynamical models. Advances
in Neural Information Processing Systems, 31.

Niroui, F., Zhang, K., Kashino, Z., and Nejat, G.
(2019). Deep reinforcement learning robot for search
and rescue applications: Exploration in unknown
cluttered environments. IEEE Robotics and Au-
tomation Letters, 4(2):610–617.

Oberst, M. and Sontag, D. (2019). Counterfactual off-
policy evaluation with gumbel-max structural causal
models. In International Conference on Machine
Learning, pages 4881–4890. PMLR.

Papadimitriou, C. H. and Tsitsiklis, J. N. (1987). The
complexity of markov decision processes. Mathemat-
ics of operations research, 12(3):441–450.

Peng, Y.-S., Tang, K.-F., Lin, H.-T., and Chang, E.
(2018). Refuel: Exploring sparse features in deep re-
inforcement learning for fast disease diagnosis. Ad-
vances in neural information processing systems, 31.

Petrovich, M., Black, M. J., and Varol, G. (2021).
Action-conditioned 3d human motion synthesis
with transformer vae. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 10985–10995.

Pineau, J., Gordon, G., Thrun, S., et al. (2003). Point-
based value iteration: An anytime algorithm for
pomdps. In IJCAI, volume 3, pages 1025–1032.
Citeseer.

Polydoros, A. S. and Nalpantidis, L. (2017). Survey of
model-based reinforcement learning: Applications
on robotics. Journal of Intelligent & Robotic Sys-
tems, 86(2):153–173.

Ross, S., Chaib-Draa, B., et al. (2007a). Aems: An
anytime online search algorithm for approximate
policy refinement in large pomdps. In IJCAI, pages
2592–2598.

Ross, S., Chaib-draa, B., and Pineau, J. (2007b).
Bayes-adaptive pomdps. Advances in neural infor-
mation processing systems, 20.

Ross, S., Pineau, J., Chaib-draa, B., and Kreitmann,
P. (2011). A bayesian approach for learning and
planning in partially observable markov decision
processes. Journal of Machine Learning Research,
12(5).

Ross, S., Pineau, J., Paquet, S., and Chaib-Draa, B.
(2008). Online planning algorithms for pomdps.
Journal of Artificial Intelligence Research, 32:663–
704.

Rückstieß, T., Osendorfer, C., and van der Smagt, P.
(2011). Sequential feature selection for classifica-
tion. In Australasian Joint Conference on Artificial
Intelligence, pages 132–141. Springer.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,
and Klimov, O. (2017). Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347.

Shan, S., Li, Y., and Oliva, J. B. (2021). Nrtsi: Non-
recurrent time series imputation. arXiv preprint
arXiv:2102.03340.

Shim, H., Hwang, S. J., and Yang, E. (2018). Joint
active feature acquisition and classification with
variable-size set encoding. In Advances in neural
information processing systems, pages 1368–1378.

Silver, D., Huang, A., Maddison, C. J., Guez, A.,
Sifre, L., Van Den Driessche, G., Schrittwieser,
J., Antonoglou, I., Panneershelvam, V., Lanctot,
M., et al. (2016). Mastering the game of go with
deep neural networks and tree search. nature,
529(7587):484–489.

Silver, D., Schrittwieser, J., Simonyan, K.,
Antonoglou, I., Huang, A., Guez, A., Hubert,
T., Baker, L., Lai, M., Bolton, A., et al. (2017).
Mastering the game of go without human knowl-
edge. nature, 550(7676):354–359.

Silver, D. and Veness, J. (2010). Monte-carlo planning
in large pomdps. Advances in neural information
processing systems, 23.

Somani, A., Ye, N., Hsu, D., and Lee, W. S. (2013).
Despot: Online pomdp planning with regulariza-
tion. Advances in neural information processing sys-
tems, 26.

Spaan, M. T. (2012). Partially observable markov de-
cision processes. In Reinforcement Learning, pages
387–414. Springer.

Sunberg, Z. N. and Kochenderfer, M. J. (2018). Online
algorithms for pomdps with continuous state, ac-
tion, and observation spaces. In Twenty-Eighth In-
ternational Conference on Automated Planning and
Scheduling.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,
I. (2017). Attention is all you need. arXiv preprint
arXiv:1706.03762.

Yin, H., Li, Y., Pan, S. J., Zhang, C., and Tschi-
atschek, S. (2020). Reinforcement learning with
efficient active feature acquisition. arXiv preprint
arXiv:2011.00825.

Yoon, J., Jordon, J., and Schaar, M. (2019). Asac:
Active sensing using actor-critic models. In Machine
Learning for Healthcare Conference, pages 451–473.
PMLR.

Towards Cost Sensitive Decision Making

Yu, C., Liu, J., Nemati, S., and Yin, G. (2021). Re-
inforcement learning in healthcare: A survey. ACM
Computing Surveys (CSUR), 55(1):1–36.

Zannone, S., Hernandez Lobato, J. M., Zhang, C., and
Palla, K. (2019). Odin: Optimal discovery of high-
value information using model-based deep reinforce-
ment learning. In Real-world Sequential Decision
Making Workshop, ICML.

Zhu, P., Li, X., Poupart, P., and Miao, G. (2017). On
improving deep reinforcement learning for pomdps.
arXiv preprint arXiv:1704.07978.

Zhu, Y., Min, M. R., Kadav, A., and Graf, H. P.
(2020). S3vae: Self-supervised sequential vae for
representation disentanglement and data genera-
tion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
6538–6547.

Zubek, V. B. and Dietterich, T. (2000). A pomdp
approximation algorithm that anticipates the need
to observe. In Pacific Rim International Conference
on Artificial Intelligence, pages 521–532. Springer.

Zubek, V. B. and Dietterich, T. G. (2002). Pruning
improves heuristic search for cost-sensitive learning.
In ICML.

Zubek, V. B., Dietterich, T. G., et al. (2004). Two
heuristics for solving pomdps having a delayed need
to observe.

Yang Li, Junier B. Oliva

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes] All code will be re-
leased once the paper is accepted.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes] All code will be released once
the paper is accepted.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

Towards Cost Sensitive Decision Making

A Partially Observed Set Models for
Sequences (POSS)

As discussed in Sec. 3.1, we formulate the partially ob-
served sequence modeling task (5) as a set modeling

task (7) for a set ax := {(t, x(t)
v , x

(t)
u , a

(t−1)
c)}Tt=1. Ac-

cording to De Finetti’s theorem, there exists a latent
code z such that the set elements are conditionally
independent conditioned on z. See derivation in equa-
tion A.1.

The equation (1) applies the De Finetti’s theorem

again. Since x
(t)
v contains a subset of features at time

step t, the same latent variable z that factors the set

element (t, x
(t)
v , x

(t)
u , a

(t−1)
c) conditionally independent

will also factor (t, x
(t)
v , a

(t−1)
c) conditionally indepen-

dent.

Divide both sides with

p(axv) := p({(t, x(t)
v , a(t−1)

c)}Tt=1),

we have

p(xu | axv)

=

∫ T∏
t=1

[
p(x(t)

u | t, x(t)
v , a(t−1)

c , z)
]
p(z | axv)dz.

(A.2)

To optimize A.2, we resort to the variational approach
and optimize a lower bound (9). The prior p(z | axv)
and posterior q(z | ax) are permutation invariant
w.r.t. their inputs axv and ax respectively. To ob-
tain accurate estimations of the prior and posterior,
we utilize normalizing flow based distributions where
the base distributions are parameterized as Gaussian
distributions with mean and variance derived from axv

and ax using Set Transformers. Due to the permu-
tation invariant architecture of Set transformer, the
Gaussian base distribution is permutation invariant;
and since the transformations are invertible, the ulti-
mate normalizing flow based distributions are permu-
tation invariant as well. Please see Fig. A.1 for an
illustration of our proposed POSS model.

B Motivating Examples of Sequential
vs Batch Acquisition Settings

To better illustrate the practical differences between
sequential and batch acquisition settings, we provide
several real-world application examples that highlight
when each approach is most appropriate.

In medical diagnosis and treatment scenarios, both ac-
quisition patterns have important use cases. Sequen-
tial acquisition is well-suited for non-emergency medi-
cal scenarios, where a doctor can order diagnostic tests

one after another, analyzing each result before deter-
mining the next test to perform. This approach allows
physicians to minimize unnecessary tests and their as-
sociated costs/risks by adapting their testing strategy
based on previously acquired information. However, in
emergency situations like trauma cases, batch acquisi-
tion becomes necessary - doctors must order multiple
tests (blood work, CT scans, X-rays) simultaneously
to gather critical information quickly for immediate
treatment decisions.

Geological exploration provides another illustrative ex-
ample of these different approaches. Sequential acqui-
sition is often employed during initial site exploration,
where geologists conduct preliminary surveys and then
strategically acquire additional data (seismic readings,
core samples) based on their findings. This sequential
strategy helps optimize resource allocation by focusing
detailed investigation on promising areas. In contrast,
offshore oil exploration often requires batch acquisi-
tion, where multiple types of data (seismic surveys,
gravity measurements) must be collected simultane-
ously across a large area. This batch approach is nec-
essary when the acquisition process itself may mod-
ify the environment or when environmental conditions
(like ocean currents) are rapidly changing.

In autonomous driving applications, both acquisition
patterns also find natural use cases. Sequential acqui-
sition can be appropriate during normal navigation,
where a vehicle can methodically process different sen-
sor inputs (camera, LIDAR, radar) one after another,
adjusting its acquisition strategy based on previously
processed data. However, batch acquisition becomes
critical in time-sensitive scenarios like highway merg-
ing or complex intersection navigation, where multiple
sensor inputs must be processed simultaneously to en-
able rapid decision-making for safe operation.

These examples demonstrate that sequential acquisi-
tion is most appropriate when the feature acquisition
process does not modify the underlying state and there
is sufficient time to acquire features iteratively. Batch
acquisition, on the other hand, becomes necessary in
time-critical situations, when the acquisition process
itself can alter the state, or when the state changes
too rapidly relative to the acquisition time to allow for
sequential sampling.

C Algorithm Details

C.1 Integration of POSS with PPO

Our algorithm combines a Partially Observed Set
model for Sequences (POSS) with Proximal Policy Op-
timization (PPO) in a hierarchical framework. At each
decision step h, the process proceeds as follows:

Yang Li, Junier B. Oliva

p(ax) = p({(t, x(t)
v , x(t)

u , a(t−1)
c)}Tt=1)

=

∫ T∏
t=1

[
p(t, x(t)

v , x(t)
u , a(t−1)

c | z)
]
p(z)dz

=

∫ T∏
t=1

[
p(x(t)

u | t, x(t)
v , a(t−1)

c , z)p(t, x(t)
v , a(t−1)

c | z)
]
p(z)dz

=

∫ T∏
t=1

[
p(x(t)

u | t, x(t)
v , a(t−1)

c , z)
] T∏
t=1

[
p(t, x(t)

v , a(t−1)
c | z)

]
p(z)dz

(1)
=

∫ T∏
t=1

[
p(x(t)

u | t, x(t)
v , a(t−1)

c , z)
]
p({(t, x(t)

v , a(t−1)
c)}Tt=1 | z)p(z)dz

=

∫ T∏
t=1

[
p(x(t)

u | t, x(t)
v , a(t−1)

c , z)
]
p(z | {(t, x(t)

v , a(t−1)
c)}Tt=1)p({(t, x(t)

v , a(t−1)
c)}Tt=1)dz

≡
∫ T∏

t=1

[
p(x(t)

u | t, x(t)
v , a(t−1)

c , z)
]
p(z | axv)p(axv)dz.

(A.1)

1. Belief State Sampling: Given the observa-

tion history o(<h) and action history a
(<h)
c , POSS

samples N different imputations of the unob-
served features to represent the belief state b(h) =

{(x(h)
v , x̂

(h)
u)n}Nn=1.

2. Feature Acquisition: The acquisition policy πf

takes the belief state b(h) as input and outputs
either:

• A set of features to acquire simultaneously
(batch setting)

• A sequence of features to acquire one by one
until termination (sequential setting)

3. Belief Update: After each acquisition (or batch
of acquisitions), POSS updates the belief state by
incorporating the newly acquired features.

4. Task Execution: The task policy πc takes the
updated belief state as input and selects the task

action a
(h)
c .

C.2 Computational Complexity

The computational complexity of our approach scales
primarily with:

• Trajectory length T

• Number of belief samples N

• Feature dimension d

At each step, POSS generates N belief samples in
parallel through a single forward pass. The pol-
icy networks process these samples in a permutation-
invariant manner, resulting in O(T) complexity with

respect to trajectory length. Both POSS and the pol-
icy networks use lightweight architectures, enabling ef-
ficient practical implementation.

C.3 Belief Utilization in PPO

The algorithm demonstrates how beliefs are main-
tained and utilized throughout training. Both poli-
cies process beliefs through permutation-invariant net-
works to handle the set-based nature of multiple im-
putations. The acquisition policy receives additional
reward signals based on belief quality and task pol-
icy confidence as detailed in Equation 11 of the main
paper.

D Experiment

In this section, we evaluate both the batch acquisition
setting and the sequential acquisition setting with our
proposed cost-sensitive hierarchical PPO (CS-HPPO).
The following are a list of settings we experimented:

Fully Observed In this setting, the agent only
needs the task policy πc since all features will be ob-
served at each time step. The task policy takes the
full observation as input and no belief estimation is
needed either.

Random Acquisition Since there will not be an
acquisition policy, we cannot control the number of
acquisitions using cost. Instead, we set a fixed budget
so that the agent can observe part of the features that
is selected at random. We evaluate two variants of this
setting where the task policy takes input from either

Towards Cost Sensitive Decision Making

Figure A.1: Model partially observed trajectories via set based VAE.

the previous 8 observations or the belief estimated by
POSS.

Batch Acquisition When the agent arrives at state
s(h), the agent first runs the acquisition policy πf to
select a set of features to acquire; then, based on the
acquired features, the agent runs the task policy πc

to perform the actual task. If the agent is equipped
with POSS, the belief is updated right after each ac-
quisition so that the next task action is based on the
updated belief; otherwise, the agent takes the previous
8 observations as input for both acquisition policy and
task policy.

Joint Action Space Acquisition in joint action
space is meant to be a baseline for batch acquisition,
where we combine the batch acquisition actions and
task actions by their Cartesian product to form a joint
action space. At the beginning, the agent observes all
features and then selects a joint action where the task
action transits the environment to a new state and the
acquisition action determines what features to observe
for next step. The following actions are selected based
only on the acquired features. The agent continues
this process until the task is terminated. We similarly
evaluate two variants of this setting where the inputs
to the policy are either the previous observations or
the belief estimation.

Sequential Acquisition In the sequential acquisi-
tion setting, the agent first runs the acquisition policy
to acquire features from the underlying state s(h) and
terminates acquisition until it selects the termination
action ϕ. Afterwards, the task policy πc selects a task

action based on the acquired features. The inputs to
the policies are either belief estimations or observation
histories.

Concatenated Action Space As a baseline for se-
quential acquisition, we evaluate a setting where the
acquisition actions and task acquisitions are concate-
nated. At each step, the agent selects either an ac-
quisition action or a task action. When the agent se-
lects the task action, it automatically terminates the
acquisition process and transits the environment to a
new state by executing the task action within the en-
vironment. Similarly, the inputs to the policy could
be belief estimation or observation histories.

D.1 Benchmark Environments

D.1.1 Partially Observed CartPole

The OpenAI gym CartPole-v1 environment contains
4 features (i.e., cart position, cart velocity, pole angle
and pole angular velocity) and 2 discrete actions (i.e.,
push cart to left and push cart to right). In the batch
acquisition setting, the action space contains 24 = 16
acquisition actions and 2 task control actions. In the
sequential acquisition setting, the acquisition action
space contains the 4 measurable features plus a ter-
mination action ϕ, and the task action space contains
the 2 original task control actions. We conduct exper-
iments with three different costs per feature (0.005,
0.01, and 0.015), and for each cost we report results
from 3 independent runs. Since each run might acquire
different number of features and achieve different re-
wards, we report the mean and standard deviation for

Yang Li, Junier B. Oliva

Algorithm 1 Belief-based Hierarchical PPO

Require: POSS model M , acquisition policy πf , task policy πc

1: for each iteration do
2: for each environment step do
3: b(h) ← Sample N imputations from M given history
4: if batch acquisition then
5: af ← πf (b

(h)) # Select features to acquire in batch
6: Acquire features xv indicated by af
7: b(h) ← Update belief with acquired features
8: end if
9: if sequential acquisition then

10: while not terminated do
11: af ← πf (b

(h)) # Sequentially select features
12: if af = ϕ then
13: break
14: end if
15: Acquire feature indicated by af
16: b(h) ← Update belief with acquired feature
17: end while
18: end if
19: ac ← πc(b

(h)) # Execute task action based on final belief
20: Execute ac in environment
21: rf ← ComputeAcquisitionReward() # Eq. 11
22: rc ← ComputeTaskReward()
23: Update πf using rf
24: Update πc using rc
25: [Optional] Update M using acquired features
26: end for
27: end for

both the acquisitions per task action and the task re-
ward.

D.1.2 Sepsis Simulator

As described in Sec. 5, the Sepsis simulator contains 8
features, in which 4 of them can be acquired, while the
rest 4 features are given. The agent can take 8 treat-
ment actions. In the batch acquisition setting, the ac-
tion space contains 24 = 16 acquisition actions and 8
task actions. In the sequential acquisition setting, the
acquisition action space contains the 4 measurable fea-
tures plus a termination action ϕ, and the task action
space contains the 8 treatment actions. We conduct
experiments with three different costs per acquisition
(0.005, 0.01, and 0.02), and report results from 3 in-
dependent runs for each cost.

D.2 POSS Implementation

The POSS model contains a prior network, a poste-
rior network, two invertible transformations for prior
and posterior respectively and a decoder network. The
prior and posterior networks first use 4 permutation
equivariant Set Transformer layers with 128 hidden

units to extract set based features; then, an atten-
tive pooling layer squashes the set features into a 128
dimensional permutation invariant feature vector; fi-
nally, 2 linear layers with 128 hidden units output the
mean and variance for the Gaussian base distribution.
we set the latent variable dimension to 64. For prior,
we stack 4 rational-quadratic coupling transformations
to transform the base distribution; and for posterior,
we use 4 rational-quadratic autoregressive transforma-
tions (Durkan et al., 2019b). For categorical observa-
tions, we learn a set of 16 dimensional embeddings
for each feature and a special embedding to represent
the missing feature. We also embed the discrete ac-
tions with 16 dimensional features. The time steps are
represented by sinusoidal functions as 16 dimensional
features. The inputs for the prior network contain the
time step embeddings, the action embeddings and the
embeddings of observed features, while the inputs for
posterior network contain the time step embedddings,
the action embeddings and the embeddings of all fea-
tures. The decoder network takes the latent code as
well as time step embeddings, action embeddings and
embeddings for observed features as inputs and out-
puts a distribution for the unobserved features. For

Towards Cost Sensitive Decision Making

Component HyperParameter CartPole Sepsis

PPO γ 0.99 0.99
PPO λ 0.95 0.95
PPO clip ratio 0.2 0.2
PPO reward weight ωe 1.0 1.0
PPO reward weight ωv 0.01 1.0
PPO reward weight ωa 100.0 1.0

Policy actor Linear: 64→ 64
Policy critic Linear: 64→ 64

POSS prior SetTransformer: 128× 4 + Linear: 128→ 64
POSS prior transformations rational-quadratic coupling: 128 × 4
POSS posterior SetTransformer: 128× 4 + Linear: 128→ 64
POSS posterior transformations rational-quadratic autoregressive: 128 × 4
POSS decoder SetTransformer: 128× 4 + Linear: 128→ 128

Training model learning rate 0.0001 0.0001
Training actor learning rate 0.0003 0.0003
Training critic learning rate 0.0003 0.0003
Training grad norm 1.0 1.0

Table D.1: Hyperparameters

categorical features, the decoder outputs logits of a
Categorical distribution; and for continuous features,
the decoder outputs mean and variance of a Gaussian
distribution.

D.3 Policies

In different settings, the policy network will have dif-
ferent type of inputs. In fully observed setting, the
policy takes in a vector representation of the obser-
vations. When using observation histories, the pol-
icy network takes in a set of partially observed fea-
tures. When using belief estimations, the policy net-
work takes in multiple imputations of the unobserved
features. We use a 2-layer linear network to implement
both the acquisition policy and the task policy. If the
input is a set (history or belief), we obtain the final ac-
tion distribution with ensemble. For discrete actions,
the actor outputs a categorical distribution where the
probabilities are the average probability across set el-
ements. For continuous actions, the actor distribution
is a Gaussian distribution where the mean is averaged
across set elements.

D.4 Hyperparameters

Table D.1 list all the hyperparameters for CartPole
and Sepsis environments. Note that we did not con-
duct any hyperparameter optimization and all hyper-
parameters are set based on our previous experiences.

D.5 Additional Ablation Studies

The benefits of our proposed POSS are two folds:
First, it provides the agent with an accurate belief es-
timation so that the agent can make better decisions
based solely on the partial observations. Second, the
imputation accuracy provides an intrinsic reward to
the acquisition policy to guide the agent acquire infor-
mative features. We have seen the belief estimation
help achieve better reward-cost tread-off compared to
observation histories (Sec. 5), and we have verified the
advantage of the the set based sequence modeling for-
mulation (Sec. 5). To better understand the benefits
of the intrinsic reward, we conduct an ablation study
on Sepsis simulator by removing the intrinsic reward
(set ωa to 0).

Figure D.1 compares the training curve for the two
agents with and without intrinsic reward. First, we
can see the two agent eventually converges to a simi-
lar solution (both similar number of acquisitions and
similar task reward), which empirically verifies that
the intrinsic reward does not affect the optimal policy.
Second, we can see the agent trained with intrinsic re-
ward converges much faster and the training is more
stable.

Yang Li, Junier B. Oliva

(a) task reward

(b) acquisitions per task action

Figure D.1: Compare task reward (a) and average ac-
quisitions per task action (b) for two agents with and
without intrinsic reward provided by POSS.

