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ABSTRACT

Interfacial interactions between materials in complex heterostructures can domi-

nate the material’s response in many modern-day energy-related devices and processes.

Considerable research has been dedicated towards addressing the profound effects

of interfaces. Here, first-principles-based quantum mechanical simulations are dis-

cussed to characterize the interfacial materials properties of two systems. First,

density-functional theory (DFT) calculations were performed for ceramic oxide grain

boundaries in undoped and doped CeO2. Second, the development, theoretical

framework, and utilization of high-throughput, workflow-based, DFT calculations are

presented to model the synthesis of two-dimensional (2D) heterostructured materials.

Utilizing this workflow, predictive machine learning models were created to elucidate

key interface-property relationships in 2D heterostructured materials.

The DFT simulations reveal that the Σ3 (111)/[1̄01] grain boundary was energeti-

cally more stable than the Σ3 (121)/[1̄01] grain boundary due to the larger atomic

coherency in the Σ3 (111)/[1̄01] grain boundary plane. The alkaline-earth metal-doped

grain boundary energies demonstrate a parabolic dependence on the size of the solutes,

interfacial strain, and packing density of the grain boundary. The grain boundary

energies were stabilized upon Ca, Sr, and Ba doping whereas Be and Mg render

them energetically unstable. The electronic density of states reveals that no defect

states were present in/above the band gap. The thermodynamic trapping of oxygen

vacancies in the near grain boundary region was not significantly impacted by the

presence of Ca-solute ions. However, the migration energy barriers within the grain

boundary core were dramatically reduced with high local Ca-solute concentrations,

around 0.3 eV-0.5 eV.

Chapter 5 and Chapter 6 discusses the development of the open-source, high-

i



throughput computational “synthesis” based workflow package Hetero2d and the

application of Hetero2d using 52 Janus 2D materials and 19 metallic, cubic phase,

elemental substrates. The 438 Janus 2D-substrate pairs were analyzed by identifying

substrate surfaces that stabilize metastable Janus 2D materials, characterizing their

effects on the post-adsorbed 2D materials, and identifying the bonding between the 2D

material and substrate. Machine learning models were applied to predict the binding

energy, z-separation, and charge transfer of the Janus 2D-substrate pairs providing

insight into the critical properties which factor into these properties.

ii



This is dedicated to

A childhood dream that became a reality.

All the mentors who inspired and believed in me when I did not believe in myself.

Bradley, the best thing that I ever happened to stumble upon rock climbing.

My best friend, Alex, who has supported me through this journey with as much

support as I needed.

iii



ACKNOWLEDGMENTS

First and foremost, I extend my deepest thanks toward my doctoral advisors, Prof.

Peter Crozier, Prof. Arunima Singh, and Prof. Peter Rez for their continued support,

encouragement, and advisement during my Ph.D. While having three advisors has

been challenging at times, the knowledge I have obtained by participating in both

an experimental and computational group has been invaluable towards my career.

I greatly appreciate the opportunity Prof. Peter Crozier offered me to become an

embedded theorist in his experimental group as I have obtained skills I likely would

not have obtained by joining other groups. I would also like to acknowledge Prof.

Arunima Singh for becoming my co-advisor at the start of my 3rd year. Not only

has it been a continuous joy to learn from and work alongside her and the growing

research group, but I wouldn’t be completing my degree with confidence without her.

As I look towards the future, I am exited to continue to be a part of the work I started

at ASU, watching it grow, and I look forward to future projects together! I would like

to acknowledge Prof. Peter Rez for his guidance during the early years of my Ph.D. I

will always value his support, assistance, and many off-topic conversations that took

place during our meetings. I wouldn’t have been able to achieve my dreams without

each of you looking after me these past 6 years.

I want to acknowledge my committee members for providing critical feedback

and instructive discussions improving my research. Additionally, I would like to

acknowledge Akash Patel for his dedicated work maintaining our database, website,

and API. I want to thank the past and current members of both research groups

for insightful conversations/assistance with different aspects of my research, namely,

explaining all the technical experimental terms. I also would like to acknowledge

the financial support from the National Science Foundation (grant number DMR-

iv



1308085, DMR-1840841, and DMR-1906030) and the U.S. Department of Energy

(grant number DE-SC0004954). I gratefully acknowledge the Research Computing

facilities and support staff at ASU, the Extreme Science and Engineering Discovery

Environment (grant number TG-DMR150006), and the National Energy Research

Scientific Computing Center (contract No. DE-AC02-05CH11231) for providing HPC

resources that have contributed to the research results reported here.

My acknowledgements would not be complete without mentioning the numerous

mentors that shaped the person I grew up to be. I owe each of you a debt of gratitude

that can only be repaid by living up to the potential you saw in me when I did not.

The first of which would be my high school mathematics and physics teachers, Mrs.

Cindy Iwen and Mrs. Judith Krueger, for instilling in me a love of science, a work ethic

that enabled my academic success, and believing in my potential from such a young

age. I would not have dared to dream of my potential without your confidence, blunt

encouragement, and support during high school. Dr. Julie Abrahamson, who believed

in my potential enough to nominated me for a scholarship. My undergraduate physics

mentor, Dr. Yen Lee Loh, for introducing me to the field of computational science,

teaching me how to code, and supporting me. Finally, Patrice Giese, my McNair

Scholarship advisor and friend, for seeing my potential during my undergraduate

studies enabling me to focus on my studies.

v



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Interfacial Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Ceria: Recent Progress and Outstanding Challenges . . . . . . . . . . . . . 8

1.3.1 Grain Boundary Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 Insights into Grain Boundary Properties . . . . . . . . . . . . . . . . . . 14

1.4 2D-Substrate Heterostructured Materials . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Goals and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 RESEARCH METHODOLOGIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1 Approximations to the Exchange-Correlation Functional . . . . 28

2.1.2 Implementation: VASP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 High-throughput Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Design and Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Machine Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Data Collection and Pre-processing . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.3 Model Training and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vi



CHAPTER Page

3 IMPACT OF ALIOVALENT ALKALINE-EARTH METAL SO-

LUTES ON CERIA GRAIN BOUNDARIES: A DENSITY FUNC-

TIONAL THEORY STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Grain Boundary Structure and Character . . . . . . . . . . . . . . . . . 47

3.3.2 Thermodynamic Descriptors of Solute Doped Grain Bound-

aries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.3 Electronic Structure of Alkaline-Earth Metal Doped Ceria . . 54

3.3.4 Possible Impact of High Solute Concentrations on Oxide

Grain Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 ASSESSING COMPOSITIONAL EFFECTS IN CA-DOPED CERIA

ON THE CROSS GRAIN BOUNDARY OXYGEN MIGRATION

ENERGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Oxygen Vacancy Segregation in Undoped and Ca-Doped Σ3

(111)/[1̄01] Grain Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Atomic Structure of Undoped and Ca-Doped Σ3 (111)/[1̄01]

Grain Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 Vacancy Segregation Energy within each Oxygen Plane . . . . 69

4.3.3 Electronic Properties along the Migration Path . . . . . . . . . . . . 71

vii



CHAPTER Page

4.4 Bulk and Cross Grain Boundary Oxygen Vacancy Migration En-

ergy in Ca-Doped Σ3 (111)/[1̄01] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.1 Oxygen Vacancy Migration Energy in Bulk Ceria . . . . . . . . . . 73

4.4.2 Oxygen Vacancy Migration Path in Ca-Doped Σ3

(111)/[1̄01] Ceria Grain Boundary . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 COMPUTATIONAL SYNTHESIS OF 2D MATERIALS: A HIGH-

THROUGHPUT APPROACH TO MATERIALS DESIGN . . . . . . . . . 82

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 DFT Approach to Identifying Stable 2D-Substrate Heterostructures 84

5.3 Hetero2d: The High-Throughput Implementation of the DFT

Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.2 Workflow Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.3 Package Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.4 Default Computational Parameters . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.5 Workflow Initialization and Customization . . . . . . . . . . . . . . . . 92

5.3.6 Workflow Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.7 Post-Processing Throughout the Workflow . . . . . . . . . . . . . . . . 96

5.4 An Example of Substrate Screening via Hetero2d . . . . . . . . . . . . . . . . 97

5.4.1 Materials Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.2 Symmetry-Matched, Lattice-Matched 2D-Substrate Het-

erostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

viii



CHAPTER Page

5.4.3 Stability of Free-Standing and Adsorbed 2D Films and

Heterostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.4 Thickness Changes in Adsorbed 2D Films on Substrate Slab

Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.5 Charge Layer Doping of Adsorbed 2D Films . . . . . . . . . . . . . . . 107

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 FUNDAMENTAL FACTORS GOVERNING SUBSTRATE IN-

DUCED STABILIZATION OF JANUS 2D HETEROSTRUCTURES

WITH MACHINE LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Screening Parameters and Materials Selection . . . . . . . . . . . . . . . . . . . 115

6.2.1 Materials Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.2 Heterostructure Screening Criteria . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3 Computational Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.1 DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.2 Machine Learning Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Visualization of the Data Set and Trends . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4.1 Energetic Stability of Janus 2D Materials . . . . . . . . . . . . . . . . . 122

6.4.2 Distribution of 2D-Substrate Z-Separation Distances . . . . . . . 125

6.4.3 Identifying Substrate Induced Charge Transfer . . . . . . . . . . . . . 127

6.4.4 Electronic Structure and Charge Redistribution of Adsorbed

SbTeI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.5 Machine Learning Insights into the Fundamental Factors Govern-

ing Janus 2D Heterostructure Properties . . . . . . . . . . . . . . . . . . . . . . . . 131

ix



CHAPTER Page

6.5.1 Predictive Model for Determining the Binding Energy of

Janus 2D Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.5.2 2D-Substrate Z-Separation Distance . . . . . . . . . . . . . . . . . . . . . . 134

6.5.3 Charge Transfer to the 2D Material . . . . . . . . . . . . . . . . . . . . . . . 137

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.1 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.1.1 Conclusions and Outlook for Grain Boundary Studies . . . . . . 140

7.1.2 Computational Synthesis of 2D-Substrate Heterostructured

Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

APPENDIX

A SUPPLEMENTARY MATERIAL FOR CHAPTER 3 . . . . . . . . . . . . . . 176

B SUPPLEMENTARY MATERIAL FOR CHAPTER 4 . . . . . . . . . . . . . . 193

C SUPPLEMENTARY MATERIAL FOR CHAPTER 5 . . . . . . . . . . . . . . 199

D SUPPLEMENTARY MATERIAL FOR CHAPTER 6 . . . . . . . . . . . . . . 210

x



LIST OF TABLES

Table Page

3.1. Grain Boundary Character and Geometric Parameters of Select Grain

Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1. New Functionalities Included in Hetero2d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2. Electronic Properties of 2D Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3. List of Substrate Matches Found for Each 2D Material . . . . . . . . . . . . . . . . . . 99

5.4. Bader Charge Transfer for Pristine, Isolated Adsorbed, and Adsorbed

2D-Substrate Heterostructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.1. Comparison of DFT Parameters Used in This Work and Literature . . . . . . 177

A.2. Reference Information to Compute the Grain Boundary Energy . . . . . . . . . 180

C.1. 2D Materials Information from the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . 203

C.2. Materials Project Bulk 2D Phase Information . . . . . . . . . . . . . . . . . . . . . . . . . . 203

C.3. Materials Project Substrate Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

D.1. Janus 2D Bulk Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

D.2. 3D Phase(S) for Corresponding Janus 2D Materials . . . . . . . . . . . . . . . . . . . . . 215

D.3. Substrate Slab Information for Janus 2D Materials . . . . . . . . . . . . . . . . . . . . . 216

D.4. Janus 2D-Substrate Heterointerface Matches . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

xi



LIST OF FIGURES

Figure Page

1.1. Primary Energy Consumption by Region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Energy Consumption by Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Example Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4. Model Interfacial Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5. Structure Models of Ceria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6. Grain Boundary Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7. Experimental Symmetric Tilt Grain Boundaries . . . . . . . . . . . . . . . . . . . . . . . . 15

1.8. Janus 2D Materials and 2D-Substrate Heterostructure Models . . . . . . . . . . . 17

1.9. Methods for Large-Scale 2D Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1. Approximation Levels to the Exchange-Correlation . . . . . . . . . . . . . . . . . . . . . 29

2.2. Workflow Design Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1. Structure Models and Strain Maps of Undoped and Doped Ceria Grain

Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2. Grain Boundary Energy Variations with Alkaline-Earth Metal Solutes . . . 50

3.3. Density of States and Bond Strain Maps for Alkaline-Earth Metal Doped

Ceria Grain Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4. Alkaline-Earth Metal Induced Band Gap Variations . . . . . . . . . . . . . . . . . . . . 56

4.1. Segregation Energy in Undoped and Ca-Doped Σ3 (111)/[1̄01] Grain

Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2. Bulk Oxygen Vacancy Migration Energy and Charge Density . . . . . . . . . . . . 73

4.3. Electronic Structure of Ceria During Oxygen Vacancy Migration . . . . . . . . 75

4.4. Migration Energy in 1st Ca-Doped Σ3 (111)/[1̄01] Grain Boundary . . . . . . 76

4.5. Migration Energy in 2nd Ca-Doped Σ3 (111)/[1̄01] Grain Boundary . . . . . . 77

xii



Figure Page

5.1. Schematic Outline of the High-Throughput Computational Workflow

Creating 2D-Substrate Heterostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2. Simplified Hetero2d Workflow Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3. Top and Side View of 2D Structure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4. Schematic Diagram Illustrating the Materials Selection Process . . . . . . . . . . 100

5.5. Formation Energy of 2D Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.6. Adsorption Formation Energy of 2D-Substrate Heterostructures . . . . . . . . . 102

5.7. Violin Plot of Adsorbed 2D Material’s Z Thickness Changes . . . . . . . . . . . . 106

5.8. Element-Projected Density of States and Charge Density Analysis for

MoS2-Hf (111) Heterostructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1. Structure Model of Y-M-X Janus 2D Material with Substrate . . . . . . . . . . . 113

6.2. Heterointerface Matching Criteria and Generation of Configurations . . . . . 117

6.3. Schematic Diagram of the Machine Learning Workflow . . . . . . . . . . . . . . . . . . 120

6.4. Adsorption Formation Energy for Janus 2D Materials . . . . . . . . . . . . . . . . . . . 123

6.5. Heatmap for Janus 2D Materials with ∆Eb Colormap for 1T Phase . . . . . . 125

6.6. Heatmap for Janus 2D Materials with z-Separation Colormap for 1T Phase126

6.7. 2D-Substrate Z-Separation Distance for Janus 2D Materials . . . . . . . . . . . . . 127

6.8. Total Charge Transferred to the Janus 2D Materials . . . . . . . . . . . . . . . . . . . . 128

6.9. Substrate/2D Projected DOS of Adsorbed and Isolated Adsorbed Janus

2D Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.10. Z-Projected Charge Density Difference and Site Projected DOS for Janus

2D Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.11. Machine Learning Predicted vs DFT Computed Binding Energy and Most

Predictive Features for Janus 2D Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xiii



Figure Page

6.12. Machine Learning Predicted vs DFT Computed and Most Predictive

Features for Z-Separation Distance of Janus 2D Materials . . . . . . . . . . . . . . . 135

6.13. Machine Learning Predicted vs DFT Computed and Most Predictive

Features for ∆Q2D of Janus 2D Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.1. Atomic Coherency of the Cation and Anion Sublattices in Ceria Grain

Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.2. High Resolution TEM Micrograph of a Ceria Grain Boundary . . . . . . . . . . . 178

A.3. High Resolution TEM Micrograph of a YSZ Grain Boundary . . . . . . . . . . . . 179

A.4. Average Ce-O Bond Distances for Each Grain Boundary-Solute Structure

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

A.5. Grain Boundary Lattice Expansion along the Z-Axis for Each Grain

Boundary-Solute Structure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.6. Bulk Band Gap Variation of Ceria under Hydrostatic Strain . . . . . . . . . . . . . 182

A.7. Percent Change in Volume for Each Grain Boundary-Solute Structure

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A.8. Element-Projected DOS for the Lowest Energy Grain Boundary Configu-

ration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.9. Σ3 (111)/[1̄01] Orbital-Projected DOS for Each Grain Boundary Config-

uration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.10. Σ3 (111)/[1̄01] & Σ3 (121)/[1̄01] Orbital-Projected DOS for Each Grain

Boundary Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.11. Σ3 (121)/[1̄01] Orbital-Projected DOS for Each Grain Boundary Config-

uration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

xiv



Figure Page

A.12. Σ3 (121)/[1̄01] Orbital-Projected DOS for Each Grain Boundary Config-

uration (Continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.13. Σ3 (111)/[1̄01] Grain Boundary Bond Deviation Strain Maps . . . . . . . . . . . . 189

A.14. Σ3 (121)/[1̄01] Grain Boundary Bond Deviation Strain Maps . . . . . . . . . . . . 190

A.15. Aligned Density of States for Each AEM Doped Grain Boundary . . . . . . . . 191

A.16. Aligned Density of States for Each AEM Doped Grain Boundary . . . . . . . . 192

B.1. Electronic Structure and Partial Charge Density of Undoped Σ3

(111)/[1̄01] Ceria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

B.2. Electronic Structure and Partial Charge Density of Undoped Σ3

(111)/[1̄01] Ceria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

B.3. 2x2x2 Bulk Ceria Supercell with One Oxygen Vacancy . . . . . . . . . . . . . . . . . . 197

C.1. Binding Energy Convergence Test for 3 Structures . . . . . . . . . . . . . . . . . . . . . . 201

C.2. Adsorption Formation Energy for Outlier Structures . . . . . . . . . . . . . . . . . . . . 205

C.3. Z-Separation Distance for Outlier Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

C.4. 2D-Substrate Heterostructure Models for Outliers of MoS2 . . . . . . . . . . . . . . 207

C.5. 2D-Substrate Heterostructure Models for Outliers of 1T - and 1H-NbO2 . . 208

C.6. 2D-Substrate Heterostructure Models for Outliers of 1H-NbO2 . . . . . . . . . . 209

D.1. Heatmap for Janus 2D Materials with ∆Eb Colormap for 1H Phase . . . . . 211

D.2. Heatmap for Janus 2D Materials with z-Separation Colormap for 1H Phase212

D.3. Convergence of DOS Set by CMDLElectronicSet . . . . . . . . . . . . . . . . . . . . . . . . 219

D.4. Convergence of the Bader Charges on Each Atom . . . . . . . . . . . . . . . . . . . . . . 219

D.5. Convergence of the Z-Projected Charge Density . . . . . . . . . . . . . . . . . . . . . . . . 220

D.6. Z Projected Charge Density Difference and Isolated Charge Density . . . . . 221

xv



Figure Page

D.7. Binding Energy Model Performance versus Feature Variance and Corre-

lation Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

D.8. Z-Separation Model Performance versus Feature Variance and Correlation

Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

D.9. Training Set Size Convergence with Sample Size . . . . . . . . . . . . . . . . . . . . . . . . 225

xvi



Chapter 1

INTRODUCTION

1.1 Motivation

Materials and their interfaces have played a pivotal role in technological advance-

ments improving the quality of life for society throughout the ages. During the

Industrial Revolution society was transformed from a predominately agrarian and

handicraft economy to one based on machines. Advancements in technology and

materials brought about new machines and power sources standardizing the incorpo-

ration and adaptation of energy reliant devices and processes into society resulting

in an ever-increasing world-wide demand for energy. Utilization of energy has influ-

enced society in innumerable ways; for instance, over the last hundred years there

has been enormous economic growth (Roser 2013; Gaye 2008), large reductions in

severe poverty (Roser and Ortiz-Ospina 2013), and increased life expectancy (Roser,

Ortiz-Ospina, and Ritchie 2013).

Figure 1.1 shows a breakdown of the world’s consumption of energy from 1965-2020

by region. The regions with the highest energy demands originate from developed

regions where the gross domestic produce and quality of life are both high. To improve

the quality of life and increase the prosperity of industrialized and emerging economies,

access to energy is essential. Many reports have shown that increased consumption

of energy for industrialized countries (e.g. China and India) is strongly correlated

with the quality of human life (Liu, Chen, and Yin 2016; Gaye 2008; Mazur 2011).

As industrialized countries and emerging economies increase their standard of living
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towards that of developed countries, the additional world-wide demand for energy

is expected to increase. The US Energy Information Administration predicts the

increase in energy consumption from these developing countries to be 47 % over the

next 30 years (Gordon and Weber 2022; Electricity Market Report–July 2021).

Figure 1.1. World-wide energy consumption by region from 1965-2020 in TWh. Data
from Smil (2017) accessed via Primary energy consumption by world region (2022).

The primary energy source for developed and emerging economies are fossil fu-

els (Electricity Market Report–July 2021). While fossil fuels are a reliable and stable

energy resource, they are finite resources that emit CO2 when consumed, have been

linked to anthropogenic climate change (Gaye 2008; Electricity Market Report–July

2021), and result in wide-spread environmental destruction during extraction (Oil

spills 2020; Oil Spills 2017; Uhlmann 2020). Other sources of energy–such as renewable

energy technologies–offer alternative methods to generate energy. These technologies

can help curb the projected energy demand increase while also limiting the negative

environmental factors that surround fossil fuel consumption.

In principle, renewable energy technologies can be used to provide continuous
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energy for billions of years from a wide variety of sources. For example, Figure 1.2a

shows the current global use of energy resources with the primary renewable energy

sources mostly originating from traditional biomass, hydro-power, nuclear, wind,

solar, and bio-fuels, listed in order of decreasing TWh energy consumption (Global

primary energy consumption by source 2022; Smil 2017). Additionally, Figure 1.2b

illustrates a renewable energy wind farm implemented in the United States. However,

these technologies have some major limitations from energy production intermittency,

supplemental energy storage technology requirements, low energy density, and poor

efficiency compared to fossil fuels. As such, these areas have been the subject of con-

siderable fundamental research to develop engineering strategies and new technologies

for device applications (Wachsman and Lee 2011; Schmitt et al. 2020; Paul et al. 2017;

Ciszewski 2012; Bondevik 2019).

Figure 1.2. (a) The global primary energy consumption (in TWh) by source from
1965-2019. Data from Smil (2017) accessed via Global primary energy consumption by
source (2022). (b) Renewable energy wind farm currently implemented in the United
States.

Fundamental research has had substantial success in providing guidance towards

engineering strategies that enable the properties of materials to be tuned for various
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applications. For example, control over the optical and electronic properties of

semiconductors has resulted in the development of multi-junction photovoltaic solar

cells capable of adsorbing light over a significant portion of the solar spectrum (Dimroth

and Kurtz 2007; Gao et al. 2022) thereby increasing the energy harvesting capability of

the solar cell. Additionally, by combining concentrated solar with multi-junction solar

cells, these devices have demonstrated efficiencies of 37.4% (Yamaguchi et al. 2005). In

silicon photo-detectors and photo field effect transistors, precise and careful handling of

the Si-SiO2 interface lead to improvements in the UV-sensitivity for devices (Muench,

Gessert, and Koeniger 1976; Ouchi et al. 1979). For polycrystalline metals, segregation

of various impurities to the grain boundaries was found to cause wide-spread changes

in the mechanical properties of the material from embrittlement, increased ductility,

to improved mechanical strength (Braithwaite and Rez 2005; Schweinfest, Paxton,

and Finnis 2004).

Despite the substantial progress in designing material properties for device ap-

plications, the interfacial properties of many materials systems often decrease the

performance and inefficiency of the material. For example, one significant challenge in

designing multi-junction solar cells is attaining a defect free heterointerface; typically,

the interfacial regions have defects that act as recombination sites. In ion-conducting

solid oxide electrolytes, the grain boundaries are often orders of magnitude more

resistive than the bulk, leading to a significant decrease in total ionic conductivity for

potential device applications. As such, the study, optimization, and control over the

interfacial regions in complex systems (e.g. heterointerfaces and solid-solid interfaces)

is one area of particular scientific interest and importance not only for renewable

energy technologies, but also most modern technological applications. Polycrystalline

electroceramics for use in solid oxide devices and two-dimensional (2D) heterostruc-
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tured materials–that find many applications in renewable energy applications as well

as many other technologically relevant fields–are two such systems which lack a funda-

mental understanding of materials properties that govern the interfacial interactions,

shown in Figure 1.3.

Figure 1.3. Illustrations of various types of interfaces: (a) a polycrystalline grain
boundary (adapted from Pleshakov (2008)) and (b) 2D-2D heterostructured interfaces.
Adapted from Geim and Grigorieva (2013) with permission from Springer Nature.

The present work was motivated by an overarching goal of characterizing the

interfacial materials response to variations in critical materials properties–such as

changes in the local atomic structure, composition, or energetic stability–that impact

potential renewable energy applications. The following sections highlight the significant

progress made towards understanding interfacial properties, the factors that modulate

them, and the interdependent interface-function relationships characterizing these

infinitesimal regions. These relationships can serve as the basis for future studies or

aide in the development of rational design strategies and optimization of the interfacial

properties in material systems with complex interfaces.

This work will focus on two interfacial system: a) grain boundaries in ceria

which find applications in solid oxide fuel and electrolysis cells, and b) 2D-substrate
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heterostructured material because of their considerable relevance and myriad of

potential 2D-based device applications in current and future energy technologies.

However, both interfacial systems presented in this work each belong to a larger

class of materials systems with a diverse range of potential applications beyond

renewable energy technologies (Yuan et al. 2016; Trovarelli 2002), so the computational

methodology and results presented here may be generally applicable to other related

systems. Nevertheless, the ubiquitous presence of interfaces coupled with the impact

these regions have on the overall properties of materials systems for renewable energy

applications, as well as many other modern technologies motivated this study. A brief

review of interfacial systems–their expansive diversity, and challenges accompanying

the study of interfaces–is discussed below, followed by a more extensive review of each

system, their technological relevance, properties, and key challenges. An emphasis is

placed on the interfacial interactions of grain boundaries in ceria and heterostructures

formed between 2D materials and substrate surfaces.

1.2 Interfacial Systems

Complex interfaces (boundaries between solid-gas, solid-liquid, or solid-solid phases)

often interact in non-trivial ways, dominating the materials response, potentially

degrading the desired materials property. Interfaces, broadly defined as the common

boundary between two sections of matter in space (Britannica 2022), are ubiquitous

in modern devices. For some material systems, the properties of the interfacial regions

can dominate the materials response leading to decreased efficiency and performance.

Compounding this problem, many of these systems lack the fundamental knowledge
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needed to modulate and control the interfacial properties making progress towards

realization and utilization slow.

Figure 1.4. (a) Model grain boundary structure models for two grain boundary
planes. (b) Illustration of surface roughness induced strain in a supported 2D material.
Adapted from Rhodes et al. (2019) with permissions from Springer Nature.

The study of interfacial systems, their associated properties and impact on the

overall material properties, is a diverse topic encompassing macroscopic to quantum

mechanical length scales spanning numerous research fields. As mentioned previously,

interfaces play a vital role in renewable energy technologies as well as many other

technologies, as such, understanding how to manipulate their properties is of critical

importance. A wide variety of techniques and theories can be employed to elucidate

and understand the key properties that control interfacial systems and enable the

manipulation of their properties. However, the study of interfacial properties is

not always a straight-forward task and presents additional challenges due to the

inconsistent nature of interface formation and defects. In polycrystalline materials,

the solid-solid interfaces can form along any number of crystallographic planes, with

differing grain sizes, and possess dramatically different local atomic structure and

composition with markedly different properties compared with the adjacent grains.

The growth and post-adsorbed properties of 2D materials is strongly influenced by
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the growth conditions as well as the properties and defects present in the substrate

which can ultimately impact the adsorbed 2D material properties.

The underlying chemistry and diverse properties that underpin interfacial regions

and their associated materials functionality–coupled with multi-length scale factors that

may play an important role in their overall properties–make systematic studies of these

minuscule regions challenging, if not impossible in some instances. It is often necessary

to utilize multiple techniques to gain fundamental insights into important factors that

control interfacial properties. Utilizing multi-scale, correlative and complimentary

techniques (William J Bowman et al. 2017; Bowman, Darbal, and Crozier 2020),

combined computational and experimental techniques (Bondevik, Bjørheima, and

Norbya 2020; Bondevik, Kuwabara, and Løvvik 2019; Pratik P Dholabhai et al. 2015),

or studies which systematically change various properties and assess changes in the

interfacial properties–either by computational (Aidhy, Y. Zhang, and Weber 2013;

Aidhy 2016; Yuan et al. 2016) or experimental means–have had success in decoupling

the intertwined interfacial properties to gain fundamental insights into the governing

factors that control interfacial properties.

1.3 Ceria: Recent Progress and Outstanding Challenges

Doped polycrystalline electroceramic oxides are an important class of materials

in which point defects in the bulk and grain boundaries play a key role in regulating

the mechanical, optical, thermal, magnetic, catalytic and charge transport proper-

ties (Sutton and Balluffi 1995; Orlovskaya and Browning 2004; W. Lee et al. 2012;

Ye et al. 2014; William J. Bowman et al. 2015; Lin et al. 2015; B. Feng et al. 2017;

Nafsin et al. 2017; Moradpoor and Ebrahimi 2016). The transport and ion exchange
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functionalities of electroceramics make them suitable for many technological appli-

cations including catalysts (Trovarelli 2002; Paier, Penschke, and Sauer 2013), solid

electrolytes and electrodes (Schmitt et al. 2020; Trovarelli 2002; Paier, Penschke,

and Sauer 2013; Singhal and Kendall 2003; Wachsman and Lee 2011; Wachsman,

Marlowe, and Lee 2012), gas separation membranes (Sunarso et al. 2008; L. Zhang

et al. 2012), gas sensing systems (Haile, West, and Campbell 1998), information

technologies (Schweiger et al. 2017; Sunarso et al. 2008; L. Zhang et al. 2012; Haile,

West, and Campbell 1998), and memristors (Schweiger et al. 2017)–among others.

Figure 1.5. Ceria structure models illustrating the (a) pristine, (b) oxygen deficient,
and (c) substitutional aliovalent cation doped crystal structure.

Most of the aforementioned technological applications rely heavily on an appreciable

number of charge carriers, low electronic conductivity, and a high ionic conductivity to

operate. Polycrystalline ceria–with a fluorite crystal structure (Trovarelli 2002)–and

other technologically relevant oxides like Yttria-Stabilized Zirconia (YSZ) (An et

al. 2013), have proven to be excellent ion-transport and ion-exchange materials when

doped with a high-concentration of aliovalent cations in order to introduce charge

compensating point defects. Doped ceria has gained much interest recently due to the

high ionic conductivities that are achievable at low and intermediate temperatures,
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thereby enabling less expensive interconnects to be used for device applications (Kwak

and Jung 2016; Lee and Wachsman 2014).

In ceria, the charge carriers are positively charged oxygen vacancies (shown in

Figure 1.5) which typically occupy the negatively charged lattice oxygen sites, and

are transported through the electrolyte via a thermally activated vacancy hopping

mechanism. Oxygen vacancies can form through various methods such as reducing

conditions, elevated temperatures, and/or through doping with charge compensating

substitutional aliovalent cations (Sm+3, Gd+3, Ca+2, etc.). Aliovalent doping is an

attractive avenue offering a level of extrinsic control over the material’s properties

in addition to providing a means to manipulate the oxygen migration energies and

to regulate the concentration of mobile electrons and holes. As such, extensive work

has been done to identify optimal solutes (Andersson et al. 2006; Kwak and Jung

2016; Dholabhai, Adams, et al. 2011) thereby increasing and optimizing the bulk

ionic conductivity of ceria (Pratik P. Dholabhai et al. 2010a, 2010b; Jiang et al. 2005;

Balducci et al. 1997; Dholabhai, Anwar, et al. 2011; Yuan, Zhang, and Weber 2015;

Dholabhai and Adams 2012; Pratik P. Dholabhai et al. 2012).

While the mobile oxygen vacancies in doped polycrystalline ceria migrate relatively

unimpeded through the grains, as the oxygen vacancies approach the grain boundaries,

a significant reduction in the ionic conductivity is observed. For ceria and its many

derivatives, optimizing the grain boundary ionic conductivity has been a persistent

challenge in utilizing these materials, as these regions often control the total ionic

conductivity dominating the materials response. The differing ionic conductivity has

been attributed to the formation of secondary phases, variations in the so-called grain

boundary character (Ye et al. 2014), and/or space charge effects which are thought

to block oxygen transport across grain boundaries (Franceschetti 1981; Maier 1995;
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Guo and Maier 2001; Lee and Kim 2001; Guo, Sigle, and Maier 2003; Tuller 2006;

H. L. Tuller and S. R. Bishop 2010).

Considering that the ionic conductivity of the grain boundaries can be between 102-

108 orders of magnitude more resistive than the grains (William J Bowman et al. 2017;

Sayle, Parker, and Sayle 2006; Avila-Paredes et al. 2009; William J. Bowman et al. 2015;

Bowman, Darbal, and Crozier 2020; Guo, Sigle, and Maier 2003), understanding the

mechanisms which lead to increased ionic conductivity and developing strategies to

increase the ionic conductivity is of critical importance to utilize these materials.

However, investigating the interfacial properties can pose significant challenges. The

inherent variation in grain boundary character as well as the challenges faced using

either experimental or computational methods to investigate these large configuration

space makes comprehensive investigations time consuming and sometimes infeasible.

In the following sections, a brief review of grain boundary formalism is discussed,

followed by experimental and computational methods that have made significant

progress in the communities understanding of grain boundary properties.

1.3.1 Grain Boundary Formalism

A grain boundary is an extended, planar defect possessing short range order that

separates regions between two grains (or crystallites), in a polycrystalline material

which have different crystal orientations (Sutton and Balluffi 1995) where some atoms

are not exactly aligned with either grain. These translations regions typically possess

substantially different properties compared to their grain counterparts (Uesugi and

Higashi 2011; Braithwaite and Rez 2005; Frechero et al. 2015; Cantwell et al. 2014;

Genreith-Schriever et al. 2020) arising from the mismatch and less efficient packing
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along the grain boundary region. The interfacial region composing the grain boundary

can be atomically abrupt, possessing an average width between 2-5 atomic layers;

they may also be more diffuse, stretching across an appreciable number of interplanar

spacings (Randle 1993; Lejček 2010; Hagedorn 1973).

To describe a general interface between any two grains unambigously requires

5 independent parameters–macroscopic degrees of freedom–that describe the crys-

tallographic relationship between the two neighbouring grains. These macroscopic

parameters are generally referred to as the grain boundary character or geometry.

These five parameters accomplish two tasks: (1) three parameters (given by the

rotation axis o and angle θ) specify the mutual misorientation of the grains and

(2) the last two parameters (normal to the grain boundary plane n) describe the

average crystallography of the boundary plane (Sutton and Balluffi 1995). These five

parameters are determined relative to one of the grains.

Figure 1.6. The five macroscopic degrees of freedom used to unambiguously define the
grain boundary plane, mathematically given by θ°[hokolo], (hnAknAlnA). The chosen
coordinate system of grain A (xA, yA, zA) and grain B (xB, yB, zB) chosen such that the
axes are parallel to crystal directions of grain A and B. The common (identical) axis in
both A and B is the z-axis generally defined as o= [hokolo]. When one grain is rotated
about o by the angle of rotation (misorientation) θ, grain A and B occupy identical
positions. The grain boundary normal n=(hnAknAlnA) represents the orientation of
the grain boundary plane.
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Figure 1.6 shows two grains (labeled Grain A and Grain B) where the shaded

region of each grain illustrates the grain boundary plane. To define a grain boundary

geometry, first a coordinate system must be defined for each grain where x, y, z are

chosen along parallel crystallographic directions [hkl] of each respective grain; labeled

xA, yA, zA and xB, yB, zB for grain A and B, respectively. Then a common axis o is

selected which, when rotated by θ, would result in a perfect matching of the lattice

sites of the two grains. The normal to the grain boundary plane is then chosen for one

grain denoted by n=(hnAknAlnA). Combined these parameters described any general

grain boundary given formally as θ°[hokolo], (hnAknAlnA).

For special symmetric grain boundaries the notation can be simplified using

interface-plane notation–used in literature and adopted in this work–combined with Σ

notation given by Σ(Sigma)(hnknln)/[hokolo]. Σ notation describes special coincidence

site lattice (CSL) grain boundaries (Cheng, Luo, and Yang 2018; Homer, Patala, and

Priedeman 2015). CSL theory describes special orientations where the lattice sites of

two overlapping lattices coincidence. The number following Σ relates the number of

coincident lattice sites in the unit cell of the CSL to the number of lattice points in

the generating lattice. An analogous interpretation of Σ is that this value relates the

volume of the generating lattice to the volume of the CSL cell providing an intuitive

method to understand the relationship between the original lattice and the lattice

which generates the grain boundary supercell–a larger Σ value indicates a larger grain

boundary lattice. In Figure 1.6 this is illustrated by outlining the generating crystal

lattice with yellow atoms along the black dashed line where the CSL cell is five times

that of the generating lattice (one half of the grain boundary supercell (Sutton and

Balluffi 1995; Randle 1993). In essence, Σ provides an idea of how large the CSL is
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and, thus, the periodic supercell one would need to create a grain boundary structure

model (Talaei, Nouri, and Ziaei-Rad 2019) as discussed in later Chapter 3.

In addition to the five macroscopic degrees of freedom to consider, there are four

additional microscopic degrees of freedom. These parameters are used to specify the

manner in which the two grains are joined together–three rigid body translations that

specify how the oriented grains are joined together in the x, y, z plane as well as one

parameter specifying the termination of the grain boundary plane, if the system has

inequivalent surface planes. These considerations are of particular importance for

oxide systems due to the inequivalent surface planes and preference for anions to bond

to cations.

1.3.2 Insights into Grain Boundary Properties

A wide variety of experimental (Avila-Paredes and Kim 2006; Shibata et al. 2004;

Dickey, Fan, and Pennycook 2001) and computational (Aidhy, Y. Zhang, and Weber

2013; Aidhy 2016; Yang and Chen 2015; Y.-X. Feng et al. 2015; B. Feng et al. 2012)

techniques have been employed to study the properties of grain boundaries in ceria

and similar systems; these range from macroscopic techniques like impedance spec-

troscopy (Avila-Paredes et al. 2009; Sato 2015) and phase field modeling (Mebane and

De Souza 2015) to nanoscale techniques like atom-probe tomography (Gregori, Merkle,

and Maier 2017; X. Xu et al. 2020) and density functional theory (DFT) (Dawson,

Chen, and Tanaka 2015; Yuan et al. 2016). The use of both macroscopic and nanoscale

techniques have been essential to study the diverse properties of grain boundaries

in polycrystalline materials. Macroscopic techniques offer statistically meaningful

sample sizes capturing the ensemble average and providing a means to obtain an
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overall performance metric for the material. Nanoscale characterization offers a means

to characterize the markedly different chemical, compositional, structural features

and properties of grain boundaries to correlate nanoscale variations with macroscopic

observations.

Figure 1.7. (a) A high-angle annular dark field scanning transmission electron mi-
croscopy image of the CeO2 Σ3 (111)/[1̄01] and (b) high resolution transmission
electron microscopy image of YSZ Σ3 (121)/[1̄01] grain boundary shown in grayscale.
Figure copyright and citation reference from (a) B. Feng et al. (2012) adapted with
permission from AIP Publishing and (b) Shibata et al. (2003) adapted with permission
from Taylor & Francis Ltd.

Nanoscale characterization of ceria grain boundaries has answered many previously

unknown questions regarding the local atomic structure and chemical composition of

grain boundaries that were not well understood (Y. et al. 2002; An et al. 2013). As

discussed previously, one possible theory attributed the decreased ionic conductivity of

the grain boundary to the formation of secondary phases (Guo et al. 2013; Guo, Sigle,

and Maier 2003) where subsequent high-purity polycrystalline (Guo, Sigle, and Maier

2003; Vanpoucke et al. 2014; Diercks et al. 2016) samples showed little improvement

in the grain boundary ionic conductivity. Nanoscale experimental and computational

characterization of model bi-crystal samples (Ye et al. 2014; Bin Feng et al. 2016;

Dickey, Fan, and Pennycook 2001; Shibata et al. 2003; Shibata et al. 2004; Shibata
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et al. 2002; Hojo et al. 2010) and polycrystalline materials (Frechero et al. 2015;

William J Bowman et al. 2017; Bowman, Darbal, and Crozier 2020) have explored the

relationship between the chemistry and local atomic structure of the grain boundary

with changes in the grain boundary character (misorientation angle) such as the grain

boundaries shown in Figure 1.7. These studies yielded significant insights into the

nature and behavior of grain boundaries.

Direct nanoscale characterization and elemental mapping of grain boundaries (Y.

et al. 2002; Orlovskaya and Browning 2004; Shirpour et al. 2012; An et al. 2013;

Y.-H. Lee et al. 2013; William J. Bowman et al. 2015; Lin et al. 2015; Frechero

et al. 2015; Dickey, Fan, and Pennycook 2001; Pratik P Dholabhai et al. 2015) found

that solutes segregate strongly to the grain boundaries–in some cases far above both

the nominal solute concentration and bulk solubility limit. The presence of high solute

concentrations at the grain boundaries in ceria and similar systems has been confirmed

using a variety of techniques such as atom-probe tomography (Lia et al. 2010; Diercks

et al. 2016) and electron energy loss spectroscopy (William J Bowman et al. 2017;

W. Lee et al. 2012). Some works have directly correlated this increase in solute

concentration with increased grain boundary ionic conductivity (William J Bowman

et al. 2017). These finding have shifted the focus of space charge theories from

simple “dilute-solute” or “non-interacting” defect models (Guo, Sigle, and Maier 2003;

Avila-Paredes and Kim 2006; Avila-Paredes et al. 2009; H. L. Tuller and S. R. Bishop

2010; Harry L. Tuller and Sean R. Bishop 2011; Kim 2016, 2016) to developing models

which take into account defect-defect interactions (An et al. 2013; Lee, Prinz, and Cai

2013; Mebane and De Souza 2015) to address these deficiencies.

Despite the recent progress in theoretical and experimental characterization of

grain boundary properties discussed above, the fundamental origin for the conductivity
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increase with high solute concentrations remains elusive and has not been fully explored

previously. Identifying and exploring the role of variable solute concentration effects on

the atomic structure, bonding, energetic, and electronic properties of grain boundaries

in a systematic manner may provide some guidance towards understanding how atomic

level factors modulate grain boundary properties. The use of ab-initio computational

methods, such as DFT, can be used to systematically study atomic level properties.

As such, the exploration of solute composition, concentration effects, and the atomic

level factors that modulate the energetic and transport properties of undoped and

doped grain boundaries in ceria is the focus of Chapter 3 and Chapter 4.

1.4 2D-Substrate Heterostructured Materials

Figure 1.8. Four Y-M-X Janus 2D materials illustrating both the T and H polytype
for TMDC like structures. Final structure model illustrate the T -polytype of Se-As-Br
on a metallic (111) substrate surface. The differing transparencies represent the 2D
material shifted relative to the substrate surface generating 3 configurations.
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Two-dimensional (2D) materials are a broad class of atomically-thin materials

with a wide-range of theoretically predicted chemistry’s, electronic properties, and

structural allotropes. These unique materials are composed of a few atomic to mono-

layer(s) of atoms held together by strong, in-plane covalent/ionic bonds with bond

strengths of 2-8 eV per atom. In the out-of-plane direction (third dimension), between

the layers, the atomically thin sheets interact through weak van der Waals (vdW)

forces. These interlayer interactions are between 0.03 and 0.2 eV per atom (Deng

et al. 2017), which is 1 to 2 orders of magnitude lower than the intralayer bonding.

The strong in-plane intralayer bonding of a 2D crystal provides stability and a degree

of chemical inertness, while the weak vdW interactions in the third dimension gives

rise to novel properties originating from one-dimensional quantization. These one-

dimensional quantum confinement effects (number of dimensions with quantization)

give rise to the dramatically different properties 2D materials possess when compared

to their bulk counterparts, layered or otherwise.

The excitement surrounding the discovery and successful isolation of single-layer

graphene (Novoselov et al. 2004) sparked considerable interest in 2D materials; both

experimental and theoretical research aimed to discover and synthesize (Qin et al. 2022;

Y.-H. Lee et al. 2013; Kong et al. 2013) new low-dimensional materials for a myriad

of promising novel next-generation device applications (Novoselov et al. 2016). These

extraordinary materials have wide-ranging properties such as large band-gap insula-

tors (Chaves et al. 2020), high-temperature superconductivity (Saito, Nojima, and

Iwasa 2016), mechanical toughness (Zhang and Cheung 2016), finite out-of-plane dipole

moments (G. Zhang et al. 2021; Riis-Jensen et al. 2019), chemical activity (Singh,

Mathew, et al. 2015; Paul et al. 2017), and in-plane piezoelectricity (Blonsky et

al. 2015). While the potential applications cover wide-ranging fields such as nanoelec-
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tronics (Kang et al. 2013; Mak et al. 2010; Chen et al. 2013; G. L. Yu et al. 2014),

quantum computing (K. Kim et al. 2018; S. Xu et al. 2015), field-effect transis-

tors (Amani et al. 2014), microwave and terahertz photonics (Z. Shi et al. 2022), and

catalysis (Luo, Liu, and Wang 2016; Li et al. 2019). The diverse properties and consid-

erable research interest in 2D materials has resulted in numerous databases (Haastrup

et al. 2018; Zhou et al. 2019; Mounet et al. 2018; Sorkun et al. 2020; Mathew et

al. 2016) predicting new theoretical 2D crystal structures, compositions, and their

associated properties. These databases rely largely on DFT calculations or similar

ab-initio methods to determine the properties of these hypothesized 2D crystals.

Figure 1.9. Methods for mass-production of 2D materials allowing for a wide choice in
terms of size, quality and price for any particular application. Adapted from Novoselov
et al. (2012) with permission from Springer Nature.

Despite the excitement surrounding this promising class of materials, surprisingly

few 2D materials have been realized or utilized in device applications. Roughly

55 (Haastrup et al. 2018) of the >5,000 theoretically predicted 2D materials (Haastrup

et al. 2018; Mounet et al. 2018; Ashton et al. 2017; Mathew et al. 2016; Zhou et
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al. 2019) have been experimentally synthesized. The foremost technological challenges

facing the realization of many as-yet-hypothesized 2D materials are: (a) reliable

methods to produce low-defect materials with uniform properties at reasonably low

costs, (b) the inability to stabilize the metastable 2D material (over other forms

such as phases or multi-layer, nano-islands), (c) identification of suitable synthesis

substrates, and (d) the unknown interaction strength between the multitude of 2D

materials and substrate surfaces (Dong, Zhang, and Feng 2018; Zhang, Dong, and

Ding 2021). These key challenges are discussed below; addressing the last two points

is the focus of Chapter 5 and Chapter 6 which aims to identify suitable substrates

and assess the post-adsorbed properties of 2D-substrate heterostructured materials.

Of the various methods available to synthesize 2D materials, substrate-assisted

methods–such as chemical vapor deposition (CVD)–are one of the most technologically

relevant methods; these methods result in large-area, low-defect flakes at a reasonable

cost per mass (Novoselov et al. 2012; Zhang, Dong, and Ding 2021) shown in Figure

1.9. Substrate-assisted methods have the added benefit of stabilizing 2D materials with

high formation energies (Singh, Mathew, et al. 2015) and the capability of synthesizing

2D materials without a vdW bonded bulk counterpart (Singh, Mathew, et al. 2015)

which many as-yet-hypothesized 2D materials do not have. Yet, substrate-assisted

synthesis methods face many practical challenges steaming from the expensive trial-

and-error processes to synthesize 2D materials requiring significant experimental effort

and intuition for choosing the substrate, precursors, and the growth conditions (the

substrate temperature, growth rate, etc.). For all but the most commonly studied 2D

materials (e.g. graphene, h-BN, MoS2), this area remains in its infancy. Additionally,

realization of theoretically predicted 2D materials (Qin et al. 2022) can be challenging

due to their inherently metastability and unknown substrate effects (Singh, Hennig,
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et al. 2015; Singh, Zhuang, and Hennig 2014) which can be non-trivial and impact the

materials properties. The choice of substrate can alter the 2D materials properties as

seen in 2D-MoS2 where the mobility of carriers are reduced by more than an order of

magnitude when placed on a sapphire substrate (Singh, Hennig, et al. 2015). In come

cases, the successful growth of a 2D material is determine by the type of substrate;

graphene and hexagonal-BN (h-BN) are stabilized by metal substrates while most

transition metal dichalcogenides (TMDC) have been grown successfully on SiO2/Si or

sapphire substrates (Zhang, Dong, and Ding 2021).

Considering the immense number of theoretically predicted 2D materials, all

but a subset of commonly studied 2D materials–like graphene (Kang et al. 2013;

Ci et al. 2010), h-BN (Akiyama, Kawamura, and Ito 2021), or common TMDC

(MoS2, MoSe2, WS2, WSe2) (Kong et al. 2013; Y. Yu et al. 2013; Gurarslan et

al. 2014; Chen et al. 2013; Zeng et al. 2013)–have comprehensive studies (Idrees,

Fawad, et al. 2020; Idrees, Din, et al. 2020; Chen et al. 2013; Deng et al. 2017)

detailing the interactions of the 2D material with various substrates. Having a

detailed understanding of the materials dependent properties dictating the energetic

stability, nature of the 2D-substrate interaction (ionic/covalent/vdW bonding, charge

transfer, 2D-substrate z-separation distance, etc.), and post-adsorbed properties of 2D

materials with various substrates to overcome some of the challenges associated with

the experimental realization of these unique materials. Computational methods such

as DFT as well as high-throughput workflows, their associated databases–containing

computed materials properties–have the capability to identify potential substrates

that stabilize 2D materials and provide insight into the 2D-substrate interaction and

their post-adsorbed properties. However, the combination of these two methods has

not been fully addressed within the scientific community.
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1.5 Goals and Objectives

The previous sections highlight the significant progress made towards understand-

ing interfacial properties as well as the complex, interdependent interface-function

relationships that characterize these regions. Despite the wealth of knowledge concern-

ing interfacial properties, fundamental questions still remain regarding what controls

these interactions of various systems, and how to design interfaces to optimize specific

material properties. Considering the nanoscopic size, expansive diversity, and chal-

lenges (at both the macro- and nanoscale) associated with probing these interfacial

regions, it is unsurprising that a comprehensive understanding of fundamental factors

which govern these systems is a challenging task. Often, progress relies on utilizing

experimental, theoretical, and computational techniques to understand and identify

key interface-property relationships.

Over the past decade, the application of high-throughput computational workflows–

to accelerate materials discovery and deepen the communities understanding of funda-

mental materials properties–has been an area of intense interest. At the heart of this

so-called “Materials Genome Initiative” (MGI) is the notion that the deployment of

new materials can be accelerated through the joint efforts in theory, computation, and

experiment (Pablo et al. 2019). The MGI aims to share, develop, and advance the

understanding of materials and their applications in a collaborative and synergistic

manner. Data-science and machine learning are areas which have directly benefited

from the recent interest, development, and wide-spread adoption of the infrastructure

put forth by the MGI. These areas have become increasingly important within the

materials science community for handling and elucidating key material-property re-

lationships and deepening the communities understanding of materials. The work
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described in subsequent chapters utilizes and further develops the tools provided by

MGI–with the primary focus of understanding the interfacial properties of materials.

Ultimately, the goal of this work is to develop strategies which identify funda-

mental relationships and key properties that modulate the interface, and assess the

impact these key properties have on overall material properties through computational

approaches. Motivating research questions include:

• In ceria, how are the grain boundary properties influenced by variations in local

solute concentrations and composition? Of special interest is how the presence

of divalent alkaline-earth metal solutes modulate the grain boundary. Do the

trends observed for divalent solutes match those found for trivalent solutes?

• In Ca-doped ceria, what is the origin of the increased grain boundary ionic

conductivity with variable local solute concentrations at the grain boundary?

How does the presences of solutes effect the migration energy of oxygen vacancies?

• Can high-throughput computational techniques–like those used by the Materials

Genome Initiative–be utilized and extended to address fundamental questions

regarding the stability and post-adsorbed properties of 2D heterostructured

materials?

• What fundamental insights regarding the stability and nature of 2D-substrate

heterostructure interactions can be obtained from large data sets and utilization

of techniques such as machine learning? What, if any, are the fundamental

material properties that govern the interfacial interactions of adsorbed 2D

materials?

To this end, ab-initio quantum mechanical simulations characterizing fundamental

materials properties are undertaken to systematically probe variations in the interfacial

properties of (a) ceramic oxide grain boundaries of undoped and doped CeO2 and (b)
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heterostructures formed between any arbitrary two-dimensional material and low-index

substrate surfaces. The overarching goal of Chapter 3 and Chapter 4 is to explore the

compositional effects, assessing how the interfacial properties of grain boundaries in

ceria are modulated. The thermodynamic stability, atomic and electronic structure

of undoped and doped CeO2 grain boundaries are examined using density-functional

theory simulations, with a GGA+U functional. Two model symmetric tilt grain

boundaries were created and the grain boundary core systematically doped with high

local solute concentrations of alkaline-earth metals solutes. The significance of the

results are discussed in Chapter 3. For Ca-doped ceria, the aim is to provide clarity

regarding the origin of the increased grain boundary ionic conductivity, e.g. quantify

changes in the migration energy of oxygen vacancies with high Ca concentrations at

the grain boundary. The hypothesis is that high concentrations of solutes located

at the grain boundary are largely responsible for modulating the ionic conductivity

of polycrystalline ceramics and the results are discussed in Chapter 4. Chapter 5

discusses the development of the high-throughput computational framework to provide

insights into the fundamental interfacial properties–like nature of bonding, charge

doping, lattice and electronic structure distortions, and energetic stabilization–of 2D

material-substrate surface interfaces. In Chapter 6, the high-throughput workflow

is combined with well-known machine learning techniques to elucidate fundamental

factors governing the substrate induced stabilization of Janus 2D materials on metallic

substrate surfaces.
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Chapter 2

RESEARCH METHODOLOGIES

Density functional theory (DFT) is a common method from which the energetic,

thermodynamic, and kinetic properties of experimentally derived and hypothesized

material structures can be explored and/or determined while accounting for quantum

mechanical effects. DFT-based methods have had remarkable success describing the

properties of materials, guiding experiments, and elucidating key material-property

relationships. These methods are relatively accurate in describing the properties of a

diverse range of materials–from ionically bonded to vdW bonded materials–which can

be challenging to obtain with computationally less expensive methods, such as molecu-

lar dynamics. The versatility of DFT and the recent development of high-throughput

computational workflows has been of great benefit to the scientific community for mate-

rials discovery. Naturally following the utilization of these techniques, large databases

containing a number of computed materials properties have emerged opening new

avenues to utilize long standing methods from other fields such as data-science and

artificial intelligence. This section covers the computational methodologies utilized

in the subsequent chapters from DFT, workflow development, data provenance, and

the application of machine learning to study the properties of grain boundaries and

2D-substrate heterostructures.
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2.1 Density Functional Theory

Density-functional theory (DFT) is, in principle, an exact method to solve the

many-bodied Schrödinger equation describing material properties arising from the

ground state interactions of electrons and nuclei. The time-independent, non-relativistic

Schrödinger equation is given simply by Equation 2.1 where Ĥ is the Hamiltonian

operator, Ψ represents the total wave-functions (eigenstates), and E is the associated

energy of each wave-function (eigenvalue) of the system.

ĤΨ = EΨ (2.1)

The revolution of DFT and the exactness of the theory comes from the realization

that instead of solving an intractable, many-bodied problem (i.e. solving Equation

2.1 with Ĥ given by Equation 2.2), one could first separate the electronic and ionic

degrees of freedom and then map the system of N interacting electrons to a unique

functional of electron density. In principle, this turns out to be sufficient to solve

for the exact quantum mechanical ground state energy of the interacting electron

system which is covered in more detail in the following paragraphs.

The many-bodied Hamiltonian operator is given by Equation 2.2 where ℏ is the

reduced Planck constant, MI is the mass of the Ith nucleus at positions RI with

nuclear charge eZI , me is the mass of the nth electron at positions ri with charge e.

Ĥ = −
n∑

i=1

ℏ2

2me

∇2
ri −

N∑
I=1

ℏ2

2MI

∇2
RI

+
∑
i>j

e2

|ri − rj|
−

n∑
i=1

N∑
I=1

ZIe2

RI − ri
+
∑
I>J

ZIZJe2

RI − RJ

(2.2)

In order from left to right, the terms in Equation 2.2 represent the contribution to the

total energy originating from: the kinetic energy (momentum) of the electrons and
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nuclei, the energy of Coulomb interaction (electrostatic) between electrons, between

electrons-nuclei, and between nuclei.

The first step towards simplifying Equation 2.2 is to decouple the interactions

between the electrons and nuclei. The work of Born and Oppenheimer (Born and

Oppenheimer 1927) laid the theoretical foundation to identify a mathematically

tractable solution for Equation 2.1 and Equation 2.2. Later works by Kohn and

Hohenberg determined a ridge formulation of DFT which forms the basis of modern

DFT (Hohenberg and Kohn 1964).

The Born-Oppenheimer approximation simplified Equation 2.2 separating the

ionic and electronic degrees of freedom by arguing the vibrational frequencies of the

electrons are orders of magnitude larger than the ions. This observation lead to the

belief that ions appear frozen to the electrons. Following the Born-Oppenheimer

approximation, the work of Kohn and Hohenberg mapped the electron many-body

ground state wave-function of a system of N interacting electrons to a unique functional

of the electron density. Their work enabled the total energy functional of the many-

body, interacting-electron system (with 3N degrees of freedom) to be written as a

sum of the external potential and the electronic energies (with 3 degrees of freedom)

shown in Equation 2.3 where T [n[(r)] is the kinetic energy, Ue is the electron-electron

interaction, and Vext is the external potential.

E[n(r)] = ⟨Ψ| Ĥ |Ψ⟩ = T [n(r)] + Ue[n(r)] +
∫

Vext(r)n(r)dr (2.3)

Another simplification proposed by Kohn and Sham (Kohn and Sham 1965)

theorized that the kinetic energy term can be represented using one-electron orbitals.

This enabled the sum of one-electron orbitals to represent the electron density of a

system with N interacting electrons (Lesar 2013) and to redefine the kinetic energy

functional as TKS[n(r)] =
∑N

i=1 ⟨Ψi| − 1
2
∇2

i |Ψi⟩ where Ψi represents the one-electron
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orbital wave-function. This assumption reduced the problem from a multi-electron

problem to one where you would find a set of solutions to one-electron problems.

Furthermore, they proposed that the electron-electron interaction energy (Ue[n(r)])

can be represented by the classical electrostatic (Hartree) energy. To account for the

inaccuracies associated with their assumptions a correction term, known today as the

exchange-correlation functional Exc[n(r)], was introduced. Exc[n(r)] originates from

(1) the kinetic energy difference between the interacting and non-interacting systems

and (2) the non-classical electrostatic interaction energy. If the exchange-correlation

functional is known, then (in principle) DFT is an exact theory. However, the exact

form of the exchange-correlation functional is typically unknown, making practical DFT

applications an approximate solution. The general form for the exchange-correlation

functional is given by Equation 2.4.

Exc[n(r)] = T [n(r)]− TKS[n(r)] + Ue[n(r)]− J [n(r)] (2.4)

2.1.1 Approximations to the Exchange-Correlation Functional

There are many ways to approximate the exchange-correlation functional; one

can categorize each approximation using Jacob’s ladder shown in Figure 2.1 (Burke

2012). The lower rungs are more simplistic approximations starting in the Hartree

(Coulomb) world, where the N-particle wave-functions are represented as a product

of single-particle wave-functions that neglect non-classical interactions arising from

inhomogeneities in the electron gas. The local density approximation (LDA) to the

exchange-correlation functional falls into this category where the local electron energy

density at any position r is replaced with the exchange-correlation energy associated
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with that of the homogeneous electron gas of the same density (Lesar 2013; Burke

2012).

Figure 2.1. Jacob’s ladder of density functional approximations to the exchange-
correlation energy. Adapted from Perdew et al. (2005) with permission from AIP
Publishing.

The second rung on the ladder takes the gradient corrections of n(r) and is known

as the generalized gradient approximation (GGA) (J. P. Perdew 1985). The third rung

is reserved for meta-GGA functionals which include functionals such as TPSS (Tao

et al. 2003)–which refers to the authors initials. The fourth rung contains hybrid

functionals that mix some exact exchange with GGA such as the B3LYP (Stephens

et al. 1994) or HSE0 (Krukau et al. 2006; Heyd, Scuseria, and Ernzerhof 2006; Vydrov

and Scuseria 2004; Heyd, Scuseria, and Ernzerhof 2003) functionals. The final rung is

fully non-local functionals, such as the random phase approximation (Dobson, Wang,

and Gould 2002; Fuchs and Gonze 2002) or B2PLYP (Grimme and Neese 2007)

functionals. However, these functionals are extremely computationally expensive to

use.
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For many materials systems, these initial approximations to the exchange-

correlation functional successfully describes the ground state properties. However, for

systems which posses strongly correlated electrons (e.g. Mott insulators or compounds

that contain partially filled 3d or 4f states) or London dispersion interactions (e.g.

systems with van der Waals interactions like two-dimensional materials) the general

prescription for the exchange-correlation functional fails (Sõderlind et al. 2010). For

these systems, modifications to the exchange-correlation functionals have been made

to more accurately represent the physical system.

In correlated systems, approximations to the exchange-correlation functional do

not completely cancel out the electronic self-interaction contained in the Hartree term.

This results in a fragment of the same electron inducing an added self-interaction

energy that results in excessively delocalized wave-functions. This is the origin of

the tendency for DFT to over-delocalize valence electrons and over-stabilize metallic

ground states, resulting in systematic errors. The Hubbard model (H. and K. 2002)

was proposed as a solution for correcting inaccurate cancellations of the self-interaction

energy for the existing formulations of the exchange-correlation functionals. Of the

proposed corrective methods, the rotationally invariant energy functional proposed by

Dudarev et al. (1998) is used within this work where the total energy can be written

simply as

EDFT+U = EDFT +
U − J

2
(
∑
j,l,σ

ρσj,lρ
σ
l,j) (2.5)

where ρ is the on-site density matrix of the d/f electron. In this formulation, only

the difference between U (the effective on-site Coulomb interaction parameter) and J

(the effective on-site exchange interaction parameter) is meaningful.

For materials with long-range or non-local interactions, standard approximations

to the exchange-correlation functional cannot capture interactions originating from
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fluctuations in the charge density distribution. This failure to describe the interactions

originating from non-local charge density fluctuations is inherently due to the assump-

tion that the electron density can be completely described as a functional of the local

electron density or the gradient of the electron density. Since vdW interactions are

purely a non-local interaction and traditional DFT assumes only local contributions

to the electron correlation are needed, these interactions are neglected. As such,

various schemes for approximating the contribution of the electron correlation in

the exchange-correlation functional have been developed to include these long-range,

non-local interactions. The van der Waals density functional (vdW-DF) based directly

on the electron density is the most appealing approximation for solving the non-local

contributions to the exchange-correlation functional. This method adds a correction to

the conventional Kohn-Sham DFT energy, EDFT, enabling the total energy to include

contributions from dispersion, shown in Equation 2.6.

EDFT−disp = EDFT + Edisp (2.6)

EXC = EGGA
X + ELDA

C + Enl
C (2.7)

Dion et al. (2004) proposed one vdW-DF approximating Edisp through a non-local

correlation functional given by Equation 2.7, where EGGA
X is the exchange energy

based upon the revPBE GGA functional (Zhang and Yang 1998), ELDA
C is the LDA

correlation energy, and Enl
C is the non-local energy term approximating electron

correlation effects. Enl
C is solved using the algorithm proposed by Roman-Perez and

Soler (Román-Pérez and Soler 2009), which increases the computational efficiency

by transforming the double real space integral into reciprocal space. Recent work

by Klimeš, Bowler, and Michaelides (2009) and Bowler and Michaelides (2011) has

produced more accurate exchange functionals such as optB88-DF. The work described
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in subsequent chapters makes use of these more recent advancements to describe the

non-local interactions of two-dimensional heterostructures using the optB88-DF.

2.1.2 Implementation: VASP

Within this work, all DFT calculations were performed using the Vienna Ab−Initio

Simulation Package (VASP) (Kresse and Hafner 1993, 1994; Kresse and Furthmüller

1996a, 1996b). The DFT framework above provides an avenue from which the ground-

state properties of materials can be determined using a first-principles approach.

Using VASP, determination of the energetic/thermodynamic stability and kinetic

properties for a diverse pool of material systems is possible. For interfacial structures–

such as grain boundaries and 2D-substrate heterostructures–first principles methods

enable interfacial properties to be characterized in a controlled manner, which is very

challenging if not impossible to achieve via experimental methods.

In this work, the ground-state properties of various grain boundaries were used to

assess the energetic/thermodynamic stability of grain boundary structures to assess

how changes in local solute concentrations modulate fundamental grain boundary

properties, such as structural, compositional, atomic, and electronic variations. For

2D heterostructures, the ground-state properties were used to ascertain the thermo-

dynamic stability of various 2D materials on metallic substrates. This enables the

identification of suitable substrates from which theoretically predicted 2D materials

can be synthesized. Additionally, substrate effects on various 2D materials is explored

to assess how the interfacial interactions impact the properties–structural, chemical,

electronic, and charge transfer–of post-adsorbed 2D materials leading to actionable

information to experimental synthesis and functionalization of novel 2D materials.
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2.2 High-throughput Workflows

The term “high-throughput” is typically used to describe methods were automation

is needed in order to complete a large number of repetitive, but well-defined tasks

that are infeasible or time-consuming to complete manually. The basic premise of

developing high-throughput computational workflows is to tackle these tasks and

reduce the probability of introducing errors during tedious/time-consuming tasks.

The development of these methods have wide-ranging benefits and uses over a various

domains and skill levels from experts to novices.

A high-throughput computational workflow is the high-level name given to de-

scribe the series of steps taken to complete a main objective. These tasks could be

anything associated with the completion of the task i.e. tracking file input/output,

error correction, program execution, job management, analysis, data dependencies,

etc. When a workflow is coupled with the predictive capabilities of DFT, the work-

flow’s main objective may be obtaining any number of specific materials properties

from computing the ground-state electronic band-structure and density of states to

determining excited state properties. The easy of use, potential and scalability of

these methods to accelerate materials discovery and standardize computational tasks

has resulted in wide-spread adaptation and utilization with materials science. The

following sections discuss the key concepts and considerations involved in the design

and development of high-throughput computational workflows and data storage. A

graphical illustration of the tasks and considerations is outline in Figure 2.2.
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Figure 2.2. Diagram illustrating the number of steps involved in designing and
developing a workflow.

2.2.1 Design and Development

The implementation of workflows often requires considerable forethought to gen-

erate an easy-to-use code that is flexible, modular, and generally compatible with

other codes and across heterogeneous computational infrastructures. Additionally,

the software should be capable of handling a multitude of computational tasks in a

comprehensive manner that shields the user from underlying complexities; this can

result in a demanding development process.

A good computational workflow is designed in a modular fashion wherein individual

components are linked together and executed by a computational engine with a key

characteristic being the separation between the workflow steps and its execution.

The individual components linked together in a workflow should provide sufficient

metadata and provenance to fully describe the generated data in a completely traceable

way while the workflow itself encapsulates the methodology behind each step in the

workflow. This methodology provides a flexibility framework to develop and design a

wide variety of workflows that are reusable, reproducible, and easily extendable.

Due to the wide-spread popularity of workflows, a number of high-throughput
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computational frameworks have been developed. These packages are capable of han-

dling the multitude of tasks necessary for creating computational workflows such as

interfacing with external software packages and computing platforms, handling com-

putational heterogeneity, data management, and security. Packages and frameworks

relevant to this work will be further discussed in Chapter 5.

Central to any software design and development is testing and validation of

individual components. Testing of numerical parameters such as the calculation input

and output or function and numerical validation is key to ensure the results are

reasonable and to maintain FAIR (Goble et al. 2020) coding practices. Maintaining

sufficient testing provides a level of future proofing as the code base and dependencies

are updated.

Data provenance refers to the detailed record or history of the data and its origins.

Typically this record is contained within the metadata and stored alongside related

information in the database or repository. Databases are an irreplaceable component

of any high-throughput computational workflow or large data set providing a means

to efficiently query the generated data, direct future studies, and disseminate results

by serving as the back-end to graphical websites.

2.3 Machine Learning Methods

Machine learning is a field of computer science which utilizes computer systems

and efficient algorithms to “learn” for themselves from examples, i.e. large data sets.

In essence, a machine learning program attempts to identify simple rules or functions

that best describe a target property. Some machine learning algorithms achieve this
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goal by optimizing an object function while other algorithms use a reward/punishment

concept.

There are many types of machine learning algorithms and systems ranging from

supervised/unsupervised to instance-based/model-based learning. These algorithms

find suitable applications for wide-ranging problems in materials science. Generally, a

specific algorithm is chosen based on the type of problem to be solved. In the field of

materials science, some of the more popular methods are supervised learning or deep

learning methods (Liu et al. 2017), as they are often easy to implement, understand, and

obtain critical relational information regarding the underlying parameters describing

a target property.

The utilization of machine learning for materials discovery and exploration of

fundamental materials-dependant relationships requires numerous steps, such as

obtaining sufficiently large data sets to train the algorithm, pre-processing the data

set, building the model, and evaluation of the models performance. Additionally, this

process is highly non-linear and often times requires repeating several of the steps to

obtain a well-trained, generalized model. Data collection and pre-processing are the

most critical steps to identify key features and obtain reasonable model performance. If

the data set is not sufficiently large, consists of many highly correlated/sparse features,

or does not contain predictive features, then the models performance, reliability, and

generalizability will be degraded. The following sections discuss the key steps and

concepts involved with generating quality machine learning models that are utilized

and discussed in Chapter 6.
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2.3.1 Data Collection and Pre-processing

Data collection and pre-processing is one of the most time consuming processes

involved in machine learning. It requires the generation and visualization of crucial

features in the data, identification of outliers, encoding the data into an appropriate

format for the machine learning algorithms, and understanding data context (e.g.

identifying explicit and implicit dependencies or correlations between features in the

data set that impact the performance of the model). Additionally, filling in missing

values that are null or removing the null values must be performed. These steps are

critical to generate high quality, generalized models as most data originates from both

computational simulations and experimental measurements, resulting in data sets that

can be noisy and inconsistent in addition to having incomplete features.

The work discussed in Chapter 6 implements multiple methods for data collection,

cleaning, and pre-processing methods. The data collection process utilizes two methods:

(1) generation of ab-initio data using DFT, and (2) collection of data from other

databases utilizing community software to apply materials based properties (features)

for each data entry in the data set. Once a data set has features added to each entry it

is important to compare the features and remove features which are highly correlated

or are nearly homogeneous in value (most of the values in the column have the same

value). The removal of highly correlated features improves the performance of the

model while removing homogeneous features speeds up the training of the model.
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2.3.2 Model Selection

When applying machine learning algorithms to solve a problem, the problem falls

into one of two categories: (a) classification, or (b) regression. The application of

regression (Liu et al. 2017; Fischer et al. 2020; G. Zhang et al. 2021; Rhone et al. 2020;

S. B. Torrisi et al. 2020) (linear, random forest, or gradient boosting trees) and

kernel-based (support vector machine) (Siriwardane et al. 2020; Vivanco-Benavides

et al. 2022) models have been widely used in materials science to successfully predict

various materials properties. These models perform well on small data sets with high-

dimensional (large) feature spaces (Barnard et al. 2019; Geurts, Ernst, and Wehenkel

2006) making them particularly well suited for materials science applications.

In materials science regression algorithms are commonly used to predict an energetic

quantity for a material. As such, regression algorithms such as random forest regression

models are very common. Random forest models have many advantages such as (a)

clear data partitioning making them more straight forward to interpret the results,

(b) fast and flexible to implement for a wide range of machine learning problems, and

(c) require little in the way of tuning hyper-parameters compared to other methods.

Random forests are ensemble classifiers which construct multiple independent random

tree models. A random tree model is a machine learning model which splits the input

data into subsets on which the decision trees are trained and an aggregate model is

created (Breiman 2001) leading to a more stable and generalizable results.
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2.3.3 Model Training and Evaluation

Due to the easy of use and good performance on relatively small data sets, this work

focuses primarily on the use of random forest regression models. Additionally, tuning

the hyper-parameters of these models is easier than other methods since they have

few parameters to tune. The hyper-parameters which impact the model performance

the most are: (1) the number of decision trees (n_estimators), and (2) the number

of features considered by each tree to split a node (max_features). An efficient

method to tune the hyper-parameters within scikit-learn is to use GridSearchCV or

RandomizedSearchCV which loops over specified hyper-parameter to find the optimal

values for training the model.

The accuracy of random forest regression models are assessed using several statis-

tical measures, most commonly, the coefficient of determination (R2), mean absolute

error (MAE), and root mean squared error (RMSE) as statistical measures given

by Equation 2.8, Equation 2.9, and Equation 2.10, respectively. R2 indicates the

goodness-of-fit for the ML model in predicting the target values and represents the

proportion of the variation in the predicted/target variable from the input (feature)

variables used to predict the target value. In order to train the model K-fold cross-

validation is where the training set is partitioned into K subsets and K-1 subsets train

the model with the remaining subsets used to evaluate the model performance. This

procedure is repeated until each subset is selected for validation (Buitinck et al. 2013).

R2 = 1−
∑N

i (Y
i
DFT − Y i

predicted)
2∑N

i (Y
i
DFT − Ȳ )2

(2.8)

In Equation 2.8, the values predicted using DFT and machine learning models are

denoted by YDFT and Ypredicted, respectively. Ȳ is the average of the target values
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of the test set, and N is the number of materials considered to calculate the MAE

and RMSE. MAE is the absolute value of the difference between an observed value

(ML predicted) of a quantity and the true value (DFT predicted). MAE provides an

average magnitude of error in the ML model from the true value. RMSE provides a

measure of how concentrated the data is around the line of best fit.

MAE =
1

N

N∑
i

|Y i
DFT − Y i

predicted| (2.9)

RMSE =

√√√√ N∑
i

(Y i
DFT − Y i

predicted)
2

N
(2.10)
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Chapter 3

IMPACT OF ALIOVALENT ALKALINE-EARTH METAL SOLUTES ON CERIA

GRAIN BOUNDARIES: A DENSITY FUNCTIONAL THEORY STUDY

3.1 Motivation

As discussed in Section 1.3 of the Introduction, there is a need to develop a

fundamental understanding of how high local solute concentrations at the grain

boundary modulate the interfacial properties. In this chapter, using first-principles

simulations, this work provides a fundamental understanding of the atomic-structure,

energetic stability, and electronic properties of pristine (undoped) as well as aliovalent,

alkaline-earth metal (AEM) doped grain boundaries in ceria. This work demonstrates

that a local doping of ∼20% [M]GB (M=Be, Mg, Ca, Sr, and Ba) has a significant

impact on the energetic stability of the grain boundaries. Using density-functional

theory simulations with a GGA+U functional, this work examines the structure,

energetic stability, and coordination of atoms at the grain boundary interface for

two more frequently observed grain-boundaries in Ca-doped ceria, (Bowman 2016;

William J Bowman et al. 2017) the Σ3 (111)/[1̄01] and Σ3 (121)/[1̄01] grain boundary.

This work finds the Σ3 (111)/[1̄01] grain boundary is energetically more stable

than the Σ3 (121)/[1̄01] grain boundary due to the larger atomic coherency in the

Σ3 (111)/[1̄01] grain boundary plane. This work shows that a local doping with

∼20% [M]GB (M=Be, Mg, Ca, Sr, and Ba) has a significant impact on the energetic

stability of the grain boundaries. As the atomic radii of the solute atom increases,

the grain boundary energies display a parabolic dependence which is modulated by
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the interfacial strain and the packing density of the grain boundary. In this work, a

stabilization of the grain boundaries upon Ca, Sr, and Ba doping is shown whereas

Be and Mg render them energetically unstable.

The element-projected and orbital-projected density of states show that no defect

states are present in or above the band gap of the AEM doped ceria, which is conducive

to maintaining lower electronic mobilities necessary for good ionic transport. The

electronic properties, unlike the energetic properties, exhibit complex inter-dependence

on the structure and chemistry of the host and the solutes. In addition, this work finds

that the band gap of ceria can be modulated by up to 0.3 eV by selecting different AEM

solutes at the ceria grain boundary. This work makes advances in the atomic-scale

understanding of aliovalent cation doped ceria grain boundaries, serving as an anchor

to future studies that can focus on understanding and improving ionic-transport.

3.2 Computational Methods

All simulations are based on DFT using the projector augmented wave

method (Blöchl 1994; Kresse and Joubert 1999) as implemented in the plane-wave

code VASP (Kresse and Hafner 1993, 1994; Kresse and Furthmüller 1996a, 1996b).

All simulations included spin-polarization and the generalized gradient approximation

(GGA) with the Perdew-Burke-Ernzerhof (PBE) (Perdew, Burke, and Ernzerhof 1996,

1997) exchange-correlation functional. In addition, the strong correlation effects of the

Ce 4f electrons were treated within GGA using the Hubbard U correction (GGA+U)

formulated by Dudarev et al. (1998). An on-site Coulomb interaction, Ueff = 5 eV,

was used for Ce, as determined by Pratik P. Dholabhai et al. (2010b) as well as

many others (Koettgen and Martin 2019, 2020; Pratik P. Dholabhai et al. 2010a;
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Zhu et al. 2020), to provide a better fit with the experimental band gap (Egap),

lattice parameter (a0), and bulk modulus (B0) compared to traditional GGA methods.

For a 2x2x2 supercell of bulk ceria, the Egap

[
O(2p) → Ce(4f )

]
= 2.0 eV, a0=5.494

Å, and B0=180.59 GPa and the corresponding experimentally measured values are

Egap

[
O(2p) → Ce(4f )

]
=3 eV (Gerward and Olsen 1993), a0=5.411 Å (Eyring 1979),

and B0=204-236 GPa (Nakajima, Yoshihara, and Ishigame 1994; Gerward and Olsen

1993). The chosen value of Ueff correctly describes the localization of the 4f electrons

on the nearby Ce atoms–unlike traditional GGA which results in delocalized electrons

on all cerium ions in the lattice.

For ceria, standard DFT fails to describe the insulating behavior and the use of

the Hubbard (U) parameter that prioritizes electron localization on the nearby Ce

4f states is essential to correct for this. This electron localization is well established

in the experimental literature that characterizes so many processes in ceria based

systems (Trovarelli 2002). The DFT treatment of ceria is well established within

the GGA+U method and typically overestimates the lattice parameters with errors

of 1%-2% (He et al. 2014). The computed lattice parameter value is overestimated

by 1.53%, well within the expected accuracy of the DFT method as well as recently

published literature (Koettgen and Martin 2020, 2019; Wu, Vegge, and Hansen 2019).

Band gap underestimation within DFT is also a well-established trend (J. Perdew

1985; Jie et al. 2019; Dittmer et al. 2019) that can produce discrepancies upwards

of 1-2 eV (Dittmer et al. 2019) or a 40%-50% difference between calculations and

experimental measurements (Brothers et al. 2008), dependent upon the class of the

material. However, this is a systematic error present in all calculations due to the band

gap underestimation error (Tolba et al. 2018; J. Perdew 1985; Dittmer et al. 2019)

and the choice of the exchange-correlation functional (Chan and Ceder 2010; Heyd
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et al. 2005; Setyawan et al. 2011). Due to this systematic error, although absolute

band gap energies might not agree with experimental measurement, differences from

structural changes follow trends expected from experimental measurements. The

values of U, the lattice parameter and band gap are shown in Appendix Table A.1 for

comparison with other GGA+U calculations (Koettgen and Martin 2020, 2019; Zhu

et al. 2020; Pratik P. Dholabhai et al. 2010a; Wu, Vegge, and Hansen 2019). Note

that for the chosen simulation parameters, the maximum numerical error present in

the band gap energy is at most ± 0.1 eV (Kresse, Marsman, and Furthmuller 2018).

Figure 3.1. (a) Conventional fluorite CeO2 unit cell. The (121) and (111) lattice
planes colored red and green, respectively, indicating the grain boundary planes. Insets
show the supercell oriented with grain boundary within the plane–the x -y plane. The
xz -plane of the (b) Σ3 (111)/[1̄01] and (d) Σ3 (121)/[1̄01] supercell. The percent
deviation of the bonds in the (c) Σ3 (111)/[1̄01] and (e) Σ3 (121)/[1̄01] supercell from
the average Ce-O bond length in the supercell. The color map represents ∆rCe−O.
Blue indicates compressed bonds while red indicates tensile bonds.
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A plane wave cutoff energy of 400 eV was used for all cases except for the volume

optimization of ceria, where it was set to 520 eV. This cutoff energy was sufficient to

converge the forces (Hellman 1937) acting on each ion to 0.01 eV/Å or better. A block

Davidson (Broyden 1965) minimization algorithm was used to achieve a convergence

in total energy per cell on the order of 0.001 eV or better.

Figure 3.1b and Figure 3.1d are the structure model for the Σ3 (111)/[1̄01] and

Σ3 (121)/[1̄01] grain boundaries, respectively. The grain boundaries were constructed

from the conventional fluorite unit cell of CeO2 using pymatgen (Ong et al. 2013)–an

open-source Python library for materials analysis. The choice of grain boundaries

was motivated by the large variation in the atomic structure, as well as the presence

of high-quality experimental characterization of polycrystalline Ca-doped ceria via

electron back-scattered diffraction and transmission electron microscopy (Bowman

2016; William J Bowman et al. 2017). Furthermore, the atomic structure for the Σ3

(111)/[1̄01] grain boundary has been experimentally confirmed by B. Feng et al. (2012).

The computationally derived CeO2 Σ3 (111)/[1̄01] grain boundary structure agrees well

with the high-resolution transmission electron microscopy (HR-TEM) images obtained

by B. Feng et al. (2012) and is shown in Appendix Figure A.2. This suggests that the

computationally considered structure has a qualitative match with the experimentally

measured structure. For the Σ3 (121)/[1̄01] grain boundary–a closely related system,

YSZ–atomic resolution structural information is also available (Shibata et al. 2003) and

is shown in Appendix Figure A.3. The undoped Σ3 (111)/[1̄01] grain boundary cell has

optimized lattice vectors [7.72, 7.72, 38.75] Å with 144 atoms and was converged with a

3x3x1 gamma-centered k-point grid. The undoped Σ3 (121)/[1̄01] grain boundary cell

has optimized lattice vectors [9.53, 7.74, 54.84] Å with 288 atoms and was converged
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with a 2x3x1 gamma-center k-point grid. A Gaussian smearing with a sigma value of

0.05 eV was employed.

During the initial construction of each grain boundary supercell structure, the

inter-grain boundary spacing between respective grains (the z-axis separation) was

set to maintain the same cation-anion bond distance across the interfaces as the grain

interior. This was motivated by several studies suggesting that ceramic oxides relax

to retain a bond length between ions that is similar to the grain interiors (Shibata

et al. 2004; Shibata et al. 2002). To minimize the grain boundary interactions between

periodic images, the undoped grain boundary cells were constructed from grains with

a c lattice vector two times the periodic repeat distance of the oriented cell, such

that c = 2ahkl, where hkl are the crystal directions associated with the (111) and

(121) interfacial planes. These grain boundary supercells are used for assessing the

energy and electronic properties of the undoped and doped grain boundaries. Note

that the grain boundary energy difference between the grain boundary supercells,

constructed using grains with c=ahkl and c=2ahkl, was 8 meV/Å2 and 2 meV/Å2 for

the Σ3 (111)/[1̄01] and Σ3 (121)/[1̄01] grain boundaries, respectively.

When doped with an AEM solute, an oxygen vacancy was introduced in the cell to

maintain charge neutrality. Pseudopotentials for each AEM solute were chosen such

that the total energy was a minimum, and to ensure convergence of the simulations.

The O and Ce atoms have been described by 2s22p4 and 5s25p66s25d14f 1 valence

electrons, respectively. The valence electrons for Be and Mg were described by 2s2

and 3s2 while Ca, Sr, and Ba used 3s23p64s2, 4s24p65s2, 5s25p66s2 valence electrons,

respectively. All structures considered in this study were subject to full structure

optimization.
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3.3 Results and Discussion

3.3.1 Grain Boundary Structure and Character

As discussed in Section 1.3 of the Introduction, grain boundaries can be fully

described using the 5 macroscopic and 4 microscopic degrees of freedom. Additional

atomic-level parameters–like the number of coordination-deficient cation sites, the

average cation-anion bond distance, and the grain boundary induced lattice expansion–

can further elucidate grain boundary structure-property relationships. A coordination-

deficient cation site is a site that has fewer bonds than that of the host cation in the

defect-free lattice. Thus for ceria-based compounds, a coordination-deficient cation site

will have less than 8 nearest neighbor oxygen atoms. The grain boundary expansion,

given by γGB in Å, is defined as the difference in the z-axis length between the relaxed

grain boundary supercell and the corresponding relaxed grain boundary-free supercell

divided by two. Hence, γGB is a measure of the expansion of the pristine ceria lattice

vector perpendicular to the grain boundary plane.

Table 3.1 lists the aforementioned atomic-scale parameters and the misorientation

angles of the grain boundaries. The Σ3 (111)/[1̄01] and Σ3 (121)/[1̄01] are both high-

angle coincident site lattice boundaries (Bowman 2016)–briefly discussed in Section

1.3 of the Chapter 1–with misorientation angles of 35.26◦ and 54.74◦, respectively.

Interestingly, the equidistant (near cubic) polyhedral arrangement of the O ions around

the Ce ions tend to remain intact at/near the grain boundary core as can be seen

in Figure 3.1. This can be attributed to the large ionicity of the Ce-O bonds. In

order to retain the polyhedral arrangement of the host lattice the γGB is significant,

0.315 Å for Σ3 (111)/[1̄01] and 0.471 Å Σ3 (121)/[1̄01] grain boundary, in agreement
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with experimentally measured values in similar systems (Shibata et al. 2004). Here, it

is emphasized that in stoichiometric ceria, the coordination-deficient vacancy sites

are structural in origin. The charge neutrality of the compound is maintained for all

simulations thus no other point defects were considered to be present at the grain

boundary.

Interface-Plane θ (◦) sites r̄ GB
Ce−O (Å) γGB (Å) ∆EGB (eV/Å2)

Σ3 (111)/[1̄01] 35.26 4 2.379 0.315 0.058 (0.93)
Σ3 (121)/[1̄01] 54.74 4 2.385 0.471 0.093 (1.48)

YSZ Σ3 (111)/[1̄01] 1. 35.26 – – – 0.031 (0.49)
YSZ Σ3 (121)/[1̄01] 1. 54.74 – – – 0.037 (0.60)

poly. CeO2
2. – – – – 0.105 (1.687)

Table 3.1. The interface-plane notation, the misorientation angle θ in ◦, the total
number of coordination deficient cation sites per grain boundary, the average Ce-O
bond distance, r̄ GB

Ce−O in Å, the z-axis expansion, γGB in Å, and the grain boundary
energy ∆EGB in eV/Å2 are listed for the two grain boundaries studied in this work.
∆EGB values listed in parenthesis are in J/m2. Referenced works: 1. Shibata et
al. (2004) 2. Zouvelou, Mantzouris, and Nikolopoulos (2008).

The averaged Ce-O bond distance, r̄ GB
Ce−O, in the Σ3 (111)/[1̄01] and Σ3 (121)/[1̄01]

grain boundary models are 2.379 Å and 2.385 Å, respectively. These average bond

distances in the grain boundaries are practically equal to the bond distances in bulk

ceria, rCeO2
Ce−O = 2.380 Å. The excellent agreement between r̄ GB

Ce−O and rCeO2
Ce−O, however,

does not imply that there are no distortions in the lattice upon introduction of the

grain boundary. On the contrary, as shown in Figure 3.1c and Figure 3.1e, up to ±9%

bond deviation, ∆r GB
Ce−O =

r GB
Ce−O−r

CeO2
Ce−O

r
CeO2
Ce−O

× 100, where r GB
Ce−O is the length of bonds in

the grain boundary structure, is observed. Both tensile and compressive strains are

present in each grain boundary lattice. The lattice distortions are predominant near
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the grain boundary and diminish rapidly a few lattice planes away from the grain

boundary.

3.3.2 Thermodynamic Descriptors of Solute Doped Grain Boundaries

In order to compare the stability of ceria in the presence of grain boundaries and

solutes, the grain boundary energy ∆EGB is computed using

∆EGB =
EGB − nCeO2ECeO2 − nMOEMO

2A
(3.1)

where EGB is the total energy of the grain boundary supercell with solute M, Eχ is

the energy of one formula unit of bulk χ where χ = CeO2 or MO listed in Appendix

Table A.2, nχ is the number of formula units of χ in the grain boundary supercell,

and A is the area of the xy-plane i.e. the grain boundary containing plane. ∆EGB

represents the area normalized excess energy of ceria due to the creation of the grain

boundary interface.

As listed in Table 3.1, the ∆EGB of undoped Σ3 (111)/[1̄01] grain boundary

is approximately half the value of the Σ3 (121)/[1̄01] grain boundary. This is not

surprising since the Σ3 (111)/[1̄01] grain boundary has a high atomic coherency

across the interface which is shown in Figure 3.1b and Appendix Figure A.1a. The

continuity of the anion and cation sublattices is clearly preserved in the Σ3 (111)/[1̄01]

grain boundary but the Σ3 (121)/[1̄01] grain boundary has a disruption in the cation

sublattice clearly seen in Figure 3.1d and Appendix Figure 3.1b. Other ceramic oxides

such as YSZ, display similar dependence of the ∆EGB on the coherency of atoms at

the interface (Shibata et al. 2002; Shibata et al. 2003; Shibata et al. 2004).

While experimental and theoretical reports of grain boundary energies in these
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systems are scarce, available literature confirms that the grain boundary energies

are similar both in value as well as energetic trends (Shibata et al. 2004; Yuan et

al. 2016; Zouvelou, Mantzouris, and Nikolopoulos 2008). One study using a multi-phase

equilibration technique (Zouvelou, Mantzouris, and Nikolopoulos 2008) determined the

grain boundary energy for polycrystalline CeO2 to be 1.687 J/m2 at 0 K. This value is

reasonably close to the computed values in this work that represent grain boundaries

possessing lower energies than one would expect in a polycrystalline ceramic.

Figure 3.2. The (a) Σ3 (111)/[1̄01] and (b) Σ3 (121)/[1̄01] grain boundary structures
with all distinct solute sites indicated by a unique marker-color combination. All
ions represented with a marker indicate a core grain boundary cation site which
was considered as potential substitutional site. (c) ∆EGB for the Σ3 (111)/[1̄01]
(open/dashed markers) and Σ3 (121)/[1̄01] (filled/solid markers) grain boundaries.
Each marker corresponds to the ∆EGB for each respective solute site depicted in the
grain boundary structure models.

YSZ, a closely related fluorite structured ceramic, has available experimental grain

boundary energies (Shibata et al. 2004). In this study the {111} grain boundary

was found to possess lower grain boundary energy (∼0.49 J/m2) while the {121}

grain boundary was found to have a higher grain boundary energy (0.6 J/m2). For

the computed grain boundary energies in CeO2, the values for the undoped grain

boundaries follow the same energetic trend with the {111} grain boundary having
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the lowest grain boundary energy and the {121} grain boundary having higher grain

boundary energy. However, many theoretical calculations do not report grain boundary

energy values; for studies which mention grain boundary energies (Yuan et al. 2016),

grain boundary energy values around 1 J/m2 are implied.

The markers in Figure 3.2a and Figure 3.2b illustrate the substitutional sites at the

Σ3 (111)/[1̄01] and Σ3 (121)/[1̄01] grain boundary of ceria, respectively, where the Be,

Mg, Ca, Sr, and Ba solutes are placed to assess their impact on the stability, structure

and electronic properties of the lattice. Note that higher concentration of solutes in

ceria-based electrolytes at or near grain boundaries (Pratik P Dholabhai et al. 2015;

Bokov et al. 2018; Bowman 2016) have been reported both experimentally (Orlovskaya

and Browning 2004; W. Lee et al. 2012; William J. Bowman et al. 2015; Lin et

al. 2015; William J Bowman et al. 2017; Avila-Paredes and Kim 2006; Y. et al. 2002;

Lia et al. 2010; Bowman, Darbal, and Crozier 2020) and theoretically (Mebane and

De Souza 2015; Y.-H. Lee et al. 2013; Diercks et al. 2016; Arora and Aidhy 2017)

to have higher local concentrations of solutes than usually found in the bulk. Local

grain boundary solute concentrations between 20%-40% have been verified by both

atom-probe tomography (X. Xu et al. 2020) and atomic resolution transmission

electron microscopy (William J Bowman et al. 2017; William J. Bowman et al. 2015;

Bowman, Darbal, and Crozier 2020), even when nominal solute concentrations are

dilute (0.2%) (X. Xu et al. 2020). By definition, for a cation site to be considered

part of the grain boundary core, the site must lie along/on either side of the grain

boundary mirror plane and is shown in Appendix Figure A.1. The Σ3 (111)/[1̄01]

grain boundary has two distinct sites, a coordination-deficient site marked by magenta

triangles and a fully-coordinated site marked by blue diamonds. The Σ3 (121)/[1̄01]

grain boundary has three distinct sites, the coordination-deficient site marked by
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orange triangles and fully-coordinated sites marked by yellow diamonds and green

circles. While the sites marked by green circles are fully-coordinated, they favor an

asymmetric arrangement of the O-atoms around the site unlike the symmetric cubic

arrangement in ceria.

A local grain boundary solute concentration of 25% can be achieved for the Σ3

(111)/[1̄01] and the Σ3 (121)/[1̄01] grain boundaries by sequentially considering one

core grain boundary site, indicated by the markers in Figure 3.2a and Figure 3.2b,

within one region of the grain boundary core for doping. A region within the grain

boundary core is assumed to have a 2 Å width perpendicular to the grain boundary

plane originating from the cation mirror plane and extending towards the bulk. A

total of 25 solutes configurations were studied in this work. The large number of atoms

in the simulation cell and the rapidly increasing number of configurations prohibit a

comprehensive study of other solute concentrations.

Figure 3.2c shows the ∆EGB is greater for the Σ3 (121)/[1̄01] grain boundary than

the Σ3 (111)/[1̄01] grain boundary. Furthermore, for each substitutional site, ∆EGB

has a parabolic dependence on the solute cation’s ionic radius. The site-dependence

of the ∆EGB of the Σ3 (111)/[1̄01] grain boundary is low in comparison to that of the

Σ3 (121)/[1̄01] grain boundary. This can be understood by examining the net bond

strain at the solute sites of the grain boundaries shown in Figure 3.1c and Figure 3.1e.

In the Σ3 (121)/[1̄01] grain boundary, the three distinct solute sites have markedly

different net bond strain illustrated by the variation in color in Figure 3.1c, Figure

3.1e, and Appendix Figure A.13-Figure A.14. The net tensile to compressive bond

strain ratio is highest in the green-site, intermediate in the yellow site and lowest in

the orange site. In comparison, the blue and magenta sites in the Σ3 (111)/[1̄01] grain
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boundary have similar net bond strains as the Σ3 (121)/[1̄01] grain boundary, but

much smaller overall net bond strains shown in Figure 3.1c.

For both the grain boundaries, the coordination-deficient cation sites (magenta

and orange triangles) are among the lowest energy sites. For the Σ3 (121)/[1̄01] grain

boundary, the fully-coordinated sites marked by the green circle also have low ∆EGB,

especially for the heavier solute cations. These three low ∆EGB sites are also the

most strained sites in the grain boundaries. The blue sites in the Σ3 (111)/[1̄01]

grain boundary and the yellow sites in the Σ3 (121)/[1̄01] grain boundary have largest

energies displaying a barrier for doping and preference for the Ce-atoms to remain in a

site that has coordination and bond-length similar to that of the grain interior. Similar

trends in four symmetric tilt grain boundaries have been observed for YSZ (Shibata

et al. 2002; Shibata et al. 2004).

It is noteworthy that the addition of Be and Mg make the grain boundaries

consistently more unstable across all sites. Apart from the large mismatch in the

ionic radii of Ce (Ri = 0.97 Å) with that of Be (Ri = 0.27 Å) and Mg (Ri = 0.57

Å) (Haynes and Lide 2016), the nature of bonding in the native oxides of Mg and Be

also dictates the stability of the grain boundary. Unlike the octahedral coordination

predominant in Ca (Ri = 1.12 Å), Sr (Ri = 1.42 Å) and Ba (Ri = 1.26 Å) oxides, Be

and Mg oxides display a tetrahedral bonding and is denoted in Appendix Table A.2.

The Be and Mg solutes relax into interstitial sites to attain this 4-fold coordination

where possible, for example, in some of the coordination-deficient sites. The relaxed

structure of all solute configurations are presented in Appendix Figure A.13-Figure

A.14. Since the Ca solutes have the lowest mismatch in the ionic radii with the host

Ce atoms and also more closely match the cubic coordination of the host cation, these

solutes render the grain boundary most stable in comparison to the other solutes.
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Overall, the ∆EGB critical point appears to be modulated by three primary factors:

(a) the local atomic environment of the solute site, (b) the solute size, and (c) the

coordination of the solute in its native oxide. The relative difference in ∆EGB between

the grain boundaries may be due to the grain boundary packing density. Furthermore,

it is evident that the ∆EGB can be more easily modulated by varying the solute type

and is more weakly modulated by the substitutional site. Additionally, grain boundary

doping strategies attempting to smooth out the potential energy landscape across

grain boundaries should focus on Ca or Sr solutes because the lowest grain boundary

energies, out of the five solute sites explored, is achieved for the Ca and Sr solutes.

3.3.3 Electronic Structure of Alkaline-Earth Metal Doped Ceria

Aliovalent solutes are often used to increase the number of charge carriers in ceramic

oxides (Andersson et al. 2006). Although, they can also introduce localized defect

states and/or bands above the band gap activating electronic conduction mechanisms

such as polaron hopping (Bishop, Stefanik, and Tuller 2011; Figueiredo and Marques

2013), which can be detrimental to the ionic conductivities. In this section, the AEM

solutes are shown to deactivate these potentially detrimental electronic conduction

mechanisms by not introducing any defect states above the valence band or in the

band gap.

Figure 3.3a and Figure 3.3b show the element-projected density of states (DOS) for

the supercells with the Σ3 (111)/[1̄01] and Σ3 (121)/[1̄01] grain boundary, respectively.

The solid lines show the DOS for the undoped grain boundary and the shaded regions

mark the DOS for the solute-doped grain boundary. From the DOS, it is clear that

the incorporation of Be and Ba solutes at the grain boundary core does not result in
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defect states above the band gap or within it. Similarly, this work finds that none of

the solutes impart defect states which can be seen for all solutes in Appendix Figure

A.8-Figure A.12.

Figure 3.3. The element-projected DOS for the (a) undoped (solid lines) and Be-doped
(shaded regions) for the Σ3 (111)/[1̄01] grain boundaries, and (b) undoped (solid
lines) and Ba-doped (shaded regions) for the Σ3 (121)/[1̄01] grain boundaries. The
∆r GB

Ce−O of the Be-doped Σ3 (111)/[1̄01] grain boundary is shown in (c) and that of the
Ba-doped Σ3 (121)/[1̄01] grain boundary is shown in (d). Blue indicates compressed
bonds while red indicates tensile bonds. The DOS is shifted such that the top of the
valence band is at 0.0 eV.

In the undoped grain boundary, the states at the conduction band maxima (CBM)

are dominated by Ce-4f and O-2p states with smaller contributions from Ce-4d and 5p

states. The orbital-projected density of states contributions can be seen in Appendix

Figure A.9-Figure A.12. The states at the valence band minima (VBM) are mostly

O-2p states.

Negligible changes occur in the states present at the VBM and CBM upon doping.

For all but the Be-doped grain boundaries, the d, p, and s states of the solute atoms

are present at the CBM, resulting in distorted cubic bonding of the solute-O bonds at
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the grain boundary; this can be seen Figure 3.3d and Appendix Figure A.9-Figure

A.12. For Be-doped grain boundaries, only p and s states of the Be are present at the

CBM, indicating a strong propensity of Be to form tetrahedral Be-O bonds as shown

in Figure 3.3c.

Figure 3.4. (a) The Egap for each solute-grain boundary configuration. The undoped
grain boundaries are represented with black squares and the bulk ceria by blue square.
The Σ3 (121)/[1̄01] grain boundary shows minor site and solute dependence while the
Σ3 (111)/[1̄01] grain boundary shows both site and solute dependence.

Relative to bulk ceria, the presence of the grain boundaries and solutes have a

significant impact on the band gap as seen in Figure 3.4. The presence of the planar

grain boundary defect results in a decrease in the Egap. The calculated Egap values

for the Σ3 (111)/[1̄01] grain boundary and Σ3 (121)/[1̄01] grain boundary are 1.61 eV

and 1.72 eV, respectively. The incorporation of solutes can modulate the band gap

further, by up to 0.3 eV relative to the undoped grain boundary. A close inspection of

the occupied density of states for AEM doped grain boundaries reveals that states

well below the Fermi level alter the Ce-O bonded states in a manner that the Egap

decreases with respect to the bulk.

Strain has been shown to strongly alter the band gap of bulk ceria (Ahn et al. 2014;

Wen, Lv, and He 2015). Appendix Figure A.6 shows the strain-dependent change
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in band gap of bulk ceria. The band gap is found to be linearly dependent on the

uniform hydrostatic strain of the bulk ceria lattice. A band gap difference of 0.4 eV is

observed for compressive strain of 4% and a -0.4 eV band gap difference for a tensile

strain of 4% with respect to the unstrained lattice. A compressive strain results in a

band gap increase while a tensile strain results in a band gap reduction compared to

the unstrained lattice. Appendix Figure A.6 also shows that band gap difference of

0.05 eV can be resolved in the simulations.

The solute and site dependent band gap variations are found to be about 0.7 eV

for the Σ3 (111)/[1̄01] grain boundary and about 0.2 eV for the Σ3 (121)/[1̄01] grain

boundary. The various solutes in the different sites lead to changes in the lattice

parameters of the supercell resulting in volumetric strains of the lattice that are

between -1% to 1.5% and are shown in Appendix Figure A.7. However, the lattice

strains in the doped grain boundaries are not large enough to result in the observed

solute and site dependent band gap variations. For instance, in the case of Ca-doped

Σ3 (111)/[1̄01] grain boundary, a difference of about 0.7 eV is observed for the magenta

triangle and blue diamond sites of Ca-doped Σ3 (111)/[1̄01] grain boundary. As noted

in the Appendix Figure A.7a, the volumetric change in the lattice of the Ca-doped Σ3

(111)/[1̄01] CeO2 grain boundaries with respect to the unstrained grain boundaries is

∼-0.2% for the blue diamond site and ∼0.3% for the magenta triangle site. Similar

to bulk CeO2, the magenta triangle site is found to have a band gap increase while

the blue diamond site has a band gap decrease due to the compressive and tensile

strains, respectively. However, based on the strain-dependent band gap change in the

bulk ceria, it is evident that such a small lattice strain cannot be the cause of a ∼0.7

eV difference between the band gap for the magenta triangle and the blue diamond

sites. In order to make a direct comparison with the undoped Σ3 (111)/[1̄01] grain
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boundary, hydrostatic strain is applied to the undoped Σ3 (111)/[1̄01] grain boundary.

The band gap changes between these cells demonstrate a similar band gap variations,

-0.26 eV for 2% strain and 0.26 eV for -2% strain.

In opposition to the lattice strains, the local strains around the solute site in these

two cases are markedly different and an order of magnitude larger. Appendix Figure

A.13 shows that the local strain around the magenta triangle site is predominantly

compressive, about -5%, and predominantly tensile around the blue diamond site, about

5%-9%. While these calculations cannot prove with certainty that the local strains

are the cause of the large site-dependent band gap variation, based on elimination of

the lattice-strain and inadequate numerical accuracy as underlying causes, it becomes

a possible explanation for the solute-site dependent band gap variation.

For the Σ3 (121)/[1̄01] grain boundaries, the band gap changes are well correlated

with the average Ce-O bond distances and fluctuate around the undoped Σ3 (121)/[1̄01]

grain boundary band gap as shown in Appendix Figure A.7. However, for the doped

Σ3 (111)/[1̄01] grain boundary the band gaps appear to be modulated by three main

factors: bond strain, local atomic environment of the grain boundary core, and the

ionic radii of the solute atom. The coordination-deficient sites (magenta triangle) in

the Σ3 (111)/[1̄01] grain boundary have less strain than the fully-coordinated sites

(blue diamond) resulting in a linear increase in the band gap shown in Appendix

Figure A.13. This trend continues until Sr and Ba where the band gap values decrease,

an effect which most likely originates from the increased bond strain that extends

well into the bulk. The fully-coordinated sites (blue diamond symbols) are unable

to relax since they are sterically hindered by the surrounding anions. The increased

strain for these sites increases the hybridization between the Ce 4f -O 2p-M nd, np,

and ns states where M = Ca, Sr, and Ba and n is the principle quantum number
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which decreases the band gap and shown in Appendix Figure A.9. For both the grain

boundaries, the Ba-doped ceria maintains a similar band gap compared with the

undoped grain boundary samples for all sites considered.

In all, the band gap in ceria is considerably affected by the presence of both

planar and solute defects. This can result in heterogeneous electronic properties in

experimentally synthesized nanocrystalline ceria. The changes in the band gap due

to both solutes and the presence of grain boundaries are correlated with the local

atomic structure of the grain boundary, average Ce-O bond distance, and the bond

strain. Furthermore, the sensitivity of the electronic structure may be modulated by

the grain boundary packing density. For close packed grain boundaries, sites that are

sterically hindered may have increased hybridization, thereby decreasing the band

gap; whereas unhindered sites show a linear increase in the band gap.

3.3.4 Possible Impact of High Solute Concentrations on Oxide Grain Boundaries

Fundamental studies of grain boundaries in oxide ceramics with the presence

of solutes increases the phase-space that needs to be considered, thus, significantly

increasing the computational cost and time. The recent advances in computing

power makes these much-needed foundational investigations with DFT feasible. This

ab-initio study on ceria provides critical guidance to larger-length- and time-scale

simulations such as molecular dynamics and Monte Carlo simulations (Aidhy, Y.

Zhang, and Weber 2013; Aidhy, Y. W. Zhang, and Weber 2014; Arora and Aidhy

2017). Additionally, this lays the foundation for future work exploring relevant grain

boundary effects such as space-charge layers (Bondevik, Bjørheima, and Norbya 2020)

or migration energy changes (Yuan et al. 2016).
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Previously, researchers (B. Feng et al. 2012) have emphasized the importance of

investigations that focus on the atomic- and electronic-level properties of different grain

boundaries due to their diversity. Currently, the critical factors influencing microscopic

properties (such as local bonding, strain and space charge layers) are not understood

from an atomic scale perspective. There are many open questions regarding the role and

impact that the atomic structure, solute size, local bond strain and composition, as well

as the electronic properties play in grain boundary structure-property relationships for

this important class of ceramics. Even basic correlations regarding the site-dependent

stability of solutes located at grain boundaries was previously unexplored for these

systems. Typical grain boundary studies are conducted with interatomic potentials

that are fit to bulk properties to gain insights into the grain boundary problem (Aidhy,

Y. Zhang, and Weber 2013; Aidhy, Y. W. Zhang, and Weber 2014; Arora and Aidhy

2017).

In ceria, these calculations have shown that grain boundaries possessing less

structural coherency have higher grain boundary energies, yet, these energies stabilize

when doped with solutes that are larger than the host solute. In general, this is

consistent with the principle that coherent interfaces are lower in energy and stable.

Solutes that are smaller in ionic radii than the host solute result in a less coherent

grain boundary structure and increase the grain boundary energy. Less structural

coherency has been previously associated with higher grain boundary energies in

fluorite oxides (Shibata et al. 2002; Shibata et al. 2003; Shibata et al. 2004), as well as

in similar systems such as YSZ. This trend indicates that ionic materials may exhibit

a strong energetic dependence on the structural coherency across the grain boundary.

Strategies that aim to decrease the grain boundary energy by doping should focus

on solutes larger than the host solute whilst avoiding smaller solutes that render the
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grain boundary unstable. A large mismatch between the host and solute ions increases

the likeliness of solute segregation and oxygen vacancy binding (Arora and Aidhy

2017) to the grain boundary. Additionally, co-doping with different solutes may be a

feasible strategy to optimize both the bulk and grain boundary properties.

The location of the solute within the grain boundary core results in appreciable

modulations in the grain boundary energy. However, there is a clear solute size

dependence for the grain boundary energy indicating that the type of solute may play

a more important role in minimizing the grain boundary energy than the location

of the solute. Additionally, the choice of solute, unlike the location of the solute, is

accessible via experimental methods. Therefore, it is critically important to carefully

select solutes to optimize the grain boundary properties. Future computational work

should be directed towards three main areas: (1) identifying solutes that decrease

the grain boundary energy, (2) identifying solutes that possess a high grain boundary

segregation energy, and (3) possess a low oxygen vacancy binding for ionic conductors.

For applications that depend upon high ionic conductivity, changing the electronic

properties via doping is undesirable. Thus, understanding how band gaps are modu-

lated due to the presence of solutes, interfacial strain, and grain boundary character

is essential to predict suitable solutes that do not significantly perturb the electronic

structure near the band gap. This study demonstrates that the DOS profile around

Egap remains unchanged and that the Egap value is perturbed due to the presence of

the solutes and grain boundary.
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3.4 Summary

In summary, this work utilizes DFT with the GGA+U functional to examine the

structure, energetic stability and electronic properties of undoped and AEM doped

grain boundaries in ceria. This work studies two high-angle grain boundaries–the Σ3

(111)/[1̄01] and Σ3 (121)/[1̄01]–and find that the Σ3 (111)/[1̄01] grain boundary is

energetically more stable than the Σ3 (121)/[1̄01] grain boundary due to its larger

atomic coherency at the grain boundary interface.

To-date, there are no other theoretical studies that exhaustively assess this atomic-

scale role of solutes in grain boundaries of ceria, or similar oxide-based systems.

Foundational studies such as this are imperative to address questions about the

effect of solutes in these well studied, technological relevant materials. This study

addresses this need providing a systematic assessment of the local atomic structure,

grain boundary geometry, and solutes to determine how these factors modulate grain

boundary thermodynamics as well as the electronic properties of the grain boundary.

Considering all the substitutional sites in the grain boundary core, this work

demonstrates that when the grain boundaries are doped with ∼20% AEM solutes,

the grain boundary energies of ceria will depend strongly on the substitutional site’s

coordination numbers and its local atomic structure. In this work, the lowest energy

substitutional sites for each AEM solute is identified showing that Ca, Sr, and

Ba solutes stabilize the grain boundaries but Be and Mg solutes render the grain

boundaries unstable. The enhancements in the grain boundary stability upon addition

of Ca, Sr and Ba can be attributed to similarity in the ionic radii of the solutes and Ce

as well as the closely matching coordination of the solute in its native oxide and the

ceria lattice. The electronic density of states of doped grain boundaries reveals that no
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defect states are present in or above the band gap of the AEM doped ceria, which is

highly conducive to maintaining low electronic mobility in these ionic conductors. The

electronic properties, unlike the energetic stability, exhibit complex inter-dependence

on the structure and chemistry of the host and the solutes. The presence of solutes

can modulate the band gap of ceria up to 0.3 eV in comparison to the undoped ceria

with grain boundaries.

These results reinforce the claims of Bokov et al. (2018) that solutes can smooth

out the energy landscape thereby reducing the grain boundary energy. This smooth

potential energy landscape (lower grain boundary energy) could result in an increase

in ionic conductivity across grain boundaries and thus a critical factor to consider

in optimizing these functional ceramics. Additionally, these results indicate that

solutes slightly larger than the host cation stabilize the grain boundary more strongly.

Correlations believed to apply in metallic systems such as the grain boundary energy

being related to the excess volume at the interface (Wolf and Yip 1993) do not hold

for systems that are dominated by ionic bonding, as evident when comparing Figure

3.2c with Appendix Figure A.5 and Appendix Figure A.7 where there is no correlation

between the grain boundary expansion or the volume expansion (in any direction)

with grain boundary energy.

In the future, advances in computational methods and computing power can enable

a comprehensive first-principles based study of more grain boundary structures, solute

concentrations as well as the coordinated transport of oxygen-vacancies and ions. This

work serves as a guide to these future studies, making an impact on the design of

more efficient oxide based ionic conductors.
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Chapter 4

ASSESSING COMPOSITIONAL EFFECTS IN CA-DOPED CERIA ON THE

CROSS GRAIN BOUNDARY OXYGEN MIGRATION ENERGY

4.1 Motivation

In bulk materials and thin films, defect-grain boundary interactions play a key role

in controlling the structural stability, electronic, chemical, and transport properties.

Typically, a high-concentrations of aliovalent cations are used in order to introduce

charge compensating point defects, thereby increasing the ionic conductivity in these

materials. As discussed in Chapter 1, these cations segregate in high concentrations

to the grain boundaries. In recent years, there has been an increased interest in the

unique properties that nano-crystalline ceramics offer (Cargnello et al. 2013). However,

as the surface area of the interfacial regions increase with shrinking grain sizes, the

role which high solute concentrations and interfaces play in modulating the overall

interfacial materials properties has become of immense importance. These properties

can dominate the materials response and deteriorate device performance.

A key challenge in these materials has been the optimization of the cross grain

boundary transport of oxygen vacancies where experimental observations have shown

a significant reduction in ionic conductivity when compared to the grain. These

regions are challenging to optimize due to their minuscule size, significant variations in

structure and composition resulting in wide-ranging properties from one grain boundary

to another in polycrystalline samples. To overcome the deleterious affects of grain

boundaries and improve the overall properties of many polycrystalline electrolytes,
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a better understanding of compositional effects on the cross-boundary migration of

oxygen vacancies is required.

The cross grain boundary mobility of migrating oxygen vacancies is influenced

by two primary factors: 1) thermodynamic and 2) kinetic factors. In polycrystalline

ceramics, thermodynamics drives high concentrations of aliovalent solute ions to

accumulate at the grain boundary creating a space charge potential region, wherein

localized regions can attract, repel, and trap mobile oxygen vacancies. Additionally,

the solute ions and oxygen vacancies have a tendency to form defect associations that

require energy to separate oxygen vacancies from the solute ions. Kinetically, the

migration of oxygen vacancies near the solute ions can be reduced, however, whether

this effect occurs within the disordered grain boundary regions remains unclear.

In this chapter, using DFT calculations, the impact that high local solute con-

centrations in the grain boundary core is systematically investigated assessing the

relative segregation energy and migration energy of oxygen vacancies in the near grain

boundary regions of the Σ3 (111)/[1̄01] in Ca-doped ceria. These results provide criti-

cal insight into the role that high local solute concentrations play in modulating the

migration energy of oxygen vacancies improving the understanding of cross boundary

oxygen transport directing further grain boundary studies aimed to engineer grain

boundaries with improved ionic conductivity.

4.2 Computational Methods

The same parameters used in Chapter 3 are used throughout these calculations.

A plane wave cutoff energy of 400 eV was sufficient to converge the forces (Hellman

1937) acting on each ion to 0.01 eV/Å or better. A block Davidson (Broyden 1965)
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minimization algorithm was used to achieve a convergence in total energy per cell on

the order of 0.001 eV or better. A gamma center k-point mesh grid density of 3x3x1

was used for all calculations. The 2x2x2 bulk supercell of ceria was created from the

conventional unit cell of ceria to calculate the bulk migration energy of an oxygen

vacancy. For these structures, a gamma center k-point mesh grid density of 3x3x3

was used for all calculations.

The nudged elastic band method (NEB) (Henkelman, Arnaldsson, and Jønsson

2006) was used to calculate the migration energy of oxygen. The spring constant

was set to -5 with three NEB images per migration event. The forces were set to

less than 0.05 eV/Å under constant volume to reduce the computational cost of the

large supercell sizes. The localized state of the electrons is confirmed using partial

charge density. To confirm migration energy barrier was converged with three images,

a second calculation with five images was performed with the bulk supercell of ceria.

4.3 Oxygen Vacancy Segregation in Undoped and Ca-Doped Σ3 (111)/[1̄01] Grain

Boundaries

The interplay between the aliovalent solutes and charge compensating oxygen

vacancies can results in increased or decreased ionic conductivity originating from

the sensitive nature of defect-defect interactions to variations in solute concentra-

tions (Pratik P. Dholabhai et al. 2010a; Dholabhai and Adams 2012; Pratik P

Dholabhai et al. 2015; Aidhy, Y. Zhang, and Weber 2013; Aidhy, Y. W. Zhang,

and Weber 2014; Aidhy 2016). Grain boundary populations have significant com-

positional variations owing to the non-uniformity in grain boundary character and

thermodynamic stability which can cause heterogeneous segregation of cations to grain
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boundaries. Both in the bulk and at the grain boundary, the mobile oxygen vacancies

can be sequestered by the solute ions thereby decreasing the ionic conductivity in these

regions. Optimization of the defect-defect interactions between solutes and oxygen

vacancies has been widely studied in the bulk while the study of such compositional

effects on the cross grain boundary migration of oxygen vacancies has not. In this

section, the energetic stability of oxygen vacancies and resulting electronic structure

of the near grain boundary region is explored with and without the presence of high

local Ca solute concentrations.

4.3.1 Atomic Structure of Undoped and Ca-Doped Σ3 (111)/[1̄01] Grain Boundary

To explore composition dependent variations in the oxygen vacancy stability in

the near grain boundary regions, four oxygen planes are investigated as potential host

planes for introducing an oxygen vacancy in the undoped and Ca-doped Σ3 (111)/[1̄01]

ceria grain boundary. The undoped Σ3 (111)/[1̄01] grain boundary structure model is

shown in Figure 4.1a and the Ca-doped Σ3 (111)/[1̄01] grain boundaries are shown

in Figure 4.4a and Figure 4.5a which represents the two unique solute locations for

this grain boundary structure discussed in Chapter 3. The vertical black dashed lines

delineate each oxygen plane i.e. the plane where the oxygen vacancy site will be

incorporated. Figure 4.1b illustrates the band projected charge density for the undoped

Σ3 (111)/[1̄01] grain boundary with an oxygen vacancy. The orange isosurfaces are the

real-space representation of the localized Ce 4f electrons. The numbers represent the

average Ce-O bond distance for that Ce ion where the Ce which contain the localized

electrons have a larger Ce-O bond distance.

The crystal direction with the lowest oxygen vacancy migration energy in ceria is
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along the <001> crystallographic direction in the bulk and the grain boundary (Yuan

et al. 2016) regions and this direction is indicated in Figure 4.1a. As the ultimate goal

is to understand variations in the oxygen vacancy migration energy in the near grain

boundary region, an oxygen vacancy is only moved to nearest neighbor (NN) oxygen

sites along this family of crystal directions for each oxygen vacancy location. Oxygen

plane 1 was found to be the most energetically stable oxygen vacancy location for

the undoped and Ca-doped grain boundaries, consistent with previous studies (Yuan

et al. 2016; Aidhy, Y. W. Zhang, and Weber 2014).

Figure 4.1. (a) Undoped Σ3 (111)/[1̄01] grain boundary structure model. Dashed
vertical lines illustrate each oxygen plane. The oxygen vacancy is indicated by the
square. The transparent green rectangle illustrates the grain boundary core region.
(b) Band decomposed charge density isosurface (orange) for the two localized Ce 4f
electrons near the oxygen vacancy. (c) Segregation energy for the undoped ( ) and
Ca-doped ( ) Σ3 (111)/[1̄01] when the oxygen vacancy is located at each plane shown
in (a). Red circles indicate oxygen ions and blue circles indicate cerium ions.
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4.3.2 Vacancy Segregation Energy within each Oxygen Plane

Oxygen vacancies are thought to be attracted to grain boundary regions due

to the discontinuity introduced by the interface formation resulting in increased

energy and high concentrations of solute ions. However, it is unclear what role these

additional solute ions play in modulating the energy landscape experienced by the

oxygen vacancies with respect to their segregation and cross grain boundary migration.

To determine the influence of Ca solutes in the near grain boundary region and assess

their impact on the segregation of oxygen vacancies, the oxygen vacancy segregation

energy at four oxygen planes–labeled in Figure 4.1a–is determined for the undoped

and Ca-doped Σ3 (111)/[1̄01] grain boundaries.

Yuan et al. (2016) found the segregation behavior of oxygen vacancies to the Σ3

(111)/[1̄01] grain boundary to be influenced primarily by the first three oxygen planes

i.e. the oxygen vacancy migration energy is modulated more strongly within the

first 3-4 oxygen planes of the grain boundary core. Motivated by these findings, this

study investigates only the near grain boundary planes to assess the impact of Ca

solute ions. Figure 4.1c shows the segregation energy for the undoped Σ3 (111)/[1̄01]

grain boundary with the yellow circle markers and the Ca-doped Σ3 (111)/[1̄01] grain

boundaries with the cyan colored markers. For the undoped Σ3 (111)/[1̄01] grain

boundary, the relative change in the segregation energy within the first four oxygen

planes agree very well with those calculated by Yuan et al. (2016) for the same grain

boundary.

The relative segregation energy, given by ∆Eseg = Ei
vac − Emin

vac , represents the

energy that must be provided to the system to move the oxygen vacancy from the

most stable location. Therefore, the lower the segregation energy the more likely an

69



oxygen vacancy is to inhabit that site. The larger the segregation energy the more

energy needed to move an oxygen vacancy from the most stable oxygen plane. The

quantity Emin
vac represents the system energy where the oxygen vacancy is located in

the most stable plane and Ei
vac is the system energy when the vacancy is located in

plane i.

When comparing the relative change in the segregation energy of the first three

oxygen planes in the undoped grain boundary to the first (x) Ca-doped grain boundary,

this system has smaller variations between each oxygen plane. This would imply the

oxygen vacancy is able to move more freely within the grain boundary core or the

oxygen vacancy location is less selective within these layers. However, as the oxygen

vacancy moves into the 3NN position from the Ca ion, the segregation energy increases

above the undoped grain boundary. This increase in segregation energy is likely due

to the separation of the defect associate.

The most notable impact the presence of the Ca solute ion has on the relative

segregation energy in the first Ca-doped system compared to the undoped system

occurs within the second and third oxygen planes. These planes represent the 1NN

and 2NN shells to the Ca ion. Note, the first two oxygen planes are within the 1NN

shell, the third oxygen plane is in the 2NN shell, and the fourth oxygen plane is in

the 3NN shell.

The 3NN shell (oxygen plane 4) possess the largest increase in segregation energy

off all sites. The increased energy is similarly observed in bulk systems where the

separation of the vacancy from the solute ion increases the total system energy (Min-

ervini, Zacate, and Grimes 1999). Additionally, around the 3NN shell is where the

effects of the solute ion–such as changes in the migration energy (Pratik P. Dholabhai
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et al. 2010a)–are thought to tapper off and approach bulk like values (Y.-L. Lee

et al. 2017).

Looking at the second ( ) Ca-doped system, the relative segregation energy has

larger variations between each oxygen plane compared to both the undoped and first Ca-

doped system. However, the increase in energy from one plane to the next is remarkably

consistent around ∼0.6 eV. Interestingly, unlike the first Ca-doped system there is

no sharp increase in segregation energy. More surprising is the variation between the

two Ca-doped systems segregation energy where the more energetically stable second

Ca-doped system displays less variability and higher segregation energies than the

slightly higher energy first Ca-doped system. This seems to indicate that the site the

solute ion sites at in the grain boundary core would impact the segregation of oxygen

vacancies more. The second Ca-doped system has far fewer unique characteristics and

variations at the different oxygen planes compared to the other 2 systems.

Overall, the impact of high solute concentrations at the grain boundary does not

significantly alter the relative segregation energetics of the mobile oxygen vacancies

in the near grain boundary region. However, whether the segregation energy of the

oxygen vacancy is decreased in comparison to the undoped system appears to be

dependant on the location of the solute within the grain boundary core.

4.3.3 Electronic Properties along the Migration Path

The orange isosurfaces in Figure 4.1b illustrates the partial (band decomposed)

charge density summed over all k-points for the two defect states created by incorporat-

ing an oxygen vacancy in the undoped ceria lattice. Unlike the partial charge density

for bulk ceria, the two defect states at the grain boundary are not fully localized on
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the Ce ions. Interestingly, the orange isosurface of the Ce ion to the left of the dashed

line in Figure 4.1b shows the charge density is partially delocalized on the nearby O

ion while the charge density is fully localized for the Ce ion to the right of the dashed

line. As the oxygen vacancy migrates towards the bulk, one of the electrons localized

on the Ce 4f ion follows the oxygen vacancy while the the second electron remains

localized at the grain boundary core, shown in Appendix B Figure B.1-B.2. Appendix

B discusses challenges and observations regarding these calculations which may be

useful towards future grain boundary studies in this/similar systems.

Future studies should focus on the inclusion of additional oxygen vacancies to

ascertain how oxygen vacancy-defect interactions influence the stability and segregation

behavior of oxygen vacancies in the nearby grain boundary region. Additionally, other

aliovalent solute ions such as Sr and Ba–which can stabilize the grain boundary

energy (Boland et al. 2021)–may exhibit similar segregation phenomenon for oxygen

vacancies and provide solute size trends on oxygen vacancy segregation. Lastly,

the importance of investigating other grain boundaries can not be overlooked as

much experimental characterization has shown grain boundary properties can vary

significantly from one grain boundary to another.

4.4 Bulk and Cross Grain Boundary Oxygen Vacancy Migration Energy in Ca-

Doped Σ3 (111)/[1̄01]

The migration of oxygen vacancies through the bulk with and without the presence

of solute ions has been well studied (De Souza, Ramadan, and Hörner 2012; Koettgen

et al. 2018; Sun, Fu, and Yang 2018; Nolan and Watson 2005; H. Shi et al. 2020;

Schmitt et al. 2020). Recent efforts have shifted the focus from optimization of
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the grains to the grain boundary regions to further improve the properties of these

electroceramics. In this section, the results for the bulk oxygen vacancy migration

energy of ceria is compared with values obtained in literature then the migration

energy path for an oxygen vacancy is explored in the near grain boundary region for

the Ca-doped Σ3 (111)/[1̄01].

4.4.1 Oxygen Vacancy Migration Energy in Bulk Ceria

Figure 4.2. (a) 2x2x2 supercell of ceria with one oxygen vacancy. Translucent
yellow circles indicate intermediate state positions for the oxygen ion during the
NEB calculation. Red circles indicate oxygen ions and blue circles indicate cerium
ions. (b) Oxygen vacancy migration energy barrier calculated using NEB. (c-g) The
orange isosurface illustrates the band projected charge density for the localized Ce 4f
electrons during each image during NEB calculation.

Figure 4.2a shows a bulk 2x2x2 supercell of ceria with one oxygen vacancy where
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the translucent ions represent the intermediate state positions of the migrating oxygen

ion to compute the migration energy in bulk ceria. The migration energy was computed

using NEB with a transition state energy of 0.81 eV. Both 3 and 5 images were used

with no difference in the barrier height observed where Figure 4.2b shows the migration

energy barrier.

It is interesting to note as the oxygen vacancy migrates from the initial to final

state position shown in Figure 4.2c-g, the charge at the mid-point (image 3) is partially

localized between the 2 sets of 2 Ce ions in which the electrons localize onto in the

initial and final state images. Despite the symmetric nature of the migration event,

the charge density does not reflect this. The NEB images from the initial state to

image 2 appear well localized while states 4 and 5 are not as well defined. This

asymmetry could be one reason the NEB energy is not perfectly symmetric as one

would expect. One method to fix this issue would be to specify the magnetic moment

(using the MAGMOM tag) of each Ce ion in each NEB image forcing a symmetric

arrangement of the electrons for the NEB calculation. This asymmetric NEB path

was not observed for the NEB calculation with 3 images and is shown in Appendix

Figure B.3. Additional discussion regarding these calculations can be found in the

NEB section in Appendix B.

Figure 4.3a shows the band structure for the initial state of the NEB calculation

demonstrating the two defect bands that localized on the nearby Ce ions at/below

the Fermi level. Figure 4.3b-c shows 2 representative element projected DOS for the

NEB migration path of bulk defective ceria with Ce in blue, O in red, and the total

DOS in green. Both the DOS and band structure show the two defect states. As the

oxygen vacancy migrates from one site to the next the two defect states transition

from below the Fermi level to above.
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Figure 4.3. (a) Band structure of the initial state bulk defective ceria with spin up
(blue) and down (red) plotted. The localized Ce 4f bands are near the Fermi level.
(b) Initial state element projected DOS for bulk defective ceria showing. (c) Element
projected DOS for bulk defective ceria during oxygen vacancy migration.

4.4.2 Oxygen Vacancy Migration Path in Ca-Doped Σ3 (111)/[1̄01] Ceria Grain

Boundary

Three oxygen vacancy hops forming a migration path away from the grain boundary

core (labeled I, II, and III in Figure 4.4a and Figure 4.5a) are investigated in the

Ca-doped Σ3 (111)/[1̄01] grain boundaries. The oxygen vacancy migrates from oxygen

plane: 1 to 2, 2 to 3, and 3 to 4 in each structure and the oxygen ion in the reverse

direction. Each hop consists of an initial state image labeled A, intermediate state

images labeled B-D, and a final state image labeled E. The relaxed structure model of

oxygen vacancy hop I in the first Ca-doped grain boundary system labeled according

this the scheme is shown in Figure 4.4b. Figure 4.4c and Figure 4.5b represent the

energy of the initial-intermediate-final state(s) during the migration of the oxygen

vacancy.

Figure 4.4c shows the oxygen vacancy migration energy barrier near the Ca solute

ion as the oxygen vacancy migrates along the path. The horizontal black arrows

indication the barrier height as the oxygen vacancy moves away from/towards the
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grain boundary. The migration energy towards the grain boundary core is significantly

reduced compared to the bulk migration energy of 0.81 eV. The migration energy

towards the grain boundary is EI
21=0.15 eV, EII

32=0.30 eV, and EIII
43 =0.31 eV.

Figure 4.4. (a) Ca-doped Σ3 (111)/[1̄01] grain boundary structure model. The black
dashed lines indicate oxygen planes 1-4 where the oxygen vacancy is located in plane
1. Colored arrows indicate a migration event where the oxygen ion and vacancy
exchange locations along <001>. (b) The NEB intermediate states associated with
oxygen vacancy hop I. The oxygen vacancy’s initial state and final state are located
in plane 1 and 2, respectively. Translucent red circles indicate intermediate state
positions of the oxygen ion for the initial state to the final state (A-E) and the green
arrow indication the oxygen vacancy migration direction. (c) Energy associated with
each initial-intermediate-final state(s) calculated using the NEB method for oxygen
vacancy hop: I ( ), II ( ) and III ( ). Cyan circles indicate Ca ions otherwise the
color scheme is the same.

Figure 4.5b shows the oxygen vacancy migration energy barrier for the second

system. This system also has a reduction in the barrier height compared to the bulk

migration energy and is significantly lower compared to the first Ca-doped system.
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The migration energy towards the grain boundary is EI
21=0.04 eV, EII

32=0.17 eV, and

EIII
43 =0.18 eV. This decrease in the barrier height as the oxygen vacancy migrates

towards the grain boundary is not to surprising due to the lower energy of the system

as the oxygen vacancy migrates towards the grain boundary core and the Ca solute.

Figure 4.5. (a) 2nd Ca-doped Σ3 (111)/[1̄01] grain boundary structure model with
vertical dashed lines indicating each oxygen plane. The oxygen vacancy is located in
plane 1. (b) Energy associated with each initial-intermediate-final state(s) calculated
using the NEB method for oxygen vacancy hop: I ( ), II ( ) and III ( ).

Both from a thermodynamics and kinetics standpoint, the migration of oxygen

vacancies is not inhibited towards the grain boundary as the migration energy values

are significantly lower in all cases than the bulk migration energy. However, the models

lack adequate complexity to account for the interaction of multiple oxygen vacancies

that would inevitably be attracted to the grain boundary core due to the increase

stability of the oxygen vacancies and the presence of the solute ions. Since oxygen
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vacancies are known to repel one other it is likely that the presence of additional

vacancies at/near the grain boundary core would be restricted preventing additional

oxygen vacancies from migrating to oxygen sites within the 1NN shell of another

oxygen vacancy.

The migration energy away from the grain boundary core for the first Ca-doped

system is EI
12=0.43 eV, EII

23=0.64 eV, and EIII
34 =0.91 eV. The first two migration energy

barriers are significantly lower than the bulk migration energy. The decreased oxygen

vacancy migration energy within these layers could result in more mobile oxygen

vacancies within the grain boundary core. The increased migration energy barrier

between the oxygen plane 3 and 4 would certainly create a kinetic barrier for oxygen

vacancy migration. Additionally, this increased barrier height is accompanied by the

largest increase in the relative segregation energy. These two factors seem to indicate

that the migration of oxygen vacancies away from the grain boundary core is both

thermodynamic and kinetic unfavorable. It is therefore not hard to imagine that these

factors would create an overall decrease the grain boundary conductivity which may

explain the loss in conductivity seen at the grain boundary.

The increase in migration energy as the oxygen vacancy migrates away from the

Ca ion can be understood by considering the affinity for doped oxides to form defect

associations and the lower energy for oxygen vacancies at the grain boundary. Defect

associates are electrically neutral clusters (Ca“
Ce-V··

O)–composed of a negatively charged

cations (Ca“Ce) and positively charged vacancy sites (V··
O) with respect to the pristine

host lattice–which are energetically more stable (Koettgen et al. 2018), therefore,

attractive in nature resulting in defect clusters. The act of separating these defect

associates requires additional energy causing an increase in the ground state energy

as well as the migration energy as the defect association is separated.
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Surprisingly, in the second Ca-doped system the migration energy barrier away

from the grain boundary core for each hop has an almost identical value at 0.73 eV.

The only significant difference between each barrier height is the image at which the

barrier height peaks.

Yuan et al. (2016) calculated the migration energy barrier for the undoped Σ3

(111)/[1̄01] grain boundary finding in the near grain boundary region the migration

energy was lower going towards the grain boundary and larger away from the grain

boundary. Comparing the migration energies for the 2 Ca-doped system with those

computed in the work by Yuan et al. (2016) for the undoped Σ3 (111)/[1̄01] grain

boundary, the Ca-doped migration energies away from the grain boundary for the first

system are 0.30 eV-0.50 eV smaller than the undoped case while the second system

has similar values to the undoped system. However, the migration energy values

towards the grain boundary in general are significantly smaller except for hop III

in the first Ca-doped system. It should be noted the work was calculated using a

different functional and +U value so the absolute values would likely not be identical.

The migration energy values calculated with the computational parameters in this

work for hop I from the undoped grain boundary are similar to those reported in Yuan

et al. (2016). The migration energy towards the grain boundary, however, is lower.

Currently only the hop I has been calculated for the undoped grain boundary due to

issues converging the NEB calculations. Appendix B discusses additional challenges

encountered during this project and solutions to manage such issues when they do

occur.
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4.5 Summary

In summary, using DFT calculations, the impact of high local solute concentrations

in the grain boundary core is systematically investigated assessing the segregation

energy and migration energy of oxygen vacancies in the near grain boundary regions

of the Σ3 (111)/[1̄01] in Ca-doped ceria. The presence of Ca solute ions at the grain

boundary does not significantly alter the relative segregation energetics of the mobile

oxygen vacancies in the near grain boundary region compared to the undoped grain

boundary. However, the segregation behavior of oxygen vacancies is sensitive to the

site of the solute ion in the grain boundary. For these two Ca-doped systems both an

increase and decrease in oxygen vacancy segregation was observed.

The most significant impact of the Ca solute ions at the grain boundary is

the reduction in the oxygen vacancy migration energy in the grain boundary core.

Depending on the oxygen plane and solute ion location, the presence of Ca solute

ions at the grain boundary can result in similar, smaller, and larger migration energy

barriers both away from and towards the grain boundary compared with the undoped

grain boundary (found in literature) and bulk ceria. Overall, for a majority of

the oxygen planes, the presence of the Ca solute ion does decrease the oxygen

vacancy migration energy. However, despite the reduced migration energy barriers,

the presences of kinetically limited oxygen planes would likely dominate the materials

response decreasing the cross grain boundary conductivity. Additionally, the apparent

sensitivity of the migration energy to the solute site could result in some regions along

the grain boundary plane being more or less conducive for oxygen vacancy transport.

Future studies could focus on the effects of Ca solutes both in the bulk and grain

boundary core (more realistic doping schemes) as well as the effects of additional
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oxygen vacancies which would significantly impact the allowed migration pathways

across the grain boundary.

While the segregation of oxygen vacancies to the grain boundary is still favorable

both thermodynamically and kinetically, the presence of Ca solute ions dramatically

alters the kinetics in the near grain boundary region. However, the limitations

of DFT preclude investigations into the effects of multiple oxygen vacancies and

realistic solute decorating schemes within the bulk and grain boundary core, due

to the large computational cost associated with DFT and the configuration space.

Despite this, these results provide critical insight into the role that high local solute

concentrations play in modulating the migration energy of oxygen vacancies improving

the understanding of cross boundary oxygen transport.

81



Chapter 5

COMPUTATIONAL SYNTHESIS OF 2D MATERIALS: A HIGH-THROUGHPUT

APPROACH TO MATERIALS DESIGN

5.1 Motivation

As discussed in Chapter 1 Section 1.4, the emergence of atomically thin, single-layer

graphene spawned a new class of two-dimensional (2D) materials (M. Xu et al. 2013;

Novoselov 2011) with an extraordinary range of properties - from large band-gap

insulators to the very best conductors, the mechanically tough to soft and malleable,

and semi-metals to topologically insulating (Singh, Mathew, et al. 2015; Paul et

al. 2017; Blonsky et al. 2015; Akiyama, Kawamura, and Ito 2021). However, large-

scale, low-defect, and reproducible synthesis of 2D materials remains a challenging

task. Substrate-assisted methods, such as chemical vapor deposition, are a promising

avenue to realize large-area, low-defect flakes (Novoselov et al. 2012) of various 2D

materials–both with and without a van der Waals (vdW) bonded bulk counterpart.

To enable the functionalization of 2D materials and to assist in the selection of

substrates for synthesis, a detailed understanding of the substrate-assisted modification

of energetic, physical, and electronic properties of 2D materials is required. This

chapter discusses the development and utilization of an open-source high-throughput

workflow package, Hetero2d, that searches for low-lattice mismatched substrate surfaces

for any 2D material. The Hetero2d workflow package is inspired by existing community

workflow packages (Jain et al. 2013; Jain et al. 2015; Mathew et al. 2016; Mathew
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et al. 2017; Ong et al. 2013) but tailored to address scientific questions regarding the

stability and properties of 2D-substrate heterostructured materials.

Hetero2d provides automated routines for the generation of low-lattice mismatched

heterostructures for arbitrary 2D materials and substrate surfaces, the creation of

vdW-corrected density-functional theory (DFT) input files, the submission and mon-

itoring of simulations on computing resources, and the post-processing of the key

parameters. Currently, the post-processing computes: (a) the interface interaction

energy of 2D-substrate heterostructures (energetics), (b) the identification of substrate-

induced changes in the interfacial structure (structural), and (c) charge doping of

the 2D material (DOS and charge density). The 2D-substrate information generated

by Hetero2d routines is stored in a MongoDB database tailored for 2D-substrate

heterostructures.

As an example, the capability of Hetero2d is demonstrate by identifying stable 2D-

substrate heterostructures for four 2D materials, namely 1H-MoS2, 1T - and 1H-NbO2,

and hexagonal-ZnTe, considering 50 cubic elemental substrates on low-index surface

planes. The substrates that sufficiently stabilize the formation energies of these 2D

materials are found to be Cu, Hf, Mn, Nd, Ni, Pd, Re, Rh, Sc, Ta, Ti, V, W, Y, and

Zr and possess binding energies in the range of ∼0.1-0.6 eV/atom. Upon examining

the thickness changes in the post-adsorbed 2D material, the charge transfer, and the

electronic density of states at the 2D-substrate interface, a covalent type of bonding is

found at the interface which suggests that these substrates can be used as contact

materials for the 2D materials. Hetero2d is available on GitHub as an open-source

package under the GNU license.
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5.2 DFT Approach to Identifying Stable 2D-Substrate Heterostructures

2D materials are inherently meta-stable materials and are often created by peeling

2D films from layered, vdW bonded bulk counterparts. Their meta-stability arises

from the removal of the vdW bonds between the individual flakes. However, the vdW

bonds are an order of magnitude weaker than the in-plane covalent or ionic bonds

of 2D materials, thus many 2D materials can remain stable at room temperature

or above. A quantitative measure of the stability of 2D materials to remain as a

free-standing 2D film is given by the formation energy, ∆Ef
vac, with respect to the

bulk phase

∆Ef
vac =

E2D

N2D

− E3D

N3D

, (5.1)

where E2D is the energy of a 2D material in vacuum, E3D is the energy of the bulk

counterpart of the 2D material, and N2D and N3D are the number of atoms in the unit

cell of 2D and bulk counterpart, respectively. The only requirements that the bulk

counterpart of the 2D material (the 3D phase) must meet are that the bulk material

must have the same composition as the 2D material and it must be the lowest energy

phase. If a 2D material does not have a corresponding 3D phase, the energy of the 3D

phase can be taken from the sum of bulk phases normalized to equal the elemental

composition of the 2D material.

The ∆Ef
vac of a 2D material indicates the stability of a 2D flake to retain the 2D

form over its bulk counterpart, where the higher the ∆Ef
vac, the larger the driving

force to lower the free energy. Singh, Mathew, et al. (2015) and others have shown

that when the ∆Ef
vac < 0.2 eV/atom, the 2D materials are stable as a free-standing

film, but for larger ∆Ef
vac’s they are highly unstable and may only be synthesized

using substrate-assisted methods (Singh, Mathew, et al. 2015; Haastrup et al. 2018).
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For substrate surfaces to stabilize a 2D material during the growth processes, the

2D-substrate heterostructure should be energetically stable. Thus the interactions

between the 2D material and substrate surface have to be attractive in nature.

This interaction energy known as the binding energy can be estimated as, ∆Eb =

(E2D + ES − E2D+S)/N2D, where E2D+S is the energy of the 2D material adsorbed on

the surface of a substrate, ES is the energy of the substrate slab, E2D is the energy of

the free-standing 2D material, and N2D is the number of atoms in the unit cell of the

2D material. Note, strain is applied to the 2D material to place it on the substrate

surface due to the lattice-mismatch between the two lattices. For the 2D-substrate

heterostructure interaction to be attractive, the ∆Eb > 0. In addition, this ∆Eb

should be greater than the ∆Ef
vac of 2D materials to ensure that the 2D materials

remain in their 2D form on the substrate. Singh, Mathew, et al. (2015) has shown

previously that the successful synthesis of a 2D material on a particular substrate

surface is feasible when the adsorption formation energy, ∆Ef
ads = ∆Ef

vac - ∆Eb < 0.

The framework of Hetero2d focuses solely on thermodynamic factors to identify

substrates which stabilize meta-stable 2D materials. When the 2D-substrate het-

erostructure has an ∆Ef
ads < 0, the 2D material is stable while ∆Ef

ads > 0 indicates

the 2D material is unstable. This process enables one to screen for substrates that

stabilize meta-stable 2D materials. These 2D-substrate combinations can then be fur-

ther characterized to address essential questions regarding the adsorbed 2D material’s

electronic properties and provide insight into bonding strength, charge transfer, and

the transferability of the 2D material.
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5.3 Hetero2d: The High-Throughput Implementation of the DFT Approach

5.3.1 Introduction

The Hetero2d package is an all-in-one workflow approach to model the heterostruc-

tures formed by the arbitrary combinations of 2D materials and substrate surfaces.

Hetero2d can calculate the ∆Ef
vac, ∆Eb, and ∆Ef

ads for each 2D-substrate heterostruc-

ture and store the relevant simulation parameters and post-processing in a queryable

MongoDB database that can be interfaced to and accessed by an application program-

ming interface (API) or a web-portal. Hetero2d is written in Python 3.6, a high-level

coding language widely used on modern scientific computing resources. Hetero2d

utilizes MPInterfaces (Mathew et al. 2016) routines and the robust high-throughput

computational tools developed by the Materials Project (Mathew et al. 2017; Jain

et al. 2013; Jain et al. 2015; Ong et al. 2013) (MP), namely atomate, FireWorks,

pymatgen, and custodian. Other automatic workflow frameworks and structure manip-

ulation packages exist such as JARVIS (Choudhary et al. 2020), Atomistic Simulation

Recipes (Haastrup et al. 2018; Gjerding et al. 2021), AFLOW (Curtarolo et al. 2012),

and qmpy (Kirklin et al. 2015).

Hetero2d ’s framework is inspired by atomate’s straightforward statement-based

workflow design to perform complex materials science computations with pre-built

workflows that automate various types of DFT calculations. Figure 5.1 illustrates the

framework of the Hetero2d workflow package. Hetero2d extends some powerful high-

throughput techniques available in existing community packages and combines them

with new routines created for this work to generate 2D-substrate heterostructures,

perform vdW-corrected DFT calculations, store the stability related data within
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a queryable database, and analyze key properties of the heterostructure. In the

following sections, each step–outlined in Figure 5.1–is discussed underscoring the new

computational tools developed for Hetero2d.

SS

2D Material Structure
3D Phase of 2D Material

Bulk Material Structure

Pre-Processing 
in Hetero2d

f
vac

Figure 5.1. Outline of the computational workflow used in this study to investigate the
properties of the 2D-substrate heterostructures as coded in the Hetero2d package. All
structures imported from an external database are relaxed using vdW-corrected DFT
with the parameters (discussed below) to maintain consistency. Boxes in gold denote
a DFT simulation step and boxes in silver denote a pre-processing or post-processing
step.

5.3.2 Workflow Framework

Hetero2d ’s atomate-inspired framework utilizes the FireWorks package to break

down and organize each task within a workflow. Workflows within the FireWorks
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package are organized into three task levels–(1) workflow, (2) firework, and (3) firetask.

A workflow is a set of fireworks with dependencies and information shared between

them through the use of a unique specification file that determines the order of

execution of each firework (FW) and firetask. Each FW is composed of one or

more related firetasks designed to accomplish a specific task such as DFT structure

relaxation. Firetasks are the lowest level task in the workflow. Firetasks can be simple

tasks such as writing files, copying files from a previous directory, or more complex

tasks such as calling script-based functions to generate 2D-substrate heterostructures,

starting and monitoring a DFT calculation, or post-processing a DFT calculation and

updating the database.

Hetero2d ’s workflow get_heterostructures_stabilityWF shown in Figure 5.1, has

a total of five firework steps–(1) FW1: the DFT structural optimization of the 2D

material, (2) FW2: the DFT structural optimization of the bulk counterpart of the

2D material, (3) FW3: the DFT structural optimization of the substrate, (4) FW4:

the creation and DFT structural optimization of the substrate slab, and (5) FW5:

the generation and DFT structural optimization of the 2D-substrate heterostructure

configurations. Each firework can be composed of a single or many related firetasks.

The tasks are gathered from the specification file that controls the execution of each

firetask. For example, FW1 is used to perform a vdW-corrected DFT structure

optimization of the 2D material. Note that the DFT simulations are performed

using the Vienna ab initio simulation package (Kresse and Joubert 1999; Kresse and

Furthmüller 1996b; Kresse and Hafner 1993, 1994; Kresse and Furthmüller 1996a).

FW1 is composed of firetasks which: (1) write VASP input files to the job’s launch

directory, (2) write the structure file, (3) run VASP using custodian (Ong et al. 2013)

to perform just-in-time job management, error checking, and error recovery, (4) collect

88



information regarding the location of the calculation and update the specification

file, and (5) perform analysis and convergence checks for the calculation and store

all pre-defined information about the calculation in the MongoDB database. A more

detailed explanation of each firework in the workflow is discussed in Section 5.3.6,

Workflow Steps.

5.3.3 Package Functionalities

As mentioned earlier, Hetero2d adapts and extends existing community packages to

assess the stability of 2D-substrate heterostructures. Table 5.1 lists the functionalities

of Hetero2d compared with two other workflow-based packages, MPInterfaces (Mathew

et al. 2016) and atomate (Mathew et al. 2017), highlighting new and common features

within the three packages.

Hetero2d MPInterfaces Atomate
Structure processing � � �

Error recovery � � �

Database integration � � �

FireWorks compatible � �

2D hetero. routines � �

2D hetero. workflow �

2D post-processing �

Table 5.1. A list of functionalities present in the Hetero2d package compared with
two other workflow-based packages MPInterfaces and atomate. Hetero2d is the
only workflow package with all the specific features needed to create 2D-substrate
heterostructures using high-throughput computational methods.

All three packages utilize the pymatgen package to perform various structure

processing tasks. Pymatgen is used to perform various types of structure-manipulation
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processes such as reducing/increasing simulation cell size, creating a vacuum, or

creating a slab during the execution of the workflow. Throughout Hetero2d, pymat-

gen is utilized to handle structure-manipulation for (a) the bulk materials and (b)

some basic pre-/post-processing of structures and generation of files for the DFT

calculations. Within Hetero2d, pymatgen’s structure-manipulation tools are used to

create conventional unit cells for the substrate and create the substrate slab surface.

Additionally, pymatgen’s structure analysis modules have been integrated within

Hetero2d to decorate the fireworks in the workflow with structural information for

each input structure to populate the database. The pre-processing enables one to

differentiate crystal phases with similar compound formulas, easily reference and sort

data within the database, and perform analysis in later fireworks.

All three packages use the custodian package (Ong et al. 2013) to perform error

recovery. Error recovery routines are pivotal for any workflow package to reduce

the need for human intervention and correct simple run-time errors with pre-defined

functions. Additionally, custodian alerts the user if an unrecoverable error has occurred.

Database integration is another functionality present in all three packages that

stores and analyzes the vast amount of information generated by each calculation.

Only Hetero2d and atomate are FireWorks compatible, whereas MPInterfaces

uses the python package fabric to remote launch jobs over SSH. FireWorks is a

single package used to define, manage, and execute scientific workflows with built-in

failure-detection routines capable of concurrent job execution and remote job tracking

over an arbitrary number of computing resources accessible from a clean and flexible

Python API.

Routines used to automate the generation of 2D-substrate heterostructures given

user constraints are available in Hetero2d and MPInterfaces. MPInterfaces implements
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a mathematical algorithm developed by Zur and McGill (1984) for generating supercells

of lattice-matched heterostructures given two arbitrary lattices and user-specified toler-

ances for the lattice-mismatch and heterostructure surface area. Hetero2d incorporates

functions from MPInterfaces to create 2D-substrate heterostructures and enable the

Hetero2d package to utilize FireWorks which MPInterfaces is currently incompatible

with. Additionally, by incorporating these routines in Hetero2d, the code-base can be

modify to return and document critical information regarding the 2D-substrate het-

erostructures that is not returned by MPInterfaces. The 2D-substrate heterostructure

function returns the strain of the 2D material along a and b lattice vectors, angle

mismatch between the ab lattice vectors of the substrate and the 2D material, and

scaling matrix used to generate the aligned 2D-substrate heterostructures.

The 2D-substrate heterostructure workflow and post-processing routines are

uniquely available in Hetero2d. The workflow automates all steps needed to study

2D-substrate heterostructure stability and properties via the DFT method. The

post-processing routines enable a curated database to view all calculation results and

perform additional analysis or calculations.

5.3.4 Default Computational Parameters

CMDLInterfaceSet is based on pymatgen ’s VASPInputSet class that creates custom

input files for DFT calculations. The CMDLInterfaceSet class has all the functionality

of the parent pymatgen class but tailored to perform structural optimizations of

2D-substrate heterostructures and implements vdW-corrections, on-the-fly dipole

corrections for slabs, generation of custom k-point mesh grid density, and addition

of selective dynamics tags for the 2D-substrate structures. All DFT calculations
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are performed using the projector-augmented wave method as implemented in the

plane-wave code VASP (Kresse and Joubert 1999; Kresse and Furthmüller 1996b;

Kresse and Hafner 1993, 1994; Kresse and Furthmüller 1996a). The vdW interactions

between the 2D material and substrate are modeled using the vdW–DF (Rydberg

et al. 2003) functional with the optB88 exchange functional (Bowler and Michaelides

2011).

The CMDLInterfaceSet has a default energy cutoff of 520 eV used for all calculations

to ensure consistency between structures that have the cell shape and volume relaxed,

and those that only have ionic positions relaxed. The default k-point grid density was

automated using pymatgen (Ong et al. 2013) routines to 20 k-points/unit length by

taking the nearest integer value after multiplying 1
a and 1

b by 20. These settings were

sufficient to converge all calculations to a total force per atom of less than 0.02 eV/Å.

Additional information regarding default settings set in the CMDLInterfaceSet and

convergence tests performed to benchmark the calculations are in the Section C.1 and

Section C.2 of Appendix C.

5.3.5 Workflow Initialization and Customization

To use Hetero2d ’s workflow, get_heterostructures_stabilityWF, the 2D structure,

its bulk counterpart, and the substrate structure are imported from existing databases

through their respective APIs. When initialized, the workflow can accept up to three

structures: (1) the 2D structure, (2) the bulk counterpart of the 2D structure, and (3)

the substrate structure in the bulk or slab form.

To perform structure transformations to generate the substrate slabs or the 2D-

substrate heterostructures, the workflow requires two dictionaries during initialization–
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the (1) h_params and (2) slab_params dictionary. Figure 5.2 is a code excerpt demon-

strating the parameters one can supply to generate a 2D-substrate heterostructure on

a (111) substrate slab surface. Additional details regarding workflow customization

options and current functionality available in Hetero2d are discussed in Appendix C

Section C.3 and available on CMDLab GitHub as well as an example jupyter notebook.

from hetero2d.workflow import get_heterostructures_stabilityWF

# set substrate slab & 2D hetero params
slab_params = {’transformations’: [’SlabTransformation’], ’transformation_params’: 

[{’miller_index’: [1,1,1], ’min_vacuum_size’: 19, ’min_slab_size’: 12 } ]}
h_params = [{’max_mismatch’: 0.05, ’max_area ’: 130, ’nlayers_2d’: 3, ’nlayers_sub’: 2, 

’separation’: 3.0 }]

wf = get_heterostructures_stabilityWF(struct_2d, struct_bulk, struct_3d2d, h_params, slab_params)

Figure 5.2. Simplified workflow illustrating the setup necessary to setup the 2D-
substrate heterostructure workflows using get_heterostructures_stabilityWF used
throughout this work. A full example jupyter notebook can be found on the CMDLab
GitHub.

5.3.6 Workflow Steps

As mentioned previously, the workflow has five firework steps. Here, each pre-

processing step involved in initializing the workflow is discussed as well as each

firework and their associated firetask(s) for the 2D-substrate heterostructure workflow

introduced in Section 5.3.2, Workflow Framework.

The first firework, FW1, in the workflow optimizes the 2D material structure.

During initialization of the workflow, the 2D material is centered within the simulation

cell, obtaining crystallographic information regarding the structure, the CMDLInter-

faceSet is initialized to create VASP input files, and a list of user-defined/default tags
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are created for the 2D material. The structure, tags, and CMDLInterfaceSet are used

to initialize the firework HeteroOptimizeFW that performs the structure optimization.

The default tags appended to the firework are the unique identification tags (provided

to the workflow by the user), the crystallographic information, workflow and firework

name, and the structure’s composition. In FW1, HeteroOptimizeFW executes firetasks

that–(a) create directories for the firework, (b) write all input files initialized using

CMDLInterfaceSet, (c) submit the VASP calculation to supercomputing resources to

perform full structure optimization and monitor the calculation to correct errors, (d)

run the HeteroAnalysisToDb class to store all information necessary for data analysis

within the database, and (e) lastly pass the information to the next firework. Details

regarding HeteroAnalysisToDb can be found in the next section.

Similar to FW1, FW2, and FW3 perform a full structural optimization for the bulk

counterpart of the 2D material and the substrate, respectively. FW2 and FW3 differ

from FW1 only in the pre-processing steps. The step to center the 2D material is

not performed; however, the conventional standard structure is utilized during the

pre-processing for FW3.

FW3 spawns a child firework passing the optimized substrate structure to FW4

which transforms the conventional unit cell of the substrate into a substrate slab

using the slab_params dictionary and performs the structure optimization. When the

workflow is initialized, FW4 undergoes similar pre-processing steps that are used to

initialize the firework SubstrateSlabFW that creates a substrate slab from the substrate.

SubstrateSlabFW is the firework that transforms the conventional unit cell of the

substrate into a slab, sets the selective dynamics tags on the surface layers, and sets

the number of compute nodes necessary to relax the substrate slab. The slab_params

variable is the input dictionary that initializes pymatgen ’s SlabTransformation module
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that creates the substrate slab. All required and optional input arguments used in

the SlabTransformation module must be supplied using this dictionary (key: value)

format. This dictionary format is implemented to enable Hetero2d to be flexible

and extendable in future updates. Additionally, the slab_params dictionary is only

required when creating a new substrate slab from a substrate.

After the first four fireworks have been completed and successfully stored in the

database, the fifth firework (FW5) obtains the optimized structures and information

from previous fireworks and the specification file. FW5 calls the GenHeteroStruc-

turesFW firework to generate the 2D-substrate heterostructure configurations using

h_params and spawns a firework to perform structure optimization for each configu-

ration. The input required for the h_params dictionary are those that are required

by Hetero2d ’s hetero_interfaces function. This function attempts to find a matching

lattice between the substrate surface and the 2D material. The parameters used to

initialize hetero_interfaces are listed in the h_params dictionary shown in Figure 5.2.

The function hetero_interfaces generates the 2D-substrate heterostructure config-

urations utilizing MPInterfaces ’s interface matching algorithm. To ensure functions

within the workflow are compatible with FireWorks the hetero_interfaces function

was adapted from MPInterfaces. Additionally, this ensures key variables regarding the

interfacing matching algorithm–such as the strain or angle mismatch–are returned and

stored in the database. MPInterfaces is used to (a) generate heterostructures within

an allowed lattice-mismatch and surface area of the supercell at any rotation between

the 2D material and bulk material surface and (b) create distinct configurations in

which the 2D material can be placed on the bulk material surface based on the Wyckoff

positions of the near-interface atoms.

FW5 calls GenHeteroStructuresFW which generates the 2D-substrate heterostruc-
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ture configurations, the total number of configurations is computed, each unique

configuration is labeled from 0 to n-1, where n is the total number of configurations,

and stored under the Interface Config tag. For each configuration, a new firework

is spawned to optimize each 2D-substrate heterostructure configuration. The data

generated within FW5 is stored in the database.

After all previous FWs have successfully converged, HeteroAnalysisToDb is called

one final time to compute the ∆Ef
vac, ∆Eb, and ∆Ef

ads for each heterostructure

configuration generated by the workflow. The calculation of the ∆Ef
vac references the

simulation for the 2D material and its bulk counterpart. The bulk counterpart is

simulated using a standard periodic simulation cell. The calculation of ∆Eb references

the 2D material, substrate slab, and 2D-substrate heterostructure simulations which

all employ a standard supercell slab model. The calculation of the ∆Ef
ads references

both ∆Eb and ∆Ef
vac. Once each value is computed, all the information is curated

and stored in the MongoDB database.

5.3.7 Post-Processing Throughout the Workflow

After each VASP simulation is complete, post-processing is performed within the

calculation directory using the HeteroAnalysisToDb class, an adaptation of atomate ’s

VaspToDb module. It is used to parse the calculation directory, perform error checks,

and curate a wide range of input parameters and quantities from calculation parameters

and output, energetic parameters, and structural information for storage in the

MongoDB. HeteroAnalysisToDb detects the type of calculation performed within

the workflow and parses the calculation accordingly. HeteroAnalysisToDb has the

same functionally as VaspToDb with additional analyzers developed for 2D-substrate
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heterostructures that–(a) identify layer-by-layer interface atom IDs for the substrate

and 2D material, (b) store the initial and final configuration of all structures, (c)

compute the ∆Ef
vac, ∆Eb, and ∆Ef

ads, (d) store the results obtained from the interface

matching, and (e) ensure each database entry has any custom tags added to the

database such as those appended by the user. The workflow design ensures that the

DFT simulations for each 2D-substrate surface pair will be performed independently

of each other, but as soon as all simulations are completed for each 2D-substrate

surface pair, the data will be analyzed and curated in the MongoDB database right

away.

5.4 An Example of Substrate Screening via Hetero2d

5.4.1 Materials Selection

Side View

Top View

Zn
Te

Nb

O

1T 1H

Nb

O
Mo

S

Figure 5.3. Structure models illustrating the 2D films crystal structure. Top view
demonstrates the hexagonal symmetry of each 2D material. The 1T and 1H phase
for NbO2 are labeled to clarify the two phases.

To demonstrate the functionalities of the Hetero2d package, four 2D materials–

namely 1H-MoS2, 1T -NbO2, 1H-NbO2 (Haastrup et al. 2018), and hexagonal-ZnTe (S.

97



Torrisi et al. 2020)–are screened for suitable substrate matches. The four 2D materials

in consideration possess hexagonal symmetry as illustrated in Figure 5.3.

MoS2 was selected because there is a large amount of experimental and computa-

tional (Chen et al. 2013; Zhuang and Hennig 2013; Yun et al. 2012; Singh, Hennig,

et al. 2015) data available in literature which are used to validate the computed prop-

erties from using the Hetero2d workflow. The hexagonal-ZnTe (S. Torrisi et al. 2020),

1T -NbO2, and 1H-NbO2 (Haastrup et al. 2018) are yet to be synthesized. In addition,

these particular 2D materials have diverse predicted properties; see Table 5.2. It is

noteworthy that hexagonal-ZnTe has been predicted to be an excellent CO2 reduction

photocatalyst (S. Torrisi et al. 2020).

2D Mat. MoS2 1T -NbO2 1H-NbO2 ZnTe
Classification Semiconductor FM 1. FM 1. Semiconductor

Band Gap (eV) 1.88 2. 0.0 1. 0.0 1. 2.88 3.

Table 5.2. The electronic properties and band gap of the four selected 2D materials
used in this work. FM represents ferromagnetic. Works cited 1. Haastrup et al. (2018)
2. Gusakova et al. (2017) 3. S. Torrisi et al. (2020).

The properties of a 2D material can differ when placed on different miller-index

planes for the same substrate. Thus, all unique low-index substrate surfaces (with h,

k, l equal to 1 or 0) for these 2D materials are investigated. A material available in

the Materials Project (MP) (Ong et al. 2013) database was considered a potential

substrate if it satisfied all of the following criteria–(a) is metallic, (b) is a cubic phase,

(c) is single-element composition, (d) has a valid ICSD ID (Standards and Technology)

(thus been experimentally synthesized), and (e) has an Eabove hull < 0.1 eV/atom.

There are 50 total substrates that satisfy the criteria above when queried from the

MP database.
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The bulk counterpart of each 2D material is also obtained from the MP database.

The database is query-ed for bulk materials that have the same composition as the 2D

material and select the structure with the lowest Eabove hull. Appendix C Table C.3 -

Table C.2 have additional reference information regarding all the optimized substrate

slabs, 2D materials, and their bulk counterparts. Appendix C Table C.3 contains

information about the Materials Project material_id, Eabove hull, ICSD ID, crystal

system, and miller plane for the substrate surface. Appendix C Table C.1 contains

information about the reference database ID, ∆Ef
vac (eV/atom), and crystal system for

each 2D material and Appendix C Table C.2 contains information about the reference

database id, Eabove hull, Egap, and the crystal system for the bulk counterpart of the

2D material.

5.4.2 Symmetry-Matched, Lattice-Matched 2D-Substrate Heterostructures

This study focuses the search for 2D-substrate heterostructures to substrate planes

with indices, h, k, l as 0 or 1. The following studies focus on the heterostructures

with the (111) and (110) substrate surfaces since these two miller planes have an

appreciable number of heterostructures. The (001) substrate plane resulted in only

one heterostructure.

2D Mat. (111) Substrate (110) Substrate
MoS2 Hf, Ir, Pd, Zr, Re, Rh Ta, Rh, Sc, Pb, W, Y

1T -NbO2 Ni, Mn, V, Nd, Pd, Ir, Hf, Zr, Cu Rh, Ta, Sc, W
1H-NbO2 Ni, Mn, Nd, Ir, Hf, Al, Te, Ag, Ti, Cu, Au Ta, Sc, W, Y, Rh

ZnTe Sr, Ni, Mn, V, Al, Ti, Cu W

Table 5.3. A list of matching substrate surfaces for the four 2D materials given the
heterostructure search criteria discussed in the next section.
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Restricting the search for 2D-substrate matches to only the (111) and (110) yields

a total of 4 (# of 2D materials) X 2 (# of planes) X 50 (# of substrates) = 400

potential 2D-substrate heterostructure combinations. As illustrated in Figure 5.4,

after introducing the constraints for the surface area (σSA) < 130 Å2 and applied

strain on the 2D material to be < 5%, a total of 49 2D-substrate heterostructure

workflows are found. Table 5.3 lists all metallic substrates matching each of the 2D

materials given the heterostructure criteria.

2D Materials Lowest Energy, Cubic, 
Elemental SubstratesNbO₂

NbO₂
MoS₂

ZnTe

4 2Ds, 50 Substrates, 2 Surfaces

49 2D Heterostructure 
Workflows

29 Stable Workflows

400 Possible 2D/Substrate 
CombinationsConstrain 

Interface
σSA < 130 Å²

v ≤ 5%

u 
≤
 
5
%

Check 2D 
Stability ΔEf

ads < 0 

throughput
MongoDB

High

Store Calculation Results

1T 1H 0.0 ≤ Eabove hull < 0.08 eV/atom  
Egap= 0 eV

Figure 5.4. Schematic representing the materials selection process identifying stable
2D-substrate heterostructures using the Hetero2d workflow. Tier 1 represents choosing
2D materials, substrates, and their surfaces. Tier 2 applies constraints on the surface
area and lattice strain. Tier 3 shows the energetic stability of the heterostructures
stored in the database.

Of the total 49 workflows, 33 workflows correspond to the (111) substrate surfaces,

and 16 workflows correspond to the (110) substrate surfaces. Generally, the (111)

surface has more substrate matches than (110) surface due to the intrinsic hexagonal

symmetry of the (111) surface that matches the hexagonal symmetry of the selected
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2D materials. Each workflow generates between 2-4 2D-substrate heterostructure

configurations for a given 2D-substrate surface pair, resulting in a total of 123 2D-

substrate heterostructure configurations. Of those 2D-substrate heterostructures, 78

configurations, a total of 29 workflows stabilize the meta-stable 2D materials when

placed upon the substrate slab. Additional details regarding these simulations can be

found in Appendix C Section C.4.

5.4.3 Stability of Free-Standing and Adsorbed 2D Films and Heterostructures

MoS2 ZnTe
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Exfloliation
Methods

1H-NbO2

0.4

0.3

0.2

0.1

0.5
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Methods

Figure 5.5. The ∆Ef
vac for 2D MoS2 ( ), 1T -NbO2 ( ), 1H-NbO2 ( ), and ZnTe ( ).

The ∆Ef
vac is used to assess the thermodynamic stability of the free-standing 2D film

with respect to its bulk counterpart. MoS2 and ZnTe have relatively low ∆Ef
vac while

the 1T and 1H phase of NbO2 have high ∆Ef
vac.

Figure 5.5 shows the ∆Ef
vac of the isolated unstrained 2D material with respect

to their bulk counterpart. The ∆Ef
vac for both MoS2 and ZnTe are low, less than

0.2 eV/atom. Both the 1T and 1H phase for NbO2 possess high ∆Ef
vac, as shown

by the red shaded region in Figure 5.5, making substrate-assisted synthesis methods

the most feasible method to synthesize these 2D films. The ∆Ef
vac’s in Figure 5.5 are
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consistent with prior computational (Haastrup et al. 2018; S. Torrisi et al. 2020) and

experimental work (Y.-H. Lee et al. 2013).
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Figure 5.6. Adsorption formation energy, ∆Ef
ads, for the symmetry-matched, low

lattice-mismatched (a) (110) and (b) (111) substrate surfaces. The rectangular
symmetry of the (110) surface results in fewer matches while the hexagonal symmetry
of the (111) substrate surface results in numerous matches within the given constraints
on the surface area and lattice strain. Negative ∆Ef

ads values indicate stabilization of
the 2D material. Each set of symbols (up to 4 points per substrate) represents the
unique 2D-substrate configurations.

Figures 5.6a and Figure 5.6b show the ∆Ef
ads for the four 2D materials on the (110)

and (111) substrate surfaces, respectively. The vertical black lines in Figure 5.6 separate

the 2D materials, while the shaded regions indicate stabilization of the 2D material

on the substrate surface. When generating 2D-substrate heterostructure, the first

challenge is finding a matching lattice between the 2D material and substrate surface.

The next challenge is identifying “ideal” or likely locations to place the 2D material

on the substrate surface to generate stable low-energy heterostructures. To reduce

the large number of in-plane shifts possible for a given 2D-substrate heterostructure,

the 2D material is selectively placed on the substrate slab enumerating combinations

of high-symmetry points (Wyckoff sites) between the 2D material and substrate slab

stacking the 2D material on top of these sites z Å away from the substrate surface.
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Each unique 2D-substrate heterostructure configuration is represented by 0=△, 1=x,

2=◦, and 3=□ in Figure 5.6.

The ∆Ef
ads on the (110) surface is shown in Figure 5.6a. There are 9 substrates

which stabilized the ∆Ef
ads of the 2D materials. The ∆Ef

ads appears to be correlated

with the substrate where the 2D material is placed; however, the data is to sparse in

Figure 5.6a to distinguish the origin of this trend. Interestingly, when MoS2 is placed

on the (110) Ta substrate surface, the 2D material buckles which likely increases the

∆Ef
ads significantly above the other substrates. Appendix C Figure C.4 shows both

configurations for MoS2 on the (110) Ta substrate surface. There are an additional 5

2D-(110) substrate pairs that were studied but are not shown in Figure 5.6a because the

2D materials/substrate interface becomes highly distorted/completely disintegrated.

These cases are shown in Appendix Figure C.2a and discussed in Section C.5.

The (111) substrate surface matches for each 2D material are shown in Figure 5.6b,

where 15 substrates result in an ∆Ef
ads < 0. An additional 8 2D-substrate pairs, shown

in Appendix Figure C.2b, have 2D materials/substrate surfaces that are disintegrated

and are discussed in Section C.5 in Appendix C.

A correlation between the substrate surface and the ∆Ef
ads is more apparent for

the (111) surface in Figure 5.6b due to the increased number of 2D-substrate pairs.

For MoS2 on Zr and Hf, the triangle configurations have ∆Ef
ads significantly lower

than the other configurations, see Appendix C Figure C.4 for structures of the three

configurations. The lower ∆Ef
ads is correlated with smaller bond distances between

the substrate surface and the 2D material. For these structures, the ∆Ef
ads is found

to be lower for structures where the 2h Wyckoff site of the 2D material is stacked on

top of the 2a Wyckoff site of the substrate surface. The location of a 2D material

on a substrate surface has previously been shown to influence the type of bonding
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present between the 2D material and substrate surface (Singh, Zhuang, and Hennig

2014; Zhuang et al. 2017).

The 1T phase of NbO2 on Hf, Zr, and Ir substrates have an ∆Ef
ads difference between

each configuration that is larger than other 2D-substrate pairs. The differences in

∆Ef
ads for 1T -NbO2 on Ir is partly due to some structural disorder of the 2D materials

from the O atoms bonding strongly with the substrate surface, shown in Appendix C

Figure C.5. For both Hf and Zr, the differences in ∆Ef
ads do not arise from structural

disorder. The ∆Ef
ads of 1T -NbO2 on Hf and Zr are more strongly affected by the

location of the 2D material on the substrate surface.

1H-NbO2 has two substrate surfaces, Ti and Au, where the ∆Ef
ads varies strongly

with the configuration of 2D material on the substrate, unlike other 2D-substrate pairs

for 1H-NbO2. 1H-NbO2 on Ti and Au have no structural distortions that explain the

difference in ∆Ef
ads. For 1H-NbO2 on Ti, each configuration possesses different ∆Ef

ads

arising from the unique placement of the 2D material on the substrate surface for each

configuration. The strong bonding between the 2D material and substrate surface

may be due to the affinity for Ti to form a metal oxide. Appendix C Figure C.6 shows

each configuration for 1H-NbO2 on (111) Ti substrate surface. For 1H-NbO2 on Au,

the circle configuration has a lower ∆Ef
ads due to the bottom layer of the 1H-NbO2

stacked directly on the top layer of the Au substrate surface.

The properties of MoS2 have been studied both computationally and experimentally,

where previous computational works (Zhuang and Hennig 2013; Singh, Mathew, et

al. 2015) have found similar values for the ∆Ef
vac of MoS2. Chen et al. (2013) found

that Ir bonds more strongly with the substrate surface than Pd. This may explain the

small structural modulations observed in this study for MoS2 on the Ir (111) substrate

surface but no such modulation is observed for MoS2 on the Pd (111) substrate surface.
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Additionally, the z-separation distance between the 2D material and substrate surface

found in this work agrees well with (Chen et al. 2013)’s values despite using a different

functional. The z-separation distances are within 0.05 Å for Ir and 0.16 Å for Pd.

In summary, MoS2 and ZnTe have low formation energies and are potentially well

suited for exfoliation-based methods (Singh, Mathew, et al. 2015; Revard et al. 2016)

while the 1T - and 1H-NbO2 phase have high formation energies requiring substrate

assisted methods to synthesize these metastable 2D materials. Through the substrate

screening process, a total of 9 (110) and 15 (111) substrate slab surfaces are found to

stabilize the 2D materials considered here. MoS2 is stabilized by the (110) surfaces of

Rh, W, and Pb and (111) surfaces of Zr, Hf, Pd, Re, and Rh. The 1T -NbO2 is found

to be stabilized by the (110) surfaces of Sc, and Rh and (111) surfaces of Hf, Zr, and

Nd. The 1H-NbO2 is found to be stabilized by the (110) surfaces of Sc, Y, Ta, and

W and (111) surfaces of Ti, Hf, and Nd. The ZnTe is stabilized only by the (111)

surfaces of Ni, Mn, Cu, and V.

5.4.4 Thickness Changes in Adsorbed 2D Films on Substrate Slab Surfaces

The change in the thickness of the adsorbed 2D material may provide insight

into the nature of bonding between the 2D-substrate heterostructures. For instance,

vdW bonds are weak and thus typically result in minimal structural and electronic

changes in the 2D material. Using the database, the change in the thickness of

post-adsorbed 2D materials from that of the free-standing 2D material is computed.

The thickness of the free-standing/adsorbed 2D material is computed first by finding

the average z coordinate of the top and bottom layer of the 2D material given by

d̄z =
n∑

i=1

dtopi,z /n−
m∑
i=1

dbottomi,z /m where di,z is the z coordinate of the ith atom summed
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up to n and m, the total number of atoms in the top and bottom layers, respectively.

The thickness, obtained by taking the difference between the average thickness of the

adsorbed 2D material from that of the free-standing 2D material, δd=d̄adsorbedz − d̄freez ,

with positive (negative) values corresponding to an increase (decrease) in the thickness

of the adsorbed 2D material.

0.4

-0.2

-0.1

0.0

0.1

0.2

MoS2 1T-NbO2 1H-NbO2 ZnTe

δd
 (Å

)  
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Figure 5.7. Each 2D material is separated spatially along the x-axis using a violin plot.
The change in the 2D material’s thickness, δd, for all substrates is plotted along the
y-axis. A positive y-value indicates the 2D material’s thickness has increased during
adsorption onto the substrate slab. The width of the violin plot is non-quantitative
from scaling the density curve by the number of counts per violin; however, within
one violin plot, the relative x-width does represent the frequency that a 2D material’s
thickness changes by y amount relative to the total number of data points in the plot.

Figure 5.7 illustrates the change in the thickness of the free-standing 2D material

from that of the adsorbed 2D material for each 2D-substrate heterostructure. Typically

for vdW type bonding, each atom should have minimum deviations from the free-

standing 2D film due to the weak interaction between the adsorbed 2D material and

substrate surface that characterizes vdW bonding. Figure 5.7 shows many of the

2D-substrate pairs have a significant change in the thickness of the 2D material that

may indicate more covalent/ionic type bonding. The change in the thickness of the

2D material for the majority of the MoS2-substrate configurations is minimal (< 0.1
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Å) that may indicate weak interactions between the 2D material and substrate surface.

Figure 5.7 indicates that for the majority of the adsorbed 2D materials, the substrates

tend to increase the thickness of the adsorbed 2D material.

Analysis of the 2D material’s thickness shows most adsorbed 2D materials thickness

has increased substantially which may indicate the interaction between the 2D material

and the substrate surface is covalent/ionic. A characterization of the density of states

and the charge transfer (through Bader analysis or charge density difference), as

presented in the next section, is required to determine the exact nature of the

interaction.

5.4.5 Charge Layer Doping of Adsorbed 2D Films

The Hetero2d workflow package has a similar infrastructure as atomate that allows

the package to integrate seamlessly with the workflows developed within atomate.

These atomate workflows enable the information generated by Hetero2d to be easily

expand upon by utilizing existing workflow to perform various analysis such as

Bader (Tang, Sanville, and Henkelman 2009; Henkelman, Arnaldsson, and Jønsson

2006) charge analysis and high-quality density of states (DOS) calculations to assess

charge transfer that occurs between the adsorbed 2D material and the substrate

surface, changes in the DOS from the adsorbed and pristine 2D material, and changes

in the charged state of the 2D-substrate pairs.

Most 2D materials are desirable due to their unique electronic properties. MoS2 on

Hf (111) surface was selected to demonstrate the capability of Hetero2d in providing

detailed electronic and structural information. The Bader analysis illustrated in Table
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5.4 shows that there is charge transfer from the substrate to the bottom layer of the

2D material which is consistent with the findings presented by Zhuang et al. (2017).

electrons Qsub QSb
QMo QSt Qprist

Sb
Qprist

Mo Qprist
St

Qx -0.11 1.10 -1.03 0.57 0.60 -1.20 0.60

Table 5.4. Qx is obtained with Bader analysis and represents the average number of
electrons transferred to/from (positive/negative) specific atomic layers with the initial
number of electrons taken from the POTCAR. The first four columns are the electrons
transferred to/from–the Hf substrate atoms, Qsub, the bottom layer of S atoms, QSb

,
the Mo atoms, QMo, and the top layer of S atoms, QSt for the adsorbed 2D-substrate
heterostructure. The last three columns denote the charge transfer in the pristine
MoS2 structure. MoS2 has an increased charge accumulation on the bottom layer of
the 2D material from the substrate slab.

In Figure 5.8a, the DOS for the isolated un-strained, isolated strained, and

adsorbed MoS2 is shown where the black dashed line represents the Fermi level. There

is a small shift in the DOS when comparing the un-strained and strained DOS for

MoS2. Comparing the DOS for the adsorbed MoS2 to the other DOS for MoS2, there

is a significant change in the DOS. when MoS2 is placed on the Hf (111) surface

a semiconductor to metal transition is seen in the DOS of MoS2 induced by the

substrate. This change in the DOS is consistent with the Bader analysis that indicates

electron doping of the MoS2 material occurs which would result in changes in the

DOS. Figure 5.8b shows the redistribution of charge due to the interaction of the 2D

material and substrate surface where red and blue regions indicate charge accumulation

(gaining electrons) and depletion (losing electrons) of the combined system due to

the interaction between MoS2 and Hf. The charge density difference is computed as

the difference between the sum of the isolated MoS2 and isolated Hf substrate slab

from that of the combined MoS2 on Hf system. Figure 5.8c is the charge density

of the combined MoS2 on Hf system along the (110) plane. Thus, the electronic
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properties of MoS2 are dramatically affected by the substrate. Hetero2d can analyze

the substrate induced changes in the electronic structure of 2D materials. This will

lead to a fundamental understanding and engineering of complex interfaces.

0.2b) c)

30

20

10

35

15

5

25

D
is

ta
n
ce

 (
Å

)

0.200.100.20 0.10 0.00
(e/Å3)

04 3 2 1 0 1 2 3 4
Energies (eV)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
e
n
si

ty
 o

f 
st

a
te

s

Strained

S Mo

Adsorbed
Pristine

a)

Figure 5.8. (a) The element projected density of states (DOS) where red and blue
lines correspond to S and Mo states, respectively, for the isolated strained 2D material
(dashed lines), the adsorbed 2D material (solid lines), and the pristine MoS2 material
(dashed-dotted lines). The Hf (111) substrate influences the DOS for MoS2 causing a
semiconductor to metal transition. (b) The z plane-averaged electron density difference
(∆ρ) for MoS2 on Hf. Electron density difference is computed by summing the charge
density for the isolated MoS2 and isolated Hf then subtracting that from the charge
density of the interacting MoS2 on Hf system. The charge densities were computing
with fixed geometries. The red and blue colors indicate electron accumulation and
depletion in the combined MoS2 on Hf system, respectively, compared to the isolated
MoS2 and isolated Hf atoms. (c) The charge density distribution for MoS2 on (111)
Hf substrate. The cross section is taken along the (110) plane passing through Mo, S,
and Hf atoms. The charge density is in units of electrons/Å3.

These results show a semiconductor-to-metal transition for the MoS2 on Hf which

is consistent with previous calculations by Zhuang et al. (2017). Additionally, charge

transfer from the Hf substrate to MoS2 is shown.
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5.5 Summary

In summary, this work discusses the development of Hetero2d, an open-source

workflow package that automates the generation of 2D-substrate heterostructures, the

creation of DFT input files, the submission and monitoring of computational jobs

on supercomputing facilities, and the storage of relevant parameters alongside the

post-processed results in a MongoDB database. Using the example of four candidate

2D materials and low-index planes of 50 potential substrates the utility of Hetero2d

to address the immense number of 2D material-substrate surface pairs to guide the

experimental realization of novel 2D materials is demonstrated. Among the 123

configurations studied, only 78 configurations (29 workflows) are found to result in

stable 2D-substrate heterostructures. The use of Hetero2d is further illustrated by

examining the change in thickness of the adsorbed 2D materials, the Bader charges, and

the electronic density of states of the heterostructures to study fundamental changes

in the properties of the post-adsorbed 2D material. Hetero2d is freely available on

the CMDLab GitHub website under the GNU license along with example jupyter

notebooks.

These results show the four 2D materials, MoS2 and ZnTe have low formation

energies while both the 1T - and 1H-NbO2 phases have high formation energies

requiring a substrate to feasibly synthesize the 2D material. Through the substrate

screening process, a total of 9 (110) and 15 (111) substrate surfaces are found to stabilize

the 2D materials considered here. An analysis of the 2D material’s thickness shows

most adsorbed 2D materials thickness has increased substantially, which may indicate

the interaction between the 2D material and the substrate surface is covalent/ionic.

From the density of states and Bader charge analysis, a semiconductor-to-metal
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transition in 2D MoS2 adsorbed on Hf is observed due to the significant charge transfer

between the Hf substrate and MoS2.
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Chapter 6

FUNDAMENTAL FACTORS GOVERNING SUBSTRATE INDUCED

STABILIZATION OF JANUS 2D HETEROSTRUCTURES WITH MACHINE

LEARNING

6.1 Motivation

Out-of-plane symmetry breaking is highly desired for 2D materials with the

emergence of novel properties for widespread device applications in electronics (Riis-

Jensen et al. 2019; Lu et al. 2017; Qin et al. 2022; Ma et al. 2022), catalysis (Idrees,

Fawad, et al. 2020; Idrees, Din, et al. 2020; G. Zhang et al. 2021), sensing (Lei Zhang

et al. 2020), quantum computing (Maghirang et al. 2019; Y. Zhang et al. 2019), energy

applications Zhang2020, Guo2019, and biology (Fu et al. 2020). Janus 2D materials–

typically 3 atomic layers thick wherein each atomic layer is a distinct element–offer

intrinsic out-of-plane symmetry breaking, giving rise to interesting properties–most

notably, strong Rashba spin splitting, finite out-of-plane dipole moments, and in-plane

piezoelectricity (Riis-Jensen et al. 2019; Lei Zhang et al. 2020). These properties

make Janus 2D materials highly tunable and ideal candidate materials for vertically

stacked heterostructure device applications. However, experimental realization and

utilization of hypothetical 2D materials thus far has been slow. The C2DB (Haastrup et

al. 2018) contains roughly 4,000 predicted 2D materials with ∼55 being experimentally

synthesized. One challenge in realizing 2D materials is the underlying fundamental

physics that govern the impact that substrates have on the post-adsorbed properties
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Figure 6.1. 1H-Janus 2D-substrate heterostructure model showing the orientation of
the 2D material on top of the substrate surfaces. The Y-M-X represent the atomic
layers of the Janus 2D material.

and energetic stability 2D material heterostructures is not well known for the rich

physical and chemical space of most predicted 2D materials.

Substrates can play a critical role in determining the 2D material properties.

They can serve as a stabilizing agent to metastable phases during growth (Tusche,

Meyerheim, and Kirschner 2007) (as a weakly coupled van der Waals (vdW) surface

securing the 2D material (Walsh and Hinkle 2017; Qin et al. 2022)) or be used to

tune the 2D material properties (Jena and Konar 2007; Singh, Hennig, et al. 2015;

S. Xu et al. 2015). Current computational efforts have largely focused on common 2D

materials like transition metal dichalcogenides (TMDC), graphene, or hexagonal-BN.

The overwhelming majority of predicted 2D materials lack critical information such

as substrates that stabilize metastable 2D materials or substrate effects on adsorbed

2D materials. This information is needed to provide guidelines for substrate selection

to experimentally synthesize the numerous hypothesized 2D materials as well as their

post-adsorbed properties.
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In this report, the 2D Materials Synthesis Database (2DMSD) is introduced, the

first freely available database of calculated data on 2D-substrate heterostructures and

their post-adsorbed properties, all accessible through a web portal and downloadable.

Hetero2d (Boland and Singh 2022)–a high-throughput computational synthesis package

designed for computing heterostructure properties–is used to study heterostructures

of 52 Janus 2D materials (Y=[S, Se, Te], M=[As, Bi, Cr, Hf, Mo, Nb, Sb], and X=[Br,

Cl, I, Se, Te], see Figure 6.1) and 19 metallic, cubic phase, elemental substrates on low-

index crystal planes for lattice- and symmetry-matched 2D-substrate heterostructures.

Figure 6.1 illustrates the vertical stacking of each layer in the Janus 2D material and

the substrate surface with the interface forming between the X-layer of the 2D material

and top-layer of the substrate. 438 Janus 2D-substrate pairs are analyzed to identify

substrate surfaces that stabilize metastable Janus 2D materials, assess substrate effects

in post-adsorbed 2D materials, and identify charge transfer between the 2D material

and the substrate surface. Additionally, a computational framework combining ab-

initio calculations with machine learning methods–similar to previous works (Willhelm

et al. 2022)–to screen and identify stable and post-adsorbed properties of 2D-bulk

substrate heterostructures is utilized. The ab-initio calculations are used to generate

random forest regression models and predict the binding energy, z-separation distance,

and charge transfer to the 2D material for 2D-substrate heterostructures with 0.041

eV/atom, 0.120 Å, and 0.203 e- accuracy (assessed using the root mean squared error),

respectively. Additionally, the models elucidate the fundamental factors that lead

to the stabilization of 2D materials, the z-separation distance between the substrate

surface and 2D material, and the charge transferred to the 2D material.

This work advances the understanding of the fundamental relationships that govern

the interactions of 2D materials with substrate surfaces providing rational guidelines
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towards the experimental synthesis and utilization of the thousands of predicted 2D

materials. The critical property in determining the substrate induced stabilization of a

2D-bulk substrate pair (∆Eb) was found to be the substrate’s electronegativity while

the critical property in determining the z-separation distance was the substrates surface

energy. The primary property to predict the charge transferred to the 2D material

was the fraction of p valence electrons. By combining the database and machine

learning models, a data-driven approach can be utilized to conduct targeted searches

and explore stable 2D-substrate heterostructures and their properties reducing the

computational costs typically associated with brute force ab-initio based calculations

of large combinatorial spaces.

6.2 Screening Parameters and Materials Selection

6.2.1 Materials Selection

Janus 2D materials show promise for quantum computing device applica-

tions (Maghirang et al. 2019) originating from their unique out-of-plane inversion

symmetry breaking and lack of mirror symmetry due to their distinct X, Y atomic

layers. The distinct atomic arrangement creates an out-of-plane intrinsic field from

the differing electronegativity which make these materials candidate materials for

quantum computing devices among others (Chen et al. 2013; Maghirang et al. 2019;

Hou et al. 2022).

The Janus 2D materials were obtained from the C2DB (Haastrup et al. 2018)

which contains ∼200 computed Janus 2D materials with a wide range of predicted

properties. 52 distinct Janus 2D phases were selected by considering 2D materials
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with a corresponding composition matched bulk (3D) counterpart or a mixture of

3D bulk phases restricted to 2 element, layered bulk counterparts. This criteria was

used to compute the ∆Ef
vac and ∆Ef

ads energy which determines the stability of the

metastable 2D material (Singh, Mathew, et al. 2015; Boland and Singh 2022; Singh

and Hennig 2014a; Singh, Zhuang, and Hennig 2014). Appendix D Section D.1 Table

D.1 lists the polytype, formation energy, C2DB ID, and spacegroup for each Janus

2D material.

The 3D bulk phase of each 2D material is obtained from the Materials Project (Ong

et al. 2013) database, considering only 3D bulk phases that have the (1) lowest

Eabove hull and (2) same elemental composition as the 2D material or a mixture of

layered, binary bulk phases where a single structure is preferred over a mixture of

bulk phases. As noted above, if a 2D material does not have a single structure with

a composition matched 3D bulk phase, the energy can be computed from a mixture

of 3D bulk phases where the reduced elemental composition of the combined phases

are stoichiometrically proportional to the 2D material (Singh, Mathew, et al. 2015).

Here, the mixture of 3D bulk phases is limited to 2 layered, binary compounds

thereby limiting the computation cost associated with relaxing these structures and

the complexity involved in finding the correct stoichiometric mixture of bulk phases.

Appendix D Section D.1 Table D.2 lists the Materials Project ID and spacegroup for

each 3D bulk phase(s) and discussion for each composition matched 3D bulk phase(s).

In the previous study (Boland and Singh 2022), bulk substrates within the Materials

Project (MP) (Ong et al. 2013) database were considered only for structure which

were: (a) metallic, (b) cubic phase, (c) single-element, (d) possess a valid ICSD

ID (Standards and Technology) (thus been experimentally synthesized), and (e) have

the lowest Eabove hull< 0.1 eV/atom. To reduce the computational cost involved
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with structure relaxations for the bulk and surface slab structures, only the 19 bulk

substrates optimized in the previous study were considered i.e. Al, Au, Ag, Cu, Hf, Ir,

Mn, Nd, Ni, Pd, Re, Rh, Sc, Sr, Te, Ti, V, Y, and Zr. All possible combinations of

low-index, miller-planes where (h,k,l) can be 0 or 1 were screened for potential lattice

matches with all 52 Janus 2D materials. Appendix D Section D.1 Table D.3 lists the

Materials Project ID, surface energy, and spacegroup for each substrate.

6.2.2 Heterostructure Screening Criteria

Figure 6.2. Schematic illustrating the criteria for creating heterostructures, the
generation of the 2D-substrate heterostructure configurations from the top and side
where the top view denotes how the 2D material is aligned on top the substrate surface
using the Wyckoff sites.

The maximum heterostructure surface area of γSA < 80 Å2 and applied strain on

the 2D material of σ2D < 3% was chosen for the lattice-matching algorithm (Zur and

McGill 1984; Mathew et al. 2016). A total of 438 Janus 2D-substrate heterostructure

pairs, all on the (111) substrate surface, were identified. 1H-BiClSe was the only 2D

material with no resulting heterostructure match for the substrates considered. For

each 2D-substrate pair, 2-3 heterostructure configurations are created by enumerating
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the high-symmetry points of the 2D material and substrate and aligning the high-

symmetry points of the 2D material and substrate z Å apart generating unique

heterostructure configures. Of the 438 2D-substrate pairs, 285 pairs (a total of 756

heterostructure configurations) have a negative ∆Ef
ads indicating the 2D materials is

stabilized by the substrate slab. See Chapter 5 for discussion of ∆Ef
ads. Appendix

D Section D.1 Table D.4 lists the substrates that produce heterostructures for each

Janus 2D material.

6.3 Computational Methodology

6.3.1 DFT

All DFT calculations were performed as outlined in Chapter 5. The density of states

(DOS), charge density difference, and Bader analysis (Tang, Sanville, and Henkelman

2009; Henkelman, Arnaldsson, and Jønsson 2006) calculations were automated using

the CMDLElectronicSet available in the Hetero2d package. The k-point mesh grid

used to calculate the electronic properties was automated by setting the reciprocal

density to 200 with pymatgen ’s automatic density by volume. The DOS grid was set

such that the number of sampling points had an energy spacing of 0.05 eV between

each point. The benchmark case, taken with energy spacing of 0.1 eV, 0.05 eV, and

0.01 eV, showed the band gap was converged to within 0.019 eV, see Appendix Figure

A.6. The fine grid for the charge density was set to 0.03 Å as this value provided a

reasonable compromise between accuracy and computational cost, ∼2.3x the default

grid spacing. The benchmark case, taken with grid spacing of 0.1 eV, 0.05 eV, 0.03,

and 0.01 eV, showed the Bader charges were converged to within ∼0.004 electrons per
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atom, see Appendix Figure D.4. The charge density difference plots demonstrated

little change with increased grid spacing, see Appendix Figure D.5. Appendix D

Section D.2 discuss the benchmark calculations performed, testing the convergence of

the DOS, and the charge density grid spacing used to calculate the Bader charges and

charge density difference.

6.3.2 Machine Learning Methodology

The random forest regression models were developed to predict the binding energy

(∆Eb), the z-separation distance, and the charge transferred to the 2D material (∆Q2D)

using the scikit-learn code (Pedregosa et al. 2011; Buitinck et al. 2013). Random

forests are ensemble classifiers which construct multiple independent random tree

models that split the input data into subsets on which decision trees are trained to

create an aggregate model (Breiman 2001), leading to a more stable and generalizable

results. Each model’s performance was validated using K-fold cross-validation, and

GridSearchCV was used to tune the hyper-parameters for each model. Further

discussion and figures concerning performance metrics for each model, hyper-parameter

tuning, and other feature selection can be found in Appendix D Section D.3.

To generate feature descriptors for the heterostructure and constituent materials,

two methods are used: (a) generation of ab-initio information using DFT, and (b)

using Matminer (Ward et al. 2018) to obtain compositional- and structural-based

features from the Materials Project (Ong et al. 2013) database and this study’s DFT

relaxed 2D-substrate heterostructures, respectively. The data set consists of the lowest

energy configuration for each of the 438 Janus 2D-substrate heterostructure pairs

optimized using vdW-corrected DFT.
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The features added to the data set for machine learning from the 2D-substrate

heterostructure DFT calculations were the energetic (∆Ef
vac, ∆Eb, substrate’s surface

energy) and structural (z-separation distance between the 2D material and substrate,

δd–see Chapter 5) properties. Additionally, properties from the C2DB were added

such as the 2D material’s heat of formation and Eabove hull. Explicit electronegativity

differences between the bottom layer and average of all layers of the 2D material from

the substrate’s electronegativity were included. Lastly, the charge transferred to the

2D material was added to the list of features.

Figure 6.3. Schematic diagram of the steps taken to prepare the data set to perform
machine learning for each of the models.

The Matminer (Ward et al. 2018) package was utilized to generate statistical

properties (minimum, maximum, range, mean, and standard deviation) for each

heterostructure, as well as any additional element based-descriptors attainable from

the Materials Project database (Ong et al. 2013). Matminer has over 70 featurizers–a
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method used to generate descriptors of a data set in an automated manner–adapted

from scientific publications to incorporate a wide variety of materials descriptors.

The ElementalProperty featurizer was used to encode fundamental elemental-based

properties for each atomic species in the heterostructure and constituent (2D and

substrate) structures; this study’s data set consists of: the atomic mass, atomic

radius, atomic number, group, row, Mendeleev number, bulk modulus, molar volume,

thermal conductivity, and electronegativity. The GlobalSymmetryFeatures and Maxi-

mumPackingEfficiency were used to encode structural (packing efficiency of elemental

components) and crystallographic (spacegroup number and crystal system) properties.

The ValenceOrbital featurizer was used to encode electronic properties (weighted

fraction of s, p, d, and f valence electrons in each orbital) for the heterostructure.

During featurization the incorporation of the numerous statistical properties can

result in many highly correlated and low-variance features. Appendix D Section D.3

provides a detailed description of the steps taken to remove strongly correlated/low-

variance features and prevent over-fitting of the models. It should be noted, irregardless

of the feature selection method, the overall performance of the model was not signifi-

cantly impacted. However, the speed of training the model was increased as well as

the magnitude of the important features in the list.

6.4 Visualization of the Data Set and Trends

The 2DMSD can guide experimental synthesis identifying the impact the substrate

will have on the properties of the 2D material enabling one to select substrates for

a wide range of applications from contact materials to a support material within a

device. The versatility of the 2DMSD is demonstrated by providing a detailed analysis
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of SbTeI demonstrating how the 2DMSD can be used to identify substrates which

stabilize the metastable 2D material and characterize the nature of the 2D-substrate

interaction.

6.4.1 Energetic Stability of Janus 2D Materials

As discussed in Chapter 5, the first criteria to assess the suitability of a substrate

in stabilizing a 2D material is the adsorption formation energy, ∆Ef
ads= ∆Ef

vac -

∆Eb (Singh, Mathew, et al. 2015). The formation energy is given by ∆Ef
vac =

E2D/N2D −E3D/N3D, where E2D is the energy of a 2D material in vacuum, E3D is the

energy of the bulk counterpart of the 2D material, and N2D and N3D are the number

of atoms in the unit cell of 2D and bulk counterpart, respectively. The binding energy

of the 2D-substrate pair is given by ∆Eb = (E2D +ES −E2D+S)/N2D, where E2D+S is

the energy of the 2D material adsorbed on the surface of a substrate, ES is the energy

of the substrate slab, E2D is the energy of the free-standing 2D material, and N2D is

the number of atoms in the unit cell of the 2D material.

The adsorption formation energy provides a quantitative measure of the stability

of the 2D material on the substrate surface. When the difference between ∆Ef
vac and

∆Eb is less than zero, the substrate stabilizes the 2D material. Figure 6.4 shows

the ∆Ef
ads for the 1T and 1H phases of SbTeI. The degree to which the adsorption

formation energy of the 2D material is stabilized varies depending on the substrate.

Previous reports (Singh and Hennig 2014b; Singh, Hennig, et al. 2015) have indicated

that larger ∆Ef
ads are more consistent with ionic/covalent interactions, while values

closer to zero are more consistent with vdW type interactions. In order to obtain a

more quantitative descriptors of the type of bonding between atoms would require
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the use of electron localization function (ELF) and analyze the location of the charge

density form these calculations. Programs such as Critic2 have been developed to

analyze the type of bonding from both Bader and ELF calculations.

Figure 6.4. Adsorption formation energy (∆Ef
ads) of 1T - (triangle markers) and 1H-

SbTeI (circle markers) on the lattice- and symmetry-matched substrate surfaces. The
substrates are along the x-axis and the ∆Ef

ads for the lowest energy heterostructure
configuration is shown on the y-axis. The green shaded region indicates when the
substrate stabilizes the 2D material. The color map corresponds to the z-separation
distance between the 2D materials and the substrate surface.

Figure 6.4 clearly demonstrates the correlation between the ∆Ef
ads and the z-

separation distance–which is color mapped on ∆Ef
ads values. A majority of the

heterostructure pairs with a large adsorption energy have smaller separation distances

and the z-separation distances increase as the ∆Ef
ads increases towards 0. This

dependence is not only true for this example case, but is representative of all 2D-

substrate pairs computed in this study and is present even when considering the

different configurations for a 2D-substrate pair. Logically, the ∆Eb is the actual

quantity in the ∆Ef
ads which varies with the z-separation distance since the ∆Ef

ads is

simply the difference between ∆Ef
vac and ∆Eb which, for a given 2D material, ∆Ef

vac

is constant. To demonstrate this trend, the ∆Eb is plotted in a heatmap sorted from
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least (top/left) to greatest (bottom/right) electronegativity of the 2D materials and

substrate in Figure 6.5 and Appendix Figure D.1.

For all substrates excluding Rh, Ir, and Ag, the (111) substrate surface stabilizes

the SbTeI 2D material. The strength of the interaction varies from relatively weak

(near zero) to large values of ∼0.4 eV/atom. As discussed in Section 1.4, vdW

interactions are orders of magnitude smaller than ionic/covalent bonds, typically on

the order of 0.03 eV/atom and 0.2 eV/atom (Deng et al. 2017). The relatively weak

interaction energy correlated with the larger z-separation distances for Sr and Al

are encouraging substrates that may facilitate the growth of this Janus 2D material.

There is also a clear correlation between the adsorption energy and the z-separation

distance.

Since the variations observed in the ∆Eb for a single 2D phase over a range of

substrates arises from changes in the interactions strength between the 2D material

and substrate it may be more useful to analyze ∆Eb rather than the adsorption energy

to discern trends within the data. Figure 6.5 shows how the ∆Eb varies for each 2D

material over all the substrate surfaces. One trend of particular interest that is not

as apparent from the adsorption energy is the small variation in the ∆Eb across the

different 2D materials on the same substrate.

In device applications the clear correlation between ∆Eb and the z-separation

suggests that, in principle, it may be possible to tune the properties of the 2D material

by simply changing the support. As the support is changed, the z-separation can

be modulated changing the bonding of the 2D material and substrate. To utilize

this trend, a clear set of guidelines needs to be established regarding the underlying

materials dependent properties that give rise to the variations in interaction strength

for any given 2D material and substrate and the impact on the 2D materials properties.
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Figure 6.5. Heatmap for the 1T phase of the Janus 2D materials sorted from least
(top/left) to greatest (bottom/right) electronegativity of the 2D materials and substrate.
The property to sort the 2D and substrate materials were selected using the important
features found in the machine learning model. The colormap represents the (∆Eb)
binding energy.

6.4.2 Distribution of 2D-Substrate Z-Separation Distances

It is well-known that vdW interactions occur over larger distances than

ionic/covalent interactions; as such it serves as a useful screening parameter to

search for specific interaction types in large data sets like the 2DMSD. Additionally, it

can be useful to compare changes in the z-separation distance for different polytypes

with the same composition to understand how the polytype influences the 2D materials

properties.

Figure 6.6 shows the z-separation for all 1T polytypes for the 2D-substrate het-
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erostructure matches. The x and y axis are sorted from least (top/left) to greatest

(bottom/right) electronegativity of the 2D materials and substrate’s surface energy.

This ordering clearly illustrates that the z-separation is influenced primarly by the

substrate’s surface energy with little variations for the different 2D materials.

Figure 6.6. Heatmap for the 1T phase of the Janus 2D materials sorted from least
(top/left) to greatest (bottom/right) electronegativity of the 2D materials and sub-
strate’s surface energy. The colormap represents the z-separation.

Figure 6.7 illustrates the distribution of z-separation distances on various substrates

when both polytypes of SbTeI have been calculated. The z-separation distances of the

1H-SbTeI compared with the 1T -SbTeI have slight variations where the 1H polytype

has smaller separation distances compared to the 1T polytype.
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Figure 6.7. The z-separation distance between the top layer of the substrate and
the bottom layer of the SbTeI Janus 2D material. The 1T polytype displays greater
variation in z-separation distance compared to the 1H polytype.

6.4.3 Identifying Substrate Induced Charge Transfer

To assess the bonding character between the 2D material and substrate surface slab,

the charge transfer is estimated using Bader formalism. The total charge transferred

to the 2D material (or substrate) for a given heterostructure (∆Q2D) is computed

using Equation 6.1

∆Qi =

Ni∑
n=1

(Qcombined
n −Qisolatedi

n ) (6.1)

where i represents the sites for the isolated 2D material and substrate, n corresponds

to the site index of the nth atom of the 2D-substrate (combined) and two isolated

structures, Ni is the total number of sites in i, and Q
combined/iso
n is the calculated Bader

charge transfer to the nth atom for the combined/isolated system.

The charge transfer on each site is automated using pymatgen’s bader_caller

given by the difference between the total number of electrons on each site and the

number of electrons for the neutral atom (ZVAL in the POTCAR). Positive values

indicate electron accumulation and negative values indicate electron depletion with

respect to the neutral atom. Similarly, positive values of ∆Qi indicate electron density

accumulation to i relative to the isolated structure and visa versa. It is important to
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Figure 6.8. The change in the charge transfer to SbTeI (∆Q2D) is calculated with
Bader analysis according to Equation 6.1. Negative (positive) values indicate electron
depletion (accumulation) from the 2D material.

note the calculation of Bader volumes is not exact and the total charge on each atom

can vary by as much as 1 atomic unit (Choudhuri and Truhlar 2020).

Figure 6.8 shows the charge transferred to the adsorbed 2D SbTeI on the y-axis

when placed on the substrate indicated on the x-axis. The marker shapes indicate the

polytype of the 2D material - H phases indicated with a △ and T phases indicated

with a ◦. The color map indicates the z-separation distance between the bottom layer

of the 2D material and the top layer of the substrate for the given charge transfer.

The substrate surfaces are listed from the smallest to the largest electronegativity

difference, e.g. the difference between the average electronegativity of the 2D material

from that of the substrate. Within each group, the 2D phases are sorted from smallest

to largest z-separation distance–for a given 2D-substrate pair each polytype produces

the same electronegativity difference. It is particularly interesting to note that for

SbTeI, the degree of charge transfer is strongly correlated with the difference between

the 2D and substrate electronegativity. However, for all Janus 2D materials, this

trend is not always observed. One surprising result is that despite the increasing

z-separation distance between the 2D material and substrate surface, there is an

increase in the charge transfer.
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6.4.4 Electronic Structure and Charge Redistribution of Adsorbed SbTeI

Figure 6.9. Substrate/2D projected density of states (DOS) for the adsorbed (solid
red lines) and isolated adsorbed (dashed purple lines) 1H-SbTeI Janus 2D material on
three substrate surfaces (solid blue lines) which were selected from the charge transfer
graph to have the minimum, median, and maximum charge transfer. The vertical
dashed line at x=0 indicates the Fermi level. For each 2D material, the interaction
with the substrate surface causes a semiconductor-to-metal transition.

To further understand substrate effects on the 2D material, analysis of the density

of states (DOS) can provide insight into the nature of the bonding, and thus the

degree of interaction between the 2D material and substrate. The DOS of material is

influenced by various properties from electric fields that can arise from the surface, the

interaction of dipole moments (such as those present in Janus 2D materials), and/or

hybridization or bonding between the 2D material and substrate. These interactions

can have a significant impact of the properties of the 2D materials, such as changes in

the electronic structure or the charge density distribution.

Figure 6.9 shows the projected DOS for the 1H-SbTeI Janus 2D material on three

substrate surfaces. The substrates were selected from the charge transfer figure to

represent the minimum, median, and maximum charge transfer seen in Figure 6.8

to assess how charge transfer impacts the electronic DOS in these heterostructures.

In all cases, the interaction between the substrate surfaces and 2D material causes
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significant changes in the DOS profile of the adsorbed (solid red lines) compared

with the isolated-adsorbed 2D DOS profile (dashed purple lines). In general, the

DOS profile for the adsorbed Janus 2D material undergoes a semiconductor-to-metal

transition and/or hybridizes with the metallic states of the substrate. Even for cases

such as the SbTeI on the Sr-(111) substrate surface where the z-separation distance is

large (∼3.1 Å), the DOS profile changes from that of the isolated 2D material and

a small amount of charge is transferred to the 2D material as indicated by Bader

analysis.

Figure 6.10. (a-c) The z-projected charge density difference for select 2D-substrate
heterostructures. The vertical blue line is average z-position of the top-most atomic
layer of the substrate surface and the red line is average z-position of the bottom-most
atomic layer of the 2D material. The positive values represent electron accumulation
and negative values represent electron density depletion with respect to the isolated
2D material and substrate slab. (d-f) The site and orbital projected DOS for the
atoms at the interface.

Figure 6.10a-Figure 6.10c show the z-projected charge density difference for the

same 1H-SbTeI Janus 2D-substrate pairs discussed above. Appendix Figure D.6 shows

the z-projected charge density for the isolated 2D materials and substrate slab and the
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combined system which produces the charge density difference. The charge density

difference provides a graphical means of determining the charge distribution due to

the interactions between the 2D material and the substrate slab. The charge density

difference requires three calculations of charge density: (1) the combined system, (2)

the isolated 2D material, and (3) the isolated substrate slab in which the atomic

position of each atom are frozen in each case. The vertical blue line represent the

average z-position of the top-most atomic layer of the substrate surface and the red

line is the average z-position of the bottom-most atomic layer of the 2D material. The

charge density difference shows significant redistribution of the charge density due to

the interactions between the 2D material and substrate surface. Figure 6.10d-Figure

6.10f shows the site and orbital projected DOS for the atoms at the interface. The

orbital and site DOS for the combined system demonstrate hybridization as seen by

the overlap in the DOS for the 2D and substrate.

6.5 Machine Learning Insights into the Fundamental Factors Governing Janus 2D

Heterostructure Properties

As discussed above, the ∆Ef
ads, and therefore the ∆Eb, varies when the substrate

is changed. However, a clear materials properly dependence is not directly discernible

from the data plotted in Figure 6.4. Machine learning has been a powerful tool

within materials science to identify relationships between materials properties and a

relevant (target) quantity of interest such as ∆Eb, the z-separation distance, or the

charge transferred to the 2D material (∆Q2D). The machine learning models utilize

random forest regression models implemented in the scikit-learn code (Pedregosa

et al. 2011; Buitinck et al. 2013) to predict the binding energy (∆Eb), z-separation
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distance, and charge transfer to the 2D material in 2D-substrate heterostructures.

The performance of the three machine learning models and the materials insights

elicited for the ∆Eb, the z-separation distance, and ∆Q2D for Janus 2D-substrate

heterostructures is discussed in the following sections.

6.5.1 Predictive Model for Determining the Binding Energy of Janus 2D Materials

The random forest regression model for predicting the ∆Eb has optimal hyper-

parameters with a K-fold cross-validation value of K=8 used for training and testing.

There are a total of 16 features in the feature space and 150 decision trees were used

to create the aggregate model. These parameters were found to provide reasonable

accuracy and computational speed for training and testing. The random forest

regression model has an R2=0.941, a mean absolute error (MAE) of 0.031 eV/atom,

and root mean squared error of 0.041 eV/atom. Figure 6.11a shows the DFT computed

and machine learning predicted ∆Eb for the data set, where the shaded gray area

represents the RMSE from the cross-validation. The machine learning predictions

follow the y = x dashed line well, indicating the model provides reasonable accuracy

predicting the ∆Eb of the 2D-substrate heterostructure pairs which is confirmed by

both the MAE and RMSE. The model can be used to tailor the adsorption formation

energy for 2D materials by identifying substrates that have a specific range of binding

energies for stabilizing the 2D material.

Additionally, from the random forest regression model, important features can be

extracted to elucidate the underlying materials properties that were the most predictive

features in determining the target property, providing the relative importance of the

predictors in the feature space. Figure 6.11b illustrates the top five most predictive
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features and their relative importance as determined by the random forest regression

model. The most significant features are the electronegativity of the substrate, followed

by the z-separation distance, the maximum packing efficiency Ward et al. 2017, atomic

number of the substrate, and the average d orbital valence electrons. The maximum

packing efficiency of the heterostructure is computed by finding the largest sphere

that fits inside a Voronoi cell or, simply, a close-packing sphere model.

Figure 6.11. (a) Scatter plot compares the DFT computed and machine learning
predicted binding energy for the Janus 2D-substrate heterostructure configurations.
The color map represents the value of the substrate’s electronegativity. The black
dashed line indicates the y = x function. The closer the data-points are to this line the
better agreement between the predicted binding energy value to the DFT computed
value. The shaded region is the RMSE provided by the model. (b) The top five most
predictive features ranked by the random forest regression model used to predict the
binding energy for each Janus 2D material and substrate surface pair.

The color map in Figure 6.11a represents the substrate’s electronegativity which

was determined to be the most predictive feature by the model. The binding energy

between the 2D material and substrate surface increases as the electronegativity of

the substrate decreases. This trend may at first appear counter-intuitive; in general,

the more electronegative a material the stronger it will interact with other materials.

However, the Janus 2D materials have no dangling bonds to interact with the substrate
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surface which many explain despite the relatively large electronegativity variations

(∼2-2.6) the primary factor in determining the ∆Eb is the substrate’s electronegativity.

Note, the substrate’s radii is a complementary feature for this data set as it produces

the same results when used in place of the substrate’s electronegativity. The substrate’s

radius was removed from the feature space, as it was highly correlated and removing

the feature did not affect the algorithms performance. However, the high correlation

between these two features and equal predictive capability for the machine learning

model is an interesting result.

The next important feature in determining the binding energy is the z-separation

distance. The smaller the separation between two elements, the more the orbitals

interact with each other, which generally increases the stability of the system and

results in a strong binding between the 2D material and the substrate. The last three

predictive features in Figure 6.11b are the average number of s valence electrons in

the heterostructure followed by the substrate’s packing efficiency and atomic number.

Another similarly predictive feature that was removed from the feature space due to

its strong correlation with the s valence electrons is the d valence electrons. The last

final two features represent structural factors which determine the density of sites at

the surface.

6.5.2 2D-Substrate Z-Separation Distance

The random forest regression model for predicting the z-separation distance has

optimal hyper-parameters with a K-fold cross-validation value of K=5 used for

training and testing. There are a total of 11 features in the feature space, and 500
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decision trees were used to create the aggregate model. These parameters were found

to provide reasonable accuracy and computational speed for training and testing.

Figure 6.12. (a) Scatter plot comparing the DFT computed and machine learning
predicted z-separation distance. The color map represents the value of the substrate’s
surface energy. The black dashed line indicates the y = x function. The shaded region
is the RMSE provided by the model. (b) The bar chart indicates the top five most
predictive features return by the random forest regression model for predicting the
z-separation distance between the Janus 2D materials and the substrate surface.

The random forest regression model has an R2=0.876 and a mean absolute error

(MAE) of 0.080 Å and root mean squared error of 0.120 Å. Figure 6.12a shows

the DFT computed and machine learning predicted z-separation distance for the

data set where the shaded gray area represents the RMSE from cross-validation.

The machine learning predictions follow the y = x dashed line well for z-separation

distance between, indicating the model provides reasonable accuracy predicting the

2D-substrate z-separation distance for heterostructure pairs. This model, combined

with the predictive binding energy model, can be used to identify 2D-substrate pairs

that have suitable binding energies to successfully stabilize 2D materials and optimal

z-separation distances to tune the 2D-substrate interactions.

The data points that deviate significantly from the y = x line are Janus 2D phases
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which have disintegrated due to the strong interaction between the bottom layer of

particular 2D material-substrate pairs. There are roughly 90 2D-substrate pairs in the

data set which have disintegrated or significantly distorted 2D materials. Typically,

the bottom layer of the 2D material is composed of Br, Cl, or I and the substrate

surface is Hf, Mn, Nd, Sc, Sr, Ti, V, Y, and Zr. If these data point are removed from

the data set, the change in the adsorbed 2D materials thickness is no longer needed as

a feature in the machine learning model to obtain reasonable accuracy in predicting

the z-separation distance.

The top five most-predictive features for the z-separation distance are listed

in Figure 6.12b as determined by the random forest regression model. The most

significant features are the substrate’s surface energy, followed by the change in the

adsorbed 2D materials thickness, the maximum packing efficiency Ward et al. 2017,

atomic number, and radii of the substrate.

The color map overlaid on each data-point in Figure 6.12a represents the value

of the substrate’s surface energy. In general, as the surface energy increases, the

z-separation distance between the 2D material and substrate surface decreases. This

may be due to the larger number of dangling bonds present at the surface increasing

the likelihood of the 2D materials and substrate interacting.

The next important feature in determining the z-separation distance is the thickness

changes in the adsorbed 2D material. This features is likely important in determining

the target property since larger values indicate the 2D material has disintegrated on

the substrate surface due to the strong interactions between the bottom layer of the

2D material and top layer of the substrate surface. It is worth noting that removing

the disintegrated features does not significantly change the important features, only

the order of importance for the last 3 features.
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6.5.3 Charge Transfer to the 2D Material

Figure 6.13. (a) Scatter plot comparing the DFT computed and machine learning
predicted ∆Q2D. The color map represents the fractional p valence electrons within
the heterostructure. The black dashed line indicates the y = x function. The shaded
region is the RMSE provided by the model. (b) The bar chart indicates predictive
capability of each feature in the feature space.

The random forest regression model for predicting the ∆Q2D has optimal hyper-

parameters with a K-fold cross-validation value of K=3 used for training and testing.

There are a total of 4 features in the feature space, and 50 decision trees were used

to create the aggregate model. These parameters were found to provide reasonable

accuracy and computational speed for training and testing.

The random forest regression model has an R2=0.845 and a mean absolute error

(MAE) of 0.098 electrons and root mean squared error of 0.203 electrons. Figure 6.13a

shows the DFT computed and machine learning predicted ∆Q2D for the data set

where the shaded gray area represents the RMSE from cross-validation. The machine

learning predictions follow the y = x dashed line well for ∆Q2D reasonable accuracy

in predicting the ∆Q2D for the heterostructures.

The most-predictive features for the ∆Q2D are listed in Figure 6.13b as determined
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by the random forest regression model. The color map overlaid on each data-point in

Figure 6.13a represents the value of the fraction of p valence electrons which is the

most significant features is the fraction of p valence electrons.

6.6 Summary

In summary, a new database 2DMSD for 2D-substrate heterostructures and their

associated properties is presented. Analyzing the database, a correlation between

the large adsorption energies and smaller separation distances was found and as the

adsorption energy approaches zero the z-separation distance increases. One surprising

result is that despite the increasing z-separation distance between the 2D material and

substrate surface, there is an increase in the charge transfer. The interaction between

the metal substrate and the Janus 2D materials results in metal-to-semiconductor

transition and wide-spread changes in the electronic structure.

The wide range of potential chemical (bonding, elemental, and structural) interac-

tions among the 2D materials and substrates make this problem a perfect candidate

system to utilize machine learning to identify the key materials properties which

determine the interfacial interaction strength which is discussed in the next section.

These calculations provide some insight into the underlying mechanism that results in

variations in the ∆Eb z-separation, and charge transfer when changing the substrate

or 2D material.

The regression models indicate that the most critical property in determining the

binding energy, z-separation distance, and charge transferred to the 2D material are

the substrate’s electronegativity, surface energy, and fraction of p valence electrons,

respectively. The binding energy between the 2D material and substrate surface
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increases as the electronegativity of the substrate decreases. Using the machine

learning model for predicting the z-separation distance, it is observed that as the

surface energy increases the z-separation distance between the 2D material and

substrate surface decreases. This may be due to the larger number of dangling bonds

present at the surface increasing the likelihood of the 2D materials and substrate

interacting. The ∆Q2D regression model indicated that the fraction of p valence

electrons is the most-predictive feature in determining the charge transferred between

the 2D material and substrate.

139



Chapter 7

FUTURE WORK

7.1 Conclusions and Outlook

Unsurprisingly, the nanoscale interfacial regions and their properties are inherently

intertwined and modulated by the properties of the adjacent materials. The presence

of defects (point, planar, or surface defects) can result in large disparities in the

observed interfacial properties even within a single sample. The objective of this

research was to apply DFT, high-throughput methodologies, and machine learning to

model interfacial systems to predict their properties and discover interface-property

relationships providing guidance towards future studies and the optimization of these

regions.

7.1.1 Conclusions and Outlook for Grain Boundary Studies

In polycrystalline doped ceria, the randomly oriented grain boundaries (William J

Bowman et al. 2017) produce large variations in the grain boundary character and

markedly different interfacial properties. Even macroscopic considerations such as

grain size effects (Rupp, Infortuna, and Gauckler 2006; Lee, Prinz, and Cai 2013;

Hwang and Mason 1998) and space charge layers (Maier 1995; De Souza, Ramadan,

and Hörner 2012; Shirpour et al. 2012; S. Kim et al. 2016) play an important role

in altering the interfacial properties in these materials. As discussed in Chapter 1

Section 1.3, recent experimental and computational progress has been made towards
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understanding the interfacial properties of grain boundaries, however, the effects of high

local solute compositions was previously unexplored. This dissertation work utilized

DFT to provide a means to systematically study grain boundary properties subject

to local composition changes and assess how these variations modulate interfacial

properties.

Using DFT with the GGA+U functional, the Σ3 (111)/[1̄01] and Σ3 (121)/[1̄01]

grain boundary structures were systematically doped with AEM solutes to assess

the role high solute concentrations play in modulating the interfacial properties of

ceria. These AEM were selected to capture solute size and compositional trends

in the properties of two high-angle grain boundaries. The energetic stability of the

Σ3 (111)/[1̄01] grain boundary was found to have the lowest grain boundary energy

whereas doping with AEM solutes produced low grain boundary energies when the

ionic radii is similar or larger than the host solute Ce i.e. Ca, Sr, and Ba. Additionally,

the energetic stability associated with accommodating the solutes depend on the local

atomic grain boundary structure and the coordination number of the substitutional

site. The less coherent Σ3 (121)/[1̄01] grain boundary structures demonstrated less

site and solute variation in its interfacial properties compared with the coherent Σ3

(111)/[1̄01] grain boundary.

To explore the relationship between grain boundary solute concentration and

oxygen ionic conductivity reported by William J Bowman et al. (2017), the near grain

boundary region of the Ca-doped Σ3 (111)/[1̄01] grain boundary was systematically

investigated assessing the segregation energy and migration energy of oxygen vacancies.

In this work the presence of Ca ions were found to not significantly alter the segregation

behavior of oxygen vacancies compared with the undoped system; the difference in

segregation energy at each oxygen plane is at most 0.4 eV and 0.6 eV for the first and
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second Ca-doped system, respectively. However, the segregation behavior of oxygen

vacancies within the Ca-doped grain boundary core has a smoother potential energy

landscape for the first Ca-doped system compared to the undoped system while the

second Ca-doped system exhibits a stronger trapping of oxygen vacancies within the

grain boundary core.

The presence of the Ca solute ion does have a significant impact on the migration

energy of the oxygen vacancy in the grain boundary. The presence of the Ca solute

results in a significant reduction in the oxygen vacancy migration energy within and

towards the grain boundary core when compared to migration energy values found

in the bulk and in literature for this particular grain boundary. However, depending

on the site of the Ca ion within the grain boundary core the migration energy could

be significantly lower compared to the undoped system. Despite this, these results

provide critical insight into the role that high local solute concentrations play in

modulating the migration energy of oxygen vacancies improving the understanding

of cross boundary oxygen transport. Overall, the segregation of oxygen vacancies

towards the grain boundary core is favorable both thermodynamically and kinetically.

However, the presence of larger migration energy barriers for certain oxygen planes

coupled with an appreciate increase in the segregation energy would inhibit the cross

boundary migration decreasing the local ionic conductivity in certain regions.

In future studies, it would be interesting to assess the change in the potential energy

landscape and migration energy with additional solutes and oxygen vacancies present

in the bulk and the grain boundary over a wider range of misorientation angles. This

would provide further insights into how the migration energy landscape would change

with increased oxygen vacancy concentrations and the impact this would have on the

oxygen vacancy stability within the grain boundary region. However, the increased
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system size required to model the nominal solute/oxygen vacancy concentrations

in the bulk precludes the exploration of such phenomena using plane-wave based

DFT methods. The issue is further complicated by the technical difficulties one

would certainly experience with the increased oxygen vacancy concentrations and

the necessity to identity Ce sites which the electrons would localize on. Additionally,

more elaborate solute profiles at the grain boundary would be of interest to further

explore the relationship between migration energy, misorientation, composition, and

concentration in other grain boundaries. These future studies would be more well suited

for molecular dynamics simulations. However, considering the considerable amount of

time and resources required to generate new interatomic potentials and the limited

applicability of current interatomic potentials developed to describe bulk systems,

this is a challenging avenue to pursue. More recently, machine learning interatomic

potentials have gained much attention for their improved accuracy, smaller training

set requirements, and flexibility, making them a potential tools to computationally

explore more realistic system sizes and composition profiles of grain boundaries.

7.1.2 Computational Synthesis of 2D-Substrate Heterostructured Materials

2D materials show promise for a wide range of potential applications from biological

to energy generation technologies. Considering the vast chemical and elemental

diversity of the >5,000 predicted 2D materials, it is unsurprising that realization

of these theoretically predicted materials has been slow. The interplay between the

2D material, substrate surface, and presence of defects (in the 2D material or the

substrate) can dramatically alter the unique properties of the 2D material (Y.-H. Lee

et al. 2013; Tang et al. 2021; Singh and Hennig 2014b); this can pose significant
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challenges in the successful synthesis and realization of the many as-yet-hypothesized

2D materials when the nature of the 2D-substrate interaction is not known. There are

currently no clear-cut guidelines from which to synthesize many of these hypothesized

2D materials, or understand how many of these 2D materials will interact with

their environment. The need for a detailed understanding of the substrate-assisted

modification of the physical (energetic, structural, chemical, etc.) and electronic

(charge density, electronic structure, etc.) properties of post-adsorbed 2D materials.

The development and utilization of high-throughput computational workflows can be

serve as a means to elucidate a detailed understanding of the interfacial properties in

these systems.

In this dissertation project, an open-source workflow package discussed in Chapter

5 was developed to automate the generation of 2D-substrate heterostructures, the

creation of DFT input files, the submission and monitoring of computational jobs

on supercomputing facilities, and the storage of relevant parameters alongside the

post-processed results in a MongoDB database. This workflow dramatically increases

the number of calculations possible while decreasing the total number of human hours

required to perform the calculations. A benchmark set of four candidate 2D materials

and 50 potential substrates was performed to demonstrate the capabilities of the

package. The results show a total of 9 (110) and 15 (111) substrate surfaces that

stabilize the 2D materials. Analysis of the 2D material’s thickness shows most adsorbed

2D materials thickness has increased substantially, which may indicate the interaction

between the 2D material and the substrate surface is covalent/ionic which is further

supported by the DOS and Bader charge analysis showing a semiconductor-to-metal

transition.

To unearth underlying materials properties which govern the stability of 52 Janus
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2D materials on 19 metallic substrates, the Hetero2d package was utilized generating

438 2D-substrate pairs. Additionally to distribute the data, the 2DMSD database was

created and released for 2D-substrate heterostructures and their associated properties.

Analyzing the database, a correlation between the large adsorption energies and small

z-separation distances was found where adsorption energy approaching zero tended to

have larger z-separation distance. Analyzing the charge transfer to the 2D materials

reveals that utilizing only the z-separation distance between the 2D material and

substrate surface is not sufficient to determine the degree of charge transfer. In all

cases, the interaction between the metal substrate and the Janus 2D material results in

metal-to-semiconductor transition and wide-spread changes in the electronic structure

of the 2D material. These substrates could serve as good electrical contact materials

for this class of 2D materials.

Machine learning models were utilized to generate predictive models and elucidate

the fundamental materials properties which determine the binding energy and z-

separation distance. The regression models indicate that the most critical property

in determining the binding energy and z-separation distance are the substrate’s

electronegativity and surface energy, respectively. These models can be utilized to

guide more accurate DFT calculations and aid in the selection of substrates with

target properties.

The combination of high-throughput workflows and machine learning methods

facilitate a unique opportunity to rapidly generate and discover new material-property

relationships at a pace that was not previously possible. The availability of computation

workflows opens new means to advance science beyond a single domain. Utilizing

additional community workflows it is possible to easily expand and incorporate new

types of simulations, transformations, and input data sets. The 2D materials can
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be functionalized using ligands or tuned by incorporating point defects in the 2D

material. Future studies could be directed towards:

• Exploring the relationship between the substrate surface plane (miller plane,

termination, surface reconstruction) and the 2D materials properties and their

interfacial interactions.

• Tuning the properties of 2D heterostructures via functionalization using ligands,

defects, or add-atoms.

• Fundamental studies which develop guiding principles for a wider range of 2D

materials is still needed to understand the full range of chemical interaction

between an arbitrary 2D materials and substrate.
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Article U (eV) Exc Egap (eV) a0 (Å)
This work 5 PBE 2.1 5.494
ref Koettgen and Martin (2020) 5 PBE – 5.49
ref Koettgen and Martin (2019) 5 PBE – 5.49
ref Zhu et al. (2020)*** 5 PBE 2.3 5.438
ref Pratik P. Dholabhai et al. (2010a) 5 PBE 2.06 5.494
ref Wu, Vegge, and Hansen (2019) 4.5 PBE 1.8** 5.497

Table A.1. A table comparing this works parameters with recent literature. **
estimated from a DOS plot. *** low k-point density.

A.1 Grain Boundary Structure and Symmetry

Figure A.1. (a) The Σ3 (111)/[1̄01] xz plane for the anion (top) and cation (bottom)
sublattices with the {100} planes indicated by the solid black lines. The red spheres
are the oxygen ions while the blue spheres are the cerium ions. The dotted black line
indicates the {111} mirror plane for each sublattice. Core grain boundary cation sites
lie on and to the right of the cation mirror plane. The arrow indications the fully
coordinated cation sites (b) The Σ3 (121)/[1̄01] xz plane for the anion and cation
sublattices with the {100} planes indicated by the solid black lines. The dotted black
line indicates the {112} mirror plane. The core grain boundary cation sites are those
which lie on either side of the cation mirror plane.
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Figure A.2. A high-angle annular dark field scanning transmission electron microscopy
image of CeO2 Σ3 (111)/[1̄01] grain boundary shown in grayscale from B. Feng et
al. (2012). The micrograph is superimposed with the CeO2 Σ3 (111)/[1̄01] grain
boundary cation lattice considered in this work where the blue spheres represent the
Ce cations. Figure adapted with permission from AIP Publishing.

The Σ3 (111)/[1̄01] grain boundary is a coherent twin boundary possessing separate
mirror planes for the cation and anion sublattices indicated by the dashed lines in
Appendix Figure A.1a. Each (111) plane has 4 symmetrically equivalent cation sites
resulting in 1 crystallographically unique cation site per plane.

The Σ3 (121)/[1̄01] grain boundary is a coherent twin boundary possessing 1
mirror plane for each sublattice indicated by the dashed line in Appendix Figure A.1b.
Unlike the Σ3 (111)/[1̄01] grain boundary, the Σ3 (121)/[1̄01] grain boundary has a
discontinuity in the cation sublattice seen in Appendix Figure A.1b. This discontinuity
results in the more open space structure seen in this grain boundary. Interestingly,
the anion sublattice is continuous across all interfaces. The search for unique solute
sites may be confined to half the grain boundary due to the presence of a single mirror
plane. Each (112) plane in the Σ3 (121)/[1̄01] grain boundary has only 1 unique
cation site per plane. Cation sites are defined in Chapter 3. The xy-plane (i.e. the
grain boundary plane) is continuous and aligned between both grains for each grain
boundary structure model, see insets in Chapter 3 Figure 3.1b and Figure 3.1c.
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Figure A.3. The grayscale image shows the high resolution transmission electron
microscopy image of YSZ Σ3 (121)/[1̄01] grain boundary. The CeO2 Σ3 (121)/[1̄01]
grain boundary structure considered in this work is overlaid on the micrograph where
blue spheres represent Ce cations. Figure adapted from Shibata et al. (2003) with
permission from Taylor & Francis Ltd.

A.2 Atomic Coherency and Solute Configuration Locations

As seen in Chapter 3 Figure 3.1c, the region possessing strained bonds is minimal
which is attributed to the atomic coherency of the Σ3 (111)/[1̄01] grain boundary. This
is further illustrated by Chapter 3 Figure 3.1b and Appendix Figure A.1a. Interestingly,
the strained cations are fully coordinated and lay along the cation mirror plane. There
are 4 coordination-deficient cation sites in the Σ3 (111)/[1̄01] grain boundary and
they are located to the right of the cation mirror plane indicated by the black arrow
in Appendix Figure A.1a. Preferential strain of the fully coordinated cations results
from the excess volume created from the structural oxygen vacancies that allow the
oxygen atoms to relax towards the grain boundary without significantly influencing
the bond length of the nearby coordination-deficient Ce-O ions.

In the Σ3 (121)/[1̄01] grain boundary, the discontinuity of the cation sublattice
across the interface locally distorts the lattice introducing significant bond strain
seen in Appendix Figure A.1b and Chapter 3 Figure 3.1e. The Σ3 (121)/[1̄01]
grain boundary has 4 coordinated-deficient and 2 highly strained fully-coordinated
cation sites further disrupting the bonds at/near the interface. The above mentioned
effects explain the significantly strained bonds surround the grain boundary region as
compared to the more coherent Σ3 (111)/[1̄01] grain boundary.

A.3 Stable Bulk AEM Phases

To identify the stable bulk oxides for the AEM metals, the Materials Project (Ong
et al. 2013) database is searched for compounds matching the constituent elements
from which only the compounds with the correct stoichiometry (MO) are used for
comparison. For BeO compounds, there are a total of 9 oxide compounds with
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Mat. mp-id Sg. M-O (Å) M-coord E (eV/f.u.)
BeO mp-2542 P63mc 1.66 tetrahedral -14.2574
MgO mp-1265 Fm3̄m 2.13 octahedral -11.9333
CaO mp-2605 Fm3̄m 2.42 octahedral -12.9008
SrO mp-2472 Fm3̄m 2.6 octahedral -12.0736
BaO mp-1342 Fm3̄m 2.81 octahedral -11.8279
CeO2 mp-20194 Fm3̄m 2.38 cubic -24.373

Table A.2. The table lists the materials composition, Materials Project id’s (mp-id),
space group (Sg.), M-O bond length in Å where M = Be, Mg, Ca, Sr, and Ba, the
coordination of the cation (M-coord) and the energy (E in eV/f.u.) of MOx used to
compute ∆EGB.

the correct stoichiometry. Of these 9 structures, the structures considered here
are reported to have been experimentally synthesized. There are only 3 such BeO
crystal structures. Their mp-id’s and space groups are: 2542, 7599, 1794 and P63mc,
P42/mnm, Fm3̄m, respectively. The structures are listed from the lowest Eabove hull

to the largest. Eabove hull is the energy of decomposition of a material into the set
of most stable materials at this chemical composition. The structure corresponding
to mp-id 2542 is the most energetically stable structure. The Be coordination is 4
fold with three bond lengths at 1.65 Å and one bond length 1.66 Å. The coordination
polyhedra for Be is tetrahedral with BeO4.

For MgO compounds, there are a total of 23 oxide structures. Of these 23 structures,
3 structures are experimentally derived MgO structures. Their mp-id’s and space
groups are: 1265, 549706, 1009129 and Fm3̄m, P63mc, P6̄m2, respectively. The most
energetically stable MgO structure is Halite with mp-id 1265 which is the rock salt
crystal structure. The coordination of Mg atoms is octahedral with 6 equivalent bonds
of length 2.13 Å. However, as discussed in Chapter 3, at the ceria grain boundary a
4-fold coordination is observed for the Mg ion. The second most stable MgO compound
in the MP database is a wurtzite structured oxide with mp-id 549706 which possesses
4-fold coordinated Mg with bond lengths of 1.99 Å and 2.02 Å. The Mg coordination
polyhedra is tetrahedral with MgO4.

For CaO compounds, there are a total of 7 oxide structures. Of these 7 structures,
there are 3 structures which are experimentally derived CaO crystal structures which
have mp-id’s 2605, 1079707, and 1064492. These candidate structures have space-
groups Fm3̄m, Cmce, and I4/mmm, respectively. The most stable CaO compound on
the MP database is a Halite/Rock Salt structure with Ca atoms coordinated with
6 equivalent bonds of length 2.42 Å. The Ca coordination polyhedra is octahedral
CaO6.

For SrO compounds, there are a total of 4 oxide structures. Of these 4 structures,
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only 1 structure is an experimentally derived SrO crystal structure with mp-id 2472
and a corresponding space-group Fm3̄m. This is a Halite/Rock Salt structure with Sr
having 6-fold coordinated and bond lengths of 2.6 Å. The coordination polyhedra for
Sr is octahedral, SrO6.

For BaO compounds, there are a total of 11 oxide structures. Of these 11 structures,
there are 3 structures which are experimentally derived BaO crystal structures which
have mp-id’s 1342, 1008500 (MAX-Phase), 7487 (2 dimensional material). Due to the
low dimensionality of the latter 2 crystal structures only the first crystal structure
is a viable structure which has a space group Fm3̄m which also happens to be the
most stable form. The structure is Halite/Rock Salt with the Ba coordinated with
6 equivalent bonds of length 2.81 Å. The coordination polyhedra is octahedral with
BaO6.

Figure A.4. The supercell averaged Ce-O bond distances for each grain boundary-
solute structure model. The Σ3 (111)/[1̄01] (Σ3 (121)/[1̄01]) grain boundary solute
sites are indicated with open (filled) markers. Chapter 3 Figure 3.2 further illustrates
these markers for all the sites in each grain boundary. The general trend is that the
average Ce-O bond distance is a minimum for the smaller solutes and increases with
increasing solute radii.
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Figure A.5. The z-axis grain boundary expansion (γGB) for each grain boundary-
solute structure model. Dashed (solid) line corresponds to the expansion for the Σ3
(111)/[1̄01] (Σ3 (121)/[1̄01]) grain boundary. The Σ3 (111)/[1̄01] (Σ3 (121)/[1̄01])
grain boundary solute sites are indicated with open (filled) markers. The γGB is highly
site and solute dependent. Generally, there is a linear increase in the grain boundary
expansion with increasing solute size. However, this trend is not well established for
smaller solute sizes due to the propensity for the solute ions to occupy interstitial
solute sites resulting in an increased grain boundary expansion.

Figure A.6. The change in band gap of CeO2, ∆Egap, as a function of uniform
hydrostatic strain, ϵ, applied on the lattice.
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Figure A.7. The percent change in the volume (a, e), a (b, f), b (c, g), and c (d, h)
lattice vectors for the Σ3 (111)/[1̄01] and Σ3 (121)/[1̄01] grain boundary for each
grain boundary-solute structure model. Open (solid) markers corresponds to the Σ3
(111)/[1̄01] (Σ3 (121)/[1̄01]) grain boundary. Percent change is referenced from the
respective undoped grain boundary parameters.
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Figure A.8. Element-projected DOS for the lowest energy grain boundary configura-
tions. First two columns are the Σ3 (111)/[1̄01] grain boundary DOS and the last 2
columns are the Σ3 (121)/[1̄01] grain boundary DOS.
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Figure A.9. The orbital-projected DOS for the Σ3 (111)/[1̄01] grain boundary. Each
row represents a unique grain boundary-solute configuration and each column (from
left to right) corresponds to the supercell, Ce, O, and solute lm-projected DOS. Each
row (from top to bottom) corresponds to the undoped, Be, Mg, and Ca configurations
where the solute configurations are display with the magenta triangle site first, then
the blue diamond site.
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Figure A.10. The orbital-projected DOS for the Σ3 (111)/[1̄01] and Σ3 (121)/[1̄01]
grain boundary. The first 4 rows correspond to the Sr- and Ba- doped Σ3 (111)/[1̄01]
grain boundaries with the configurations ordered the same as in Appendix Figure
A.9 as are all columns listed identically. The following 3 rows corresponds to the Σ3
(121)/[1̄01] undoped and first 2 Be configurations, where the solute configurations for
the Σ3 (121)/[1̄01] grain boundary are displayed with the green circle site first, then
the orange triangle site.
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Figure A.11. The orbital-projected DOS for the Σ3 (121)/[1̄01] grain boundary. The
first row correspond to the yellow diamond Be site, the next two sets of 3 rows
correspond to Mg and Ca configurations ordered with the green circle, orange triangle,
and yellow diamond site.
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Figure A.12. The orbital-projected DOS for the Σ3 (121)/[1̄01] grain boundary. The
first 3 rows correspond to the Sr sites while the last 3 rows correspond to the Ba sites
where the configurations are listed in the same order described in Appendix Figure
A.11.
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Figure A.13. Percent bond deviation strain maps for the Σ3 (111)/[1̄01] grain boundary
structure models. The first row contains the undoped, Be, and Mg structures. The
configurations are listed in increasing numerical order from left to right. The second
row contains Ca, Sr, and Ba doped grain boundary structure models. Color map
indicates percent bond deviation referenced using the average Ce-O bond distance
between the two grain boundary models. Negative value corresponds to compressed
bonds while red corresponds to tensile bonds. Green spheres indicate the solute
location.
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Figure A.14. The percent bond deviation strain maps for the Σ3 (121)/[1̄01] grain
boundary structure models. The first row contains the undoped, Be, and Mg structures
where the configurations are listed in numerical order from left to right with the last
model being the first Ca configuration. The second row contains the Ca, Sr, and Ba
grain boundary structure models. Color map is the same as in Appendix Figure A.13.
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A.4 Electronic Structure of AEM Doped Σ3 (111)/[1̄01] Grain Boundaries

Appendix Figure A.15 shows the full DOS for each AEM doped Σ3 (111)/[1̄01]
grain boundary where the DOS for each configuration is aligned to the low level O
s states. The solute configuration profiles are plotted together (configuration 0 in
red and configuration 1 in blue) to illustrate how the solute’s location impacts the
DOS. Appendix Figure A.16 shows a close up of the DOS for each grain boundary to
discern in which band the DOS shifts.

Figure A.15. DOS for AEM doped Σ3 (111)/[1̄01] grain boundary aligned to the low
lying oxygen s states.
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Figure A.16. DOS for AEM doped Σ3 (111)/[1̄01] grain boundary aligned to the low
lying oxygen s states re-scaled to illustrate the changes due to the solute ions.
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B.1 Electronic Structure and Charge Density of Ovac Migration in Σ3 (111)/[1̄01]
Grain Boundary

Appendix Figure B.1-B.2 represents the structure model for the undoped Σ3
(111)/[1̄01] grain boundary overlaid with partial charge density for the bands containing
the two 4f electrons localized on Ce resulting from the removal of an oxygen ion. The
plots below are the corresponding DOS and band structure for each Ovac location.
The white box represents the oxygen vacancy location while the orange isosurfaces
represent the band projected partial charge density for the two localized defect states
which can be seen both in the DOS and band structure in the band gap.

One interesting trend to notice in the electronic structure/charge density is that
the two electrons do not localize only on the Ce ions near the vacancy. One electron
follows the oxygen vacancy while the other localizes on a Ce ion in the grain boundary
core. Only when the oxygen vacancy is sufficiently far from the grain boundary core
does the second electron localize on a Ce ion near the oxygen vacancy. However, it
is unclear if this is due to the size of the supercell and more testing–by explicitly
localizing the electron on Ce ions near the oxygen vacancy for each location–is needed
to determine the origin of the electron localizing at the grain boundary. However, this
finding would not be all to surprising as similar systems (Frechero et al. 2015) have
shown electrons preferentially localizing to the grain boundary as well.

One particular challenge in calculating the properties of defective ceria is dealing
with the localized electrons. The localized electrons can cause convergence issues
and/or localize on Ce ions which may not be the optimal site. In order to overcome
these challenges, it is often necessary to obtain pre-converged WAVECAR before
relaxing a structure. Additionally, when generating the pre-converged WAVECAR,
identifying which Ce ions the electrons localize on and specifying this using the
MAGMOM tag to enforce this condition could prevent issues with later simulations.
For the calculations involving defective ceria, it was sufficient to simply start the
relaxation from a pre-converged WAVECAR. However, issues became apparently in
later simulations originating from the localized electron while attempting to use NEB.
The method used to over manage that issue is discussed in the relevant section below.
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Figure B.1. Structure model overlaid with partial charge density and the corresponding
DOS and band structure for each Ovac location.
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Figure B.2. Structure model overlaid with partial charge density and the corresponding
DOS and band structure for each Ovac location.
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B.2 NEB Methodology for Bulk and Grain Boundary Calculations

Initial testing using the NEB method was done using a 2x2x2 bulk supercell of ceria
with one oxygen vacancy. The first NEB path had 3 images and initialized without
pre-converging the WAVECAR. These calculations often resulted in highly asymmetric
and nonphysical barrier pathways. To ensure the calculation would converging to a
more physical solution, a WAVECAR for each image was generated. For the 3 images
this solution worked remarkably well. However, increasing the number of images from
3 to 5 generated asymmetric barriers. It is likely originating from the differences
between the localized electrons. To solve this prior to generating a pre-converged
WAVECAR the 4 Ce ions in which the electrons are localized on must have the
magnetic moment specified using the MAGMOM tag to force an more realistic and
symmetric arrangement of the electrons during oxygen vacancy migration. Figure B.3
shows the NEB barrier for a bulk 2x2x2 ceria supercell with one oxygen vacancy and
3 images. Additionally, the projected charge density in each image also reflects this
symmetry.

Figure B.3. NEB barrier for a bulk 2x2x2 ceria supercell with one oxygen vacancy
and 3 images. Note the barrier is symmetric.

While performing the NEB calculations for the grain boundary structure all
calculations would fail to complete even one ionic step unless a pre-convergenced
WAVECAR was generated for each image which specified the MAGMOM tag for
the Ce ions with the localized electrons. For some unclear reason, not specifying the
MAGMOM tag and generating the WAVECAR was not sufficient and the calculation
would repeatedly fail. The only method which was successful was generating a new
WAVECAR with the MAGMOM tag on the respective Ce ions which could be found
by finding the atom number which possess the two localized f states in the OUTCAR.
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Other potential (less extreme/time consuming) solutions which worked to converge
the NEB calculations was changing from IBRION 2 to 1, specifying a smaller AMIN
value (0.01), or using the WAVECAR from the initial and final images as the initial
WAVECAR for the images.
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C.1 Default Computational Parameters Set by CMDLInterfaceSet

The initial structures for the 2D materials, the bulk counterpart of the 2D materials,
and the substrates are imported from existing materials databases (Ong et al. 2013;
Haastrup et al. 2018) or can be input by the users. The structures obtained from
databases have been determined by DFT simulations that employ different parameters
and exchange-correlation functionals. For consistency, all imported structures are
relaxed using the CMDLInterfaceSet routine to automate the creation of the DFT
input files to perform the DFT calculations using the vdW-DF-optB88 functional.
The vdW-DF-optB88 (Rydberg et al. 2003; Bowler and Michaelides 2011) functional
accounts for non-local dispersion interactions. It has successfully represented the
weak vdW forces in layered materials, accurately reproducing not only the inter-layer
spacings but also the dispersion interactions between 2D materials and substrate
surfaces (Singh, Zhuang, and Hennig 2014; Singh and Hennig 2014a; Zhuang, Singh,
and Hennig 2013).

CMDLInterfaceSet is based on pymatgen’s VASPInputSet class used to customize
VASP calculations. To generate files for VASP calculations, the new class CMDLIn-
terfaceSet has all the functionality of the parent pymatgen class but is tailored to
perform structural optimizations of 2D-substrate heterostructures and implement
vdW-corrections, on-the-fly dipole corrections for slabs, custom k-point mesh grid den-
sity, and automated selective dynamics tags for the interface atoms of the 2D-substrate
structures. All DFT calculations are performed using the projector-augmented wave
method as implemented in the plane-wave code VASP (Kresse and Joubert 1999;
Kresse and Furthmüller 1996b; Kresse and Hafner 1993, 1994; Kresse and Furthmüller
1996a). The vdW interactions between the 2D materials and substrates are modeled
using the vdW–DF functional with the optB88 exchange functional (Bowler and
Michaelides 2011).

The default settings of the CMDLInterfaceSet require all calculations to converge
to total force per atom of less than 0.02 eV/Å or better and an energy tolerance of
10−4 and 10−6 eV for supercells with less or greater than 1000 atoms, respectively.
These parameters were sufficient to converge all binding energies in the benchmark
simulations to 10−3 eV/atom. The convergence tests for the binding energy can be
found below as Appendix Figure C.1. The adsorption formation energies are performed
using a slab geometry with a minimum vacuum spacing of 18 Å which ensures the
interactions between the surfaces are negligible. The combined setting for the energy
cutoff, k-point density, and total-force per atom provide reasonable accuracy for the
∆Ef

vac, ∆Eb, and ∆Ef
ads while maintaining a relatively small computational cost for

high-throughput calculations. The combined 2D-substrate heterostructures are created
with a lattice mismatch ≤ 5%, a surface area ≤ 130 Å2, and an initial 2D-substrate
separation distance of 3 Å – 3.4 Å. These heterostructure parameters were selected to
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reduce the computational cost of simulating large supercells and minimize the strain
in the 2D material.

C.2 Convergence Tests

In order to confirm that the convergence parameters used in these calculations
are sufficient, convergence are performed checks at 3 different energy cut off values
(10−4, 10−5, and 10−6) for 3 different structures with an increasing number of atoms
in the supercell. Convergence in the binding energy to at least 3 significant figures is
observed given the default energy cut off of 10−4. The results are shown in Appendix
Figure C.1.

Figure C.1. Binding energy values calculated with 3 different energy tolerance values
to test binding energy convergence for supercells with different atom numbers. The
supercells contain (a) MoS2 on (111) Ir with 33 atoms, (b) MoS2 on (110) Sc containing
78 atoms, and (c) 1H-NbO2 on (111) Ir containing 153 atoms. The binding energy
(in eV/atom) is converged to (a) 5 significant figures, (b) 3 significant figures, and (c)
5 significant figures.

C.3 Initialization and Customization of the Workflow

In Chapter 5 Figure 5.4, the slab_params dictionary generates a substrate slab
with a vacuum spacing of 19 Å and a substrate slab thickness of at least 12 Å. The
h_params dictionary creates the lattice-matched, symmetry-matched 2D-substrate
heterostructures with 3.0 Å z-separation distance between the 2D material and the
substrate surface. The h_params dictionary also sets the maximum allowed lattice-
mismatch along ab to be less than 5%, a surface area less than 130 Å2, sets the
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selective dynamics tags in the DFT input file to relax all layers of the 2D material
and top two layers of the substrate slab.

The workflow has commands for two VASP executables compiled that incorporate
vdW-corrections for performing DFT calculations for (1) 2D materials and (2) 3D
materials. The first executable is a custom executable to relax 2D materials with a
large vacuum and prevent the vacuum from shrinking by not letting the cell length
change in the direction of vacuum spacing. The second executable allows the cell
volume to change in all directions. Other optional arguments used to initialize the
workflow include dipole correction for substrate slabs, tags for database entries, and
avenues to modify the INCAR of each firework in the workflow. The parameters vis
and vis_i where i=2d, 3d2d, bulk, trans, and iface are used to override the default
VaspInputSet with one provided by the user. This can be provided for all fireworks
using vis or for a specific firework using vis_i. The parameters uis and uis_i can
be set to change the default settings in the INCAR. The parameter uis will set the
specified parameters for all INCARs in the workflow, while uis_i will set the INCAR
parameters for the corresponding firework.

The first four fireworks in the workflow are optional to reduce computational cost
while the final firework generates and performs structural optimization for the 2D-
substrate heterostructure configurations. To skip a firework, the custom specification
dictionary (user_additions) is used and to determine the ∆Ef

ads the system energies
and total number of atoms for each skipped firework must be supplied. These energies
are stored in the analysis_info dictionary within user_additions to calculate stability
related information. The first four structure optimization fireworks may be skipped
by setting any of the is_i_optimized (i=bulk, sub, 2d, and 3d2d) flags to True in
the user_additions dictionary.

Additionally, the user_additions dictionary can be used to skip computing the
∆Ef

vac, ∆Eb, or ∆Ef
ads energies for the current workflow, specify alternative types

of functionals for DFT calculations, and allocate sufficient computing resources to
larger slab/heterostructure calculations. The user_additions can add tags to each
firework step in the workflow. The vdw tag can be used to specify alternative types of
functionals. To selectively skip the energetic analysis of the ∆Ef

vac, ∆Eb, and ∆Ef
ads

the flags Formation_Energy, Binding_Energy, and Adsorption_Energy can be set to
False. Additional flags for setting the computational wall-time, cpu-cores, etc. are
available in the code documentation with a complete description of their effect on the
workflow.

C.4 2D, 3D Form of 2D, and Substrate Slab Surface Information

In generating the 49 workflows, a total of 29 DFT calculations were performed
using the FW1 – FW3 to optimize the substrate, 2D material, and bulk counterpart
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of the 2D material, all of which successfully converged and were stored in a MongoDB
database. An additional 24 calculations were performed using FW4 to generate the
surface substrate slab. Of the first four FWs, only one calculation resulted in errors
that were not handled by custodian which was FW4 that generates the Pb (110)
substrate slab.

Composition Database Ref. ID ∆Ef
vac (eV/atom) Sg.

MoS2 c2db id: MoS2-MoS2-NM 0.0705 P6̄m2
1T -NbO2 c2db id: NbO2-CdI2-FM 0.3896 P3̄m1
1H-NbO2 c2db id: NbO2-MoS2-NM 0.4048 P6̄m2

ZnTe doi: 10.1038/s41699-020-0154-y 0.1763 P3̄m1

Table C.1. 2D materials information for all materials studied in this work. The first
three 2D materials were obtained from the C2DB (Haastrup et al. 2018) while the last
was obtained from S. Torrisi et al. (2020). The database reference ID is the C2DB
ID and the DOI number for the structures, ∆Ef

vac is the formation energy of the 2D
materials and Sg. is the spacegroup of the 2D material.

Composition material_id Eabove hull (eV/aton) Egap (eV) Sg.
ZnTe mp-2176 0.0000 1.078 F4̄3m
MoS2 mp-1018809 0.0010 1.336 P63/mmc
NbO2 mp-557057 0.0000 0.300 I41/a

Table C.2. The materials information for the bulk form of the 2D materials (3D2D)
used in this work to calculate the formation energy. The material_id is the Materials
Project ID, Eabove hull is the energy above the convex hull of the given 3D2D in
eV/atom, is the band gap in eV for the 3D2D, and Sg. is the spacegroup of the 3D2D
material.
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Composition material_id Eabove hull ICSD ID Sg. Surface
Ag mp-124 0.0024 604635 Fm3̄m (111)
Al mp-134 0 53774 Fm3̄m (111)
Au mp-81 0 611625 Fm3̄m (111)
Cu mp-30 0 655129 Fm3̄m (111)
Hf mp-8640 0.0712 41519 Fm3̄m (111)
Ir mp-101 0 64992 Fm3̄m (111)

Mn mp-8634 0.0799 41509 Fm3̄m (111)
Nd mp-159 0.0107 645578 Fm3̄m (111)
Ni mp-23 0 52265 Fm3̄m (111)
Pb mp-20483 0 648343 Fm3̄m (110)
Pd mp-2 0 64918 Fm3̄m (111)
Re mp-8642 0.0588 41522 Fm3̄m (111)
Rh mp-74 0 191463 Fm3̄m (110)(111)
Sc mp-36 0.0464 164103 Fm3̄m (110)
Sr mp-76 0 76162 Fm3̄m (111)
Ta mp-50 0 183414 Im3̄m (110)
Te mp-10654 0.0466 52500 Pm3̄m (111)
Ti mp-6985 0.0634 168322 Fm3̄m (111)
W mp-91 0 43421 Im3̄m (110)
V mp-146 0 171003 Im3̄m (111)
Y mp-9 0.0275 106221 Fm3̄m (111)
Zr mp-8635 0.0413 41511 Fm3̄m (111)

Table C.3. The materials information for all substrates simulated this work. The
material_id is the Materials Project ID, Eabove hull is the energy above the convex
hull of the given substrate in eV/atom, ICSD ID is the inorganic crystal structure
database ID, Sg. is the spacegroup of the substrate, and surface is the miller plane of
the substrate slab in the 2DMSD.

C.5 Adsorption Energy, Outlier Structures, and Substrate Induced Changes in 2D
Films

The adsorption formation energy, shown in Appendix Figure C.2, represent the
2D films that have significant structural distortion or have disintegrated on the
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substrate. The state of the adsorbed 2D materials that are classified as significant
structural distortions or disintegrated for each 2D material are: 4 2D heterostructure
configurations for MoS2, 12 2D heterostructure configurations for 1T -NbO2, 1 2D
heterostructure configuration for 1H-NbO2, and 5 2D heterostructure configurations
for ZnTe.
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Figure C.2. Adsorption formation energy configurations for the symmetry-matched, low
lattice-mismatched (a) (110) and (b) (111) surface substrates where the 2D materials
have disintegrated post-adsorption. The (110) surface has more 2D materials that
disintegrated than the (111) surface. Each set of symbols (up to 4 points per substrate)
represents the unique 2D-substrate configurations.

In Appendix Figure C.2a, the configurations of MoS2 on Sc (110) surface are buckled
with significant disintegration occurring on the substrate surface. The interaction
between the (110) Y surface and the S atoms from MoS2 film interact strongly with
some S atoms incorporating into the Y substrate surface resulting in significant
distortions of both the 2D material and substrate surface. For 1T -NbO2 on the Rh
(110) surface, the 2D material disintegrates on the substrate surface. For 1T -NbO2 on
the Ta (110) surface, the 2D material buckles on the Ta substrate similar to MoS2 on
Ta (110) in Appendix Figure C.4. All configurations for ZnTe on the W (110) surface
result in the 2D material disintegrating on the substrate surface.

In Appendix Figure C.2b, all configurations for 1T -NbO2 on the V (111) surface
have significant disintegration of the 2D material while the substrate surface undergoes
some distortions. The circle configuration for the 1T -NbO2 on the Nd and Ni (111)
surfaces have some degree of structural disorder for the substrate surface and the 2D
material has disintegrated. Both configurations for 1T -NbO2 on the Pd (111) surface
result in disintegration of the 2D film on the substrate surface. For the 1H-NbO2 on
the Al (111) surface, the 2D material is repelled by the substrate surface resulting in
a separation distance of 5.16 Å between the 2D material and substrate surface. For
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ZnTe on the Ti and V (111) surface all the 2D materials disintegrate and the Ti (111)
surface also has structural disorder.

Appendix Figure C.3 illustrates the change in the thickness of the free-standing
2D material from that of the post-adsorbed 2D material for each 2D-substrate het-
erostructured material for the structures that were excluded from Chapter 5 Figure
5.6. The thickness of the free-standing/adsorbed 2D material is computed first by
finding the average z coordinate of the top and bottom layer of the 2D material given

by d̄z =
n∑

i=1

dtopi,z /n−
m∑
i=1

dbottomi,z /m where di,z is the z coordinate of the ith atom summed

up to n and m, the total number of atoms in the top and bottom layers, respectively.
The thickness, obtained by taking the difference between the average thickness of the
adsorbed 2D material from that of the free-standing 2D material, δd=d̄adsorbedz − d̄freez ,
with positive (negative) values corresponding to an increase (decrease) in the thickness
of the adsorbed 2D material.
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Figure C.3. Each 2D material is separated spatially along the x-axis using a violin plot.
The change in the 2D material’s thickness, δd, for all substrates is plotted along the
y-axis. A positive y-value indicates the 2D material’s thickness has increased during
adsorption onto the substrate slab. The width of the violin plot is non-quantitative
from scaling the density curve by the number of counts per violin, however, within
one violin plot, the relative x-width does represent the frequency that a 2D material’s
thickness changes by y amount relative to the total number of data points in the plot.
These structures are consistent with Appendix Figure C.2.
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Figure C.4. Structure models for 2D-substrate heterostructures in Chapter 5 that are
discussed as the adsorption formation energy outliers. The 2D-substrate heterostruc-
ture configurations, from left to right, are MoS2 on Hf (111), Ta (110), and (111) Zr.
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Figure C.5. Structure models for 2D-substrate heterostructures in Chapter 5 that are
discussed as the adsorption formation energy outliers. The 2D-substrate heterostruc-
ture configurations, from left to right, are 1T -NbO2 on Ir (111), 1T -NbO2 on Nd (111)
surface, and 1H-NbO2 on Ag (111) surface.
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Figure C.6. Structure models for 2D-substrate heterostructures in Chapter 5 that are
discussed as the adsorption formation energy outliers. The 2D-substrate heterostruc-
ture configurations, from left to right, are 1H-NbO2 on Al and Ti (111) surface.
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Figure D.1. Heatmap for the 1H phase of the Janus 2D materials sorted from
least (top/left) to greatest (bottom/right) electronegativity of the 2D materials and
substrate. The colormap represents the (∆Eb) binding energy.
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Figure D.2. Heatmap for the 1H phase of the Janus 2D materials sorted from
least (top/left) to greatest (bottom/right) electronegativity of the 2D materials and
substrate’s surface energy. The colormap represents the z-separation.

D.1 Constituent 2D-substrate Heterostructure Information

The unique elemental composition of Janus 2D materials results in few 3D phases
that possess all constituent elements and very few 3D phases which have a direct
composition match to the Janus 2D material. However, a composition matched bulk
phase for some of the Janus 2D materials can be obtained through a mixture of two
layered bulk counterparts. In fact, current synthesis methods for Janus 2D phases
use the parent classical layers (i.e. MoS2 and MoSe2) to synthesize the Janus 2D
material (MoSeS) Qin et al. 2022. To access more Janus 2D phases, the formation
energy (∆Ef

vac) for 2D materials without a corresponding composition matched 3D
phase is computed using a mixture of the layered bulk counterparts. The information
for each bulk phase used to compute the formation energy is listed in Table D.2
and the corresponding Janus 2D phases are listed in Table D.1. Table D.3 provides
additional details regarding the substrates used in this study while Table D.4 lists all
lattice-matched substrates for each 2D material.

212



Composition Polytype ∆Ef
vac (eV/atom) c2db_id Sg.

AsSeBr T -0.699 AsBrSe-989f469f06bd 156
AsSeBr H -0.552 AsBrSe-206b9dcf2af6 156
AsSeI T 0.109 AsISe-5d829e480507 156
AsSeI H 0.265 AsISe-ca926a42865b 156
BiSBr T 0.117 BiBrS-49b7be14f786 156
BiSBr H 0.226 BiBrS-3b305c3e2c18 156
BiSCl H 0.23 BiClS-99fd027b1d0b 156
BiSCl T 0.116 BiClS-c96ef4fc869c 156
BiSI T 0.121 BiIS-acdcd16c0d76 156
BiSI H 0.239 BiIS-40034665f9f1 156
BiSeBr T 0.084 BiBrSe-de5756e4fbfa 156
BiSeBr H 0.189 BiBrSe-11db0908d9ef 156
BiSeCl T 0.094 BiClSe-a80866a2c6b4 156
BiSeI H 0.199 BiISe-433f707c632c 156
BiSeI T 0.092 BiISe-70cbc0e44d36 156
BiTeBr H 0.218 BiBrTe-f4f45fcade85 156
BiTeBr T 0.108 BiBrTe-304bc6a92d82 156
BiTeCl H 0.229 BiClTe-badda86cab42 156
BiTeCl T 0.104 BiClTe-968a6902b7f5 156
BiTeI H 0.21 BiITe-a84d988e38ac 156
BiTeI T 0.107 BiITe-2d41b3dd1772 156
CrSeS H 0.122 CrSSe-09e1e5ef94cb 156
CrSeS T 0.262 CrSSe-370baf5c3264 156
CrTeS T 0.211 CrSTe-7aa3d966f272 156
CrTeS H 0.149 CrSTe-8a0864d30ce1 156
CrTeSe T 0.449 CrSeTe-076280734e10 156
CrTeSe H 0.359 CrSeTe-5d9d3ded04de 156
HfSeS H 0.268 HfSSe-9afb20358166 156
HfSeS T 0.088 HfSSe-63618e5bf062 156
HfTeS T 0.093 HfSTe-6da5c5b7dd23 156
HfTeS H 0.234 HfSTe-2602a918955b 156
HfTeSe H 0.226 HfSeTe-305c779b8752 156
HfTeSe T 0.099 HfSeTe-a514ac4ca101 156
MoSeS T 0.506 MoSSe-6a7e9eb85b12 156
MoSeS H 0.271 MoSSe-de7ac5fc6945 156
NbSeS H 0.901 NbSSe-596b8fdeb3d4 156
NbSeS T 0.943 NbSSe-91a283a2d283 156
SbSBr H 0.272 BrSSb-4ae37f15e1fe 156
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SbSBr T 0.152 BrSSb-4da5c6be60db 156
SbSI T 0.16 ISSb-5b94060698bc 156
SbSI H 0.292 ISSb-4c49d27e66e5 156
SbSeBr T 0.113 BrSbSe-89b15ddef41d 156
SbSeBr H 0.228 BrSbSe-c2a344b393f0 156
SbSeI T 0.122 ISbSe-df0019ec24b5 156
SbSeI H 0.241 ISbSe-343d2125478e 156
SbTeI H 0.207 ISbTe-052a3116531d 156
SbTeI T 0.095 ISbTe-0f02957b17cf 156
TeMoS T 0.187 MoSTe-2ea941c8bc3c 156
TeMoS H 0.032 MoSTe-e4bb8738150a 156
TeMoSe T 0.07 MoSeTe-f3f66ff2fdc2 156
TeMoSe H -0.101 MoSeTe-42eb12e7b656 156

Table D.1. Two-dimensional (2D) materials information for all materials studied in
this work. All Janus 2D materials are obtained from the C2DB Haastrup et al. 2018.
The composition, Materials Project ID, structural polytype, the computed formation
energy in eV/atom, the C2DB ID, and the spacegroup number of each Janus material.
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Composition material_id Sg.
AsSeBr mp-631257 216
AsSeI mp-505373 14
BiSBr mp-23324 62
BiSCl mp-23318 62
BiSI mp-23514 62
BiSeBr mp-569707 62
BiSeCl mp-610491 62
BiSeI mp-23020 62
BiTeBr mp-33723 156
BiTeCl mp-28944 186
BiTeI mp-22965 156
Cr3(TeSe)2 mp-1226346 12
Cr4(SeS)3 mp-1226292 146
Cr4Te3S mp-1226328 44
HfSeS mp-1224282 156
HfTeS mp-1224272 156
HfTeSe mp-1224271 156
Mo2SeS3 mp-1221485 156
Nb5(SeS)2 mp-1220382 12
SbSBr mp-22971 62
SbSI mp-23041 62
SbSeBr mp-1209072 62
SbSeI mp-22996 62
SbTeI mp-28051 12
Te3Mo2Se mp-1217371 156
TeMo2S3 mp-1217334 156

Table D.2. The corresponding bulk (3D) phases used to determine the formation
energy (∆Ef

vac) of the Janus 2D materials. The composition, Materials Project ID,
and the spacegroup number for each 3D phase.
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Composition material_id Surface Energy (eV/Å2) Sg.
Ag mp-124 0.0472 225
Al mp-134 0.0474 225
Au mp-81 0.0445 225
Cu mp-30 0.0966 225
Hf mp-8640 0.1234 225
Ir mp-101 0.151 225

Mn mp-8634 0.1827 225
Nd mp-159 0.0547 225
Ni mp-23 0.1402 225
Pd mp-2 0.097 225
Re mp-8642 0.1653 225
Rh mp-74 0.1303 225
Sc mp-36 0.0838 225
Sr mp-76 0.0288 225
Te mp-10654 0.0009 221
Ti mp-6985 0.128 225
V mp-146 0.1913 229
Y mp-9 0.0683 225
Zr mp-8635 0.113 225

Table D.3. The materials information for the bulk substrate slabs. The composition,
Materials Project ID, the computed surface energy for the (111) in eV/Å2, and the
spacegroup number of each substrate material used in this study.
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2D Composition Substrates
AsBrSe-206b9dcf2af6 Al Hf Mn Nd Ni Pd Sc Sr Ti V Zr
AsBrSe-989f469f06bd Al Au Cu Mn Ni Pd Sc Te Ti
AsISe-5d829e480507 Au Cu Te Ti
AsISe-ca926a42865b Ag Al Au Cu Mn Ni Sc Te Ti
BiBrS-3b305c3e2c18 Ag Au Cu
BiBrS-49b7be14f786 Hf Ir Nd Pd Rh
BiBrSe-11db0908d9ef Hf Re Rh Y
BiBrSe-de5756e4fbfa Hf Ir Nd Pd Re Rh Sc Sr V Zr
BiBrTe-304bc6a92d82 Ag Al Cu Ir Mn Ni Pd Re Sc Sr Ti V Zr
BiBrTe-f4f45fcade85 Hf Ir Mn Nd Ni Pd Re Rh Sc Sr V Zr
BiClS-99fd027b1d0b Ag Au Cu Ti
BiClS-c96ef4fc869c Hf Rh

BiClSe-a80866a2c6b4 Hf Ir Nd Pd Re Rh Sr V Y Zr
BiClTe-968a6902b7f5 Ag Al Hf Ir Mn Nd Ni Pd Re Rh Sc Sr Ti V Zr
BiClTe-badda86cab42 Hf Ir Mn Nd Ni Pd Re Rh Sc Sr V Zr

BiIS-40034665f9f1 Hf Ir Nd Pd Rh
BiIS-acdcd16c0d76 Hf Ir Mn Nd Ni Pd Re Rh Sc Sr V Zr
BiISe-433f707c632c Hf Ir Nd Pd Re Rh Sr V Zr
BiISe-70cbc0e44d36 Al Hf Ir Mn Nd Ni Pd Re Rh Sc Sr Ti V Zr
BiITe-2d41b3dd1772 Ag Al Au Cu Mn Ni Sc Te Ti
BiITe-a84d988e38ac Ag Al Hf Ir Mn Nd Ni Pd Re Rh Sc Sr Ti V Zr
BrSSb-4ae37f15e1fe Al Au Cu Mn Ni Te Ti

BrSSb-4da5c6be60db Au Cu Rh Te
BrSbSe-89b15ddef41d Hf Re Rh
BrSbSe-c2a344b393f0 Ag Au Cu Te
CrSSe-09e1e5ef94cb Cu Hf Ir Nd Pd Re Rh Sc Sr V Y Zr
CrSSe-370baf5c3264 Cu Hf Ir Mn Nd Pd Re Rh Sc Sr V Y Zr
CrSTe-7aa3d966f272 Ag Al Au Cu Mn Ni Te Ti
CrSTe-8a0864d30ce1 Ag Al Au Cu Mn Ni Pd Re Sc Ti V Zr
CrSeTe-076280734e10 Ag Al Au Cu Mn Ni Te Ti
CrSeTe-5d9d3ded04de Ag Al Au Cu Mn Ni Te Ti
HfSSe-63618e5bf062 Al Hf Mn Nd Ni Pd Sc Sr Ti V Zr
HfSSe-9afb20358166 Hf Ir Nd Pd Re Rh Y Zr
HfSTe-2602a918955b Al Hf Mn Nd Ni Pd Sc Sr Ti V Zr
HfSTe-6da5c5b7dd23 Al Cu Mn Ni Pd Sc Ti V Zr
HfSeTe-305c779b8752 Al Au Cu Mn Ni Pd Sc Ti Zr
HfSeTe-a514ac4ca101 Ag Al Au Cu Mn Ni Ti
ISSb-4c49d27e66e5 Ag Au Cu
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ISSb-5b94060698bc Hf Ir Nd Pd Rh Y
ISbSe-343d2125478e Hf Ir Rh
ISbSe-df0019ec24b5 Hf Ir Nd Pd Re Rh Sc Sr V Y Zr
ISbTe-052a3116531d Hf Ir Mn Nd Ni Pd Re Rh Sc Sr V Zr
ISbTe-0f02957b17cf Ag Al Mn Ni Pd Re Sc Sr Ti V Zr

MoSSe-6a7e9eb85b12 Ag Al Hf Ir Mn Ni Pd Re Sc Sr Ti V Zr
MoSSe-de7ac5fc6945 Ag Al Au Cu Ir Mn Ni Pd Re Sc Sr Ti V Zr
MoSTe-2ea941c8bc3c Ag Al Au Cu Mn Ni Te Ti
MoSTe-e4bb8738150a Ag Al Au Cu Mn Ni Te Ti
MoSeTe-42eb12e7b656 Ag Au Cu Mn Ni Te Y
MoSeTe-f3f66ff2fdc2 Ag Al Au Cu Mn Ni Te Ti
NbSSe-596b8fdeb3d4 Ag Al Au Cu Mn Ni Te Ti
NbSSe-91a283a2d283 Ag Au Cu Te Y

Table D.4. All Janus 2D materials are listed under composition. The numbers listed
after the ’-’ are the associated C2DB ID for the 2D material. The substrates column
lists the corresponding lattice-matched substrates identified given the heterostructure
matching criteria chosen in this work for the given Janus 2D material.

D.2 Electronic Structure and Charge Density Benchmark Calculations

In order to gauge the accuracy (significant figures) to which a particular computed
value can be determined given the default settings in the CMDLElectronic set conver-
gence, tests are performed using the various grid densities for the charge density and
density of states. The relevant parameters for the density of state are typically the
accuracy of the (a) valence band maximum (VBM), (b) conduction band minimum
(CBM), (c) Fermi level, and (d) band gap. For Bader analysis, the total charge or
number of electrons associated with each atom is of importance. Various partition
methods exist in literature (Choudhuri and Truhlar 2020) to compute the total charge
for atoms. Bader analysis uses zero flux surfaces or local minimums in the charge
density surface to partition atoms into volumes and approximate the charge on an
atom by summing the number of electrons enclosed within that region (Henkelman,
Arnaldsson, and Jønsson 2006). It is important to note that different methods for
partitioning the charge density and atomic volume has a significant impact on the
total charge assigned to each atom. As described in the work by Choudhuri and
Truhlar (2020) the variations could be greater than 1 atomic charge unit and depend
on method as well as the system of interest along with, to a lesser extent, the choice
of pseudopotential.
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Figure D.3. The (a) valence band maximum (VBM), (b) conduction band minimum,
(c) Fermi level, and (d) band gap for density of states spacings of 0.1, 0.05, and 0.01
eV. The difference between the 0.01 and 0.05 eV grid spacings are very small for each
quantity.

Figure D.4. The Bader charge on each atom given four fine grid spacings
(NG{X,Y,Z}G): 0.1, 0.05, 0.03, and 0.01. The total charges on each atom have
near zero variation (0.004 electrons per atom). The charges on the respective atoms
are sufficiently converged given the choice of grid spacing.

The values described above are highly dependant on the grid spacings; as such it
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is essential to determine how variations in the grid densities impact these quantities.
Appendix Figure D.3 provides benchmark calculations performed by varying the
number of points used to calculate the density of states, while Appendix Figure D.4
illustrates variations in the Bader charges with variations in the charge density grid.
The density of states are well converged given the default grid spacing of 0.05 eV
resulting in minimal changes in the VBM, CBM, Fermi level, and band gap. The band
gap has the largest variation of 0.019 eV between the finer grid spacing of 0.01 to 0.05.
The Bader charges show convergence to 0.004 electrons given the chosen grid choice
of 0.03 compared to the 0.01 grid spacing. To further confirm the charge density does
not result in significant changes with increasing grid density, Appendix Figure D.5
plots the z-projected charge density at each grid spacing. The charge density does
not display any discernible differences in this plot.

Figure D.5. The z-projected charge density at four different fine grid spacings
(NG{X,Y,Z}G): 0.1, 0.05, 0.03, and 0.01. There is no discernible difference between
the charge density line profiles for any of the grid spacings.
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Figure D.6. From top to bottom the z projected charge density difference, the charge
density of the heterostructure, isolated 2D material, isolated substrate charge density.
The blue line represents the average z position of the substrate and the red line
represents the average z position of the bottom layer of the 2D material.

D.3 Machine Learning Convergence Testing

To increase the speed and accuracy of the random forest models, feature selection
and convergence testing is performed to evaluate the models robustness. The first step
in the process is removing features in the data set with values that occur frequently,
thus producing a low-variance feature. These features are unlikely to be useful in
determining the target property and can significantly decrease the speed of training
the model, as well as increase the computational time spent finding optimal hyper-
parameters.
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Figure D.7. The binding energy random forest regression model’s performance metrics
measured using the (a, c) R2 value and (b, d) the model accuracy evaluated with the
RMSE and MAE. For each threshold value in (a, b), features which have a maximum
frequency occurrence of any value over the threshold are removed from the training
set. For each threshold value in (c, d), features which have a correlation percentage of
any value over the threshold are removed from the training set.

The starting number of features in the data set is 155 features. For each feature,
the maximum occurrence (frequency) for each unique numeric value is computed. For
example, if a feature contains 4 values of X and 1 value of Y, the feature would have
a maximum frequency of 4/5 or 80%. The new data set is created by removing all
features above a certain threshold value. To find the optimal threshold value, features
are removed over a range of values from 10-90 in increments of 10. A test model
is then used to benchmark the model’s performance for each threshold value and
the R2, RMSE, and MAE values are plotted. The test model was set to the default
parameters in scikit-learn and K=5 for cross-validation. Appendix Figure D.7a-Figure
D.7b show the test model’s performance in predicting the binding energy for each
threshold value. The best results are obtained when dropping features with a percent
occurrence greater than 80%. This results in 31 features removed for the binding
energy machine learning model.

The next feature selection method implemented was to remove highly correlated

222



features. The starting number of features was 124 features. The correlation between
features was determined using pandas correlation matrix function corr. Threshold
values from 10%-95% were searched over successively to find the optimal value which
improves or maintains the test model’s performance. A threshold value of 65% was
found to improve the model performance which was measured using the R2, RMSE,
and MAE for the range of threshold values shown in Appendix Figure D.7c-Figure
D.7d. The number of highly correlated features removed was 102, leaving 22 features
remaining.

The final method to remove unnecessary features was the recursive feature elim-
ination with cross-validation (RFECV) method implemented in scikit-learn. This
feature selection method recursively removes one feature at a time from the feature
space, trains and tests the model’s performance returning the optimal features that
maximizes the model’s performance. A total of 6 features were removed using this
method leaving 16 features for training and testing the model. The 16 features
are: substrate’s surface energy (eV/Å2), ∆Ef

vac (eV/atom), C2DB heat of formation
(eV/atom), C2DB (eV/atom), atomic number of the 2D-M, -X, and substrate, average
ionic radii of the 2D-M, average electronegativity of the 2D and substrate, z-separation
distance, maximum packing efficiency of the 2D and substrate, range of the constituent
element’s molar volume, number of symmetry operation of the heterostructure, and
average number of s valence electrons in the heterostructure. If the element does
not have an average ionic radius implemented in pymatgen, the atomic radii is used
instead.

The same procedure discussed above was implemented for the z-separation distance
machine learning model. Appendix Figure D.8 shows the performance of the model
for the removal of low-variance and strongly correlated features. The threshold values
obtained for the binding energy model were also sufficient for the z-separation model.
Thus, the same features were removed in the first 2 features selection steps for both
models. For clarity, only the RMSE values are shown in Appendix Figure D.8b and
Appendix Figure D.8d as the absolute values for the RMSE and MAE are an order of
magnitude smaller. However, the trend is identical for both metrics and provides no
additional information about the models performance that cannot be obtained from
the RMSE plot. Starting with 22 features, the RFECV method removed a total of
11 features leaving 11 features for training and testing the model. The 11 features
are: substrate’s surface energy (eV/Å2), ∆Ef

vac (eV/atom), C2DB heat of formation
(eV/atom), atomic number of the 2D-X and substrate, average electronegativity of
the substrate, change in thickness of the adsorbed 2D material, maximum packing
efficiency of the 2D and substrate, range of the constituent element’s molar volume,
and the average number of s valence electrons in the heterostructure.

The hyper-parameter search for the final random forest regression model was
performed using scikit-learn ’s GridSearchCV method. The hyper-parameters searched
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Figure D.8. The z-separation random forest regression model’s performance metrics.
The (a, c) R2 value and (b, d) the model accuracy evaluated with RMSE. For each
threshold value in (a, b), features which have a maximum frequency occurrence over
the threshold are removed from the training set. For each threshold value in (c,
d), features which have a correlation percentage of any value over the threshold are
removed from the training set.

over for the binding energy model were: number of trees (n_estimators)=[50, 100, 150,
200, 250, 300, 350, 400, 450, 500], the maximum number of features to consider when
looking for the best split (max_features)=[auto, sqrt, log2], the maximum depth of the
tree (max_depth)=[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, None], the minimum
number of samples required to split an internal node (min_samples_split)=[2, 3, 4, 5],
the minimum number of samples required to be at a leaf node (min_samples_leaf)=[1,
2, 4], and the method of selecting samples for training each tree (bootstrap)=[True,
False]. The optimal hyper-parameters were: n_estimators=150, max_features=sqrt,
max_depth=50, min_samples_split=2, min_samples_leaf=1, and bootstrap=False.

The hyper-parameters searched over for the z-separation distance model were:
number of trees (n_estimators)=[50, 100, 150, 200, 250, 300, 350, 400, 450, 500],
the maximum number of features to consider when looking for the best split
(max_features)=[auto, sqrt, log2], the maximum depth of the tree (max_depth)=[50,
75, 100, 125, 150, 175, 200, None], the minimum number of samples required to
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split an internal node (min_samples_split)=[2, 3, 4, 5], the minimum number of
samples required to be at a leaf node (min_samples_leaf)=[1, 2, 4], and the method
of selecting samples for training each tree (bootstrap)=[True, False]. The optimal
hyper-parameters were: n_estimators=500, max_features=sqrt, max_depth=50,
min_samples_split=2, min_samples_leaf=1, and bootstrap=False.

Figure D.9. The RMSE score verses the training set size N for predicting the (a)
binding energy and (b) z-separation distance. The accuracy for predicting the binding
energy converges around a sample set size of 200 while the training sample size for
the z-separation distance converges closer to 300 samples in the training set.
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