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ABSTRACT

Previously, using forward-flux sampling (FFS) and machine learning (ML), we developed multivariate
alarm systems to counter rare un-postulated abnormal events. Our alarm systems utilized ML-based
predictive models to quantify committer probabilities as functions of key process variables (e.g.,
temperature, concentrations, and the like), with these data obtained in FFS simulations. Herein, we
introduce a comprehensive benchmark framework for rare-event prediction, comparing ML algorithms of
varying complexity, including Linear Support-Vector Regressor and k-Nearest Neighbors, to more
sophisticated algorithms, such as Random Forests, XGBoost, LightGBM, CatBoost, Dense Neural
Networks, and TabNet. This evaluation uses comprehensive performance metrics: RMSE, model training,
testing, hyperparameter tuning and deployment times, and number and efficiency of alarms. These balance
model accuracy, computational efficiency, and alarm-system efficiency, identifying optimal ML strategies

for predicting abnormal rare events, enabling operators to obtain safer and more reliable plant operations.
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1. INTRODUCTION

1.1. Progress of Industrial Revolution and Challenge of Rare, Un-postulated Abnormal Events

Over the past few centuries, several industrial revolutions have transformed the chemical and
manufacturing industries. These began with the first industrial revolution in the mid-1700s, focused on
mechanization through water and steam engines, and railroads (Crafts, 2011; Mohajan, 2019); then moved
to the second industrial revolution in the mid-to-late 1800s, focused on electrification, ramping-up
manufacturing and improving efficiency by introducing assembly lines (Mokyr and Strotz, 1998); then
advanced to the third industrial revolution in the late-1900s, introducing automation technologies (e.g.,
distributed control systems; , DCS), computers and electronics (Mohajan, 2021; Naboni and Paoletti, 2015);
and then proceeded to the current Industry 4.0 vision of digitalization, consisting of path-breaking
technologies, such as the internet-of-things (IoT) (Belli et al., 2019; Soori et al., 2023), artificial intelligence
and machine learning (AI/ML) (Bécue et al., 2021; Candanedo et al., 2018; Dingli et al., 2021),
cybersecurity and cyber-physical systems (Culot et al., 2019; Ervural and Ervural, 2018; Hashimoto et al.,
2013), and, big-data analytics and cloud computing (Gokalp et al., 2016; Kim, 2017). Numerous
perspectives are anticipating Industry 5.0, with foci on customization and sustainability, consisting of
technologies such as human-computer interaction, collaborative robotics, and, augmented reality and mixed
reality (AR/MR) (Barata and Kayser, 2023; Demir et al., 2019; Ghobakhloo et al., 2023; Raja Santhi and
Muthuswamy, 2023).

Remarkably, despite these breakthroughs, the chemical manufacturing industries struggle to prevent safety
accidents (e.g., thermal runaways, release of flammables, and chemical spillage) and reliability failure
events (e.g., poor product quality and related financial losses). The former have resulted in numerous
fatalities, including: the Pemberton Mill accident in 1860, the Grover shoe factory disaster in 1905, the
Flixborough disaster in 1974 (Hailwood, 2016), the Bhopal gas tragedy in 1984 (Broughton, 2005; Gupta,

2002; Sriramachari, 2004), the Chernobyl disaster in 1986 (Saenko et al., 2011), the BP Texas City refinery
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explosion in 2005 (Holmstrom et al., 2006), the Deepwater Horizon oil spill in 2010 (Beyer et al., 2016),
and the Fukushima disaster in 2011 (Labib and Harris, 2015). Often, such catastrophic accidents are
triggered by rare, un-postulated abnormal events unidentified during prior HAZOP studies, and unknown
at the time of occurrence. From the perspective of chemical process safety, rare events are defined as “low-
frequency high-consequence” events (Aven, 2020). Additionally, there are very few occurrence data,
making it challenging to predict their likelihood using data-driven quantitative techniques. While extensive
near-miss data often help to prevent accidents, more accurate estimates are needed. Moreover, routine
alarm management systems, created using HAZOP studies, are often unable to identify such abnormal rare
events; e.g., the root-cause of the BP Texas City refinery explosion was not identified during HAZOP
studies (U.S. Chemical Safety and Hazard Investigation Board, 2007). While automated Safety
Instrumented Systems (SIS) are usually successful in preventing accidents through interlock activation,
they contribute to plant reliability issues (causing shutdowns, maintenance, and start-up), resulting in
production-time and financial losses. Given these numerous challenges, there is a strong motivation to
develop enhanced multivariate alarm systems for identifying and handling these rare un-postulated

abnormal events more-efficiently — enabling operators to improve plant safety and reliability.

1.2. Artificial Intelligence and Machine Learning (AI/ML) for Quantitative Analyses of Rare Events
AI/ML is one of the cornerstones of Industry 4.0 vision for improved automation through digital
transformation. Over the past decade, there has been an exponential rise in AI/ML research across several
scientific domains, including chemical engineering applications: drug discovery (Lavecchia, 2015;
Vamathevan et al., 2019), catalysis (Kitchin, 2018; Toyao et al., 2020), materials science (Morgan and
Jacobs, 2020; Wei et al., 2019), computational fluid dynamics (Hanna et al., 2020; Kochkov et al., 2021),
molecular dynamics (Gastegger et al., 2017; Wang et al., 2020), process monitoring and fault detection
(Arunthavanathan et al., 2022; Harkat et al., 2020), to name a few. With respect to quantitative estimation

of rare-events for chemical process safety, AI/ML-based techniques have been developed; a parametric
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reduced-order modeling approach was developed to estimate and analyze the consequence of rare abnormal
events, using the k-Nearest Neighbors ML algorithm, and demonstrated on a cardon dioxide release study
(Kumari et al., 2021). Additionally, optimal ML algorithms were applied to predict and analyze the root-
causes of occupational safety events (Sarkar et al., 2019). In related work, three categories of classification
ML algorithms, including wide, deep, and wide and deep, were introduced and analyzed using accident data
for severity predictions (Tamascelli et al., 2022). Moreover, a novel anomaly detection-based classification
algorithm was developed using real-time data from industrial processes (Quatrini et al., 2020).

Despite significant advances, the utilization of ML algorithms for prediction of rare abnormal events
presents significant concerns. From amongst a vast choice of ML techniques, it is crucial to select an
algorithm most relevant to the target application. Additionally, most ML algorithms developed for rare
events are purely data-driven, based on data from process historians, accident data, or alarm databases. And,
due to the scarcity of data for truly rare events, data quality is a concern, given that ML model performance
relies heavily on such data (Budach et al., 2022; Jain et al., 2020). Given this lack of occurrence data, it
is important to integrate AI/ML-based techniques with efficient simulation-based techniques (e.g.,
path-sampling), capable of identifying and generating pathways for rare un-postulated abnormal

events.

1.3. Benchmark Analyses of ML Algorithms

With the challenge in selecting relevant algorithms, benchmark analyses of ML algorithms are ubiquitous
across several scientific domains having access to open-source databases. A large-scale benchmark
framework, MoleculeNet, was developed for benchmarking ML algorithms for molecular datasets,
including data for over 700,000 compounds (Wu et al., 2018). Similar analyses and comparisons among
several ML algorithms have been conducted for traffic-sign recognition (Stallkamp et al., 2012), healthcare
datasets (Purushotham et al., 2018), federated learning (He et al., 2020), scientific machine learning

(Thiyagalingam et al., 2022), detection of software defects (Aleem et al., 2015), time-series forecasting
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(Pfisterer et al., 2021; Xie and Wang, 2020), and cancer research (Feltes et al., 2019), to name a few. Such
rigorous benchmark analyses have also been extended specifically for tabular data —; the most common
data format utilized across several scientific domains (Shwartz-Ziv and Armon, 2022). Many of these
studies report that for supervised learning tasks (regression and classification) using tabular data, gradient-
boosting frameworks (e.g., XGBoost, CatBoost, LightGBM) outperform more-complex neural network-
based, deep-learning architectures, achieving comparable or superior accuracies at lower computational
costs (Borisov et al., 2022; Grinsztajn et al., 2022; Shwartz-Ziv and Armon, 2022; Uddin and Lu, 2024).
More-recently, in related research, a comprehensive survey was conducted for predicting rare-events —
considering data, preprocessing, algorithmic techniques, and evaluations (Shyalika et al., 2023). While
most studies include several datasets and algorithms, it is very challenging to extend these for data
concerning safety and reliability of chemical processes — due to lack of occurrence data accompanying such
rare-events. Often, datasets pertaining to rare-events are highly imbalanced; with the number of instances
indicative of rare-events significantly less than both normal and near-miss instances. Additionally, apart
from model accuracies/errors and computational costs, it is also crucial to analyze the impact of ML
algorithms on alarm-system efficiency; e.g., the number and efficiency of alarms annunciated in

identifying abnormal behavior accurately — a missing component in existing benchmark studies.

1.4. Prior Research: Developing Improved, Multivariate Alarm Systems Using Forward-Flux
Sampling and Machine Learning

Given the limitations of HAZOP-based alarm management systems in identifying and mitigating rare un-
postulated events, in previous research, we developed improved, novel, multivariate alarm systems using
forward-flux sampling (FFS) and machine learning — based on random statistical “noise”-induced
perturbations in one or more process variables that ultimately result in rare un-postulated abnormal shifts
from normal to undesirable (unsafe or unreliable) regions (Sudarshan et al., 2023, 2021). Our alarm
systems utilize ML-based algorithms that predict the committer probability as a function of the process

variables. Then, to enhance the quality and efficiency of the alarm systems, we developed an integrated
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framework for alarm rationalization and dynamic risk analyses (Sudarshan et al., 2024a). First, our
techniques were demonstrated successfully for a relatively simple exothermic CSTR process model. Then,
we improved our methods for more-complex polymerization CSTRs, resulting in dynamic, bidirectional
multivariate alarm systems based on real-time predictions of committer probabilities, using more-advanced
nonparametric ML algorithms. This addressed the decision-science component of risk assessment and
machine learning; given predictions by the ML algorithms, determining the actionable strategies for

reducing the real-time committer probabilities (Sudarshan et al., 2024b).

1.5. Benchmark Analyses of ML Algorithms for Rare Abnormal Events

Herein, we introduce a comprehensive framework for benchmark analyses, comparing several ML
algorithms, of varying complexities, for un-postulated rare-event predictions of chemical process models.
We begin with Linear Support-Vector Regressor (Linear SVR), k-Nearest Neighbors (kNNs), and move to
more-complex algorithms, including: gradient-boosted decision trees (XGBoost, LightGBM, CatBoost)
and deep-learning approaches (dense neural networks and TabNet). Two chemical process models are
considered; a PI-controlled exothermic CSTR, and a PID-controlled polystyrene CSTR, using five tabular
datasets for committer probability-process variables data generated using the branched-growth variant of
FFS (BGFFS). In our evaluation, several metrics are considered: RMSE; clock-times recorded for training,
testing, hyperparameter tuning and model deployment; and factors affecting alarm systems, number and
efficiency of multivariate alarms activated in real-time based on the predictions provided by each ML
algorithm. By considering diverse evaluation metrics (with alarm efficiency being novel when
benchmarking ML algorithms), we seek to identify optimal ML strategies to predict and handle rare un-

postulated abnormal events, thereby, improving overall safety and reliability.



2. MATERIALS AND METHODS
2.1. Overview of Key Steps

Figure 1 provides an overview of the steps and methods utilized in this paper, with the steps

described in subsequent sections.

Step 1: Data
Generation via
Forward-Flux

Sampling

Step 2: Data
Preprocessing

Step 3: Predictive
Modeling via
Machine Learning

Step 4: Reporting
Key Evaluation
Metrics

Step 5: Determine
Optimal ML Model

For a controlled process model, using BGFFS, simulate numerous rare
abnormal trajectories efficiently from desirable to undesirable operating
regions, saving valuable data during the simulations for the process variables,
and estimate the committer probabilities

As part of data preprocessing, filter the data for potential outliers and prepare
the data in a structured, tabular format

For each ML algorithm considered in the study, develop a predictive model
that quantifies the committer probabilities as functions of the process variables

Evaluate each ML model using comprehensive metrics, i.e., RMSE, clock-
times for training, hyperparameter tuning, testing, and deployment; number and
efficiency of alarms reaching the undesirable region.

Propose a weighted cost-function using the evaluation metrics, and determine
the optimal ML model

Figure 1. Overview of Key Steps

2.2. Step 1: Data Generation via Forward-flux Sampling

Path-sampling algorithms are Markov-Chain Monte-Carlo (MCMC)-based techniques, utilized routinely in
molecular dynamics (MD) to analyze and simulate rare events from chemical reactants to products,
including: crystal nucleation of hard spheres (Filion et al., 2010) and sodium chloride (Jiang et al., 2018),

stochastic nonequilibrium systems (Allen et al., 2006), methane hydrate nucleation (Arjun and Bolhuis,



2023; Bi and Li, 2014), and the like. In MD, a rare event is an event whose initiation time (time taken to
initiate the rare event) is multiple orders of magnitude greater than its duration (Borrero and Escobedo,
2007; Hartmann et al., 2014), In previous research, as a first application of path-sampling algorithms for
analyzing rare events for chemical process safety, Moskowitz et al. (2018) introduced transition-path
sampling (TPS) [developed originally for MD by Bolhuis et al. (2002), Dellago et al. (2002, 1998)],
demonstrated on an exothermic CSTR and an air separation unit (ASU). To overcome the computational
limitations of TPS, Sudarshan et al. (2021) introduced forward-flux sampling (FFS) [developed originally
for MD by Allen et al. (2006)]. Note that FFS is from the same family of path-sampling algorithms as TPS,
simulating rare un-postulated trajectories more-efficiently in a forward, piecewise manner, with the direct
variant, DFFS, introduced initially. More recently, the branched-growth variant of FFS (BGFFS) was
utilized, generating trajectories more-suitable for committer analyses [conducted previously in MD by
Borrero and Escobedo (2007); Peters and Trout (2006)], resulting in improved, multivariate alarm systems
for a P-only controlled exothermic CSTR (Sudarshan et al., 2024a, 2023) and a PID-controlled polystyrene
CSTR (Sudarshan et al., 2024b). The steps involved in the BGFFS algorithm, shown schematically in
Figure 2, include:

i) Define the initial desirable basin A and terminal undesirable basin B.

i1) Pick a suitable order parameter variable, A; typically, this is a process variable that has a strong influence
on the process dynamics, capturing process deviations more-rapidly than other variables, and is not
perturbed significantly using statistical noise; e.g., the reactor temperature.

iii) Based on the chosen A, divide the space between the two basins into finite interfaces: Ay, 41 ... 44,
where 44 and A, represent the bounds for basins A and B. Note that 7 is the number of interfaces.

iv) Simulate a long initial trajectory that generates finite crossings across Ao; if required, repeat this step for
multiple trajectories to generate sufficient crossing points, with valuable data for all process variables being

saved at every crossing point.



v) Compute the initial rate of transition across 4, 7y, as the total crossings divided by the total time spent
in basin A by all the initial trajectories.
vi) Select a crossing point from among the saved crossings across A, and simulate mj trajectories from that
point, each of which continues until A, is crossed. Save the variables at all such crossing points.
vii) Simulate m, trajectories from every crossing point across A, that generate crossing points across A,.
Save the variables at all such crossing points.
viii) Iterate step vii) for all subsequent interfaces till 1,,; stated differently, simulate m; trajectories from all
crossing points at A4; that continue until A;,; is reached; save the variables at all such crossing points at
AissVi=2,3...n—1.
ix) Compute the overall transition probability of reaching basin B from basin A:

_ NGnldo) (M

Pa-B = n—1
i=0 My

where N(1,|Ao) is the number of branches that reach basin B (from A,,_; ) and [[?-4 m; are the total
possible number of branches.

x) Compute the overall rate of transition, r5_,g, as the product of 1y and pa_g(A,|40)-

xi) Repeat steps iv) — x) for other crossing points at 1, and compute the average overall probability and rate
of transition: pa_,g and 7's_,g.

Note that every crossing point generated during the BGFFS algorithm, with variables x, has an
associated committer probability, pg(x), defined as the probability of a trajectory fired from that point
reaches or “commits” to the terminal basin B. The committer probabilities are computed recursively as
(Borrero and Escobedo, 2007):

N 2
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where p ji is the probability for a trajectory initiated from a point j at A; to reach the next
interface, Aj,4; Nji is the number of successful trajectories reaching A;,, from that point; m; is the total
number of trajectories initiated from that point; and py ji is the committer probability for that point. For
example calculations, please refer to Sudarshan et al. (2024b, 2023). Additionally, note that depending on
the process parameter selected, initially as the response-action variable (a variable that is varied in real-
time in response to alarms), the BGFFS algorithm and pg calculations are repeated for multiple discrete
values of the response-action variable. Hence, this makes the response-action variable discrete-valued,
whereas, the other variables saved during the BGFFS algorithm and the estimated pg are continuous-valued.
Additionally, note that BGFFS enables us to simulate datasets that represent a wide and sufficient volume

of rare-event pathways, enabling ML algorithms to train effectively despite potential shifts in distributions.
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Figure 2. Schematic showing key steps for simulating abnormal trajectories using BGFFS algorithm (refer to the

points in Section 2.2.

2.3. Step 2: Data Preprocessing

As part of preprocessing, the pg — process variables data generated during the BGFFS algorithm are filtered
to remove outliers and structured in a clean, tabular format, with the process variables (e.g., temperature,
concentration, and the like) as the input variables, and pg as the dependent variable. Note that during
BGFFS, due to statistical noise-induced random perturbations, a wide distribution of pg is obtained for

crossing points across each order parameter interface, 4. Hence, to improve the predictions provided by
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the ML models, it is important to incorporate data filtering for these ps. Herein, simple filtering techniques
are utilized to retain the pg centered around its mean; stated differently, only those data are retained that

satisfy:

PB, — Ci0i < PB; < DB, T Ci0; 4)

where pg, and o; are the mean and standard deviation of the pp for crossing points generated across 4;; and
¢; is a filter factor, determined experimentally, such that neither too many nor too few data are filtered.
Hence, post preprocessing, the data are organized in a clean, tabular format, as shown in Table 1. Note that

additional preprocessing steps may be required depending on each ML algorithm.

Table 1. Schematic for Tabular Data in our Analyses

PB X, X> X3 X4
PB1 Xi1 X21 X31 X4
PB,2 X12 X322 X332 Xa2

pB'Nsamples Xl:Nsamples Xz'Nsamples X3:Nsamples X4"Nsamples

2.4. Step 3: Predictive Modeling via Machine Learning

Post data generation and preprocessing, using supervised machine learning, models are developed that
predict pg for given process variables; stated differently, a regression problem is solved, given that pg is
continuous-valued. For each ML algorithm considered in this benchmark study, model development

involves three steps:
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I) Data Splitting: The preprocessed tabular data are divided into training and testing data, using randomized

70%-30% splits, as done routinely in practice (Bichri et al., 2024; Kahloot and Ekler, 2021; Vrigazova,
2021).

II) Hyperparameter Optimization with Cross-Validation: Typically, ML models consist of two entities:

hyperparameters to be optimized before training; and model training parameters learned during training.
The predictive performance of ML models is extremely sensitive to the choice of hyperparameters — hence,
these need to be optimized carefully. There are several open-source software packages available for
hyperparameter optimization, including: Hyperopt (Bergstra et al., 2015), Optuna (Akiba et al., 2019), Ray
tune (Liaw et al., 2018), Optunity (Claesen et al., 2014), and the like. Herein, the Optuna framework is
chosen, utilizing a Bayesian optimization technique called a tree-structured parzen estimator, TPE (Bergstra
et al., 2011; Watanabe, 2023), to determine the optimum set of hyperparameters. Additionally, in detailed
benchmark studies comparing various optimization techniques and open-source frameworks, Optuna-TPE
provided the most favorable performance and computation times (Motz et al., 2022; Shekhar et al., 2022).
Typically, the hyperparameter optimization process is carried out with £-folds cross validation:

a) Divide training data into £ sets (“folds”) randomly. Herein, £ = 3.

b) Sample a combination of hyperparameters.

c)Seti=1.

d) Place set i aside, and train the model using the remaining & - 1 sets. (When k = 3, these are sets 2 and 3.)
e¢) Evaluate the performance of the trained model using set i as the validation set and compute the validation
score (e.g., RMSE — root-mean-squared-error).

f) When i < k, seti =i+ 1. Return to d).

g) When i = k, compute the average validation score.

h) Repeat steps b) — g).
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1) Return the combination of hyperparameters that resulted in the maximum/minimum average evaluation
score, depending on the chosen metric (e.g., return the combination that resulted in the minimum average
RMSE).

1II) Model training with the Optimum Hyperparameters: Post optimization, the ML model, with its optimum

hyperparameters, is trained using the entire training data.

Note that eight ML algorithms of varying complexities are considered in this benchmark study.

These are described briefly:

1) Linear SVR (Linear Support-Vector Regressor): An extension of the popular support-vector machines
(SVM) algorithm developed originally for classification problems [when the dependent variable is discrete-
valued or categorical — e.g., “high”, “medium”, and “low”] (Cortes and Vapnik, 1995), linear SVR is a
parametric ML algorithm that involves training a linear model, referred to as hyperplane, with a loss
function that minimizes prediction error, also maintaining a tolerance margin, tube (Drucker et al., 1996).

The parametric model for linear SVR is:
f)=wlix+b (%)

where x is the vector of input features; w is the vector of coefficients (weights), and b is the bias term, for

each sample. Next, the objective function to be minimized during training, and constraints are:

Nsamples (6)

1
JoO =sww +C ) (G +ED
i=1

yi— Wixi+bh)< e+ & (7
(WTXi'l'b)—yl' < ¢+ fi*
fi!fi* =0
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where C is the regularization term for mitigating overfitting; Ngampies 1 the number of samples; §; and & i
are slack variables (these define the penalty given to samples that violate the tolerance margin in the
objective function); & defines the tolerance margin. Note thatw, b, §;, and &;” are parameters learned during
training, while C and ¢ are hyperparameters. For more details, please refer to Drucker et al. (1996).
Additionally, note that Linear SVR requires additional preprocessing steps; categorical and discrete-valued
input variables need to be transformed into integers. Additionally, all input variables need to be scaled

appropriately.

2) KNN (k-Nearest Neighbors): kNN is a nonparametric supervised learning algorithm that estimates the

relationship between the input features and output using the concept of nearest neighbors. Unlike most
algorithms, kNN does not involve a training phase — for regression tasks, KNN estimates the output for an
unknown sample (from the test data) by computing the average output of the £ known samples (from the
training data) nearest to it. kNN requires two key hyperparameters to be specified: the number of nearest-
neighbors, k; and a distance metric for estimating the nearest samples — possible choices include: Euclidean,
Manhattan, and Minkowski metrics (Danielsson, 1980; Li et al., 2011; Suwanda et al., 2020). Similar to
Linear SVR, kNN requires categorical and discrete-valued data to be transformed into integers, as well as
appropriate scaling of input variables, given that kNN involves distance calculations that are sensitive to

scaling.

3) RF (Random Forests): RF is a nonparametric learning algorithm (Breiman, 2001) that involves training

an ensemble of decision trees using bagging (bootstrap aggregating); several decision trees (weak learners)
are trained in parallel independently using different subsets of data that are sampled randomly (shown

schematically in Figure 3a). Then, when predicting using test data, during regression tasks, the predicted
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output is computed as the average of the predictions provided by the trained trees (shown schematically in
Figure 3b). Please refer to the Appendix, Section A.4, for a simple example of a decision tree. Additionally,
RF consists of several training parameters; e.g., optimal feature (input variable) for splitting, optimal split
threshold for that feature, and the like. Key hyperparameters include: n_estimators (number of trees),
max_depth (maximum depth for each tree), min_samples split (minimum number of samples required to
split), and the like. Please refer to Breiman (2001) for more details regarding the training parameters,
hyperparameters, and implementation of RF. Additionally, note that RF requires categorical and discrete-
valued input variables to be transformed into integers, but does not require input features to be scaled.

Train Data: X0, Yerain

Subset 1: Subset 2: Subset 3: LN R Subset Megimators:
Xtrain,in Ytrain xtrain,Zn Ytrain,2 Xtraln_:!r Ytrain,3 Xlrﬂirl,l'luumunu' ytrﬂiﬂ.ﬂuumamrs

Trained Trained Trained Trained Tree,
Tree, Dy Tree, D, Tree, D3 D

Mestimators

(a) Xirain: Input variables for train data; y.in: Dependent variable for train data
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Test Data: Xeq

Predictions Predictions Predictions I Predictions from
from D : Frest1 from D3: Viest 2 from D3: Preg 3

|
l

Restimators - ¥ teStRestimators

Return Average as Final Prediction:

Mestimators =5
i=1 Ytest,i

Ytest = Mestimators

(b) Xeest: Input variables for test data; Jis,: Prediction for trained decision tree 7, Di, given Xiest

Figure 3. Schematic implementing key steps in RF for regression tasks, showing the: (a) Training phase; (b) Testing

phase

4) XGBoost (eXtreme Gradient Boosting): XGBoost is a nonparametric ensemble learning algorithm that

belongs to the gradient-boosting family; several decision trees are trained sequentially, wherein, each
newly-trained tree attempts to improve the predictions made by the previous trees (hence, the term
“boosting”). Additionally, the “eXtreme” component refers to additional regularization terms in the
objective function to prevent overfitting; the “Gradient” term implies that new trees are trained using the
gradients (first-order derivatives) and hessians (second-order derivatives) w.r.t the errors between the
previous tree and the data. Since its development by Chen and Guestrin (2016), XGBoost has become a
popular algorithm for tabular datasets, for regression and classification problems across several fields
(Cerna et al., 2020; Li et al., 2019; Ma et al., 2021; Ogunleye and Wang, 2020), including classification of

rare events (Ashraf et al., 2023; Wang et al., 2023). Note that in prior research, Sudarshan et al. (2024b)
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developed improved dynamic bidirectional multivariate alarm systems for handling rare un-postulated
abnormal events using XGBoost predictive models. The training parameters for XGBoost are similar to
those for RF and decision trees (e.g., optimal feature for splitting, optimal split threshold for the feature,
and the like). XGBoost also consists of several hyperparameters: n_estimators, max_depth, eta (learning
rate that scales the contribution of each tree), subsample (specifies fraction of data used in training each
tree — helps minimize overfitting by introducing randomness), reg alpha (parameter for L1-norm
regularization), reg_lambda (parameter for L2-norm regularization), and the like. Note that some of these
hyperparameters were optimized using Optuna appropriately by Sudarshan et al. (2024b) while developing
XGBoost models. For more details on the algorithm and hyperparameters, please refer to Chen and

Guestrin (2016) and xgboost developers (2023).

5) LightGBM (Light Gradient-Boosting Machines): Like XGBoost, LightGBM is a ML algorithm by Ke

et al. (2017) that belongs to the gradient-boosting family. The key difference between XGBoost and
LightGBM is: trees in XGBoost follow a level-wise growth strategy, in which, two resulting nodes at each
level are split simultaneously; whereas trees in LightGBM follow a leaf-wise growth strategy; only one of
the nodes, chosen optimally, is split further at each level (Liang et al., 2020), potentially reducing model
development times — these are shown schematically in Figure 4. Note that the training parameters and
hyperparameters for LightGBM are similar to those for XGBoost. For more details, please refer to Ke et

al. (2017).
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Figure 4. (a) Level-wise growth strategy followed by XGBoost; (b) Leaf-wise growth strategy followed by

LightGBM

6) CatBoost (Categorical Boosting): CatBoost is another ML algorithm belonging to the gradient-boosting

family, developed by Prokhorenkova et al. (2018). Compared to XGBoost and LightGBM, CatBoost
implements two improvements to mitigate overfitting: 1) Ability to handle data with categorical input
features more-efficiently by calculating ordered target statistics; ii) Implementing ordered boosting — as
per Prokhorenkova et al. (2018), gradient-boosting frameworks developed previously suffer from
prediction shift; typically, each tree in the ensemble is trained using the entire training data, leading
potentially to overfitting. In ordered boosting, each tree is trained using random permutation sets of the
training data, using only the data before each example in the permutation set — ensuring improved
robustness of models in the face of unseen data. Several articles have compared the performance of
XGBoost, LightGBM, and CatBoost across different applications for: home-credit dataset (Daoud, 2019),

insurance claims (So, 2024), medicare fraud detection (Hancock and Khoshgoftaar, 2020), to name a few.

19



Note that the training parameters and hyperparameters for CatBoost are similar to XGBoost and LightGBM.

For more details, please refer to Prokhorenkova et al. (2018).

7) DNN (Dense Neural Network): Deep learning models based on Artificial Neural Networks (ANNs)

have become popular across several fields, most notably for computer-vision applications such as image
recognition (Traore et al., 2018) and video encoding (Ma et al., 2020); natural-language processing (NLP),
such as dialogue summarization (Chen et al., 2021); machine translation (Singh et al., 2017); sentiment
analysis (dos Santos and Gatti, 2014), and the like. The basic building blocks of ANNSs are referred to as
perceptrons, developed by Rosenblatt (1958). A single perceptron model consists of: i) A Linear model,
A(x), comprising of weights w, and bias b (shown previously in Eq. (5)), where x is the vector of input
features, and; ii) An activation function, g(f(x)), applied to the output of the linear model. Choices for
activation function include: rectified linear unit (ReLU) (Nair and Hinton, 2010), hyperbolic tangent (tanh),
sigmoid (suitable for binary classification tasks), and the like. DNNs, also referred to as fully-connected
neural networks (FCNNs), consist of multiple /ayers of several perceptrons, with the DNN referred to as a
deep DNN when there are two or more hidden layers (the layers between the input and the output). DNN
also require a loss function to be specified (for regression tasks, this is typically the mean-squared-error,
MSE), with the weights and biases optimized during training through back-propagation over several
training epochs. Additionally, several optimization routines exist for DNN training: gradient-descent,
stochastic gradient-descent (Ruder, 2017), Adam (Adaptive Moment Estimation) (Kingma and Ba, 2017),
and the like. For detailed explanations, please refer to Zou et al. (2009) and Hassoun (1995). Additionally,
similar to Linear SVR and kNN, DNNs require categorical and discrete-valued input variables to be

transformed into integers, as well as appropriate scaling of input variables.

8) TabNet (Tabular Networks): Given that gradient-boosting frameworks regularly outperform DNNs on

tabular datasets, as observed over several benchmark studies (Borisov et al., 2022; Grinsztajn et al., 2022;
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Shwartz-Ziv and Armon, 2022; Uddin and Lu, 2024), efforts have been made to develop novel neural
network-based architectures, specifically for tabular data. One, developed by Arik and Pfister (2020), is
TabNet. Compared to the classical DNN architecture that consists primarily of fully-connected layers,
TabNet utilizes an atfention mechanism (an attentive transformer layer that assigns weights to different
input features, with important features weighted more heavily) to select the input features most influential
for predictions. Note that this feature-selection capability is inspired from tree-based, gradient-boosting
models, wherein, each tree splits data related to the most important features. Additionally, while both DNNs
and TabNet can utilize embedding layers for processing categorical input features, TabNet is designed
specifically to handle tabular data with mixed input feature types more efficiently. Note that the choice of
preprocessing strategy required depends on the nature of the data and task being addressed. Recently,
several research articles have considered TabNet for applications such as: rainfall forecasting, (Yan et al.,
2021), electric load forecasting (Borghini and Giannetti, 2021), diabetes classification (Joseph et al., 2022),
insurance claims prediction (McDonnell et al., 2023), to name a few. For more details regarding the

architecture, parameters, and hyperparameters, please refer to Arik and Pfister (2020).

2.5. Step 4: Reporting Key Evaluation Metrics

After developing each dataset, as discussed in Section 3, all ML models are evaluated comprehensively

and holistically across three key domains:

A) Model Accuracy on Test Data: The accuracy of the trained ML model on the test data is evaluated

using:

Nsam es . A . 2
Zi:l el (PB,test(l) — DB, test(l)) (8)

Nsamples

RMSE (metric;) = Root Mean Squared Error =
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where pg test 15 the committer probability for the test data, and pg tegt 1S the committer

probability using the trained ML model.

B) Computational Efficiency: Four clock-times are recorded to evaluate computational costs:

1) thyper (metric,): Time recorded for hyperparameter optimization (Step II, Section 2.4).

i1) tipqin (Metricy) : Time recorded for model training (Step 111, Section 2.4).

iil) tiest (Metricy): Time recorded for model testing; stated differently, time taken to generate committer
probability predictions for the test data.

V) tgeploy (Mmetrics) : Time recorded for model deployment; stated differently, time taken by each ML
model to generate new committer probability predictions on-line for a new dynamic simulation (the number
of dynamic simulations, Nsim = 1), &sim, time for a simulation, and model call frequency, callg.qq (frequency
an ML model is called to generate new predictions on-line); e.g., callgeq = 30 indicates the ML model is
called once every 30 time-steps on-line to generate fresh predictions. Note that small callg..q leads to

more-frequent on-line predictions of pp at excessive computational costs.

C) Alarm-system Efficiency: To evaluate the impact of each ML model on efficiency of alarm systems,
we first need to define a specific alarm system. For all datasets utilized in this benchmark study, a 2-level
alarm system is assumed (number of alarm levels, njeyels = 2) based on pg limits (an alarm at level £ is
activated when the real-time pg predicted by a ML model crosses the pg limit defined at that level): for this
benchmark study, these limits were set at pg,; = 0.2, and, ps> = 0.5; where pg, and pg, are the pp limits
defined for levels 1 and 2. Then, the theoretical performance of each alarm level is computed using
Dk theoretical — defined as the theoretical probability with which, alarms, active at the current level &, reach
the next level. Table 2 shows the 2-level alarms specified and the associated py theoretical Values. For
instance, Pj theoretical = PB.1/PB2 = 0.2/0.5=10.4. And, P, theoretical = PB2/1.0 = 0.5, given that level 2 is

the last alarm-level before the undesirable region is reached (where pg = 1.0).
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Table 2. 2-level Alarms Specified and Associated pi theoretical

Level No. (k) PBk P theoretical
1 0.2 04
2 0.5 0.5

Next, for each ML algorithm, the performance of the alarm system is measured using py measured

— defined as the probability for alarms active at the current level £ of reaching the next level measured over

several dynamic simulations, using real-time ML model predictions on-line, computed as:

Nalarms,k—k+1
Malarms,k (9)

pk,measured -

where Ngjarms k 15 the number of alarms active at level &; ngjarms k—k+1 18 the number of alarms at level &
that are active when the process reaches level k+1. Given py theoretical a0d Pk measured> tWO alarm metrics

are proposed to evaluate the alarm-system efficiency: absolute probability difference (Ap), and total alarms:

Nlevels
Ap (metricﬁ) = z klpk,theoretical - pk,measuredl (10)
k=1
Nevels
Total Alarms (metric;) = Najarms = z Nalarms k (11)
k=1

Eq. (10) accounts for both false positive rates (fewer than expected alarms at the current level remain active
when the process reaches the next level) and false negative rates (more than expected alarms at the current
level remain active when the process reaches the next level). Additionally, as per Eq. (10), differences in
higher-level alarms are penalized more heavily. Ap and Total Alarms are recorded over several dynamic

simulations (e.g., Nsim~ 50), with simulation time, #im, and model call-frequency, calls.q. While recording
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these metrics, response actions are not included, given that py theoretical €Stimates do not account for
changes in process dynamics when response actions are activated. Additionally, to ensure consistency,
while recording f4epioy, Ap, and Total Alarms, for each dynamic simulation, a random seed number is utilized
across all models (e.g., 50 random seed numbers are utilized for Nsm= 50). Note that using a random seed
number ensures that the same sequence of statistical noise samples is generated for a dynamic simulation —

enabling consistent comparison among ML algorithms.

2.6. Step 5: Determine Optimal ML Model

Given the evaluation metrics defined in Section 2.5, for our benchmark analyses, a weighted cost function

to be minimized is proposed:

Mmetrics
Cost = Z (a;)(metric; scajed) (12)
i
lai,a,,as,a4,as,a4,a,] =[0.125,0.05,0.05,0.05,0.125,0.3,0.3] (13)

where Mpyetrics 1S the total number of evaluation metrics; Nyetrics = 75 @; 1S the weighting coefficient for
metric;. To ensure consistency in scaling, each evaluation metric in Eq. (12) is scaled by its maximum
value obtained across all ML models. As per Eq. (13), the coefficients are weighed such that primary
importance is allocated to alarm-system efficiency (Ap and Total Alarms) — as = 0.3; a; = 0.3; followed by
model accuracy (ai = 0.125) and model deployment (as = 0.125), with clock-times concerning
hyperparameter optimization (a2 = 0.05), model training (a3 = 0.05), and model testing (a4 = 0.05) weighed

least. For each dataset, the optimal ML model has the lowest Cost.
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3. RESULTS AND DISCUSSIONS

This section provides results for the benchmark analysis obtained for each of the five datasets. Note that
each ML algorithm, for each of its evaluation metrics and Cost estimate, lower values indicate better

performance.

3.1. Dataset I (PI-Controlled Exothermic CSTR)

For the exothermic CSTR with abnormal transitions towards the unreliable region (see the process model
summarized in Appendix A.1), the discrete values considered for the response-action variable, residence

time, 7 (Sudarshan et al., 2023), are:

7€{0.53,0.54,0.55,0.56,0.57,0.58, 0.59} (14)

Note that all other process parameters remain constant (see Table A.1 in the Appendix). For
recording faeploy (metrics), Nsim = 1; tsim = 30,000 mins; callteq = 200; and 7 = 0.53 min. Additionally, for
recording metrics concerning alarm-system efficiency, Nsim = 50; fim = 30,000 mins; callf.q = 200; and 7=
0.53 min. Figure 5 shows pg as function of temperature for Dataset I with the colorbar varying from light
to intense for the residence time, 7. It is observed that pg for reaching the unreliable region increases as

temperature and residence time decrease.
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Figure 5. pg as function of temperature and residence time for Dataset |

Figure 6a shows heatmaps for scaled evaluation metrics recorded for dataset I for the eight ML
algorithms. For each metric, lighter colors indicate better performance. Most algorithms show comparable
performance for model accuracy (RMSEsciea ~ 0.28-0.29), with Linear SVR having the worst model
accuracy, and DNN having slightly-higher RMSE. Note that high RMSE indicates less-accurate on-line pg
predictions, potentially contributing to increased false and missed alarms. With a relatively-simple
development process, Linear SVR compensates slightly with higher computational efficiency, followed by
kNN and gradient-boosting frameworks, with DNN having low costs for deployment despite higher costs
for training, hyperparameter optimization, and testing. For alarm-system efficiency, kNN and DNN
perform significantly better — note that higher Ap and fotal alarms indicate increased false alarms and
missed alarms, potentially resulting in alarm flooding (with the number of alarms significantly greater than
operators can handle, leading to operator distraction and missed alarms). Despite much promise for tabular
datasets, TabNet underperforms significantly in most evaluation metrics. Additionally, despite lower model
development costs (fwyper and fimin), RF records high costs for model deployment (Zicpioy) — potentially
resulting in a lag between on-line process variable measurements and pp predictions. Please refer to Table

A 4 in the Appendix for the hyperparameters optimized for each ML algorithm.
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Figure 6b shows the Cost computed for each ML algorithm. Given the weights defined in Eq. (13),
for Dataset I, KNN is observed to have the lowest cost, and is ranked as the most-optimal ML algorithm,

followed closely by CatBoost and XGBoost, with TabNet ranking last.
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Figure 6. For Dataset 1, (a) Heatmap showing the scaled evaluation metrics; (b) Cost computed for all ML models

3.2. Datasets II — V (PID-Controlled Polystyrene CSTR)

For the PID-controlled polystyrene CSTR (for the process model summarized in Appendix A.2), Table 3
shows the specifications, including the response-action variable, terminal region, and discrete values
considered for the response-action variables. For each dataset, all other process parameters remain constant
(see Table A.2). Note that for datasets Il and I1I, gm = 0.4; and, for datasets IV and V, ¢i =0.1. For recording
tdeploy (metrics), Nem = 1; tim = 150; callgeq = 30; ¢i = 0.1, and gm = 0.3775. Additionally, for metrics
concerning alarm efficiency, Nsim = 50; tsim = 150; callieq = 30, g¢i = 0.1, and gm = 0.4. Figure 7 a-d shows
pa as function of dimensionless temperature for datasets II-V with the colorbar varying from light to intense
for the response-action variable. For datasets II and 1V, it is observed that pg increases as dimensionless

temperature and response-action variables increase; whereas, for datasets I1I and V, while pg decreases with
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increase in dimensionless temperature, the trend with respect to response-action variables is not very clear

(Sudarshan et al., 2024b).

Table 3. Specifications for Datasets 11 — V for PID-controlled Polystyrene CSTR

Dataset Response- Terminal Discrete Values Considered for Response-action
action Region Variable
Variable
II qi Unsafe [0.0875, 0.09, 0.095, 0.0975, 0.1, 0.1025, 0.105, 0.1075]
11 qi Unreliable [0.08, 0.085, 0.09, 0.095, 0.1, 0.105, 0.11]
v Gm Unsafe [0.37,0.375, 0.3775, 0.38, 0.385, 0.39, 0.4, 0.405]
v Gm Unreliable [0.375,0.3775, 0.38, 0.385, 0.39, 0.4, 0.405]
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Figure 7. pp as function of dimensionless temperature for Datasets: (a) II; (b) III; (¢) IV; (d) V

Figure 8 a-d show heatmaps for scaled evaluation metrics for datasets II — V. For model accuracy,
gradient-boosting algorithms achieve stronger predictive performance, with Linear SVR scoring the lowest
RMSE, given its low-complexity. More-complex DNN and TabNet algorithms do not justify their RMSE
scores. For computational efficiency, the less-complex algorithms, Linear SVR and kNN offer fast
computational times, followed by the gradient boosting algorithms, with DNN and TabNet having lowest
computational efficiency (except fast model deployment for DNN, consistent with that observed for dataset
I). Additionally, RF records high costs for deployment, despite relatively-lower costs for model
development, as observed for dataset I. For alarm efficiency, performance varies across the datasets, with
best being CatBoost and RF for dataset II; Linear SVR and LightGBM for dataset I1I; DNN, XGBoost, and

LightGBM for dataset 1V; CatBoost and LightGBM for dataset V. Note — TabNet performs poorly

uniformly.
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Figure 8. Heatmaps showing scaled evaluation metrics for datasets (a) II; (b) III; (¢) IV; (d) V

For datasets II-V, Figure 9 a-d show the Cost for all ML algorithms, given the weights defined in
Eq. (13). CatBoost ranks as the most-optimal ML model for datasets II and V, with DNN the most-optimal

for dataset IV. Note that despite poor model accuracy, Linear SVR compensates by having improved
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computational and alarm efficiencies, thereby, unexpectedly ranking as the most-optimal ML algorithm for

dataset III. With the exception of dataset III, TabNet is the least-optimal model.
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Figure 9. Cost computed for all ML models for datasets: (a) II; (b) IIL; (c) IV; (d) V
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3.3. Average Rankings Across All Datasets for Weights in Eq. (13)

For all ML models, Figure 10 shows the average (mean) rankings across all five datasets, using the
weighting coefficients in Eq. (13). Clearly, the gradient-boosting frameworks achieve favorable rankings,
with CatBoost achieving the highest ranking, followed by LightGBM and XGBoost, with RF, Linear SVR

and TabNet recording the lowest rankings.

Average Ranking

ML Model

Figure 10. Average local rankings computed for models across all datasets for weights in Eq. (13)

3.4. Double-Averaged Global Ranking Across All Datasets and 500 Weight Combinations

Note that the Cost results in Sections 3.1-3.3 (Figures 6b, 9, and 10) are for the single combination of
weighting coefficients in Eq. (13). For more-comprehensive analyses, several combinations of weighting
coefficients are justified. Herein, 500 combinations are considered, with each combination sampled

randomly from uniform distributions, given upper and lower bounds:
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01<a; <02
0.05<a, <0.1 (15)
0.05 < a; < 0.1
0.05 < a, <0.1
0.1 <ag<0.2
03<ag<4

03<a,<4
Note that while the choice of distribution is arbitrary, with the normal distribution and others possible, these
weighting coefficient bounds emphasize alarm-system efficiency over other metrics.
As shown in Figure 11, the use of these randomly-sampled weighting coefficients provides a similar
ranking. CatBoost achieves the highest global ranking, followed by XGBoost, LightGBM, and DNN, with

TabNet achieving the lowest ranking. The increased ranking of XGBoost may warrant further

consideration.

7.552

Double-Averaged Ranking
-

ML Model

Figure 11. Double-averaged, global ranking for 500 combinations of weighting coefficients across all datasets
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4. CONCLUSIONS

In previous research, using path-sampling (BGFFS) and non-parametric machine learning, dynamic,
bidirectional multivariate alarm systems were developed for rare un-postulated abnormal movements away
from normal operating regions, demonstrated successfully on a PID-controlled polymerization CSTR.
However, in predictive modeling, only one ML algorithm was explored: XGBoost.

Herein, a comprehensive framework is developed for benchmark analyses to explore optimal ML
algorithms of varying complexities, for enhancing predictions of rare abnormal events using chemical
process models. For evaluation, several metrics are considered, permitting balances between model
accuracy, and computational and alarm-system efficiencies, with more preference given to alarm-system
efficiencies. For the weighting coefficients considered in Eq. (13), the gradient-boosting frameworks:
XGBoost, LightGBM, and CatBoost, outperform other algorithms, achieving strong predictive performance
at low computational costs, also providing relatively favorable metrics for alarm-system efficiency. DNN
and TabNet require more computational resources that are not justified by their model accuracy, although
DNN offers fast deployment across all datasets. Despite much promise for tabular datasets, TabNet
consistently performs poorly across all datasets. Additionally, Linear SVR and kNN compensate for lower
model accuracies by having low computational costs, but, along with RF, are outperformed consistently by
the gradient-boosting frameworks when all metrics in the Cost are considered. Moreover, based on the
global rankings recorded in Figure 11 that consider 500 randomly-sampled combinations of weighting
coefficients, CatBoost is the most-optimal algorithm across all datasets and evaluation metrics, followed
by XGBoost, LightGBM, and DNN. Note that increased RMSE, Ap and total alarms may contribute
potentially to increased false alarm and missed alarm rates. Additionally, higher model deployment times
may result in a lag between real-time process variable measurements and pg predictions.

To our knowledge, this manuscript is the first ML benchmark analysis that evaluates algorithms for
predicting rare events in chemical process safety. Additionally, while most benchmark frameworks place
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emphasis on model accuracy and computational costs alone, our work is the first that attempts to evaluate

comprehensively and holistically ML algorithms of varying complexity by also considering alarm-system
metrics (i.e., the number and efficiency of alarms activated). Hence, such comprehensive benchmark
frameworks will aid the operator in selecting the most-optimal ML algorithm for process monitoring and
predictive maintenance against rare abnormal events, improving their effectiveness in ensuring safety and

reliability.

5. FUTURE RESEARCH

Note that despite encouraging findings herein, a few limitations should be addressed in future
research. These are discussed briefly:
1) Hybrid Models Capturing Physics and Plant Data: Herein, all datasets generated using BGFFS are based
on first-principles models (material and energy-balance ODEs, reaction kinetics, and the like), with
assumptions simplifying the process models (Sudarshan et al., 2024b, 2021). In future research, hybrid
computational models (e.g., physics-informed neural networks, PINNs) involving underlying physics,
coupled with plant data from sensors, alarm databases, and the like, should be developed, with benchmark
analyses extended to such models.
2) Considering Several Alarm-system Combinations and Improved Alarm Rationalization: The analyses
presented herein utilize a 2-level alarm system (see Table 2). For more-comprehensive analyses, it is
important to consider several alarm-system combinations, but this would require significant computational
costs. Hence, to address this, in future work, more-rigorous sensitivity analyses should be conducted to
measure the sensitivity of alarm-system combinations to the optimal ML algorithm. Additionally, Ap (see
Eq. (10)) should be utilized to develop more-intelligent, automated/semi-automated, alarm rationalization
strategies, a significant improvement compared to the framework developed in our prior research
(Sudarshan et al., 2024a).
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3) Accounting for Source-to-source Variability: Herein, the BGFFS algorithm simulates numerous rare-
event pathways efficiently by introducing random perturbations in inlet feed concentrations — the only
source of variability considered. To further account for source-to-source variability, future research should
extend our simulations to include variations and quantify uncertainty in crucial process parameters that
affect operational behavior of chemical processes.

4) Model Interpretability as a Benchmark Metric: Model interpretability is increasingly important in the
explainable Al paradigm (Linardatos et al., 2021). As complex ML models are integrated increasingly into
automation and decision-making in chemical industries, especially in safety-critical environments, the need
to ensure they are transparent and interpretable is becoming more important. This is crucial for increasing
trust in model predictions and facilitating informed decision-making by industrial practitioners. Although
explainable Al frameworks such as LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro et
al., 2016) and SHAP (Shapley Additive explanations) (Lundberg and Lee, 2017) offer valuable insights
into feature importance and local model behavior (stated differently, the influence of each input feature on
model predictions), there remains a lack of standardized quantitative metrics for comparing interpretability
across different models. Future research is needed to develop such metrics to be included in benchmark

analyses.
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APPENDIX

A.1. Proportional-Integral (PI)-Controlled Exothermic CSTR

Previously, novel, multivariate alarm systems were developed using path-sampling and predictive modeling
for arelatively simple controlled exothermic CSTR, followed by the alarm rationalization-DRAn integrated
framework for further enhancement (Sudarshan et al., 2024a, 2023). In this Appendix A.1, we provide a
brief summary of the process model. Figure A.la shows a schematic of the model for a Proportional-
Integral (PI)-controlled exothermic CSTR, with first-order kinetics, 4 = P. The assumptions for this ideal
process model include: i) Constant residence time; ii) Incompressible flow; iii) Complete back-mixing. The
model controls the reactor temperature, 7, by manipulating the coolant flow-rate, Fc. Additionally, Figure
A.1b shows the steady-state behavior for the model, with multiple steady-states observed for residence
time; T € [0.47, 0.56] min. Two stable steady-states are observed: at the high conversion-high temperature

b

basin ‘A’, and low-conversion, low-temperature basin ‘B’. In between these two, a wide unstable “cliff”
exists, such that when the process operates near this cliff, with sufficient input perturbation, the process

shifts rapidly to either of the two stable regions (Moskowitz et al., 2018; Sudarshan et al., 2021).

The governing equations for the PI-controlled process are:

dcy V E A.l
VW=;(CAf—CA+ ﬂ)—VkoeXP(_ﬁ)CA b
dr _ pVe, E (&.2)
dTe  Fe UA (A3)
dt V; co ¢ PwVjCpw ¢
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e
FC=FCO+KC(T—TSP—T—I>;305FCS7O (A-4)
I
de, (A.5)
a et
Cao = 1.2kmol/m3; T, = 700 K (A.6)

where C, is the concentration of reactant 4; 7 is the reactor temperature; Car and Tt are the concentration
and temperature for the reactant feed stream; Fo is the cooling water flow-rate at steady state, Kc is the
controller gain, e; is the integral error and tj is the integral time constant; 7o is the inlet temperature of the
cooling water, Cyp, is the initial value for the concentration, Ty, is the initial value for the temperature, Tsp is
the set-point temperature for the controller, Vieacior 1S the volume of the reactor, U is the overall heat-transfer
coefficient, 4 is the heat-transfer area, AH is the heat of reaction, p is the feed density, ¢, is the heat
capacity of the feed stream, V; is the volume of the cooling-water jacket, p,, is the density of the cooling
water, and cpy, is the specific-heat capacity of the cooling water (refer to Table A.1). To induce un-
postulated abnormal transitions from the desirable basin “A” to the undesirable and unreliable basin “B”,
statistical “noise”-induced perturbations, #, are utilized. Note that # is sampled randomly at every
integration time-step from a normal distribution; 7 ~ N (i, 0,72), with mean: yu = 0, and variance: anz =
0.02. Figure A.lc shows a dynamic brute-force simulation of the process under noisy operation, showing
the un-postulated abnormal transition from basins A to B. Dataset I contains process variable data for
several such trajectories simulated efficiently using BGFFS, followed by calculations of the committer

probabilities and preprocessing (Section 2.3).
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Figure A.1. (a) Schematic of the PI-controlled exothermic CSTR; (b) Process under steady-state operation; (c)
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Process showing the “noise”-induced un-postulated abnormal transition.

Table A.1. Process Constants and Parameters for PI-Controlled Exothermic CSTR

Parameter Value Unit
A 30 m?
Car 2 kmol/m?
Cp= Cpw 4 kJ/(kg-K)
E 1.50E+04 kJ/kmol
Fco 50 m?/min
ko 17.038 1/min
R 8.314 kJ/(kmol-K)
Tco 300 K
Tr 300 K
Tsp 800 K
U 100 kJ/(min-K-m?)
Vieactor = V_] 10 m3
AH -2.20E+06 kJ/kmol
P =pw 1,000 kg/m?
Kc 0.02 m?/(min-K)
T 25 min
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A.2. Proportional-Integral-Derivative (PID)-Controlled Polymerization CSTR

Given the limitations of the alarm systems developed for the controlled exothermic CSTR, in recent

research, improved, dynamic, bidirectional multivariate alarm systems were developed for a PID-controlled

polystyrene CSTR, capable of handling un-postulated abnormal shifts to multiple undesirable regions:

unsafe and unreliable (Sudarshan et al., 2024b). In this Appendix A.2, we provide a brief summary of the

process model. Figure A.2a shows a schematic of the model. The governing equations for the

dimensionless PID-controlled polystyrene CSTR are:

dx1
T = dixar— (G + qm + qs)x1 — Paka(x3)xq
dx, 5
T Gm G2+ 1) — (Gi + qm + 45Xz — Ppip(X3)x2x5; 1~ N (0, 0,)%)
dx3
T = (¢ + qm + qs)(x3r — x3) + ﬁ¢pr(x3)x2x5 — 0(x3 — x4)
dx4
a7 = 81[qc(xar — x4) + 865 (x3 — x4)]
Yo = 2f parq(x3)xq
> Perce(x3)
1 d( )
, X3, X3
dc = qco — K (x3,sp — X3 ) + T_f(x&sp — X3 )dt +1p S;t
I
0
0<q. <5

x1,0 = 0.004’1; x2,0 = 0.2156; X3,0 = 0.951; x4,0 = _1.1191; qC,O = 1.5

YaX3
Kq(cg) = exp | 2

o
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(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)



(A.16)

YiX3
Kke(x3) = exp X3
1+
Yp

(A.17)
(x3) =
K, (x3) = exp

P 1+ 2
¥p

where xi1, x2, x3, x4, x5 are the dimensionless initiator concentration, monomer concentration, reactor
temperature, coolant temperature, and concentration of growing polymer; @i, qm,qs,qc are the
dimensionless flow rates for initiator, monomer, solvent and coolant streams; ¢q, ¢p,, ¢ are Damkohler
numbers for initiator decomposition, propagation, and termination; ygq,¥p, ¥ are dimensionless activation
energies for initiator decomposition, propagation, and termination; [ is the dimensionless heat of reaction,
6 is the dimensionless heat-transfer coefficient, §; is the dimensionless reactor volume, &, is the
dimensionless specific heat, f'is the initiator efficiency; xif, X2r, X31, x4r are the dimensionless initiator feed
concentration, monomer feed concentration, reactor feed temperature, and coolant feed temperature; x o,
X2,0» X3,00 Xa,0» qco represent initial values. Similar to the PI-controlled exothermic CSTR, statistical
“noise”, n, is sampled at every integration time-step, from a normal distribution, NV ( u, 0,12 ), with mean:
u = 0; and variance: 0,72 =0.0014. Note that 1 is added to the dimensionless monomer concentration, xar,
in Eqn. (A.8). Figure A.2b shows the process under steady-state operation, with the process constants and
parameters in Table A.2; the intermediate, unstable region is the desirable region, with possible un-
postulated abnormal shifts to both unsafe and unreliable regions, which are stable. Figure A.2 c-d shows
the process under noisy operation, with un-postulated abnormal transitions observed towards both
undesirable regions. In Figure A.2c, the process moves from x3 = 0.95 in the unstable region to a brief visit
to the unreliable region before settling in the unstable region. In Figure A.2d, it moves first to the unsafe
region before returning to the unstable region. For more details regarding the process model and these

noisy trajectories, please refer to and Russo and Bequette (1998) and Sudarshan et al. (2024b).
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Figure A.2. (a) Schematic of PID-controlled polystyrene CSTR; (b) Process under steady-state operation, showing the
desirable unstable and undesirable stable region. Note the key bifurcation points: limit points, LP, and Hopf bifurcation
points, H; (c) Process under dynamic operation, showing the un-postulated transition towards the unreliable region; (d)

Process under dynamic operation, showing the un-postulated transition towards the unsafe region.
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Table A.2. Process Constants and Parameters for PID-controlled Polystyrene CSTR

Parameter Value
qi 0.1
Gm 0.4
qs 0.48571
ba 0.01688
o 2.1956 x 107
of 9.6583 x 10"
X1f 0.06769
Xof 1.0
X3¢ 0.0
Xaf -1.5
1) 0.74074
61 0.90569
8, 0.37256
B 13.17936
f 0.6
X3,5p 0.85
K, 50
Tp 0.9
T 5

A.3. Computational Specifications

Note that all analyses and results presented herein were conducted on a Desktop computer, having
specifications:
i) Operating System (OS): Linux via WSL (Windows Subsystem for Linux) 2.
i) CPU: 12%- generation Intel i7-12700K with 12 cores (8 performance + 4 efficiency), 32 GB
DDRS5 RAM.

iii) GPU: NVIDIA RTX 3060 Ti, 8 GB RAM.
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The Python programming language (version 3.9) is utilized, leveraging several powerful open-
source software packages, including: NumPy (Harris et al., 2020), Pandas (McKinney, 2010) , SciPy
(Virtanen et al., 2020), Matplotlib (Hunter, 2007), Scikit-Learn (Pedregosa et al., 2011) XGBoost (Chen
and Guestrin, 2016), LightGBM (Ke et al., 2017), CatBoost (Prokhorenkova et al., 2018), Numba (Lam et
al., 2015), Optuna (Akiba et al., 2019), to name a few. For developing DNNs, PyTorch (Paszke et al., 2019)
is utilized; with PyTorch-TabNet (Arik and Pfister, 2020; Dreamquark, 2019) utilized to develop TabNet
models. Also, for GPU-acceleration during model development, the NVIDIA Compute Unified Device
Architecture (CUDA) toolkit (NVIDIA et al., 2022) is utilized. Note that while XGBoost, LightGBM,
CatBoost, PyTorch and PyTorch-TabNet have native support for CUDA-based GPU-acceleration, the
Scikit-Learn-based implementation of Linear SVR, kNNs, and RF does not support GPU acceleration
natively — to address this, RAPIDS Al: an open-source suite of software packages developed for GPU
acceleration (RAPIDS Development Team, 2023), is utilized, with cuaML and cuDF packages providing

GPU acceleration for Linear SVR, kNNs, and RF.

A.4. Simple Example of a Decision Tree

Figure A.3 shows a schematic for a decision tree involving an example dataset created for demonstration
purposes only, containing just 10 samples (Nsamples = 10), to predict the committer probability, ps as a
function of temperature, 7. For this dataset, Table A.3 shows pg and T for each of the samples. At each
iteration, the optimum split threshold for 7" is computed using the variance reduction method described in
(Breiman et al., 2017). On this basis, the data is split further, with the splitting process terminated when
insufficient data remain, after which the average pgis returned. For instance, at the first split, the optimum
split threshold for T is computed as T = 480 K — then, the data are divided into two sets: 5 samples for
which, T'<=480 K, and 5 samples for which, 7> 480 K. The splitting process continues for both sets until

the number of samples remaining in a set iS <=Nmin (Nmin 1 the threshold for the number of samples in a set
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to stop splitting; e.g., in Figure A.3, Nmin = 3) thereby, returning the average pg for that set. To check for
consistency with the data in Table A.3, note the average pg values returned at the end of the decision tree in
Figure A.3 — for instance, there are 2 samples for which, 7<= 360 (7= {300, 340}; ps = {0.1, 0.2}), with
the average pg for these samples = 0.15, consistent with Figure A.3. Similarly, there are 3 samples for

which, 360 < T'<=480 (T= {380, 420, 460}; ps = {0.3, 0.4, 0.5}), with their average pp = 0.4.

Input Data: Temperature, T
Output Data: Committer Probability, p,
Noumpios =10

T<=480K

T=>480K
Nampies = 3 A

Nompies = 3

T<=600K
Noampres = 3

Output =5, =0.7

T<=360K
Noamptes = 2
Output =p, =0.15

T'=360K
‘NLum_m'w.\ =3
Output =p, =04

T>600K
Noampies = 2
Output = 7, = 0.95

Figure A.3. Schematic of a decision tree, a flowchart-like model that helps make decisions by answering a series of

questions based on the input variables (e.g., temperature) of the data, ultimately leading to a decision or prediction.

Table A.3. Example Dataset for the Decision Tree Trained in Figure A.3

Temperature, 7 (K) Committer Probability, pg
300 0.1
340 0.2
380 0.3
420 0.4
460 0.5
500 0.6
540 0.7
580 0.8
620 0.9
660 1.0
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A.S. Table of Hyperparameters Optimized for Each ML Algorithm

Table A.4 shows the hyperparameters optimized for each model, as part of ML model development

described in Section 2.4, along with their references.

Table A.4. Hyperparameters Optimized for Each ML Algorithm in Section 2.4

ML Algorithm Hyperparameters Optimized References
Linear SVR C, epsilon, loss Pedregosa et al. (2011);
RAPIDS Development Team
(2023)
kNNs n_neighbors, metric Pedregosa et al. (2011);
RAPIDS Development Team
(2023)
RF n_estimators, max_depth, Pedregosa et al. (2011);
min_samples _split, RAPIDS Development Team
min_samples leaf (2023)
XGBoost eta, subsample, n_estimators, Chen and Guestrin (2016)
reg alpha, reg lambda,
max_depth,
early stopping rounds
LightGBM learning rate, subsample, Keetal. (2017)
reg_alpha, reg lambda,
max_depth,
num_boosting rounds,
early stopping rounds
CatBoost eta, n_estimators, reg_lambda, Prokhorenkova et al. (2018)
max_depth,
early stopping rounds
DNN embedding size, learning rate, Paszke et al. (2019)
num_layers, neurons_per_layer,
epochs, patience
TabNet cat_emb_dim, max_epochs, Arik and Pfister (2020);
patience Dreamquark (2019)
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