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ABSTRACT 

 

Previously, using forward-flux sampling (FFS) and machine learning (ML), we developed multivariate 

alarm systems to counter rare un-postulated abnormal events.  Our alarm systems utilized ML-based 

predictive models to quantify committer probabilities as functions of key process variables (e.g., 

temperature, concentrations, and the like), with these data obtained in FFS simulations. Herein, we 

introduce a comprehensive benchmark framework for rare-event prediction, comparing ML algorithms of 

varying complexity, including Linear Support-Vector Regressor and k-Nearest Neighbors, to more 

sophisticated algorithms, such as Random Forests, XGBoost, LightGBM, CatBoost, Dense Neural 

Networks, and TabNet.  This evaluation uses comprehensive performance metrics: RMSE, model training, 

testing, hyperparameter tuning and deployment times, and number and efficiency of alarms.  These balance 

model accuracy, computational efficiency, and alarm-system efficiency, identifying optimal ML strategies 

for predicting abnormal rare events, enabling operators to obtain safer and more reliable plant operations. 
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1. INTRODUCTION 

 
 

1.1. Progress of Industrial Revolution and Challenge of Rare, Un-postulated Abnormal Events 

Over the past few centuries, several industrial revolutions have transformed the chemical and 

manufacturing industries.  These began with the first industrial revolution in the mid-1700s, focused on 

mechanization through water and steam engines, and railroads (Crafts, 2011; Mohajan, 2019); then moved 

to the second industrial revolution in the mid-to-late 1800s, focused on electrification, ramping-up 

manufacturing and improving efficiency by introducing assembly lines (Mokyr and Strotz, 1998); then 

advanced to the third industrial revolution in the late-1900s, introducing automation technologies (e.g., 

distributed control systems; , DCS), computers and electronics (Mohajan, 2021; Naboni and Paoletti, 2015); 

and then proceeded to the current Industry 4.0 vision of digitalization, consisting of path-breaking 

technologies, such as the internet-of-things (IoT) (Belli et al., 2019; Soori et al., 2023), artificial intelligence 

and machine learning (AI/ML) (Bécue et al., 2021; Candanedo et al., 2018; Dingli et al., 2021), 

cybersecurity and cyber-physical systems (Culot et al., 2019; Ervural and Ervural, 2018; Hashimoto et al., 

2013), and, big-data analytics and cloud computing (Gokalp et al., 2016; Kim, 2017).  Numerous 

perspectives are anticipating Industry 5.0, with foci on customization and sustainability, consisting of 

technologies such as human-computer interaction, collaborative robotics, and, augmented reality and mixed 

reality (AR/MR) (Barata and Kayser, 2023; Demir et al., 2019; Ghobakhloo et al., 2023; Raja Santhi and 

Muthuswamy, 2023).   

Remarkably, despite these breakthroughs, the chemical manufacturing industries struggle to prevent safety 

accidents (e.g., thermal runaways, release of flammables, and chemical spillage) and reliability failure 

events (e.g., poor product quality and related financial losses).  The former have resulted in numerous 

fatalities, including: the Pemberton Mill accident in 1860, the Grover shoe factory disaster in 1905, the 

Flixborough disaster in 1974 (Hailwood, 2016), the Bhopal gas tragedy in 1984 (Broughton, 2005; Gupta, 

2002; Sriramachari, 2004), the Chernobyl disaster in 1986 (Saenko et al., 2011), the BP Texas City refinery 
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explosion in 2005 (Holmstrom et al., 2006), the Deepwater Horizon oil spill in 2010 (Beyer et al., 2016), 

and the Fukushima disaster in 2011 (Labib and Harris, 2015).  Often, such catastrophic accidents are 

triggered by rare, un-postulated abnormal events unidentified during prior HAZOP studies, and unknown 

at the time of occurrence.  From the perspective of chemical process safety, rare events are defined as “low-

frequency high-consequence” events (Aven, 2020).  Additionally, there are very few occurrence data, 

making it challenging to predict their likelihood using data-driven quantitative techniques.  While extensive 

near-miss data often help to prevent accidents, more accurate estimates are needed.  Moreover, routine 

alarm management systems, created using HAZOP studies,  are often unable to identify such abnormal rare 

events; e.g., the root-cause of the BP Texas City refinery explosion was not identified during HAZOP 

studies (U.S. Chemical Safety and Hazard Investigation Board, 2007).  While automated Safety 

Instrumented Systems (SIS) are usually successful in preventing accidents through interlock activation, 

they contribute to plant reliability issues (causing shutdowns, maintenance, and start-up), resulting in 

production-time and financial losses.  Given these numerous challenges, there is a strong motivation to 

develop enhanced multivariate alarm systems for identifying and handling these rare un-postulated 

abnormal events more-efficiently – enabling operators to improve plant safety and reliability. 

 

1.2. Artificial Intelligence and Machine Learning (AI/ML) for Quantitative Analyses of Rare Events 

AI/ML is one of the cornerstones of Industry 4.0 vision for improved automation through digital 

transformation.  Over the past decade, there has been an exponential rise in AI/ML research across several 

scientific domains, including chemical engineering applications: drug discovery (Lavecchia, 2015; 

Vamathevan et al., 2019), catalysis (Kitchin, 2018; Toyao et al., 2020), materials science (Morgan and 

Jacobs, 2020; Wei et al., 2019), computational fluid dynamics (Hanna et al., 2020; Kochkov et al., 2021), 

molecular dynamics (Gastegger et al., 2017; Wang et al., 2020), process monitoring and fault detection 

(Arunthavanathan et al., 2022; Harkat et al., 2020), to name a few.  With respect to quantitative estimation 

of rare-events for chemical process safety, AI/ML-based techniques have been developed; a parametric 
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reduced-order modeling approach was developed to estimate and analyze the consequence of rare abnormal 

events, using the k-Nearest Neighbors ML algorithm, and demonstrated on a cardon dioxide release study 

(Kumari et al., 2021).  Additionally, optimal ML algorithms were applied to predict and analyze the root-

causes of occupational safety events (Sarkar et al., 2019).  In related work, three categories of classification 

ML algorithms, including wide, deep, and wide and deep, were introduced and analyzed using accident data 

for severity predictions (Tamascelli et al., 2022).  Moreover, a novel anomaly detection-based classification 

algorithm was developed using real-time data from industrial processes (Quatrini et al., 2020). 

Despite significant advances, the utilization of ML algorithms for prediction of rare abnormal events 

presents significant concerns.  From amongst a vast choice of ML techniques, it is crucial to select an 

algorithm most relevant to the target application.  Additionally, most ML algorithms developed for rare 

events are purely data-driven, based on data from process historians, accident data, or alarm databases. And, 

due to the scarcity of data for truly rare events, data quality is a concern, given that ML model performance 

relies heavily on such data (Budach et al., 2022; Jain et al., 2020).  Given this lack of occurrence data, it 

is important to integrate AI/ML-based techniques with efficient simulation-based techniques (e.g., 

path-sampling), capable of identifying and generating pathways for rare un-postulated abnormal 

events. 

 

1.3. Benchmark Analyses of ML Algorithms 

With the challenge in selecting relevant algorithms, benchmark analyses of ML algorithms are ubiquitous 

across several scientific domains having access to open-source databases.  A large-scale benchmark 

framework, MoleculeNet, was developed for benchmarking ML algorithms for molecular datasets, 

including data for over 700,000 compounds (Wu et al., 2018).  Similar analyses and comparisons among 

several ML algorithms have been conducted for traffic-sign recognition (Stallkamp et al., 2012), healthcare 

datasets (Purushotham et al., 2018), federated learning (He et al., 2020), scientific machine learning 

(Thiyagalingam et al., 2022), detection of software defects (Aleem et al., 2015), time-series forecasting 
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(Pfisterer et al., 2021; Xie and Wang, 2020), and cancer research (Feltes et al., 2019), to name a few.  Such 

rigorous benchmark analyses have also been extended specifically for tabular data –; the most common 

data format utilized across several scientific domains (Shwartz-Ziv and Armon, 2022).  Many of these 

studies report that for supervised learning tasks (regression and classification) using tabular data, gradient-

boosting frameworks (e.g., XGBoost, CatBoost, LightGBM) outperform more-complex neural network-

based, deep-learning architectures, achieving comparable or superior accuracies at lower computational 

costs (Borisov et al., 2022; Grinsztajn et al., 2022; Shwartz-Ziv and Armon, 2022; Uddin and Lu, 2024).  

More-recently, in related research, a comprehensive survey was conducted for predicting rare-events – 

considering data, preprocessing, algorithmic techniques, and evaluations (Shyalika et al., 2023).  While 

most studies include several datasets and algorithms, it is very challenging to extend these for data 

concerning safety and reliability of chemical processes – due to lack of occurrence data accompanying such 

rare-events.  Often, datasets pertaining to rare-events are highly imbalanced; with the number of instances 

indicative of rare-events significantly less than both normal and near-miss instances.  Additionally, apart 

from model accuracies/errors and computational costs, it is also crucial to analyze the impact of ML 

algorithms on alarm-system efficiency; e.g., the number and efficiency of alarms annunciated in 

identifying abnormal behavior accurately – a missing component in existing benchmark studies. 

 

1.4. Prior Research: Developing Improved, Multivariate Alarm Systems Using Forward-Flux 

Sampling and Machine Learning 

Given the limitations of HAZOP-based alarm management systems in identifying and mitigating rare un-

postulated events, in previous research, we developed improved, novel, multivariate alarm systems using 

forward-flux sampling (FFS) and machine learning – based on random statistical “noise”-induced 

perturbations in one or more process variables that ultimately result in rare un-postulated abnormal shifts 

from normal to undesirable (unsafe or unreliable) regions (Sudarshan et al., 2023, 2021).  Our alarm 

systems utilize ML-based algorithms that predict the committer probability as a function of the process 

variables.  Then, to enhance the quality and efficiency of the alarm systems, we developed an integrated 
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framework for alarm rationalization and dynamic risk analyses (Sudarshan et al., 2024a).  First, our 

techniques were demonstrated successfully for a relatively simple exothermic CSTR process model.  Then, 

we improved our methods for more-complex polymerization CSTRs, resulting in dynamic, bidirectional 

multivariate alarm systems based on real-time predictions of committer probabilities, using more-advanced 

nonparametric ML algorithms.  This addressed the decision-science component of risk assessment and 

machine learning; given predictions by the ML algorithms, determining the actionable strategies for 

reducing the real-time committer probabilities (Sudarshan et al., 2024b).   

 

1.5. Benchmark Analyses of ML Algorithms for Rare Abnormal Events 

Herein, we introduce a comprehensive framework for benchmark analyses, comparing several ML 

algorithms, of varying complexities, for un-postulated rare-event predictions of chemical process models.  

We begin with Linear Support-Vector Regressor (Linear SVR), k-Nearest Neighbors (kNNs), and move to 

more-complex algorithms, including: gradient-boosted decision trees (XGBoost, LightGBM, CatBoost) 

and deep-learning approaches (dense neural networks and TabNet).  Two chemical process models are 

considered; a PI-controlled exothermic CSTR, and a PID-controlled polystyrene CSTR, using five tabular 

datasets for committer probability-process variables data generated using the branched-growth variant of 

FFS (BGFFS).  In our evaluation, several metrics are considered: RMSE; clock-times recorded for training, 

testing, hyperparameter tuning and model deployment; and factors affecting alarm systems, number and 

efficiency of multivariate alarms activated in real-time based on the predictions provided by each ML 

algorithm.  By considering diverse evaluation metrics (with alarm efficiency being novel when 

benchmarking ML algorithms), we seek to identify optimal ML strategies to predict and handle rare un-

postulated abnormal events, thereby, improving overall safety and reliability.  
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2. MATERIALS AND METHODS 

2.1. Overview of Key Steps 

Figure 1 provides an overview of the steps and methods utilized in this paper, with the steps 

described in subsequent sections. 

  

Figure 1. Overview of Key Steps 

 

2.2. Step 1: Data Generation via Forward-flux Sampling 

Path-sampling algorithms are Markov-Chain Monte-Carlo (MCMC)-based techniques, utilized routinely in 

molecular dynamics (MD) to analyze and simulate rare events from chemical reactants to products, 

including: crystal nucleation of hard spheres (Filion et al., 2010) and sodium chloride (Jiang et al., 2018), 

stochastic nonequilibrium systems (Allen et al., 2006), methane hydrate nucleation (Arjun and Bolhuis, 
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2023; Bi and Li, 2014), and the like.  In MD, a rare event is an event whose initiation time (time taken to 

initiate the rare event) is multiple orders of magnitude greater than its duration (Borrero and Escobedo, 

2007; Hartmann et al., 2014),  In previous research, as a first application of path-sampling algorithms for 

analyzing rare events for chemical process safety, Moskowitz et al. (2018) introduced transition-path 

sampling (TPS) [developed originally for MD by Bolhuis et al. (2002), Dellago et al. (2002, 1998)], 

demonstrated on an exothermic CSTR and an air separation unit (ASU).  To overcome the computational 

limitations of TPS, Sudarshan et al. (2021) introduced forward-flux sampling (FFS) [developed originally 

for MD by Allen et al. (2006)].  Note that FFS is from the same family of path-sampling algorithms as TPS, 

simulating rare un-postulated trajectories more-efficiently in a forward, piecewise manner, with the direct 

variant, DFFS, introduced initially.  More recently, the branched-growth variant of FFS (BGFFS) was 

utilized, generating trajectories more-suitable for committer analyses [conducted previously in MD by 

Borrero and Escobedo (2007); Peters and Trout (2006)], resulting in improved, multivariate alarm systems 

for a P-only controlled exothermic CSTR (Sudarshan et al., 2024a, 2023) and a PID-controlled polystyrene 

CSTR (Sudarshan et al., 2024b).  The steps involved in the BGFFS algorithm, shown schematically in 

Figure 2, include: 

i)  Define the initial desirable basin A and terminal undesirable basin B. 

ii) Pick a suitable order parameter variable, 𝜆; typically, this is a process variable that has a strong influence 

on the process dynamics, capturing process deviations more-rapidly than other variables, and is not 

perturbed significantly using statistical noise; e.g., the reactor temperature. 

iii) Based on the chosen 𝜆, divide the space between the two basins into finite interfaces:  𝜆0, 𝜆1 … 𝜆n, 

where 𝜆0 and 𝜆n represent the bounds for basins A and B.  Note that n is the number of interfaces. 

iv) Simulate a long initial trajectory that generates finite crossings across λ0; if required, repeat this step for 

multiple trajectories to generate sufficient crossing points, with valuable data for all process variables being 

saved at every crossing point. 
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v) Compute the initial rate of transition across 𝜆0, 𝑟0, as the total crossings divided by the total time spent 

in basin A by all the initial trajectories.  

vi) Select a crossing point from among the saved crossings across 𝜆0 and simulate m0 trajectories from that 

point, each of which continues until 𝜆1 is crossed.  Save the variables at all such crossing points. 

vii) Simulate m1 trajectories from every crossing point across 𝜆1 that generate crossing points across 𝜆2.  

Save the variables at all such crossing points. 

viii) Iterate step vii) for all subsequent interfaces till 𝜆𝑛; stated differently, simulate 𝑚𝑖 trajectories from all 

crossing points at 𝜆𝑖 that continue until 𝜆𝑖+1 is reached; save the variables at all such crossing points at 

𝜆𝑖+1; ∀ 𝑖 = 2, 3… 𝑛 − 1.  

ix) Compute the overall transition probability of reaching basin B from basin A: 

  

𝑝A→B =  
𝑁(𝜆𝑛|𝜆0)

∏ 𝑚𝑖
𝑛−1
𝑖=0

    

 

                                             (1) 

 

where 𝑁(𝜆𝑛|𝜆0) is the number of branches that reach basin B (from 𝜆𝑛−1 ) and ∏ 𝑚𝑖
𝑛−1
𝑖=0  are the total 

possible number of branches. 

x) Compute the overall rate of transition, 𝑟A→B, as the product of 𝑟0 and 𝑝A→B(𝜆𝑛|𝜆0). 

xi) Repeat steps iv) – x) for other crossing points at 𝜆0 and compute the average overall probability and rate 

of transition: 𝑝̅A→B and 𝑟̅A→B.   

 Note that every crossing point generated during the BGFFS algorithm, with variables x, has an 

associated committer probability, pB(x), defined as the probability of a trajectory fired from that point 

reaches or “commits” to the terminal basin B.  The committer probabilities are computed recursively as 

(Borrero and Escobedo, 2007): 

  

𝑝𝑗
𝑖(𝜆𝑖+1|𝜆𝑖) =  

𝑁𝑗
𝑖

𝑚𝑖
 

 
                        (2) 
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𝑝𝐵𝑗
𝑖 =   𝑝𝑗

𝑖(𝜆𝑖+1|𝜆𝑖) × 
∑ 𝑝𝐵𝑘

𝑖+1𝑁𝑗
𝑖

𝑘=1

𝑁𝑗
𝑖

=  
∑ 𝑝𝐵𝑘

𝑖+1𝑁𝑗
𝑖

𝑘=1

𝑚𝑖
;  

𝑖 = 𝑛 − 1, 𝑛 − 2, … 0 

 

    (3) 

 
 

where 𝑝𝑗
𝑖 is the probability for a trajectory initiated from a point j at 𝜆𝑖 to reach the next 

interface, 𝜆i+1; 𝑁𝑗
𝑖  is the number of successful trajectories reaching 𝜆𝑖+1 from that point; 𝑚𝑖 is the total 

number of trajectories initiated from that point; and 𝑝𝐵𝑗
𝑖 is the committer probability for that point.  For 

example calculations, please refer to Sudarshan et al. (2024b, 2023).  Additionally, note that depending on 

the process parameter selected, initially as the response-action variable (a variable that is varied in real-

time in response to alarms), the BGFFS algorithm and pB calculations are repeated for multiple discrete 

values of  the response-action variable.  Hence, this makes the response-action variable discrete-valued, 

whereas, the other variables saved during the BGFFS algorithm and the estimated pB are continuous-valued.  

Additionally, note that BGFFS enables us to simulate datasets that represent a wide and sufficient volume 

of rare-event pathways, enabling ML algorithms to train effectively despite potential shifts in distributions. 
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Figure 2. Schematic showing key steps for simulating abnormal trajectories using BGFFS algorithm (refer to the 

points in Section 2.2. 

 

2.3. Step 2: Data Preprocessing  

As part of preprocessing, the pB – process variables data generated during the BGFFS algorithm are filtered 

to remove outliers and structured in a clean, tabular format, with the process variables (e.g., temperature, 

concentration, and the like) as the input variables, and pB as the dependent variable.  Note that during 

BGFFS, due to statistical noise-induced random perturbations, a wide distribution of pB is obtained for 

crossing points across each order parameter interface, λi.  Hence, to improve the predictions provided by 
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the ML models, it is important to incorporate data filtering for these pB.  Herein, simple filtering techniques 

are utilized to retain the pB centered around its mean; stated differently, only those data are retained that 

satisfy: 

  
𝑝B,𝑖̅̅ ̅̅̅ − 𝑐𝑖𝜎𝑖  ≤  𝑝B,𝑖  ≤  𝑝B,𝑖̅̅ ̅̅̅ + 𝑐𝑖𝜎𝑖  

 
                        (4) 

 
 

where 𝑝B,𝑖̅̅ ̅̅̅ and 𝜎𝑖 are the mean and standard deviation of the pB for crossing points generated across λi; and 

𝑐𝑖 is a filter factor, determined experimentally, such that neither too many nor too few data are filtered.  

Hence, post preprocessing, the data are organized in a clean, tabular format, as shown in Table 1.  Note that 

additional preprocessing steps may be required depending on each ML algorithm. 

 

Table 1. Schematic for Tabular Data in our Analyses 

 

𝒑𝐁 𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 

𝑝B,1 𝑋1,1 𝑋2,1 𝑋3,1 𝑋4,1 

𝑝B,2 𝑋1,2 𝑋2,2 𝑋3,2 𝑋4,2 

     

𝑝𝐵,𝑁samples
 𝑋1,𝑁samples

 𝑋2,𝑁samples
 𝑋3,𝑁samples

 𝑋4,𝑁samples
 

 

 

2.4. Step 3: Predictive Modeling via Machine Learning 

 

Post data generation and preprocessing, using supervised machine learning, models are developed that 

predict pB for given process variables; stated differently, a regression problem is solved, given that pB is 

continuous-valued.  For each ML algorithm considered in this benchmark study, model development 

involves three steps: 

…
 

…
 

…
 

…
 

…
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I) Data Splitting:  The preprocessed tabular data are divided into training and testing data, using randomized 

70%-30% splits, as done routinely in practice (Bichri et al., 2024; Kahloot and Ekler, 2021; Vrigazova, 

2021).  

II) Hyperparameter Optimization with Cross-Validation:  Typically, ML models consist of two entities: 

hyperparameters to be optimized before training; and model training parameters learned during training.  

The predictive performance of ML models is extremely sensitive to the choice of hyperparameters – hence, 

these need to be optimized carefully.  There are several open-source software packages available for 

hyperparameter optimization, including: Hyperopt (Bergstra et al., 2015), Optuna (Akiba et al., 2019), Ray 

tune (Liaw et al., 2018), Optunity (Claesen et al., 2014), and the like.  Herein, the Optuna framework is 

chosen, utilizing a Bayesian optimization technique called a tree-structured parzen estimator, TPE (Bergstra 

et al., 2011; Watanabe, 2023), to determine the optimum set of hyperparameters.  Additionally, in detailed 

benchmark studies comparing various optimization techniques and open-source frameworks, Optuna-TPE 

provided the most favorable performance and computation times (Motz et al., 2022; Shekhar et al., 2022).  

Typically, the hyperparameter optimization process is carried out with k-folds cross validation: 

a) Divide training data into k sets (“folds”) randomly.  Herein, k = 3.  

b) Sample a combination of hyperparameters. 

c) Set i = 1. 

d) Place set i aside, and train the model using the remaining k - 1 sets.  (When k = 3, these are sets 2 and 3.) 

e) Evaluate the performance of the trained model using set i as the validation set and compute the validation 

score (e.g., RMSE − root-mean-squared-error).  

f) When i < k, set i = i + 1.  Return to d). 

g) When i = k, compute the average validation score. 

h) Repeat steps b) – g). 
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i) Return the combination of hyperparameters that resulted in the maximum/minimum average evaluation 

score, depending on the chosen metric (e.g., return the combination that resulted in the minimum average 

RMSE). 

III) Model training with the Optimum Hyperparameters: Post optimization, the ML model, with its optimum 

hyperparameters, is trained using the entire training data.  

 

Note that eight ML algorithms of varying complexities are considered in this benchmark study.  

These are described briefly: 

 

1) Linear SVR (Linear Support-Vector Regressor): An extension of the popular support-vector machines 

(SVM) algorithm developed originally for classification  problems [when the dependent variable is discrete-

valued or categorical – e.g.,  “high”, “medium”, and “low”] (Cortes and Vapnik, 1995), linear SVR is a 

parametric ML algorithm that involves training a linear model, referred to as hyperplane, with a loss 

function that minimizes prediction error, also maintaining a tolerance margin, tube (Drucker et al., 1996).  

The parametric model for linear SVR is: 

  
𝑓(𝐱) = 𝐰𝑇𝐱 + 𝑏 

 
                        (5) 

 
   

where x is the vector of input features; w is the vector of coefficients (weights), and b is the bias term, for 

each sample.  Next, the objective function to be minimized during training, and constraints are: 

  

𝐽(𝐱) =
1

2
𝐰𝑇𝐰 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗) 

𝑁samples

𝑖=1

 

 
                        (6) 

 

   

  
𝑦𝑖 − (𝐰𝑇𝐱𝒊 + 𝑏) ≤  𝜀 +  𝜉𝑖 

(𝐰𝑇𝐱𝒊 + 𝑏) − 𝑦𝑖  ≤  𝜀 +  𝜉𝑖
∗ 

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0 

 
                       (7) 
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where C is the regularization term for mitigating overfitting; 𝑁samples is the number of samples; 𝜉𝑖 and 𝜉𝑖
∗
 

are slack variables (these define the penalty given to samples that violate the tolerance margin in the 

objective function); 𝜀 defines the tolerance margin.  Note that w, b, 𝜉𝑖, and 𝜉𝑖
∗
 are parameters learned during 

training, while C and 𝜀 are hyperparameters.  For more details, please refer to Drucker et al. (1996).  

Additionally, note that Linear SVR requires additional preprocessing steps;  categorical and discrete-valued 

input variables need to be transformed into integers.  Additionally, all input variables need to be scaled 

appropriately. 

 

2) kNN (k-Nearest Neighbors):  kNN is a nonparametric supervised learning algorithm that estimates the 

relationship between the input features and output using the concept of nearest neighbors.  Unlike most 

algorithms, kNN does not involve a training phase – for regression tasks, kNN estimates the output for an 

unknown sample (from the test data) by computing the average output of the k known samples (from the 

training data) nearest to it.  kNN requires two key hyperparameters to be specified: the number of nearest-

neighbors, k; and a distance metric for estimating the nearest samples – possible choices include: Euclidean, 

Manhattan, and Minkowski metrics (Danielsson, 1980; Li et al., 2011; Suwanda et al., 2020).  Similar to 

Linear SVR, kNN requires categorical and discrete-valued data to be transformed into integers, as well as 

appropriate scaling of input variables, given that kNN involves distance calculations that are sensitive to 

scaling. 

 

3) RF (Random Forests): RF is a nonparametric learning algorithm (Breiman, 2001) that involves training 

an ensemble of decision trees using bagging (bootstrap aggregating); several decision trees (weak learners) 

are trained in parallel independently using different subsets of data that are sampled randomly (shown 

schematically in Figure 3a).  Then, when predicting using test data, during regression tasks, the predicted 
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output is computed as the average of the predictions provided by the trained trees (shown schematically in 

Figure 3b).  Please refer to the Appendix, Section A.4, for a simple example of a decision tree.  Additionally, 

RF consists of several training parameters; e.g., optimal feature (input variable) for splitting, optimal split 

threshold for that feature, and the like.  Key hyperparameters include: n_estimators (number of trees), 

max_depth (maximum depth for each tree), min_samples_split (minimum number of samples required to 

split), and the like.  Please refer to Breiman (2001) for more details regarding the training parameters, 

hyperparameters, and implementation of RF.  Additionally, note that RF requires categorical and discrete-

valued input variables to be transformed into integers, but does not require input features to be scaled. 

 

(a) Xtrain: Input variables for train data; ytrain: Dependent variable for train data 
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(b) Xtest: Input variables for test data; 𝑦̂test,i: Prediction for trained decision tree i, Di, given Xtest 

 

Figure 3. Schematic implementing key steps in RF for regression tasks, showing the: (a) Training phase; (b) Testing 

phase 

 

4) XGBoost (eXtreme Gradient Boosting):  XGBoost is a nonparametric ensemble learning algorithm that 

belongs to the gradient-boosting family; several decision trees are trained sequentially, wherein, each 

newly-trained tree attempts to improve the predictions made by the previous trees (hence, the term 

“boosting”).  Additionally, the “eXtreme” component refers to additional regularization terms in the 

objective function to prevent overfitting; the “Gradient” term implies that new trees are trained using the 

gradients (first-order derivatives) and hessians (second-order derivatives) w.r.t the errors between the 

previous tree and the data.  Since its development by Chen and Guestrin (2016), XGBoost has become a 

popular algorithm for tabular datasets, for regression and classification problems across several fields 

(Cerna et al., 2020; Li et al., 2019; Ma et al., 2021; Ogunleye and Wang, 2020), including classification of 

rare events (Ashraf et al., 2023; Wang et al., 2023).  Note that in prior research, Sudarshan et al. (2024b) 
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developed improved dynamic bidirectional multivariate alarm systems for handling rare un-postulated 

abnormal events using XGBoost predictive models.  The training parameters for XGBoost are similar to 

those for RF and decision trees (e.g., optimal feature for splitting, optimal split threshold for the feature, 

and the like).  XGBoost also consists of several hyperparameters: n_estimators, max_depth, eta (learning 

rate that scales the contribution of each tree), subsample (specifies fraction of data used in training each 

tree – helps minimize overfitting by introducing randomness), reg_alpha (parameter for L1-norm 

regularization), reg_lambda (parameter for L2-norm regularization), and the like.  Note that some of these 

hyperparameters were optimized using Optuna appropriately by Sudarshan et al. (2024b) while developing 

XGBoost models.  For more details on the algorithm and hyperparameters, please refer to Chen and 

Guestrin (2016) and xgboost developers (2023). 

 

5) LightGBM (Light Gradient-Boosting Machines):  Like XGBoost, LightGBM is a ML algorithm by Ke 

et al. (2017) that belongs to the gradient-boosting family.  The key difference between XGBoost and 

LightGBM is: trees in XGBoost follow a level-wise growth strategy, in which, two resulting nodes at each 

level are split simultaneously; whereas trees in LightGBM follow a leaf-wise growth strategy; only one of 

the nodes, chosen optimally, is split further at each level (Liang et al., 2020), potentially reducing model 

development times – these are shown schematically in Figure 4.  Note that the training parameters and 

hyperparameters for LightGBM are similar to those for XGBoost.  For more details, please refer to Ke et 

al. (2017). 
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(a) 

(b) 

Figure 4. (a) Level-wise growth strategy followed by XGBoost; (b) Leaf-wise growth strategy followed by 

LightGBM 

 

6) CatBoost (Categorical Boosting):  CatBoost is another ML algorithm belonging to the gradient-boosting 

family, developed by Prokhorenkova et al. (2018).  Compared to XGBoost and LightGBM, CatBoost 

implements two improvements to mitigate overfitting: i) Ability to handle data with categorical input 

features more-efficiently by calculating ordered target statistics; ii) Implementing ordered boosting – as 

per Prokhorenkova et al. (2018), gradient-boosting frameworks developed previously suffer from 

prediction shift; typically, each tree in the ensemble is trained using the entire training data, leading 

potentially to overfitting.  In ordered boosting, each tree is trained using random permutation sets of the 

training data, using only the data before each example in the permutation set – ensuring improved 

robustness of models in the face of unseen data.  Several articles have compared the performance of 

XGBoost, LightGBM, and CatBoost across different applications for: home-credit dataset (Daoud, 2019), 

insurance claims (So, 2024), medicare fraud detection (Hancock and Khoshgoftaar, 2020), to name a few.  
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Note that the training parameters and hyperparameters for CatBoost are similar to XGBoost and LightGBM.  

For more details, please refer to Prokhorenkova et al. (2018). 

 

7) DNN (Dense Neural Network):  Deep learning models based on Artificial Neural Networks (ANNs) 

have become popular across several fields, most notably for computer-vision applications such as image 

recognition (Traore et al., 2018) and video encoding (Ma et al., 2020); natural-language processing (NLP), 

such as dialogue summarization (Chen et al., 2021); machine translation (Singh et al., 2017); sentiment 

analysis (dos Santos and Gatti, 2014), and the like.  The basic building blocks of ANNs are referred to as 

perceptrons, developed by Rosenblatt (1958).  A single perceptron model consists of:  i) A Linear model,  

f(x), comprising of weights w, and bias b (shown previously in Eq. (5)), where x is the vector of input 

features, and; ii) An activation function, g(f(x)), applied to the output of the linear model.  Choices for 

activation function include: rectified linear unit (ReLU) (Nair and Hinton, 2010), hyperbolic tangent (tanh), 

sigmoid (suitable for binary classification tasks), and the like.  DNNs, also referred to as fully-connected 

neural networks (FCNNs), consist of multiple layers of several perceptrons, with the DNN referred to as a 

deep DNN when there are two or more hidden layers (the layers between the input and the output).  DNN 

also require a loss function to be specified (for regression tasks, this is typically the mean-squared-error, 

MSE), with the weights and biases optimized during training through back-propagation over several 

training epochs.  Additionally, several optimization routines exist for DNN training: gradient-descent, 

stochastic gradient-descent (Ruder, 2017), Adam (Adaptive Moment Estimation) (Kingma and Ba, 2017), 

and the like.  For detailed explanations, please refer to Zou et al. (2009) and Hassoun (1995).  Additionally, 

similar to Linear SVR and kNN, DNNs require categorical and discrete-valued input variables to be 

transformed into integers, as well as appropriate scaling of input variables. 

 

8) TabNet (Tabular Networks):  Given that gradient-boosting frameworks regularly outperform DNNs on 

tabular datasets, as observed over several benchmark studies (Borisov et al., 2022; Grinsztajn et al., 2022; 
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Shwartz-Ziv and Armon, 2022; Uddin and Lu, 2024), efforts have been made to develop novel neural 

network-based architectures, specifically for tabular data.  One, developed by Arik and Pfister (2020), is 

TabNet.  Compared to the classical DNN architecture that consists primarily of fully-connected layers, 

TabNet utilizes an attention mechanism (an attentive transformer layer that assigns weights to different 

input features, with important features weighted more heavily) to select the input features most influential 

for predictions.  Note that this feature-selection capability is inspired from tree-based, gradient-boosting 

models, wherein, each tree splits data related to the most important features.  Additionally, while both DNNs 

and TabNet can utilize embedding layers for processing categorical input features, TabNet is designed 

specifically to handle tabular data with mixed input feature types more efficiently.  Note that the choice of 

preprocessing strategy required depends on the nature of the data and task being addressed. Recently, 

several research articles have considered TabNet for applications such as: rainfall forecasting, (Yan et al., 

2021), electric load forecasting (Borghini and Giannetti, 2021), diabetes classification (Joseph et al., 2022), 

insurance claims prediction (McDonnell et al., 2023), to name a few.  For more details regarding the 

architecture, parameters, and hyperparameters, please refer to Arik and Pfister (2020). 

 

2.5. Step 4: Reporting Key Evaluation Metrics 

 

After developing each dataset, as discussed in Section 3, all ML models are evaluated comprehensively 

and holistically across three key domains: 

 

A) Model Accuracy on Test Data:  The accuracy of the trained ML model on the test data is evaluated 

using: 

 𝑅𝑀𝑆𝐸 (metric1) = Root Mean Squared Error =   √
∑ (𝑝B,test(𝑖) − 𝑝̂B, test(𝑖))

2𝑁samples

𝑖=1

𝑁samples
 

            

(8) 
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where 𝑝B,test is the committer probability for the test data, and 𝑝̂B, test is the committer 

probability using the trained ML model. 

 

B) Computational Efficiency: Four clock-times are recorded to evaluate computational costs:  

i) 𝑡hyper  (metric2):  Time recorded for hyperparameter optimization (Step II, Section 2.4). 

ii) 𝑡train(metric3) : Time recorded for model training (Step III, Section 2.4).  

iii) 𝑡test (metric4): Time recorded for model testing; stated differently, time taken to generate committer 

probability predictions for the test data. 

iv) 𝑡deploy (metric5) : Time recorded for model deployment; stated differently, time taken by each ML 

model to generate new committer probability predictions on-line for a new dynamic simulation (the number 

of dynamic simulations, Nsim = 1), tsim, time for a simulation, and model call frequency, 𝑐𝑎𝑙𝑙freq (frequency 

an ML model is called to generate new predictions on-line); e.g., 𝑐𝑎𝑙𝑙freq = 30 indicates the ML model is 

called once every 30 time-steps on-line to generate fresh predictions.  Note that small 𝑐𝑎𝑙𝑙freq leads to 

more-frequent on-line predictions of pB at excessive computational costs.   

C) Alarm-system Efficiency: To evaluate the impact of each ML model on efficiency of alarm systems, 

we first need to define a specific alarm system.  For all datasets utilized in this benchmark study, a 2-level 

alarm system is assumed (number of alarm levels, 𝑛levels = 2) based on pB limits (an alarm at level k is 

activated when the real-time pB predicted by a ML model crosses the pB limit defined at that level): for this 

benchmark study, these limits were set at pB,1 = 0.2, and, pB,2 = 0.5; where pB,1 and pB,2  are the pB limits 

defined for levels 1 and 2.  Then, the theoretical performance of each alarm level is computed using 

𝑝𝑘,theoretical – defined as the theoretical probability with which, alarms, active at the current level k, reach 

the next level.  Table 2 shows the 2-level alarms specified and the associated 𝑝𝑘,theoretical values.  For 

instance,  𝑝1,theoretical = 𝑝B,1 𝑝B,2⁄  = 0.2/0.5 = 0.4.  And, 𝑝2,theoretical = 𝑝B,2/1.0 = 0.5, given that level 2 is 

the last alarm-level before the undesirable region is reached (where pB = 1.0).   
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Table 2. 2-level Alarms Specified and Associated pk,theoretical  

 

Level No. (k) 𝒑𝐁,𝒌 𝒑𝒌,𝐭𝐡𝐞𝐨𝐫𝐞𝐭𝐢𝐜𝐚𝐥 

1 0.2 0.4 

2 0.5 0.5 

 

Next, for each ML algorithm, the performance of the alarm system is measured using 𝑝𝑘,measured 

– defined as the probability for alarms active at the current level k of reaching the next level measured over 

several dynamic simulations, using real-time ML model predictions on-line, computed as: 

 

𝑝𝑘,measured =  
𝑛alarms,𝑘→𝑘+1

𝑛alarms,𝑘
              

(9) 

 

where 𝑛alarms,𝑘 is the number of alarms active at level k; 𝑛alarms,𝑘→𝑘+1 is the number of alarms at level k 

that are active when the process reaches level k+1.  Given 𝑝𝑘,theoretical and 𝑝𝑘,measured, two alarm metrics 

are proposed to evaluate the alarm-system efficiency: absolute probability difference (Δp), and total alarms: 

Δ𝑝 (𝑚𝑒𝑡𝑟𝑖𝑐6) = ∑ 𝑘|𝑝𝑘,theoretical −  𝑝𝑘,measured|

𝑛levels

𝑘=1

  
         

(10) 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑙𝑎𝑟𝑚𝑠 (𝑚𝑒𝑡𝑟𝑖𝑐7) = 𝑛alarms = ∑ 𝑛alarms,𝑘

𝑛levels

𝑘=1

 
            

(11) 

 

Eq. (10) accounts for both false positive rates (fewer than expected alarms at the current level remain active 

when the process reaches the next level) and false negative rates (more than expected alarms at the current 

level remain active when the process reaches the next level).  Additionally, as per Eq. (10), differences in 

higher-level alarms are penalized more heavily.  Δp and Total Alarms are recorded over several dynamic 

simulations (e.g., Nsim ~ 50), with simulation time, tsim, and model call-frequency, callfreq.  While recording 
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these metrics, response actions are not included, given that 𝑝𝑘,theoretical estimates do not account for 

changes in process dynamics when response actions are activated.  Additionally, to ensure consistency, 

while recording tdeploy, Δp, and Total Alarms, for each dynamic simulation, a random seed number is utilized 

across all models (e.g., 50 random seed numbers are utilized for Nsim = 50).  Note that using a random seed 

number ensures that the same sequence of statistical noise samples is generated for a dynamic simulation – 

enabling consistent comparison among ML algorithms. 

  

2.6. Step 5: Determine Optimal ML Model 

 

Given the evaluation metrics defined in Section 2.5, for our benchmark analyses, a weighted cost function 

to be minimized is proposed: 

𝐶𝑜𝑠𝑡 =  ∑ (𝑎𝑖)(metric𝑖,scaled)

𝑛metrics

𝑖

   
            

(12) 

 

[𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7] = [0.125, 0.05, 0.05, 0.05, 0.125, 0.3, 0.3]               (13) 

 

where 𝑛metrics is the total number of evaluation metrics; 𝑛metrics = 7; 𝑎𝑖 is the weighting coefficient for 

metric𝑖 .  To ensure consistency in scaling, each evaluation metric in Eq. (12) is scaled by its maximum 

value obtained across all ML models.  As per Eq. (13), the coefficients are weighed such that primary 

importance is allocated to alarm-system efficiency (Δp and Total Alarms) – a6 = 0.3; a7 = 0.3; followed by 

model accuracy (a1 = 0.125) and model deployment (a5 = 0.125), with clock-times concerning 

hyperparameter optimization (a2 = 0.05), model training (a3 = 0.05), and model testing (a4 = 0.05) weighed 

least. For each dataset, the optimal ML model has the lowest Cost.   
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3. RESULTS AND DISCUSSIONS 

 

This section provides results for the benchmark analysis obtained for each of the five datasets.  Note that 

each ML algorithm, for each of its evaluation metrics and Cost estimate, lower values indicate better 

performance. 

 

3.1. Dataset I (PI-Controlled Exothermic CSTR) 

 

For the exothermic CSTR with abnormal transitions towards the unreliable region (see the process model 

summarized in Appendix A.1), the discrete values considered for the response-action variable, residence 

time, 𝜏 (Sudarshan et al., 2023), are:   

 

           𝜏 𝜖 {0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59}             (14) 

 

Note that all other process parameters remain constant (see Table A.1 in the Appendix).  For 

recording tdeploy (metric5), Nsim = 1; tsim = 30,000 mins; callfreq = 200; and τ = 0.53 min.  Additionally, for 

recording metrics concerning alarm-system efficiency, Nsim = 50; tsim = 30,000 mins; callfreq = 200; and τ = 

0.53 min. Figure 5 shows pB as function of temperature for Dataset I with the colorbar varying from light 

to intense for the residence time, τ.  It is observed that pB for reaching the unreliable region increases as 

temperature and residence time decrease. 
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Figure 5.  pB as function of temperature and residence time for Dataset I 

 

Figure 6a shows heatmaps for scaled evaluation metrics recorded for dataset I for the eight ML 

algorithms.  For each metric, lighter colors indicate better performance.  Most algorithms show comparable 

performance for model accuracy (RMSEscaled ~ 0.28-0.29), with Linear SVR having the worst model 

accuracy, and DNN having slightly-higher RMSE.  Note that high RMSE indicates less-accurate on-line pB 

predictions, potentially contributing to increased false and missed alarms.  With a relatively-simple 

development process, Linear SVR compensates slightly with higher computational efficiency, followed by 

kNN and gradient-boosting frameworks, with DNN having low costs for deployment despite higher costs 

for training, hyperparameter optimization, and testing.  For alarm-system efficiency, kNN and DNN 

perform significantly better – note that higher Δp and total alarms indicate increased false alarms and 

missed alarms, potentially resulting in alarm flooding (with the number of alarms significantly greater than 

operators can handle, leading to operator distraction and missed alarms).  Despite much promise for tabular 

datasets, TabNet underperforms significantly in most evaluation metrics.  Additionally, despite lower model 

development costs (thyper and ttrain), RF records high costs for model deployment (tdeploy) – potentially 

resulting in a lag between on-line process variable measurements and pB predictions.  Please refer to Table 

A.4 in the Appendix for the hyperparameters optimized for each ML algorithm. 
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Figure 6b shows the Cost computed for each ML algorithm.  Given the weights defined in Eq. (13), 

for Dataset I, kNN is observed to have the lowest cost, and is ranked as the most-optimal ML algorithm, 

followed closely by CatBoost and XGBoost, with TabNet ranking last. 

 

                                             (a)                                                                                             (b) 

Figure 6. For Dataset 1, (a) Heatmap showing the scaled evaluation metrics; (b) Cost computed for all ML models  

 

 

3.2. Datasets II – V (PID-Controlled Polystyrene CSTR) 

 

For the PID-controlled polystyrene CSTR (for the process model summarized in Appendix A.2), Table 3 

shows the specifications, including the response-action variable, terminal region, and discrete values 

considered for the response-action variables.  For each dataset, all other process parameters remain constant 

(see Table A.2).  Note that for datasets II and III, qm = 0.4; and, for datasets IV and V, qi = 0.1.  For recording 

tdeploy (metric5), Nsim = 1; tsim = 150; callfreq = 30; qi = 0.1, and qm = 0.3775.  Additionally, for metrics 

concerning alarm efficiency, Nsim = 50; tsim = 150; callfreq = 30, qi = 0.1, and qm = 0.4.  Figure 7 a-d shows 

pB as function of dimensionless temperature for datasets II-V with the colorbar varying from light to intense 

for the response-action variable.  For datasets II and IV, it is observed that pB increases as dimensionless 

temperature and response-action variables increase; whereas, for datasets III and V, while pB decreases with 
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increase in dimensionless temperature, the trend with respect to response-action variables is not very clear 

(Sudarshan et al., 2024b). 

 

Table 3. Specifications for Datasets II – V for PID-controlled Polystyrene CSTR 

Dataset Response-

action 

Variable 

Terminal 

Region 

Discrete Values Considered for Response-action 

Variable 

II qi Unsafe [0.0875, 0.09, 0.095, 0.0975, 0.1, 0.1025, 0.105, 0.1075] 

III qi Unreliable [0.08, 0.085, 0.09, 0.095, 0.1, 0.105, 0.11] 

IV qm Unsafe [0.37, 0.375, 0.3775, 0.38, 0.385, 0.39, 0.4, 0.405] 

V qm Unreliable [0.375, 0.3775, 0.38, 0.385, 0.39, 0.4, 0.405] 

 

 

 

                                        (a)                                                                               (b) 
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                                     (c)                                                                                      (d) 

Figure 7.  pB as function of dimensionless temperature for Datasets: (a) II; (b) III; (c) IV; (d) V  

 

Figure 8 a-d show heatmaps for scaled evaluation metrics for datasets II – V.  For model accuracy, 

gradient-boosting algorithms achieve stronger predictive performance, with Linear SVR scoring the lowest 

RMSE, given its low-complexity.  More-complex DNN and TabNet algorithms do not justify their RMSE 

scores.  For computational efficiency, the less-complex algorithms, Linear SVR and kNN offer fast 

computational times, followed by the gradient boosting algorithms, with DNN and TabNet having lowest 

computational efficiency (except fast model deployment for DNN, consistent with that observed for dataset 

I).  Additionally, RF records high costs for deployment, despite relatively-lower costs for model 

development, as observed for dataset I.  For alarm efficiency, performance varies across the datasets, with 

best being CatBoost and RF for dataset II; Linear SVR and LightGBM for dataset III; DNN, XGBoost, and 

LightGBM for dataset IV; CatBoost and LightGBM for dataset V.  Note – TabNet performs poorly 

uniformly. 
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(a) (b) 

 

                                           (c)                                                                                         (d)                     

 

Figure 8. Heatmaps showing scaled evaluation metrics for datasets (a) II; (b) III; (c) IV; (d) V 

 

 For datasets II-V, Figure 9 a-d show the Cost for all ML algorithms, given the weights defined in 

Eq. (13).  CatBoost ranks as the most-optimal ML model for datasets II and V, with DNN the most-optimal 

for dataset IV.  Note that despite poor model accuracy, Linear SVR compensates by having improved 
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computational and alarm efficiencies, thereby, unexpectedly ranking as the most-optimal ML algorithm for 

dataset III.  With the exception of dataset III, TabNet is the least-optimal model. 

 

                  

                                                 (a)                                                                                          (b) 

                                                  (c)                                                                                           (d) 

 

Figure 9. Cost computed for all ML models for datasets: (a) II; (b) III; (c) IV; (d) V 

 

 

  



 32 

3.3. Average Rankings Across All Datasets for Weights in Eq. (13) 

 

For all ML models, Figure 10 shows the average (mean) rankings across all five datasets, using the 

weighting coefficients in Eq. (13).  Clearly, the gradient-boosting frameworks achieve favorable rankings, 

with CatBoost achieving the highest ranking, followed by LightGBM and XGBoost, with RF, Linear SVR 

and TabNet recording the lowest rankings. 

 

 

Figure 10. Average local rankings computed for models across all datasets for weights in Eq. (13) 

 

3.4. Double-Averaged Global Ranking Across All Datasets and 500 Weight Combinations 

 

Note that the Cost results in Sections 3.1-3.3 (Figures 6b, 9, and 10) are for the single combination of 

weighting coefficients in Eq. (13).  For more-comprehensive analyses, several combinations of weighting 

coefficients are justified.  Herein, 500 combinations are considered, with each combination sampled 

randomly from uniform distributions, given upper and lower bounds: 
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0.1 ≤ 𝑎1 ≤ 0.2   

0.05 ≤ 𝑎2 ≤ 0.1   

0.05 ≤ 𝑎3 ≤ 0.1   

0.05 ≤ 𝑎4 ≤ 0.1   

0.1 ≤ 𝑎5 ≤ 0.2   

0.3 ≤ 𝑎6 ≤ 4   

0.3 ≤ 𝑎7 ≤ 4   

 

            

(15) 

Note that while the choice of distribution is arbitrary, with the normal distribution and others possible, these 

weighting coefficient bounds emphasize alarm-system efficiency over other metrics. 

As shown in Figure 11, the use of these randomly-sampled weighting coefficients provides a similar 

ranking.  CatBoost achieves the highest global ranking, followed by XGBoost, LightGBM, and DNN, with  

TabNet achieving the lowest ranking.  The increased ranking of XGBoost may warrant further 

consideration.   

 

 

Figure 11. Double-averaged, global ranking for 500 combinations of weighting coefficients across all datasets 
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4. CONCLUSIONS  

 

In previous research, using path-sampling (BGFFS) and non-parametric machine learning, dynamic, 

bidirectional multivariate alarm systems were developed for rare un-postulated abnormal movements away 

from normal operating regions, demonstrated successfully on a PID-controlled polymerization CSTR.  

However, in predictive modeling, only one ML algorithm was explored: XGBoost. 

 Herein, a comprehensive framework is developed for benchmark analyses to explore optimal ML 

algorithms of varying complexities, for enhancing predictions of rare abnormal events using chemical 

process models.  For evaluation, several metrics are considered, permitting balances between model 

accuracy, and computational and alarm-system efficiencies, with more preference given to alarm-system 

efficiencies.  For the weighting coefficients considered in Eq. (13), the gradient-boosting frameworks: 

XGBoost, LightGBM, and CatBoost, outperform other algorithms, achieving strong predictive performance 

at low computational costs, also providing relatively favorable metrics for alarm-system efficiency.  DNN 

and TabNet require more computational resources that are not justified by their model accuracy, although 

DNN offers fast deployment across all datasets.  Despite much promise for tabular datasets, TabNet 

consistently performs poorly across all datasets.  Additionally, Linear SVR and kNN compensate for lower 

model accuracies by having low computational costs, but, along with RF, are outperformed consistently by 

the gradient-boosting frameworks when all metrics in the Cost are considered.  Moreover, based on the 

global rankings recorded in Figure 11 that consider 500 randomly-sampled combinations of weighting 

coefficients, CatBoost is the most-optimal algorithm across all datasets and evaluation metrics, followed 

by XGBoost, LightGBM, and DNN.  Note that increased RMSE, Δp and total alarms may contribute 

potentially to increased false alarm and missed alarm rates.  Additionally, higher model deployment times 

may result in a lag between real-time process variable measurements and pB predictions.   

To our knowledge, this manuscript is the first ML benchmark analysis that evaluates algorithms for 

predicting rare events in chemical process safety.  Additionally, while most benchmark frameworks place 
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emphasis on model accuracy and computational costs alone, our work is the first that attempts to evaluate 

comprehensively and holistically ML algorithms of varying complexity by also considering alarm-system 

metrics (i.e., the number and efficiency of alarms activated).  Hence, such comprehensive benchmark 

frameworks will aid the operator in selecting the most-optimal ML algorithm for process monitoring and 

predictive maintenance against rare abnormal events, improving their effectiveness in ensuring safety and 

reliability. 

  

5. FUTURE RESEARCH 

 

Note that despite encouraging findings herein, a few limitations should be addressed in future 

research. These are discussed briefly: 

1) Hybrid Models Capturing Physics and Plant Data: Herein, all datasets generated using BGFFS are based 

on first-principles models (material and energy-balance ODEs, reaction kinetics, and the like), with 

assumptions simplifying the process models (Sudarshan et al., 2024b, 2021).  In future research, hybrid 

computational models (e.g., physics-informed neural networks, PINNs) involving underlying physics, 

coupled with plant data from sensors, alarm databases, and the like, should be developed, with benchmark 

analyses extended to such models. 

2) Considering Several Alarm-system Combinations and Improved Alarm Rationalization: The analyses 

presented herein utilize a 2-level alarm system (see Table 2).  For more-comprehensive analyses, it is 

important to consider several alarm-system combinations, but this would require significant computational 

costs.  Hence, to address this, in future work, more-rigorous sensitivity analyses should be conducted to 

measure the sensitivity of alarm-system combinations to the optimal ML algorithm.  Additionally, Δp (see 

Eq. (10)) should be utilized to develop more-intelligent, automated/semi-automated, alarm rationalization 

strategies, a significant improvement compared to the framework developed in our prior research 

(Sudarshan et al., 2024a). 
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3) Accounting for Source-to-source Variability:  Herein, the BGFFS algorithm simulates numerous rare-

event pathways efficiently by introducing random perturbations in inlet feed concentrations – the only 

source of variability considered.  To further account for source-to-source variability, future research should 

extend our simulations to include variations and quantify uncertainty in crucial process parameters that 

affect operational behavior of chemical processes. 

4) Model Interpretability as a Benchmark Metric:  Model interpretability is increasingly important in the 

explainable AI paradigm (Linardatos et al., 2021).  As complex ML models are integrated increasingly into 

automation and decision-making in chemical industries, especially in safety-critical environments, the need 

to ensure they are transparent and interpretable is becoming more important.  This is crucial for increasing 

trust in model predictions and facilitating informed decision-making by industrial practitioners. Although 

explainable AI frameworks such as LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro et 

al., 2016) and SHAP (Shapley Additive explanations) (Lundberg and Lee, 2017) offer valuable insights 

into feature importance and local model behavior (stated differently, the influence of each input feature on 

model predictions), there remains a lack of standardized quantitative metrics for comparing interpretability 

across different models. Future research is needed to develop such metrics to be included in benchmark 

analyses. 

 

5. ACKNOWLEDGEMENTS 

 

The NSF CBET funding for our grant, 2220276, is greatly appreciated.  Thanks are extended to Amish J.  

Patel, Ulku G. Oktem, and Jeffrey E. Arbogast, who provided advice throughout this research. 

 

  



 37 

APPENDIX 

 

A.1. Proportional-Integral (PI)-Controlled Exothermic CSTR  

 

Previously, novel, multivariate alarm systems were developed using path-sampling and predictive modeling 

for a relatively simple controlled exothermic CSTR, followed by the alarm rationalization-DRAn integrated 

framework for further enhancement (Sudarshan et al., 2024a, 2023).  In this Appendix A.1, we provide a 

brief summary of the process model.  Figure A.1a shows a schematic of the model for a Proportional-

Integral (PI)-controlled exothermic CSTR, with first-order kinetics, A → P.  The assumptions for this ideal 

process model include: i) Constant residence time; ii) Incompressible flow; iii) Complete back-mixing.  The 

model controls the reactor temperature, T, by manipulating the coolant flow-rate, FC.  Additionally, Figure 

A.1b shows the steady-state behavior for the model, with multiple steady-states observed for residence 

time; 𝜏 ∈ [0.47, 0.56] min.  Two stable steady-states are observed: at the high conversion-high temperature 

basin ‘A’, and low-conversion, low-temperature basin ‘B’.  In between these two, a wide unstable “cliff” 

exists, such that when the process operates near this cliff, with sufficient input perturbation, the process 

shifts rapidly to either of the two stable regions (Moskowitz et al., 2018; Sudarshan et al., 2021).  

 The governing equations for the PI-controlled process are: 

        𝑉
𝑑𝐶A

𝑑𝑡
=

𝑉

𝜏
(𝐶Af − 𝐶A +  𝜼) − 𝑉𝑘0 exp (−

𝐸

𝑅𝑇
) 𝐶A 

                         (A.1) 

     𝜌𝑉𝑐p

𝑑𝑇

𝑑𝑡
=

𝜌𝑉𝑐p

𝜏
(𝑇f − 𝑇) − 𝑉∆𝐻𝑘0 exp (−

𝐸

𝑅𝑇
) 𝐶A + 𝑈𝐴(𝑇c − 𝑇) 

                         (A.2) 

     
𝑑𝑇C

𝑑𝑡
=  

𝐹C

𝑉j
 (𝑇C0 − 𝑇C) −  

𝑈𝐴

𝜌w𝑉j𝑐pw
(𝑇C − 𝑇) 

                         (A.3) 
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where CA is the concentration of reactant A; T is the reactor temperature; CAf and Tf are the concentration 

and temperature for the reactant feed stream; FC0 is the cooling water flow-rate at steady state, KC is the 

controller gain, eI is the integral error and 𝜏I is the integral time constant; TC0 is the inlet temperature of the 

cooling water, 𝐶A0 is the initial value for the concentration, 𝑇0 is the initial value for the temperature, TSP is 

the set-point temperature for the controller, Vreactor is the volume of the reactor, U is the overall heat-transfer 

coefficient, A is the heat-transfer area,  ∆𝐻 is the heat of reaction,  𝜌 is the feed density, 𝑐p is the heat 

capacity of the feed stream, Vj is the volume of the cooling-water jacket, 𝜌w is the density of the cooling 

water, and 𝑐pw  is the specific-heat capacity of the cooling water (refer to Table A.1).  To induce un-

postulated abnormal transitions from the desirable basin “A” to the undesirable and unreliable basin “B”, 

statistical “noise”-induced perturbations, η, are utilized.  Note that η is sampled randomly at every 

integration time-step from a normal distribution; η ~ 𝒩(𝜇, 𝜎𝜂
2), with mean: 𝜇 = 0, and variance: 𝜎𝜂

2 = 

0.02.  Figure A.1c shows a dynamic brute-force simulation of the process under noisy operation, showing 

the un-postulated abnormal transition from basins A to B.  Dataset I contains process variable data for 

several such trajectories simulated efficiently using BGFFS, followed by calculations of the committer 

probabilities and preprocessing (Section 2.3). 

 

 

 

 

 

       𝐹C = 𝐹C0 + 𝐾C ( 𝑇 −  𝑇SP −
𝑒I

𝜏I
) ; 30 ≤ 𝐹C ≤ 70 

                        (A.4) 

𝑑𝑒I

𝑑𝑡
= 𝑇SP − 𝑇 

                         (A.5) 

                               𝐶A0 = 1.2 kmol m3⁄ ; 𝑇0 = 700 𝐾                          (A.6) 
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                                             (a)                                                                               (b) 

                                                                                    (c) 

Figure A.1. (a) Schematic of the PI-controlled exothermic CSTR; (b) Process under steady-state operation; (c) 

Process showing the “noise”-induced un-postulated abnormal transition. 

 

 

Table A.1. Process Constants and Parameters for PI-Controlled Exothermic CSTR 

Parameter Value Unit 

A 30 m2 

CAf 2 kmol/m3 

cp = cpw 4 kJ/(kg-K) 

E 1.50E+04 kJ/kmol 

FC0 50 m3/min 

k0 17.038 1/min 

R 8.314 kJ/(kmol-K) 

TC0 300 K 

Tf 300 K 

TSP 800 K 

U 100 kJ/(min-K-m2) 

Vreactor = Vj 10 m3 

∆H -2.20E+06 kJ/kmol 

ρ = ρw 1,000 kg/m3 

KC 0.02 m3/(min-K) 

𝜏I 25 min 
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A.2. Proportional-Integral-Derivative (PID)-Controlled Polymerization CSTR 

 

Given the limitations of the alarm systems developed for the controlled exothermic CSTR, in recent 

research, improved, dynamic, bidirectional multivariate alarm systems were developed for a PID-controlled 

polystyrene CSTR, capable of handling un-postulated abnormal shifts to multiple undesirable regions: 

unsafe and unreliable (Sudarshan et al., 2024b).  In this Appendix A.2, we provide a brief summary of the 

process model.  Figure A.2a shows a schematic of the model.  The governing equations for the 

dimensionless PID-controlled polystyrene CSTR are:  

𝑑𝑥1

𝑑𝜏
= 𝑞i𝑥1f −  (𝑞i + 𝑞m + 𝑞s)𝑥1 − 𝜙d𝜅d(𝑥3)𝑥1 

               (A.7) 

 
𝑑𝑥2

𝑑𝜏
= 𝑞m(𝑥2f +  𝜼) −  (𝑞i + 𝑞m + 𝑞s)𝑥2 − 𝜙p𝜅p(𝑥3)𝑥2𝑥5;   𝜂 ~ 𝒩 (0,  𝜎𝜂

2) 
               (A.8) 

𝑑𝑥3

𝑑𝜏
=  (𝑞i + 𝑞m + 𝑞s)(𝑥3f − 𝑥3) +  𝛽𝜙p𝜅p(𝑥3)𝑥2𝑥5 −  𝛿(𝑥3 − 𝑥4) 

               (A.9) 

𝑑𝑥4

𝑑𝜏
=  𝛿1[𝑞c(𝑥4f − 𝑥4) + 𝛿𝛿2(𝑥3 − 𝑥4)] 

             (A.10) 

𝑥5 =  √
2𝑓𝜙d𝜅d(𝑥3)𝑥1

𝜙t𝜅t(𝑥3)
 

             (A.11) 

            𝑞c   =  𝑞c,0 −  𝐾c [(𝑥3,sp − 𝑥3 ) +  
1

𝜏I 
∫(𝑥3,sp − 𝑥3 )𝑑𝑡′ + 𝜏D 

𝑑(𝑥3,sp − 𝑥3 )

𝑑𝑡

𝑡

0

]  

             (A.12) 

                0 ≤  𝑞c ≤  5                     (A.13) 

  𝑥1,0 = 0.0041; 𝑥2,0 = 0.2156;  𝑥3,0 = 0.951; 𝑥4,0 = −1.1191;  𝑞𝑐,0 = 1.5                (A.14) 

                    𝜅d(𝑥3) = exp (
𝛾d𝑥3

1 + 
𝑥3
𝛾p

) 

             (A.15) 
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                 𝜅t(𝑥3) = exp (
𝛾t𝑥3

1 +  
𝑥3
𝛾p

) 

             (A.16) 

                 𝜅p(𝑥3) = exp (
𝑥3

1 +  
𝑥3
𝛾p

) 

             (A.17) 

 

where x1, x2, x3, x4, x5 are the dimensionless initiator concentration, monomer concentration, reactor 

temperature, coolant temperature, and concentration of growing polymer; 𝑞i, 𝑞m, 𝑞s, 𝑞c are the 

dimensionless flow rates for initiator, monomer, solvent and coolant streams;  𝜙d, 𝜙p, 𝜙t are Damkohler 

numbers for initiator decomposition, propagation, and termination;  𝛾d, 𝛾p, 𝛾t are dimensionless activation 

energies for initiator decomposition, propagation, and termination; 𝛽 is the dimensionless heat of reaction, 

𝛿 is the dimensionless heat-transfer coefficient, 𝛿1 is the dimensionless reactor volume, 𝛿2 is the 

dimensionless specific heat,  f is the initiator efficiency; x1f, x2f, x3f, x4f  are the dimensionless initiator feed 

concentration, monomer feed concentration, reactor feed temperature, and coolant feed temperature;  𝑥1,0, 

 𝑥2,0,  𝑥3,0,  𝑥4,0,  𝑞c,0 represent initial values.  Similar to the PI-controlled exothermic CSTR, statistical 

“noise”, 𝜂,  is sampled at every integration time-step, from a normal distribution, 𝒩( 𝜇, 𝜎𝜂
2 ), with mean: 

𝜇 = 0; and variance: 𝜎𝜂
2 = 0.0014.  Note that 𝜂 is added to the dimensionless monomer concentration, x2f, 

in Eqn. (A.8).  Figure A.2b shows the process under steady-state operation, with the process constants and 

parameters in Table A.2; the intermediate, unstable region is the desirable region, with possible un-

postulated abnormal shifts to both unsafe and unreliable regions, which are stable.  Figure A.2 c-d shows 

the process under noisy operation, with un-postulated abnormal transitions observed towards both 

undesirable regions.  In Figure A.2c, the process moves from x3 = 0.95 in the unstable region to a brief visit 

to the unreliable region before settling in the unstable region.  In Figure A.2d, it moves first to the unsafe 

region before returning to the unstable region.  For more details regarding the process model and these 

noisy trajectories, please refer to and Russo and Bequette (1998) and Sudarshan et al. (2024b).   
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                                                         (a)                                                                                      (b) 

                                                         (c)                                                                                        (d) 

Figure A.2. (a) Schematic of PID-controlled polystyrene CSTR; (b) Process under steady-state operation, showing the 

desirable unstable and undesirable stable region. Note the key bifurcation points: limit points, LP, and Hopf bifurcation 

points, H; (c) Process under dynamic operation, showing the un-postulated transition towards the unreliable region; (d) 

Process under dynamic operation, showing the un-postulated transition towards the unsafe region. 
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Table A.2. Process Constants and Parameters for PID-controlled Polystyrene CSTR 

 

Parameter Value 

qi 0.1 

qm 0.4 

qs 0.48571 

𝜙d 0.01688 

𝜙p 2.1956  107 

𝜙t 9.6583  1012 

𝑥1f  0.06769 

𝑥2f 1.0 

𝑥3f 0.0 

𝑥4f -1.5 

𝛿 0.74074 

𝛿1 0.90569 

𝛿2 0.37256 

𝛽 13.17936 

f 0.6 

𝑥3,sp 0.85 

𝐾c 50 

𝜏D 0.9 

𝜏I 5 

 

A.3. Computational Specifications 

 

Note that all analyses and results presented herein were conducted on a Desktop computer, having 

specifications: 

i) Operating System (OS): Linux via WSL (Windows Subsystem for Linux) 2. 

ii) CPU: 12th - generation Intel i7-12700K with 12 cores (8 performance + 4 efficiency), 32 GB 

DDR5 RAM. 

iii) GPU: NVIDIA RTX 3060 Ti, 8 GB RAM. 
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The Python programming language (version 3.9) is utilized, leveraging several powerful open-

source software packages, including: NumPy (Harris et al., 2020), Pandas (McKinney, 2010) , SciPy 

(Virtanen et al., 2020), Matplotlib (Hunter, 2007), Scikit-Learn (Pedregosa et al., 2011)  XGBoost (Chen 

and Guestrin, 2016), LightGBM (Ke et al., 2017), CatBoost (Prokhorenkova et al., 2018), Numba (Lam et 

al., 2015), Optuna (Akiba et al., 2019), to name a few.  For developing DNNs, PyTorch (Paszke et al., 2019) 

is utilized; with PyTorch-TabNet (Arik and Pfister, 2020; Dreamquark, 2019) utilized to develop TabNet 

models.  Also, for GPU-acceleration during model development, the NVIDIA Compute Unified Device 

Architecture (CUDA) toolkit (NVIDIA et al., 2022) is utilized.  Note that while XGBoost, LightGBM, 

CatBoost, PyTorch and PyTorch-TabNet have native support for CUDA-based GPU-acceleration, the 

Scikit-Learn-based implementation of Linear SVR, kNNs, and RF does not support GPU acceleration 

natively – to address this, RAPIDS AI: an open-source suite of software packages developed for GPU 

acceleration (RAPIDS Development Team, 2023), is utilized, with cuML and cuDF packages providing 

GPU acceleration for Linear SVR, kNNs, and RF. 

 

A.4. Simple Example of a Decision Tree 

 

Figure A.3 shows a schematic for a decision tree involving an example dataset created for demonstration 

purposes only, containing just 10 samples (Nsamples = 10), to predict the committer probability, pB as a 

function of temperature, T.  For this dataset, Table A.3 shows pB and T for each of the samples.  At each 

iteration, the optimum split threshold for T is computed using the variance reduction method described in 

(Breiman et al., 2017).  On this basis, the data is split further, with the splitting process terminated when 

insufficient data remain, after which the average pB is returned.  For instance, at the first split, the optimum 

split threshold for T is computed as T = 480 K – then, the data are divided into two sets: 5 samples for 

which, T <= 480 K, and 5 samples for which, T > 480 K.  The splitting process continues for both sets until 

the number of samples remaining in a set is <=Nmin (Nmin is the threshold for the number of samples in a set 
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to stop splitting; e.g., in Figure A.3, Nmin = 3) thereby, returning the average pB for that set.  To check for 

consistency with the data in Table A.3, note the average pB values returned at the end of the decision tree in 

Figure A.3 – for instance, there are 2 samples for which, T <= 360 (T = {300, 340}; pB = {0.1, 0.2}), with 

the average pB for these samples = 0.15, consistent with Figure A.3.  Similarly, there are 3 samples for 

which, 360 < T <= 480 (T = {380, 420, 460}; pB = {0.3, 0.4, 0.5}), with their average pB = 0.4. 

 

 

Figure A.3. Schematic of a decision tree, a flowchart-like model that helps make decisions by answering a series of 

questions based on the input variables (e.g., temperature) of the data, ultimately leading to a decision or prediction. 

 

Table A.3. Example Dataset for the Decision Tree Trained in Figure A.3 

 
Temperature, T (K) Committer Probability, pB 

300 0.1 

340 0.2 

380 0.3 

420 0.4 

460 0.5 

500 0.6 

540 0.7 

580 0.8 

620 0.9 

660 1.0 
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A.5.  Table of Hyperparameters Optimized for Each ML Algorithm 

 

Table A.4 shows the hyperparameters optimized for each model, as part of ML model development 

described in Section 2.4, along with their references. 

 

Table A.4. Hyperparameters Optimized for Each ML Algorithm in Section 2.4 

 

ML Algorithm Hyperparameters Optimized References 

Linear SVR C, epsilon, loss Pedregosa et al. (2011); 

RAPIDS Development Team 

(2023) 

kNNs n_neighbors, metric Pedregosa et al. (2011); 

RAPIDS Development Team 

(2023) 

RF n_estimators, max_depth, 

min_samples_split, 

min_samples_leaf 

Pedregosa et al. (2011); 

RAPIDS Development Team 

(2023) 

XGBoost eta, subsample, n_estimators, 

reg_alpha, reg_lambda, 

max_depth, 

early_stopping_rounds 

Chen and Guestrin (2016) 

LightGBM learning_rate, subsample, 

reg_alpha, reg_lambda, 

max_depth, 

num_boosting_rounds, 

early_stopping_rounds 

Ke et al. (2017) 

CatBoost eta, n_estimators, reg_lambda, 

max_depth, 

early_stopping_rounds 

Prokhorenkova et al. (2018) 

DNN embedding_size, learning_rate, 

num_layers, neurons_per_layer, 

epochs, patience  

Paszke et al. (2019) 

TabNet cat_emb_dim, max_epochs, 

patience 

Arik and Pfister (2020); 

Dreamquark (2019) 
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