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ABSTRACT

Previously, we developed novel, unidirectional, static, multivariate, alarm systems for rare un-postulated
abnormal events, demonstrated successfully for an exothermic CSTR. Herein, our techniques are improved
significantly for a more-complex polystyrene CSTR, operating in its unstable region, capable of abnormal
shifts to two undesirable regions; i.e., unsafe and unreliable regions. BG-FFS, a path-sampling algorithm,
is utilized to simulate efficiently multiple rare abnormal trajectories; then, the XGBoost machine learning
algorithm is utilized to develop accurate predictive models for committer probabilities; i.e., pg as a function
of key process variables — such models, when deployed in real-time, result in improved bidirectional
dynamic multivariate alarm systems, capable of response actions using real-time pp predictions. Then,
using our rationalization strategies, the initial alarm systems are evaluated and modified, followed by DRAn
(Dynamic Risk Analysis) studies and sensitivity analyses to investigate the effects of varying other process
parameters to achieve more effective response actions.
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1. INTRODUCTION AND BACKGROUND

Industry 4.0 is responsible for a transformational revolution across several industries, (Ghobakhloo, 2018;
Suleiman et al., 2022; Vaidya et al., 2018; Yang and Gu, 2021), with novel, promising technologies and
applications, including: the internet of things; i.e., IoT (Domova and Dagnino, 2017; Manavalan and
Jayakrishna, 2019; Magbool et al., 2023; Soori et al., 2023), artificial intelligence and machine learning
(Candanedo et al., 2018; Dingli et al., 2021; Javaid et al., 2022; Lee and Lim, 2021; Lee et al., 2018; Rai et
al., 2021), big data analytics (Gokalp et al., 2016; Nguyen et al., 2020; Yan et al., 2017), cybersecurity and
cyber-physical systems (Culot et al., 2019; Ervural and Ervural, 2018; Lezzi et al., 2018), and the like.
Given the success of Industry 4.0, discussions are already in place regarding Industry 5.0, consisting of
more-advanced technologies such as robotics and human-robot interactions (Barata and Kayser, 2023;
Demir et al., 2019; Ghobakhloo et al., 2023). However, despite such significant advancements, a major
concern of the chemical and manufacturing industries is to ensure safe and reliable operation of their
processes. Unsafe, extreme operating conditions (e.g., high temperatures or pressures leading to thermal
runaway reactions), poor handling of hazardous or highly reactive chemicals (e.g., improper cleaning of
reactors and storage tanks), and the like, can result in devastating consequences for operators, equipment,
and the environment. Additionally, while automated Safety Instrumented Systems (SIS) prevent accidents
by shutting down plants that approach unsafe operating regions, they could contribute to poor plant
reliability through production losses due to shutdowns, maintenance, and start-up delays. With these
advances, motivation grows to improve techniques that mitigate unsafe and unreliable situations resulting
from such abnormal events.

1.1.Rare and Undesirable Safety Abnormal Events

However, these abnormal events are extremely rare and undesirable, with very little occurrence
data available to anticipate such events. Additionally, while near-miss analyses are informative and
available extensively, they may have limitations in quantifying accurately the likelihood of such rare
abnormal events. Often, rare abnormal events with disastrous consequences are highly unanticipated and
un-postulated (i.e., do not take a specific shape or form, cannot be postulated in HAZOP studies, and occur
randomly). Analyses of rare and extreme events have been conducted across multiple research domains,
including: molecular dynamics (Berne, 1985; Ciccotti and Ferrario, 2000; Sarich et al., 2014; Shivpuje et
al., 2019), economics and finance (Jalali et al., 2010; Stanley et al., 2007), climate modeling (Beniston et
al., 2007; Webber et al., 2019), medical research (Bhaumik et al., 2012; Cai et al., 2010; Donnenberg and
Donnenberg, 2007), and the like.

Within chemical process safety too, extensive research has been conducted for quantitative
estimation of rare-events. From the perspective of accident modeling, often, rare events are defined as low-
frequency high-consequence events (Aven, 2020). First, a novel method was introduced for probability
estimation of rare events, using maximum-likelihood maximum-entropy principles, particularly for
historical data not containing any occurrences of rare-events (Ahooyi Mohseni et al., 2014). Next, a
precursor-based hierarchical Bayesian framework was developed for estimating frequencies of rare-events,
as well as consequence analyses of these events, demonstrated on the BP Deepwater Horizon accident
case-study (Yang et al., 2013, 2015). Given the key limitation of Bayesian models in considering source-



to-source variability in data, a new framework was developed that conducts root-cause analysis based on
deviations in key process variables, demonstrated on the Tennessee Eastman process (Kumari et al., 2020).
Additionally, several machine learning-based approaches have been introduced — an approach was
developed to leverage advancements in data science and machine learning to build predictive models for
severity prediction using accident precursor data (Tamascelli et al., 2022). Additionally, a parametric
reduced-order modeling framework was introduced for consequence estimation of rare-events, based on
the k-Nearest Neighbors machine learning algorithm, demonstrated on a cardon dioxide release case study
(Kumari et al., 2021). In related work, optimized machine-learning algorithms were applied to predict
accident outcomes using occupational accident data (Sarkar et al., 2019). However, most rare event analysis
methods that are purely data-driven, relying solely on historical data, have limitations due to the scarcity of
rare-event data. Hence, to circumvent this, it is crucial to complement data-driven techniques with
simulation-based techniques, capable of simulating the various pathways indicative of rare unsafe or
unreliable abnormal events, in unanticipated and un-postulated ways, especially in cases with very
limited historical occurrences; e.g., when utilizing Markov Chain-Monte Carlo (MCMC)-based
techniques.

1.2. Path-Sampling Algorithms from Molecular Dynamics

In molecular dynamics (MD), path-sampling algorithms are MCMC-based techniques applied
routinely to explore, simulate, and quantify rare events computationally in stochastic nonequilibrium
systems (Allen et al., 2006), crystal nucleation of hard spheres (Filion et al., 2010), methane hydrate
nucleation (Arjun and Bolhuis, 2023; Bi and Li, 2014), and nucleation of sodium chloride crystals (Jiang
etal., 2018). In MD, a rare event is an event whose initiation time (i.e., time taken to initiate the rare event)
is multiple orders of magnitude greater than its duration(Borrero and Escobedo, 2007; Hartmann et al.,
2014).

Previously, in our research, the application of two specific algorithms: transition path-sampling
(TPS) and forward-flux sampling (FFS), was explored. As a first approach toward combining chemical
process modeling with MD-based path-sampling to investigate rare abnormal events, we explored the
application of TPS for the operation of an exothermic CSTR and an air separation unit (ASU) (Moskowitz
et al., 2018). Then, to improve on the limitations of the TPS approach, we explored the application of FFS
to simulate efficiently and analyze rare abnormal events resulting from random perturbations in one or more
process variables (Sudarshan et al., 2021). Our analyses were demonstrated successfully for a relatively
simple exothermic CSTR and resulted in numerous transition pathways between the desirable and
undesirable regions, simulated efficiently in a piecewise manner. However, while path-sampling
algorithms are capable of simulating the reaction pathways and quantifying the probabilities and
rates of rare abnormal events, the data generated during the simulations need to be analyzed
carefully — hence, it is crucial to develop accurate predictive models that leverage the data generated
during the simulations.



1.3.Predictive Modeling and Analytics, Machine Learning and Artificial Intelligence, Decision
Sciences

Predictive modeling and analytics are crucial to advance scientific research, enabling researchers
to analyze data of varying quantities and explore patterns or insights not previously envisioned. These
powerful techniques have transformed our understanding of data information, resulting in significant
breakthroughs across scientific domains. Machine learning (ML) serves as one of the fundamental pillars
of predictive analytics. A subset of the vast and rapidly evolving field of artificial intelligence (Al), ML
refers to advanced statistical algorithms that generalize effectively from data and perform tasks without
being explicitly programmed (Koza et al., 1996; Sarker, 2021; Wang et al., 2009). Compared to traditional
statistical methods that focus more on inference, ML focuses on predictions by using general-purpose
learning algorithms, enabling one to find patterns not envisioned previously, especially in rich and unwieldy
data (Bzdok, 2017; Bzdok et al., 2018, 2017) — this led to an exponential increase in ML-based research
across several scientific domains in the past decade.

Within chemical engineering too, as part of Industry 4.0, numerous research contributions that
leverage advanced algorithms in the ML ecosystem have been conducted, such as for: catalysis (Kitchin,
2018; Toyao et al., 2020), computational fluid dynamics (Hanna et al., 2020; Kochkov et al., 2021), process
monitoring and fault detection (Angelopoulos et al., 2020; Arunthavanathan et al., 2022; Tran et al., 2021),
smart manufacturing and predictive maintenance (Cinar et al., 2020; Kotsiopoulos et al., 2021), to name a
few. More recently, in line with the rapid increase in research on generative Al and large language models
(LLMs), anovel time-series transformer (TST) - based model-predictive control framework was developed,
demonstrated for a batch crystallization system (Sitapure and Kwon, 2023a, 2023b). In related work, a
generative transformer model was developed for autocompletion of process flowsheets, (Vogel etal., 2023).
While the prospects of ML-based techniques and applications are promising, limitations must be addressed.
For instance, complex ML models, including LLMs, involve several parameters, requiring extensive
computational resources. Additionally, from amongst enumerable ML algorithms, selection of relevant
algorithms suitable for target applications is crucial, with model transparency and interpretability also a key
concern (Carvalho et al., 2019).

Note that “decision science” is an umbrella term, encompassing interdisciplinary quantitative
techniques (e.g., risk assessment, machine learning, optimization, and the like), utilized to analyze,
quantify, and improve decision-making across scientific domains (Kleinmuntz, 1990; Sharda et al., 2021).
For instance, given predictions or forecasts by ML-based models, what are the actionable strategies that
can be taken to achieve the specific goals and objectives. However, given the increased focus on
developing more-accurate ML algorithms in literature, this decision science aspect of ML is unlikely

to be addressed adequately. It seems clear that response actions taken by leveraging real-time
predictions from ML models need to be addressed more carefully (Varshney and Alemzadeh, 2017)
— a key focus of this paper.

1.4. Multivariate Alarm Systems for Rare, Un-postulated Abnormal Events

Based on our findings from initial analyses of TPS and FFS algorithms, we introduced novel,
improved, multivariate alarm systems to mitigate rare un-postulated abnormal events, resulting from
random perturbations (i.e., statistical noise) in one or more process variables, demonstrated for an
exothermic CSTR (Sudarshan et al., 2023). The branched-growth forward-flux sampling algorithm (BG-



FFS) was applied to locate rare trajectories that proceed from the high-conversion, high-temperature basin
A to the low-conversion, low-temperature basin B, in an efficient and piecewise manner. It yielded variable
values at discrete crossing points, with committer probabilities, ps, computed at the crossing points,
enabling regression to yield a linear exponential model for pg as a function of the key process variables.
This pg model was utilized to develop a multivariate alarm system, consisting of initial guesses for process
variable limits associated with each pg threshold, and their response actions. Then, to evaluate the quality
and effectiveness of the multivariate alarm systems, we introduced improved rationalization strategies, with
the alarm thresholds and response actions modified using key statistical metrics (Sudarshan et al., 2024).
For the exothermic CSTR, our strategies resulted in a significant reduction in total alarms annunciated, with
key focus on quality alarms, which, if ignored, were more likely to result in shifts to undesirable operating
regions. Finally, to evaluate the risk associated with the rationalized multivariate alarm systems, we utilized
dynamic risk analysis (DRAn), wherein, using Bayesian statistics, probability distributions were
constructed for the failure probabilities of the alarm systems, estimated using multiple dynamic simulations.
But, these multivariate alarm systems consisted of static alarm thresholds (i.e., based on static process
variable limits) obtained using simple OLS-based linear exponential models for pg. Herein, this and other
limitations are eliminated, as summarized next.

1.5. Polymerization CSTR— Unsafe and Unreliable Operating Regions — Real-time pg Models

In this manuscript, we extend our analyses to more complex polymerization CSTRs, particularly,
in a PID-controlled polystyrene CSTR operating in its intermediate unstable operating region, considered
desirable for polymerization reactors. To model rare un-postulated abnormal events, random, statistical
noise is introduced into the monomer feed concentration. For the polystyrene CSTR operating in the
unstable region, adequate statistical noise can lead to rare un-postulated abnormal shifts to only two possible
regions; i.e., unsafe or unreliable.

For data generation, the BG-FFS algorithm is utilized to simulate independently rare abnormal
trajectories between desirable (i.e., unstable) and undesirable (i.e., unsafe or unreliable) operating regions,
saving key process variable values at distinct crossing points, followed by computation of pg at all crossing
points. Then, to develop pg-process variable models in real-time, advanced ML algorithms are used to

obtain accurate, predictive models for dynamic, multivariate alarm systems. Next, our rationalization
strategies, developed previously (Sudarshan et al., 2024), are used to improve alarm thresholds and response
actions. Finally, using DRAn, failure probabilities of the safety systems and their probability distributions
are estimated, for the rationalized alarm systems, using multiple dynamic simulations, followed by
sensitivity analyses to investigate the effects of varying other process parameters in response to alarms.
Hence, given the response action strategies developed as part of the multivariate alarm systems that
are based on real-time pg predictions, this paper addresses the decision science component of accident
modeling, risk assessment, as well as machine learning.



2. MATERIALS AND METHODS
2.1. Description of Polystyrene CSTR Model

Figure 1 shows a temperature-controlled polystyrene CSTR that manipulates the coolant flowrate.
Polymerization CSTRs have been studied extensively, including continuous polymerization of vinyl
chloride and styrene (Brooks, 1981). Additionally, the homopolymerization of styrene in a series of two
CSTRs was investigated (Kim et al., 1991). Then, a nonlinear model-predictive control (NMPC) algorithm
was developed for control of a water-cooled styrene polymerization CSTR at its unstable steady-state
(Hidalgo and Brosilow, 1990). In related work, an approach was proposed to verify the stability and
performance of controllers for a polystyrene CSTR in the presence of uncertainty (Gazi et al., 1996).
Additionally, steady-state multiplicity and bifurcation analyses were conducted to study its operability; i.e.,

how the process dynamics varies with operating conditions and process parameters at steady-state (Russo
and Bequette, 1998).
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Figure 1. Schematic of the polystyrene CSTR process model

For homopolymerization of styrene, Hidalgo and Brosilow (1990) and Russo and Bequette (1998)
utilized a free-radical polymerization kinetic mechanism:
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where I is the initiator (i.e., azobisisobutyronitrile — AIBN), M is the monomer (i.e., styrene), R is the free
radical produced by initiator decomposition, P represents the growing polymer chain, T is the terminated
polymer chain, and kq, ki, kp, ki, kic are the rate constants for initiator decomposition, chain initiation,
propagation, termination by disproportionation, and termination by coupling. The model assumptions, as
mentioned in Hidalgo and Brosilow (1990) and Russo and Bequette (1998), are:

i) The lifetimes of the radical species are short compared to the system time constants; hence, the
quasi steady-state approximation is valid (i.e., net rates of reaction associated with the radicals ~
0).

ii)) The CSTR is assumed to be well-mixed.

iii) The physical properties of the reaction mixture (e.g., density, heat capacity, heat transfer
coefficient, etc.) are assumed constant.

iv) Gel effect; i.e., sudden increase in the overall polymerization rate due to increases in the viscosity
of the reaction mixture, thereby reducing the termination rate, is assumed to be negligible.

v) The sum of the Arrhenius rate expressions for termination by coupling and disproportionation is
expressed as a single overall chain termination rate (i.e., k = kic + kia)

With these assumptions, the material and energy balance equations for the dimensionless model, as
developed by Russo and Bequette (1998), are:

dx
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where xi1, x2, X3, x4, x5 are the dimensionless initiator concentration, monomer concentration, reactor
temperature, coolant temperature, and concentration of growing polymer; @i, qm,qs,qc are the



dimensionless flow rates for initiator, monomer, solvent and coolant streams; ¢q, ¢y, ¢ are Damkohler
numbers for initiator decomposition, propagation, and termination; g, ¥p, ¥t are dimensionless activation
energies for initiator decomposition, propagation, and termination; f is the dimensionless heat of reaction,
6 is the dimensionless heat-transfer coefficient, §; is the dimensionless reactor volume, §, is the
dimensionless specific heat, f'is the initiator efficiency; xif, X2r, X31, x4r are the dimensionless initiator feed
concentration, monomer feed concentration, reactor feed temperature, and coolant feed temperature. Table
1 displays the values for the dimensionless process parameters. Next, based on studies conducted by Russo
and Bequette, (1998), steady-state bifurcation analysis is performed, with the dimensionless cooling-water
flow rate; i.e., q., selected as the free bifurcation parameter, enabling identification of desirable and
undesirable operating regions. Looking ahead, in Section 3, Results and Discussion, see Figure 6.

Table 1. Dimensionless Process Parameters

Parameter Value
qi 0.1
qm 0.4
qs 0.48571
bq 0.01688
b 2.1956 x 107
R 9.6583 x 10'2
X1t 0.06769
Xof 1.0
X3¢ 0.0
Xaf -1.5
1) 0.74074
01 0.90569
6, 0.37256
B 13.17936
f 0.6
X35p 0.85
K. 50
Tp 0.9
T 5

2.2. Overview of Key Steps and Methods

Figure 2 represents an overview of the key steps and methods utilized in this paper, with each step
described extensively in subsequent sections.



Step 0: Preliminary
Analyses

Step 1: Data
Generation via
Forward-flux
Sampling

Step 2: Predictive
Modeling via
Machine Learning

Step 3: Alarm
Rationalization and
Dynamic Risk

For a chemical process model, conduct steady-state bifurcation analyses and
determine the desirable and undesirable operating regions. Then, select a
suitable control scheme and perform initial dynamic simulations with statistical
noise in one or more process variables, showing possible un-postulated
abnormal transitions.

Using branched-growth Forward-flux Sampling (BG-FFS), simulate
numerous rare abnormal trajectories efficiently for the controlled process
model, saving valuable data during the simulations relevant to the key process
variables, and estimate the committer probabilities

Using machine learning, develop accurate predictive models that quantify the
committer probabilities as function of the key process variables — use the
model to suggest initial dynamic alarm thresholds and response actions

Through rationalization strategies, evaluate quality of alarm thresholds and
response actions, with the alarm thresholds and/or response actions modified
accordingly, based on key statistical metrics — then, through dynamic risk
assessment, quantify the risk associated by estimating the failure probabilities

Analyses of the alarm systems

Conduct sensitivity analyses to investigate the effects of varying other process
parameters as actions in response to alarms

Step 4: Sensitivity

Analyses

Figure 2. Overview of key steps utilized in developing multivariate alarms

2.3. Step 0: Preliminary Analyses

As part of preliminary studies, steady-state bifurcation analysis is conducted for the polystyrene CSTR,
with g. chosen as the free bifurcation parameter — from the resulting solution diagrams, stable and unstable
branches are identified, based on which the desirable and undesirable operating regions are determined.
Then, an appropriate control scheme, along with controller parameters, is selected experimentally, to ensure
sufficiently tight control, while allowing rare abnormal shifts to the undesirable operating regions. Given
the desirable and undesirable operating regions, initial dynamic simulations are conducted inclusive of
control and statistical noise in one or more process variables, recognizing rare un-postulated abnormal
shifts, when they occur.

2.4. Step 1: Data Generation via Forward-flux Sampling
FFS conducts simulations of the process trajectories in a discrete, piecewise manner, using evenly or
unevenly placed interfaces; i.e., 4, i =0,1, 2, ..., n, where 4 is an appropriate order parameter variable (e.g.,

temperature), and, Ao and A, represent the bounds for basins A and B. Initially, we utilized the direct
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forward-flux sampling variant (DFFS) for the exothermic CSTR process model to simulate numerous rare
abnormal trajectories between the desirable basin A and undesirable basin B, thereby, computing the
associated transition probabilities and rates. However, the DFFS variant is limited, because it simulates
piecewise trajectories from random crossing points across each interface. For accurate computations of the
committer probabilities, it is desirable to simulate multiple trajectories from every crossing point at 4;, as
implemented in the BG-FFS algorithm (Allen et al., 2009; Borrero and Escobedo, 2007), demonstrated
when developing the multivariate alarm systems for the exothermic CSTR (Sudarshan et al., 2023). The
steps involved in the BG-FFS algorithm, shown schematically in Figure 3, are:

i) Define the initial desirable basin A and terminal undesirable basin B.

i) Pick a suitable order parameter variable; i.e., A; typically, this is a process variable that has a strong
influence on the process dynamics; i.e., is able to capture process deviations more-rapidly than other
variables, and is not perturbed significantly using statistical noise; e.g., the reactor temperature.

iii) Based on the chosen 4, divide the space between the two basins into finite interfaces; i.e., 1p, 11 ... 44,
where A, and A,, represent the bounds for basins A and B.

iv) Simulate a long initial trajectory that generates finite crossings across Ao; if required, repeat this step for
multiple trajectories to generate sufficient crossing points, with all process variables saved at every crossing
point.

v) Compute the initial rate of transition across 4, 1y, as the total crossings divided by the total time spent
in basin A by all the initial trajectories.

vi) Select a crossing point from among the saved crossings across A, and simulate m trajectories from that
point, each of which continues until A, is crossed. Save the variables at all such crossing points.

vii) Simulate k; trajectories from every crossing point across 4, that generate crossing points across A,.
Save the variables at all such crossing points.

viii) Iterate step vii) for all subsequent interfaces till A,,; i.e., simulate m; trajectories from all crossing
points at 4; that continue until A;, is reached; save the variables at all such crossing points at 1;,,; V i =
2,3...n—1.

ix) Compute the overall transition probability of reaching basin B from basin A:

N(An|20)
Pasp(nle) = — = (14)
=0 i

where N(A,,|1o) is the number of branches that reach basin B (i.e., from A,_; ) and [[?;} m; are the total
possible number of branches.

x) Compute the overall rate of transition, r_,g, as the product of y and pa_,g(1,,|10)-

xi) Repeat steps iv) — ix) for other crossing points at 4, and compute the average overall probability and
rate of transition, i.e., ps_pg and 7o_,g-
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Figure 3. Schematic showing key steps for simulating abnormal trajectories using BG-FFS algorithm (refer to the
points in Section 2.4.)

Given multiple rare abnormal trajectories simulated efficiently and values of the key process
variables saved, the BG-FFS simulations are conducted only a few times offline and need not be repeated.
Note that every stored crossing point, with variables x, has an associated committer probability, pg(x) —
defined as the probability that a trajectory fired from that point reaches; i.e., ‘commits’ to, basin B (Allen
et al., 2009; Borrero and Escobedo, 2007; Peters and Trout, 2006). To estimate pg for a crossing point
across A;, the variables at that point and the number of trajectories initiated from that point that successfully
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crossed 4;,1, need to be saved. Then, the probability that a trajectory initiated from a crossing point j at
A; reaches the next interface; i.e., Aj;1, is (Borrero and Escobedo, 2007; Sudarshan et al., 2023):

FQipq |2 Nji 15

p] l+1| i) = m; ( )
where Nji is the number of successful trajectories reaching A;,; from point j at 4;, and m; is the total
number of trajectories initiated from that point. Next, the p ji(AHl |4;) can be used to compute the committer

probability to reach basin B of point j at 4;, pg ji:

N . N .
J i+1 J i+1
Y L1 DBk _ Yx—1PBKk
i - ;

m ;L= Ninterfaces - 1'Ninterfaces - 2, .0 (16)
/j i

pe;' = P (A1l X

Note that Egs. (15) and (16) are recursive formulae — stated differently, the committer probabilities
are computed for all crossing points generated during BG-FFS simulations in reverse, i.e., from i =
Ninterfaces - 1 t0 =0, where Nipterfaces 1S the number of interfaces. For instance, consider a simple example
for demonstration purposes (Sudarshan et al., 2023): assuming Niyterfaces= 7> PB ]-7 =1, because at the last
interface, it is concluded that the process has transitioned to basin B. Next, pp j6 =p j6(A7|/16) = N?’: ,
since Zgi 61 Per’ = Nje. Next, pg ]-5 can be computed using the previously computed pg ]-6. This process is
continued until pg jo — in this way, the committer probabilities are computed for all crossing points
obtained during the BG-FFS simulations.

Additionally, note that depending on the process parameter selected initially as the response-action
variable (i.e., a variable that is varied in real-time in response to alarms; e.g., ¢;), the BG-FFS simulations
and pgp calculations are repeated for multiple discrete values of the response-action variable.

2.5. Step 2: Predictive Modeling via Machine Learning

Figure 4 shows the pipeline encompassing all key stages for developing predictive models using machine
learning. With data generated during BG-FFS simulations (Figure 4, step I) pertaining to the key process
variables and the estimated pg, followed by data preprocessing; i.e., Figure 4, step II (e.g., eliminating
extreme outliers for crossing points generated across each 4;), the next step is to develop a predictive ML
model that quantifies pg as a function of the key process variables (Figure 4, steps 11I-V). Note — next,
Figure 4, step 111, is introduced briefly — followed by discussions of Figure 4, steps IV and V.

Recently, Sudarshan et al. (2023), when developing a multivariate alarm system for an exothermic CSTR,
created a simple, linear-exponential predictive model, with the coefficients estimated using ordinary least-

squares (OLS) regression:

pp = 0.81[exp(—8.3Tyim + 4.64F¢qim + 0.04T, gim + 0.04C4im )] (17)
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where Tgm is the dimensionless temperature; F.gim is the dimensionless CW flow rate; 7cdim iS the
dimensionless CW temperature, and Cgim 1s the dimensionless reactant concentration. However, for the
polystyrene CSTR, as changes to the process are made in response to alarms (e.g., varying g;), the process
dynamics also varies significantly, unable to be captured by parametric models with fixed mathematical
structure (e.g., linear-exponential models), leading to inaccurate pg estimates and incorrect response
actions. Additionally, it is often cumbersome and inconvenient to experiment with different parametric
models, one-by-one, and evaluate their applicability to the data.

'
'
1
Training Data , IV. Model '
Hyperparameter !
: Optimization '
I
'
1 :
; Model '
11 ML ; ! VIIL Feedback
B i) Algorithm 1 Development ' e
Collection Preprocessing i V. Model Training H
eeston } with Optimum i
| Hyperparameters H
i '
__________________________________ 1
Testing Data VL Model S
Evaluation on Dep;nymmn
Test Set

Figure 4. Pipeline encompassing all key stages in machine learing.

Machine learning algorithms that do not assume structure, as in Eq. (17), are referred to as
nonparametric learning algorithms. Such algorithms are free to learn any functional form, based on the
training data provided. Typically, the training data in our analyses are tabular, as shown in Table 2 for N
data points and four input variables. Among various nonparametric algorithms, tree-based learning
algorithms are preferred for tabular data, as clarified in several benchmark studies comparing ML
algorithms for multiple datasets (Grinsztajn et al., 2022; Shwartz-Ziv and Armon, 2022). Most notably,
despite their revolutionary advances in image (e.g., computer vision) and text [e.g., NLP (Natural Language
Processing), LLMs (Large Language Models)] processing applications, deep neural networks appear to be

outperformed by tree-based models for tabular data (Borisov et al., 2022; Grinsztajn et al., 2022).

Table 2. Schematic for Tabular Training Data in our Analyses

P X X> X3 X4
PB,1 X11 X2 X31 X4
PB,2 Xi2 X2 X3 X4z

pB'Nsamples Xl:Nsamples Xz'Nsamples X3rNsamples X4'Nsamples
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XGBoost is a tree-based algorithm that has become popular since its development in 2014. It is
very effective for classification and regression tasks (Cerna et al., 2020; Li et al., 2019; Ma et al., 2021;
Ogunleye and Wang, 2020), including classification of rare events (Ashraf et al., 2023; Wang et al., 2023).
XGBoost, named for “eXtreme Gradient Boosting”, as developed by Chen and Guestrin (2016), is an
ensemble learning algorithm, developed to provide high-predictive performance with efficient
computational speed, capable of CPU (central processing unit) and GPU (graphical processing unit)
parallelization. Typically, XGBoost trains an ensemble of decision trees sequentially, wherein, each newly
trained decision tree attempts to reduce the errors, w.r.t training data, in the previous tree, involving
computations of gradients for a loss function (e.g., the RMSE in Eq.(28)). Stated differently, the first
decision tree (i.e., the weak learner) in the ensemble generates inadequate predictions, but through steady
and sequential hoosting (i.e., achieving improvements), XGBoost results in a powerful predictive model
that represents complex relationships in the data, generating highly accurate predictions. Hence, herein, for
ML algorithm selection in Figure 4, step III, XGBoost is selected as the preferred algorithm.

Figure 5 shows a schematic of a decision tree involving an example dataset created for
demonstration purposes only, containing just 10 samples (Nsampies = 10), to predict pg as a function of
temperature, 7. For this dataset, Table 3 shows ppand T for each of the samples. At each iteration, the
optimum split threshold for 7' is computed using the variance reduction method described in Breiman et al.
(2017). On this basis, the data is split further, with the splitting process terminated when insufficient data
remain, after which the average psg is returned. For instance, at the first split, the optimum split threshold
for T is computed as 7= 480 K — then, the data are divided into two sets; i.e., 5 samples for which, T <=
480 K, and 5 samples for which, 7> 480 K. The splitting process continues for both sets until the number
of samples remaining in a set is <= Ngampics, min (NVsamples, min 1S the minimum number of samples required in a
set to continue splitting; e.g., in Figure 5, Nsamples, min = 3) thereby, returning the average pg for that set. To
check for consistency with the data in Table 3, note the average pg values returned at the end of the decision
tree in Figure 5 — for instance, there are 2 samples for which, 7 <= 360 (i.e., T = {300, 340}; ps = {0.1,
0.2}), with the average pg for these samples = 0.15, consistent with Figure 5. Similarly, there are 3 samples
for which, 360 < T <= 480 (i.e., T = {380, 420, 460}; ps = {0.3, 0.4, 0.5}), with their average ps = 0.4.
Note that XGBoost involves training several decision trees sequentially, where each decision tree follows
a splitting process similar to the one described for the example decision tree in Figure 5. For a detailed
description of the XGBoost algorithm, refer to the XGBoost Algorithm: Steps Subsection 7.2 in the
Appendix, and to the official document for the algorithm (Chen and Guestrin, 2016).

Note that prior to model development, the data are divided into training and testing data using
randomized splits. Additionally, note that most ML models consist of two entities: hyperparameters to be
set/optimized before training; and, internal model parameters that are optimized during training. In general,
the XGBoost model consists of several hyperparameters (e.g., one of which is the number of decision trees;
note — Figure 5 could be the first decision tree) that need to be chosen carefully, as model performance is
extremely sensitive to their choice. Hence, for the XGBoost algorithm, model development consists of two
key steps:

1) Hyperparameter Optimization with Cross-Validation (Figure 4, step IV): This involves computing the

optimum set of hyperparameters for the ML model across multiple subsets of training data to ensure
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generalization and robustness. There are several open-source software packages available for
hyperparameter optimization, including: Hyperopt (Bergstra et al., 2015), Optuna (Akiba et al., 2019), Ray
tune (Liaw et al., 2018), Optunity (Claesen et al., 2014), and the like. For the XGBoost model herein, the
Optuna framework is chosen, utilizing a Bayesian optimization technique called a tree-structured parzen
estimator; i.e., TPE (Bergstra et al, 2011; Watanabe, 2023) to determine the optimum set of
hyperparameters.  Additionally, using detailed benchmark studies comparing various optimization
techniques and open-source frameworks, Optuna-TPE provided the most favorable performance and
computation times (Motz et al., 2022; Shekhar et al., 2022). Typically, the hyperparameter optimization
process is carried out with k-folds cross validation:

A) Divide training data into & sets (i.e., “folds”) randomly. Typically, k=3, 4, or 5.

B) Sample a combination of hyperparameters (e.g., the number of decision trees. For more information
regarding hyperparameters, please refer to the Appendix, Section 7.4.)

C)Seti=1.

D) Place set i aside, and train the model using the remaining & - 1 sets. (e.g., when k = 3, these are sets 2
and 3.)

E) Evaluate the performance of the trained model using set i as the validation set and compute the validation
score (e.g., RMSE — root-mean-squared-error; in Section 3.3, see Eq. (28)).

F) When i <k, seti =i+ 1. Return to D).

G) When i = k, compute the average validation score.

H) Return to B). (e.g., sample a different value for number of decision trees)

I) Return the combination of hyperparameters that resulted in the maximum/minimum average validation
score, depending on the chosen metric (e.g., return the number of decision trees that resulted in the minimum
average RMSE).

ii) Model training with the Optimum Hyperparameters (Figure 4, step V): Post optimization i), the ML
model, with its optimum hyperparameters, is trained using the entire training data.

Table 3. Example Dataset for the Decision Tree Trained in Figure 5

Temperature, T (K) Committer Probability, pg
300 0.1
340 0.2
380 0.3
420 0.4
460 0.5
500 0.6
540 0.7
580 0.8
620 0.9
660 1.0
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Input Data: Temperature, T
Output Data: Committer Probability, p,
Noguptes =10

T<=360K
‘\;mw['\'n =2
Output =p, =0.15

T>360K
Noampter = 3
Output =pp =04

Noampres = 3
Output =p; =0.7

Output = 5 =0.95

Figure 5. Schematic of a decision tree, a flowchart-like model that helps make decisions by answering a
series of questions based on the input variables (e.g., temperature) of the data, ultimately leading to a
decision or prediction.

The trained ML model is then evaluated using the testing data, returning the evaluation score (Figure 4,
step VI). When the performance is satisfactory, the model is ready for deployment; i.e., fresh predictions are
generated using the trained model as new input data are received (Figure 4, step VII). Eventually, as output data
become available, they are compared with the model predictions, following which, the output data and their
corresponding input data are sent back to the data collection step as feedback for model refinement (Figure 4,
step VIII). Clearly, in practice, the ML pipeline is an infinite cycle, with continuous monitoring and model
updates as data are received.

Herein, as dynamic simulations yield process variable values, real-time predictions for pg are estimated
by deploying the trained XGBoost model. Clearly, these predictions are utilized to sound dynamic
multivariate alarms when pg >= pg e for defined ppjaret values. Consequently, automated response
actions are activated that attempt to decrease pg in real-time. These yield initial multivariate alarm systems,
consisting of initial guesses for the alarm thresholds and response actions.

2.6. Step 3: Alarm Rationalization and Dynamic Risk Analyses (DRAR)

For the multivariate alarm systems developed in Step 2, key questions are: Does every alarm indicate an
impending rare abnormal event? Are there too many or too few alarms? Is every response action effective
in returning the process to normal operation? To address these issues, rationalization strategies, with
improved alarm thresholds and response actions, were demonstrated for an exothermic CSTR, resulting in
a reduction of nuisance alarms, by Sudarshan et al. (2024). Note that the key aim of alarm rationalization
is to reduce significantly both the number of false alarms and the total alarms annunciated, to ensure that
every alarm is a quality alarm. It is claimed that through rationalization, the total number of alarms can be
reduced by 50%, coupled with reductions in the nuisance alarms (Timms, 2009).
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Next, post rationalization, the risk associated with the multivariate alarm systems is evaluated using
dynamic risk analysis (DRAn) — a technique developed over the past two decades to help achieve real-
time proactive risk management against rare abnormal events. Typically, assuming availability of raw
alarm data from process historians, DRAn involves: i) Tracking all possible postulated abnormal events
listed as part of HAZOP studies using raw alarm data; ii) Creating event trees showing all possible paths
taken by an abnormal event when propagating through the alarm systems; iii) Compacting the data into a
concise and structured representation (Pariyani et al., 2012a); iv) Using the compacted data, to perform
Bayesian computations to estimate failure probabilities of alarm systems, probability of trips, and
probability of accidents (Pariyani et al., 2012b). However, for our case (with random statistical noise, 7,
used to model un-postulated abnormal events — see, e.g., Eq. (20)), given the unavailability of raw alarm
data, the DRAn methodology is modified:

1) Conducting multiple batches of dynamic simulations of the process, inclusive of control and
the rationalized multivariate alarms systems. For each simulation, recording key alarm statistics
(e.g., number of alarms, number of alarms at the current level that were active when the next
alarm level is reached, and the like). Then, computing alarm system failure probabilities (e.g.,
100 batches of dynamic simulations yield 100 failure probabilities for each alarm system).

i1) Using these failure probability results, constructing an informed prior distribution (IPD)

iii) When no alarm system failure data are available, constructing the likelihood distribution using
assumed alarm failure data.

iv) Using Bayes’ Rule, constructing the final posterior distribution for the failure probabilities as:

f(pfailure,i) X f(Dlpfailure,i)
folf(pfailure,i) X f(Dlxi) dpfailure,i

f(pfailure,i | D) = (18)

where pgilure,; represents the failure probabilities for alarm system i; f (pfailure l.) is the IPD; f (D |pfailure i) is
the likelihood distribution constructed from likelihood data, D; f (pfaﬂure l.| D) is the posterior distribution.

Hence, the low-variance IPD constructed based on multiple dynamic simulations results in a low-variance
and reliable posterior distribution as compared to a non-informative flat prior that typically leads to an
unreliable posterior, depending entirely on the high-variance likelihood distribution (Sudarshan et al.,
2024).

2.7. Step 4: Sensitivity Analyses

Note that response actions are key components of multivariate alarm systems — to ensure that the alarm
systems are effective, it is expected that the process parameter selected as the response-action variable in
Section 2.4 has a reasonably strong influence on the committer probabilities. Hence, in sensitivity analyses,
the above steps, to estimate failure probabilities, are repeated for other process parameters that potentially
could have stronger impacts on the committer probabilities (e.g., gm, gs, €tc.). Then, the results and statistics
computed using DRAn are compared to identify the most effective response-action variable.

17



2.8. Computational Specifications and Software Utilized

Note that all simulations, analyses, and results presented herein were conducted on a Windows 11 Desktop
computer, having specifications:

1) CPU: 12" - generation Intel i7-12700K with 12 cores (8 performance + 4 efficiency), 32 GB
DDRS5 RAM
i) GPU: NVIDIA RTX 3060 Ti, 8 GB RAM

For bifurcation analyses conducted in step 0, the MATCONT toolbox, based on MATLAB, is
utilized (Dhooge et al., 2003). For all other steps, the Python programming language (versions 3.9 and
3.11) is utilized, leveraging several powerful open-source software packages, including: NumPy (Harris et
al., 2020), Pandas (McKinney, 2010) , SciPy (Virtanen et al., 2020), Matplotlib (Hunter, 2007), Scikit-
Learn (Pedregosa et al., 2018), XGBoost (Chen and Guestrin, 2016), Numba (Lam et al., 2015), Optuna
(Akiba et al., 2019), to name a few. Also, for efficient GPU-parallelization during model development, the
NVIDIA Compute Unified Device Architecture (CUDA) toolkit (NVIDIA et al., 2022) is utilized.

3. RESULTS AND DISCUSSIONS

For each step in Section 2, this section presents results with discussions.
3.1. Step 0: Preliminary Analyses

Figure 6 shows the steady-state solution diagram for the polystyrene CSTR, with ¢. being the free
bifurcation parameter. The stable branches are shown in solid, and unstable branches in dotted lines. The
intermediate unstable region is selected as the desired region, given that, to ensure safe and reliable
operation, this is the preferred operating region for most polymerization reactors. Additionally, two stable,
undesirable regions are observed; i.e., the unsafe region, with high conversion and high temperature, and
the unreliable region, with low conversion and low temperature. Clearly, two rare, abnormal shifts from
the unstable operating region are possible: 1) Unstable to Unsafe; ii) Unstable to Unreliable. Note the key
bifurcation points indicated using red asterisks; i.e., limit points, LP (i.e., the Jacobian matrix has at least
one zero eigenvalue), and Hopf bifurcation point, H (i.e., the Jacobian matrix has a pair of complex-
conjugate eigenvalues with zero real part), associated with changes in the stability of the process (Kubicek
and Marek, 1983).
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Figure 6. Steady-state solution diagram for the polystyrene CSTR

Next, a PID-control scheme is developed that controls x3 by manipulating g., with constraints
imposed on g.. The controller parameters (i.e., controller gain, Kc, integral time constant, 7, and derivative
time constant, ) are selected experimentally to ensure both sufficiently tight control as well as to allow
rare abnormal transitions to the undesirable regions. Additionally, to model un-postulated abnormal events,
random, statistical noise is introduced into the monomer feed concentration. With control and noise, the
dimensionless modeling equations for the polystyrene CSTR are:

dx,

ar - dixae (@i + qm + qs)x1 — Pakq(x3)xy (19)
de 2
—7 = AmCrae+ M) = (@i + dm + 45)%2 — Gpicp (x3)x2x55 0~ NV (0, 0%) (20)
dx
d_: = (qi + qm + qs)(x3r — x3) + BPpkp(x3)xx5 — (x5 — x4) (21)
dx
d_‘: = 81qc(xar — x4) + 865 (x3 — x4)] (22)
t
1 , d(x3, — X3 )
dc = 4co — K. (x3,sp — X3 ) + Ef(xS,sp — X3 )dt + Tp Sdp—t (23)
0
0<qg. <5 (24)
2f Pparcq(x3)x,
Xe = |2 LE el 25
> Perce(x3) (25)
xl’o = 0.004‘1; xZ’O = 0.2156; X3’0 = 0.951; X4‘0 = _1.1191; qC,O =1.5 (26)

where X719, X320, X30, X140, c,o0 represent initial values. Note that the statistical noise; i.e., 7, is sampled at
every integration time-step (with integration step-size; i.e., # = 0.001), from a normal distribution,
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Dimenstionless Reactor Temperature (x3)

N(u, anz ), with a mean; i.e., ¢ = 0, and variance; i.e., 0',72 = 0.0014. Note that for accurate analyses,
identical initial conditions need to be considered for abnormal trajectories generated towards both
undesirable regions. Hence, the initial values in Eq. (26), as well the variance of statistical noise, i.e., g, 2,
are selected experimentally, based on trial-and-error simulations, to ensure multiple rare transitions are
simulated from the unstable region. Figure 7 shows the PID-controlled polystyrene CSTR (with values for
the dimensionless controller tuning parameters in Table 1) under dynamic operation with noisy monomer
feed concentrations, showing abnormal shifts to: a) Unreliable region and b) Unsafe region. At low initiator
flowrates, gi = 0.05, the reactor exhibits strong inverse response, causing rapid shifts in operation from the
unstable region to the unreliable operating region; however, the reactor does not remain in the unreliable
region and quickly returns to the unstable region. At high initiator flowrates, ¢; = 0.12, the reactor shifts to
the unsafe region, remains for some time, and returns to the unstable region. Additionally, note the
significant offset away from the desired set-point (i.e., x3, sp = 0.85), with potential reasons being: increased
sensitivity of the PID controller to statistical noise, integral windup due to the input constraints, causing the
controller to undershoot, and the like.
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Figure 7. The polystyrene CSTR under dynamic operation with noisy monomer feed concentrations, showing
abnormal shifts to: a) Unreliable region at low ¢; and b) Unsafe region at high g;

3.2. Step 1: Data Generation via Forward-flux Sampling

Using BG-FFS, numerous rare abnormal trajectories are simulated efficiently in a piecewise manner — given
two undesirable regions, the simulations are conducted independently for unsafe and unreliable shifts. Note
that the dimensionless reactor temperature; i.e., x3, is chosen as the order parameter variable. Initially, the
initiator flowrate, gi, is chosen as the response-action variable; hence, for each undesirable region, the BG-
FFS simulations are conducted for multiple discrete values of ¢gi. As part of exploratory data analysis,
Figure 8 shows the average pg as a function of ¢; for various 4;, for the two abnormal shifts. For shifts to
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the unsafe region, the average pg appears to increase with g;; for shifts to the unreliable region, the trend is
not very clear, with decreases in the average ps observed for intermediate gi.

Sensitivity of Average pg wrt g; for each lambda, Unstable --> Unreliable

Sensitivity of Average pg wrt g; for each lambda, Unstable --> Unsafe
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Figure 8. Average pg as function of g; for various A;, for abnormal shifts to: a) Unsafe region and b) Unreliable
region

3.3. Step 2: Predictive Modeling via Machine Learning

Given two categories of abnormal shifts; i.e., unstable to unsafe and unstable to unreliable, two XGBoost
models are developed independently by utilizing the steps mentioned in Section 2.5, for the data generated
during BG-FFS simulations and pg calculations. Then, the trained XGBoost models are evaluated on the

test data using the following evaluation scores:

N les, . N )2
Z samplesitest (pB,test(l) - pB,test(l))

R? = Coefficient of Determination = 1 — i=13 — 5 (27)
Zi:l ples (pB,test(i) - ﬁB,test )
ZNsamples,test (pB (l) _ ﬁB (l))z
i= test , test
RMSE = Root Mean Squared Error = = (28)
Nsamples,test
RMSE % = £5E % 100 (29)

DB test
where pp (o5t represents the pg in the test data, pp test is the pg predicted using the trained XGBoost model

for the test data, pp test represents the mean pg for the test data, and Ngamples test represents the number of
samples in the test data. Figure 9 shows the performance and evaluation scores for the two XGBoost
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models. For both models, high R? and reasonably low RMSE and RMSE% are observed, indicating strong
predictive performance. Note that the clock time recorded for development of each XGBoost model is ~
7-8 min, with GPU acceleration implemented during hyperparameter optimization. Additionally, note that
for reliable cross-validation during the hyperparameter optimization process, it is important to obtain lower
standard deviations across folds, for the given evaluation metric selected for cross-validation (i.e., RMSE).
For both XGBoost models, during cross-validated hyperparameter optimization, the ratio of standard
deviation to mean for the RMSE is ~ 1072, confirming the reliability of the cross-validation process.

XGBoost Model Performance on Test Data, Unstable --> Unsafe XGBoost Model Performance on Test Data, Unstable --> Unreliable
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Figure 9. Performance of the XGBoost model on test data and evaluation metrics for: a) Unstable to Unsafe; b)
Unstable to Unreliable

Given satisfactory performance on test data, both models are adequate to return real-time
predictions of pg, given dynamic simulations not used to obtain the training or testing data. Figure 10a
shows x3 as function of dimensionless time for a new dynamic simulation, with Figure 10b showing real-
time pg predictions by using both XGBoost models. Clearly, these predictions can be leveraged to develop
dynamic, multivariate alarm systems; e.g., if the first alarm threshold for the unsafe region is set at 0.20,
then, when real-time pg unsate >= 0.20, the alarm goes off and its corresponding response action (e.g., slight
decrease in ¢;) is activated instantaneously, attempting to decrease pg unsate in real-time.
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Dimensionless Reactor Temperature, x3
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Figure 10. a) A new dynamic simulation showing x3 as function of time; b) Real-time pg predictions obtained by

deploying the XGBoost models for the dynamic simulation

3.4. Step 3: Alarm Rationalization and Dynamic Risk Analyses (DRAnR)

With real-time tracking of pp available from the XGBoost models, six-level initial multivariate alarm
systems, consisting of alarm thresholds (defined using pg limits, where basin B is an unsafe or unreliable

region) and response actions (defined using discrete gi values) are:

High Alarm Systems: Alarm thresholds and response actions corresponding to the unsafe
operating region. As initial guesses, these are:

) H (High): pg unsafe,n= 0.20; gjz = 0.0975

i1) HH (High-high): pg ynsafe qu= 0.40; qj g = 0.095

iii) HHH (High-high-high): pg unsafe ana= 0.80; g; gun = 0.09

Low Alarm Systems: Alarm thresholds and response actions corresponding to the unreliable
operating region. As initial guesses, these are:

i) L (Low): PB,Unreliable, L= 0.20; qiL = 0.0975

1i) LL (Low-low): pg unreliable,LL= 0.40; g 1, = 0.095

iii) LLL (Low-low-low): pg unreliable,L.LL= 0-80; qj 11, = 0.09

Note the decreasing trend for gi-based response actions selected for both high and low alarm

systems, as the undesirable region is approached — from Figure 8, while the trend for pg unreliable 1S Unclear,

an increasing trend is observed for ppunste (1.€., as ¢; increases, ppunsafe 1NCreases); hence, a decreasing
trend of response actions is chosen for both high- and low-alarm systems to ensure that safety is not
compromised. Additionally, note that response actions corresponding to each alarm level are assumed to
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be completely automated, comparable to an “ideal” operator having negligible response times. Figure 11
represents a schematic of multivariate alarm systems in action. For instance, consider a process trajectory
(shown in black) initially operating in the normal operating region; as soon as it crosses the H-threshold
limit defined for the primary alarm variable, the H-alarm goes off, and its corresponding response action
(i.e., changes made to the response action variable, given the XGBoost models’ pg predictions) is activated,
attempting to return the process to normal operation.
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Time

Figure 11. Schematic showing multivariate alarm systems in action, given measurements available for a
primary alarm variable.

Note that the initial initiator flowrate; i.e., gimit = 0.1. Next, as described in Section 2.6, the
algorithm developed for rationalization strategies is utilized to evaluate the initial multivariate alarm
systems — specifically, the alarm statistics for the initial six-level alarm system (see Table 4) is compared
to that of four-level alarm system (defined in Table 5), using 100 dynamic simulations. Figure 12 compares
the alarm statistics for the two systems w.r.t high alarms. Overall, the number of alarms that go off for the
four-level system is higher than for the six-level system. The number of instances of reaching the unsafe
region is lower for the six-level system (i.e., 0 for six-level, but 2 for four-level). Additionally, the
percentage of unique high alarms that remain active when the next threshold is reached is observed to be
much lower for the six-level system, implying greater effectiveness and success in reducing the real-time
committer probabilities to below the limit. Similarly, Figure 13 compares the alarm statistics w.r.t low
alarms. Despite more alarms in the four-level system, the number of instances of reaching the unreliable
region is observed to be identical for both systems (i.e., 2). Additionally, the percentage of unique low
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alarms remaining active when the next threshold is reached is lower for the four-level system. It is likely
that when pgp unreliable T€aches intermediate values (i.e., ~ 0.4-0.6), the process is not very sensitive to gi
changes , thereby, resulting in 100% failure of the LL alarm in the six-level system, as observed in Figure
13b. A potential reason for this is the inverse response behavior observed previously in Figure 7a — a
phenomenon very challenging to mitigate.

Hence, based on these rationalization studies, a five-level alarm system; i.e., H-HH-HHH-L-LL
(summarized in Table 6), is preferable, to ensure effectiveness against shifts to both unsafe and unreliable
regions. To validate this, Figure 14 a-d shows the alarm statistics for the five-level system, based on 100
dynamic simulations. The number and percentage of high alarms reaching the next threshold are
comparable to the six-level system, with zero instances of reaching the unsafe region. For the low alarms,
the number of alarms is lower compared to the four-level system, with comparable percentages of unique

low alarms reaching the next threshold.

Table 4. Six-level Multivariate Alarm System,
to be Evaluated during Rationalization

Table 5. Four-level Multivariate Alarm System,
to be Evaluated during Rationalization

Alarm pg at Threshold Response
Threshold (initial) Action at Alarm s at Threshold Response
Threshold Threshold (initial) Action at
(initial) Threshold
H PB.unsafen = 0.2 | q;u = 0.0975 (initial)
H PB,UnsafeH = 0.4 qin = 0.095
HH PBUnsafent = | qiun = 0.095
04 HH PB,Unsafe,HH = giun = 0.09
HHH PB,unsafe i = | 4innn = 0.09 0.8
08 L DPB,Unreliable,L = giL = 0.095
L PBunreliable,. = | qiL = 0.0975 0.35
02 LL PB,Unreliable.LL. = | ¢iLL = 0.09
LL DB,Unreliable,LL = qi,LL = 0.095 0.8
0.4
LLL PB,unreliable,Lir = | GiriL = 0.09
0.8
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Number of Low Alarms, Four-level vs Six-level

40
IR
35 | L IaiN
[___ERiNN
20 B unreliable

L-LL-LLL (Six-level)

L-LL (Four-level)

(@)

% Low Alarms Reaching Next Threshold, Four-level vs Six-level

100 4

80 7

60

%

40 4

20 A

B | reaching LL
W LL reaching Unreliable/LLL
BN | LL reaching Unreliable

42.86

20.69

100

L-LL (Four-level)

(b)

L-LL-LLL (Six-level)

Figure 13. Alarm statistics comparison between four-level and six-level alarm systems w.r.t low-alarm systems,
showing: a) Number of low alarms; b) Percentage of unique low alarms that are active when next level is reached.

26



Table 6. Rationalized Five-level Alarm System, i.e., H-HH-HH-L-LL

Alarm pg at Threshold Response Action at
Threshold (final) Threshold (final)
H PB,unsafen = 0.2 qin = 0.0975
HH PBunsafeun = 0.4 qiun = 0.095
HHH PB,UnsafeHHH — 0.8 qiqun = 0.09
L PB,Unreliable L. = 0.35 g = 0.095
LL PB,unreliable,LL = 0.8 gL = 0.09

Note that while rationalization studies are important to evaluate the placement of alarm thresholds
and choice of response actions, the alarm statistics are generated from just one batch of ~ 100 dynamic
simulations; for more comprehensive analyses regarding the failure probabilities of the multivariate alarm
systems, it is important to generate alarm statistics based on multiple such batches of dynamic simulations.
Hence, for risk assessment, as described in Section 2.6., DRAn studies are conducted based on multiple
dynamic simulations of the polystyrene CSTR, inclusive of control and the rationalized five-level
multivariate alarm systems. ~75 dynamic simulation batches are conducted, with each batch consisting of
200 dynamic simulations. For each of the five alarm systems, the failure probability is computed as:

NyuH
Ptailure, H = Ny (30)

NHH—)HHH

Pfailure, HH = Nen (31)
NHHH—)U f

Prailure, HHH = NHH:Sa < (32)
NL—»LL

Prailure, L = N (33)

L

NLL-Unreliabl

Pfailure, LL. — NI:: =n (34)

where Ny, Ny, Nguu» N1, N, are the number of alarms for the H, HH, HHH, L and LL systems; Ny_,uy
is the number of unique H alarms that are active when HH is reached; Nyy_ gy 1 the number of unique
HH alarms that are active when HHH is reached; Ngygy—uynsafe 18 the number of unique HHH alarms that
are active when the unsafe region is reached; Ny _,1, is the number of unique L alarms that are active when

LL is reached; Ni1,ynreliable 1S the number of unique LL alarms that are active when the unreliable region
is reached.
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Figure 14. Alarm statistics for the proposed five-level alarm system, showing: a) Number of high alarms; b)
Percentage of unique high alarms remaining active when next threshold is reached; c) Number of low alarms; d)
Percentage of unique low alarms remaining active when next threshold is reached.

Figures 15 a-e represent the results generated from the DRAn studies, consisting of the histogram
for the estimated failure-probabilities data, the Beta IPD developed for the data, and posterior distribution
constructed using Bayes’ rule, using the IPD and the likelihood distribution. Given the unavailability of
failure data, for each of the five alarm systems, a binomial likelihood was assumed (Sudarshan et al., 2024).
For more details regarding the computed parameters for the Beta IPDs and assumptions for likelihood
distributions, please refer to the Appendix, Section 7.3. Given that the Beta distribution is a conjugate prior
of the binomial distribution, the resulting posterior also is a Beta distribution (Gelman et al., 2013). The
high-alarm systems appear to be reasonably effective, with a decreasing trend observed for the average
failure probabilities as the unsafe region is approached. For the low-alarm systems, the average failure
probabilities appear to follow an increasing trend as the unreliable region is approached, with possible
improvements to be investigated in the sensitivity analyses of Section 3.5.
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3.5. Sensitivity Analyses

Thus far, the initiator flowrate, gi, has been selected as the response-action variable for the multivariate
alarm systems. In this Sensitivity Analyses subsection, other potential response-action variables are
considered; particularly, the monomer flowrate; i.e., gm, and the solvent flowrate; i.e., ¢s. Initially, BG-FFS
simulations (i.e., Section 2.4.) are conducted for multiple discrete values of each response-action variable.
With several crossing points and committer probabilities generated for each response-action variable,
average committer probabilities are computed. Then, Pearson correlation coefficients are computed
between the average committer probabilities and response-action variables. These measure the strength
and direction of the linear association between the two averages (Kirch, 2008), and are computed as:

Zfl_discrete u —)(v: — v
Pearson,,,, = =L (i ) ) (35)

\/Z'Lf;discrete (ui _ u)z Z;;d:ilscrete (vi _ 17)2

where Pearson,, ,, is the Pearson correlation coefficient between variables, u and v. In this case, u is the
response-action variable (i.e., gi, gm, OF ¢s); v is the average committer probability, pg; #% and ¥ are the
mean values for  and v, with 7 being the twice-averaged committer probability, and ngiscrete 1S the number
of discrete values considered for the response-action variable.

Table 7 shows the Pearson coefficients between average committer probabilities and the response-
action variables for both unsafe and unreliable regions. For the unsafe operating region, all three response-
action variables show strong correlation, with ¢s showing strong negative correlation, while the others show
strong positive correlations. For the unreliable region, all three response-action variables show positive
correlations, with ¢; showing the weakest and ¢s showing the strongest correlation. Despite ¢s showing
relatively stronger positive correlation for the unreliable region, it is negatively correlated w.r.t to the unsafe
region — this implies that a decrease in ¢, will result in decreases in pp unriiabie, DUt at the cost of increased
PBunsafe. Given that safety should not be compromised, further sensitivity analyses are restricted to only ¢;
and ¢gm; ¢s is not considered in this study. Also, note that sensitivity analyses conducted, herein, do not
consider the effort required to vary the response-action variables.

Next, steps 1 - 3 described in Section 2 are repeated to develop dynamic multivariate alarm systems
with gm as the response-action variable (similar to those developed for ¢; in Sections 3.2-3.4) — note that
based on the rationalization algorithm, a four-level multivariate alarm system (i.e., H-HH-L-LL, with g,
response actions) is preferred. Then, DRAn studies are conducted using the gm-based alarm systems, with
their failure probability statistics compared with g;-based alarm systems developed in Section 3. Table 8
shows the average alarm statistics per batch of dynamic simulations (i.e., each batch consists of 200
dynamic simulations), generated using DR An studies for both g;- and gm-basedalarm systems. On average,
high-alarm failure probabilities are higher for ¢m; for the L alarm system, gm has lower failure probabilities,
with LL-failure probabilities being slightly lower for ¢;. However, the average number of unsafe crossings
observed for gm are significantly lower than ¢, i.e., by ~ 77%; additionally, the average number of unreliable
crossings are observed to be slightly lower for gm, i.e., by ~ 8%, with comparable average growing polymer
concentrations (i.e., a measure of product quality). Hence, despite relatively higher failure probabilities,
the gm-based multivariate alarm systems are more effective than the gi-based systems, resulting in fewer
instances of reaching the undesirable operating regions, with negligible loss in product quality.
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Table 7. Pearson Correlation Coefficients between Average Committer Probabilities and Response-Action Variables

Response-Action | Pearson Coefficient | Pearson Coefficient
Variable for average pg,unsafe for average
PB,Unreliable
qi 0.9952 0.1464
qm 0.9897 0.5937
qs -0.9891 0.6951

Table 8. Average Alarm Statistics generated based on DRAn studies for gi and gm as Response-Action Variables

DRAnR Alarm Statistic (Average) Response-Action Variable: | Response-Action Variable:
qi qm
H Failure Probability 0.2732 0.4616
HH Failure Probability 0.1391 0.2022
HHH Failure Probability 0.055 -
L Failure Probability 0.3583 0.0754
LL Failure Probability 0.5724 0.6019
Number of Unsafe Crossings 7.0133 1.5857
Number of Unreliable Crossings 7.76 7.1571
Growing Polymer Concentration (xs) 2338 x 106 2.336 x 106
4. CONCLUSIONS

In our previous research, novel, improved, multivariate alarm systems were developed for rare un-
postulated abnormal events, using random statistical noise in one or more process variables — demonstrated
for an exothermic CSTR (Sudarshan et al., 2023). But, their alarm thresholds were based on static process
variable limits, often leading to increased nuisance alarms and/or missed alarms.

Herein, our methods are extended for a more complex and realistic PID-controlled polystyrene
CSTR model, involving abnormal shifts from a desirable unstable region towards two undesirable unsafe
and unreliable operating regions. As a BG-FFS algorithm locates multiple rare abnormal trajectories
towards these two undesirable regions, key process variables and committer probabilities, pg, are obtained.
Then, the XGBoost ML algorithm is utilized, resulting in accurate and reliable predictive models for pg as
a function of the key process variables. The XGBoost models are deployed in real-time to develop initial
dynamic bidirectional multivariate alarm systems based on pp predictions, a major improvement as
compared with the static unidirectional systems developed previously for the exothermic CSTR.
Additionally, note the direct influence of the XGBoost models’ predictions on decision-making, i.e.,
varying the response action variables based on the predicted ps, addressing the decision science aspect of
machine learning and risk assessment. Then, rationalization strategies developed previously are utilized to
evaluate and modify the initial alarm systems — with ¢; selected as the response-action variable, a five-level
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alarm system; i.e., H-HH-HHH-L-LL, is preferred. Next, DRAn studies are performed, based on which,
the high-alarm systems appear to be reasonably effective, with decreasing trends closer to the unsafe region;
whereas, due to increasing failure probabilities, the low-alarm systems are shown to require improvements.
Then, sensitivity analyses are shown to be helpful — as they investigate the impact of other potential
response-action variables; i.e., gm and gs.

5. FUTURE WORK

In spite of improved findings herein, limitations remain to be addressed. This section addresses
two possibilities for future research.

5.1. Exploring Further Improvements to the Multivariate Alarm Systems

In this paper, the multivariate alarm systems developed consisted of single response-action
variables for abnormal transitions to both unsafe as well as unreliable regions. However, it is likely that
considering multiple variables is beneficial — e.g., when variable ¢; has greater influence on committer
probabilities towards the unsafe region, and variable ¢, has greater influence on committer probabilities
towards the unreliable regions. However, the increased computational costs, as well as the impact of this
approach on safety, need to be considered (e.g., as observed in Section 3.5., decreasing ¢s increases the
reliability of the process, but is detrimental to safety) i.e., the FFS simulations need to be repeated for
multiple discrete combinations of the response action variables.

Additionally, note that the alarm rationalization framework introduced previously in Sudarshan et
al. (2024), and demonstrated in Section 3.4., herein, involved experimenting with empirically-chosen
combinations of alarm thresholds and response actions — a process that can be very cumbersome and
inconvenient. Moreover, it is important to enhance the rationalization process by exploring automated or
semi-automated techniques, capable of selecting optimum alarm thresholds and response actions more-
intelligently.

Moreover, as more-advanced control schemes are becoming popular (e.g., MPC, reinforcement-
learning control, and the like), attempts should be made to analyze the impact of statistical noise sensitivity
on controller offset (as observed in Figure 7), as well as impact of more-robust control schemes on
generating sufficient un-postulated abnormal events using FFS.

5.2. Hybrid Modeling to Incorporate Plant Data and Regular Model Refinements

As observed in Figure 4, the ML pipeline is an infinite cycle, with regular model refinements
enabled by feedback, as more data are recorded. However, herein, a feedback loop to refine the alarm
systems by updating XGBoost model predictions does not exist due to lack of plant data. In future research,
hybrid computational models (e.g., physics-informed neural networks; i.e., PINNs) involving underlying
physics (i.e., material and energy balances, kinetics, transport phenomena, and the like), coupled with plant
data from open-source databases and/or industrial collaborations, should be developed. Such hybrid models
can simulate abnormal trajectories via FFS, followed by ML-based predictive-models that facilitate regular
updates of the alarm systems as data are received.
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5.3. More Advanced Models for Unpostulated Abnormal Events

To model un-postulated abnormal events herein, statistical noise is utilized, with random samples
drawn from the normal distribution, with specified means and variances. Additionally, for the polystyrene
CSTR operating in the unstable region, given adequate statistical noise, rare un-postulated abnormal shifts
can lead to only two regions; i.e., unsafe and unreliable. But, for some abnormal events (or
combinations/sequences of events), other distributions are preferable. In future research, more advanced
abnormal event models should be considered; e.g., using mixed probability distributions, trained using
random samples from distributions involving multiple parameters.
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7. APPENDIX
This Appendix contains three subsections.
7.1. Abbreviations (Acronyms)

Al Artificial Intelligence
AIBN Azobisisobutyronitrile
ASU Air Separation Unit

BG-FFS Branched-Growth Forward-Flux Sampling
CPU Central Processing Unit
CSTR Continuous Stirred Tank Reactor
DFFS Direct Forward-Flux Sampling
DRAn Dynamic Risk Analyses
FFS Forward-Flux Sampling
GPU Graphical Processing Unit
HAZOP Hazard and Operability Study
IPD Informed Prior Distribution
IoT Internet of Things
LLM Large Language Model
MCMC Markov-Chain Monte-Carlo
MD Molecular Dynamics
ML Machine Learning
NMPC Nonlinear Model Predictive Control
OLS Ordinary Least Squares
PID Proportional Integral Derivative
RMSE Root Mean Squared Error

SIS Safety Instrumented Systems

TPE Tree-structured Parzen Estimator
TPS Transition-Path Sampling
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TST Time Series Transformer
XGBoost eXtreme Gradient Boosting

7.2. XGBoost Algorithm: Steps

Given the training data; i.e., {(x; ¥}, samples. umber of decision trees in the ensemble; i.e., M; the

=1 ’
learning rate; i.e., @ (i.e., a measure of the contribution of the previous tree to the newly trained tree); and
a differentiable loss function; i.e., L(y, f (x)) (e.g., RMSE in Eq. (28)); the XGBoost algorithm proceeds

as (Chen and Guestrin, 2016):

1. Develop a weak initial model:
N

foo) = argmin > L(y.f) + () (36)

=1

where Q( f ) is the regularization term, typically utilized to reduce overfitting (i.e., low errors on in-
sample training data, but high errors on out-of-sample testing data, leading to poor predictive models).

2. Repeat following steps for m =1 to M:
2.1. Compute Gradients and Hessians:

oL (yi:f(m—l)(xi))

Im(x;) = 5 (37)
- 0fm-1)(x?)

. 0%L (}’if(m—u (xi))

A () = —5 (38)
af (m-1) (xi)
. .. . GmGn? . .
2.2. Train decision tree m for the training data {xi, - H—(x)} by solving the following
mXi) Ji=q
optimization problem:
N 2
R : 1 Gm (1)
B () = argmin| >~ () <¢(xi) - = ) o) 39
¢ = 2 b (x;)
fn () = adm(x) (40)
2.3. Update the model:
famy () = fam-1y(x) + apy (x) (41)
3. Compute final model:
M
FG) = fon@ = ) fin) (42)
m=0
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7.3. Computed Parameters for Beta IPDs and Assumptions for Likelihood Distributions for gi-based
Alarm Systems

Consider the following Beta (a;, b;) IPD for the failure probability of alarm system 7, peajjure i

I'(a; + b;) bi-1
. .)= Bet o b)= ——=p,. G (1—p )" a;,>0;b;> 0 43
f(pfallure,L) eta (al’ l) l"(al)l"(bl) pfallure,l ( pfallure,t) » Qg > 0; 12 ( )

where the gamma function, I'(a;), is:

[oe]

I'(a;) = ftai‘le‘tdt (44)
0

The a; and b; parameters for the Beta distribution are:

a; =l

(1= .
(%_2#)— 1)» if 0;% < (1 —py) (45)

4

b= (- ) (“(10—“)— 1), if 0 < (- ) (46)
L

where y; and 0;2 represent the mean and variance of the failure probabilities for alarm system i. Note that
i corresponds to the alarm system level; i.e., i = H, HH, L, LL, and the like. Table 9 shows the Beta
distribution parameters computed for each of the five ¢; — based alarm systems.

Typically, the likelihood distribution; i.e., f (D |pfai1ure_l.), is developed utilizing available alarm data;
i.e., D. However, given the unavailability of alarm data, likelihood distributions need to be assumed for
each of the five gi-based multivariate alarm systems; i.e., H-HH-HHH-L-LL. Hence, for each, a binomial
likelihood distribution is assumed:

f(D |pfai1ure,i) = Binomial(nbinom,i: kbinom,i)

nbinom,i!

_ Kns . Npinom,i ~ Kbinom,i
- | Pftailure,i binom,i (1 - pfailure,i) (47)
(nbinom,i - kbinom,i)-

where 7yinom ; 1S the number of instances an alarm went off at a level i (stated differently, the number of
instances a particular alarm system was activated; e.g., the H alarm system); kpjnom; 1S the number of
failures corresponding to alarm system i. Table 10 shows the parameters for the binomial likelihood
distributions assumed for each of the five alarm ¢; — based systems. Note the general decreasing trend
assumed for the parameters as the undesirable region is approached.
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Table 9. Parameters for Beta IPDs Computed for gi-based Five-level
(i.e., H-HH-HH-L-LL) Alarm Systems

Alarm System Level a; (Beta IPD Parameter) b; (Beta IPD Parameter)
H 6.94 18.47
HH 5.16 31.91
HHH 4.90 84.13
L 14.44 25.87
LL 7.05 5.27

Table 10. Parameters for Binomial Likelihood Distributions Assumed for g;-based Five-level
(i.e., H-HH-HH-L-LL) Alarm Systems

Alarm System Level Mpinom,; (Binomial Distribution kbinom,; (Binomial Distribution
Parameter) Parameter)
H 75 10
HH 60 5
HHH 30 0
L 40 10
LL 20 5

7.4. Hyperparameters for XGBoost Model

Hyperparameters of ML models are parameters that are external to the model training process — stated
differently, these parameters are required to be set/optimized before the training process, unlike internal
model parameters optimized during training. Appropriate selection of hyperparameters is crucial for the
predictive performance of ML models; poor choice can lead to unsatisfactory performance, such as
overfitting, i.e., poor performance on test data, despite the model performing well on the train data.

Note that XGBoost consists of several hyperparameters — optimizing every hyperparameter is
computationally expensive, and possibly inefficient as well. Hence, in this paper, only a few key
hyperparameters crucial to prevent overfitting were optimized using Bayesian Optimization through the
Optuna package in Python, while the rest remained at their default values:

1) n_estimators: Number of decision trees in the ensemble

i1) learning rate: Scaling factor that determines contribution of each decision tree in the ensemble.

ii1) subsample: Fraction of data used in training each decision tree — minimizes overfitting by introducing
randomness

iv) reg_alpha: Parameter for L1 regularization — minimizes overfitting by penalizing large coefficients.
v) reg lambda: Parameter for L2 regularization — minimizes overfitting by penalizing sum of squared
coefficients.
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vi) max_delta_step: Maximum step-size permitted for a leaf output in each decision tree.

For more information regarding these and other hyperparameters, the readers are encouraged to refer to the
official documentation for XGBoost (Chen and Guestrin, 2016; xgboost developers, 2023).
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