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ABSTRACT 

 

Previously, we developed novel, unidirectional, static, multivariate, alarm systems for rare un-postulated 

abnormal events, demonstrated successfully for an exothermic CSTR.  Herein, our techniques are improved 

significantly for a more-complex polystyrene CSTR, operating in its unstable region, capable of abnormal 

shifts to two undesirable regions; i.e., unsafe and unreliable regions.  BG-FFS, a path-sampling algorithm, 

is utilized to simulate efficiently multiple rare abnormal trajectories; then, the XGBoost machine learning 

algorithm is utilized to develop accurate predictive models for committer probabilities; i.e., pB as a function 

of key process variables – such models, when deployed in real-time, result in improved bidirectional 

dynamic multivariate alarm systems, capable of response actions using real-time pB predictions.  Then, 

using our rationalization strategies, the initial alarm systems are evaluated and modified, followed by DRAn 

(Dynamic Risk Analysis) studies and sensitivity analyses to investigate the effects of varying other process 

parameters to achieve more effective response actions. 

 

Key words: BG-FFS (branched-growth forward-flux sampling), Machine Learning, XGBoost, 

Bidirectional Multivariate Alarm Systems, DRAn (Dynamic Risk Analysis).  
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1. INTRODUCTION AND BACKGROUND 

 

 
Industry 4.0 is responsible for a transformational revolution across several industries, (Ghobakhloo, 2018; 

Suleiman et al., 2022; Vaidya et al., 2018; Yang and Gu, 2021), with novel, promising technologies and 

applications, including:  the internet of things; i.e., IoT (Domova and Dagnino, 2017; Manavalan and 

Jayakrishna, 2019; Maqbool et al., 2023; Soori et al., 2023), artificial intelligence and machine learning 

(Candanedo et al., 2018; Dingli et al., 2021; Javaid et al., 2022; Lee and Lim, 2021; Lee et al., 2018; Rai et 

al., 2021), big data analytics (Gokalp et al., 2016; Nguyen et al., 2020; Yan et al., 2017), cybersecurity and 

cyber-physical systems (Culot et al., 2019; Ervural and Ervural, 2018; Lezzi et al., 2018), and the like.  

Given the success of Industry 4.0, discussions are already in place regarding Industry 5.0, consisting of 

more-advanced technologies such as robotics and human-robot interactions (Barata and Kayser, 2023; 

Demir et al., 2019; Ghobakhloo et al., 2023).  However, despite such significant advancements, a major 

concern of the chemical and manufacturing industries is to ensure safe and reliable operation of their 

processes.  Unsafe, extreme operating conditions (e.g., high temperatures or pressures leading to thermal 

runaway reactions), poor handling of hazardous or highly reactive chemicals (e.g., improper cleaning of 

reactors and storage tanks), and the like, can result in devastating consequences for operators, equipment, 

and the environment.  Additionally, while automated Safety Instrumented Systems (SIS) prevent accidents 

by shutting down plants that approach unsafe operating regions, they could contribute to poor plant 

reliability through production losses due to shutdowns, maintenance, and start-up delays.  With these 

advances, motivation grows to improve techniques that mitigate unsafe and unreliable situations resulting 

from such abnormal events.   

 

1.1. Rare and Undesirable Safety Abnormal Events 

 

However, these abnormal events are extremely rare and undesirable, with very little occurrence 

data available to anticipate such events.  Additionally, while near-miss analyses are informative and 

available extensively, they may have limitations in quantifying accurately the likelihood of such rare 

abnormal events.  Often, rare abnormal events with disastrous consequences are highly unanticipated and 

un-postulated (i.e., do not take a specific shape or form, cannot be postulated in HAZOP studies, and occur 

randomly).  Analyses of rare and extreme events have been conducted across multiple research domains, 

including:  molecular dynamics (Berne, 1985; Ciccotti and Ferrario, 2000; Sarich et al., 2014; Shivpuje et 

al., 2019), economics and finance (Jalali et al., 2010; Stanley et al., 2007), climate modeling (Beniston et 

al., 2007; Webber et al., 2019), medical research (Bhaumik et al., 2012; Cai et al., 2010; Donnenberg and 

Donnenberg, 2007), and the like.   

 

Within chemical process safety too, extensive research has been conducted for quantitative 

estimation of rare-events. From the perspective of accident modeling, often, rare events are defined as low-

frequency high-consequence events (Aven, 2020).  First, a novel method was introduced for probability 

estimation of rare events, using maximum-likelihood maximum-entropy principles, particularly for 

historical data not containing any occurrences of rare-events (Ahooyi Mohseni et al., 2014). Next, a 

precursor-based hierarchical Bayesian framework was developed for estimating frequencies of rare-events, 

as well as consequence analyses of these events,  demonstrated on the BP Deepwater Horizon accident 

case-study (Yang et al., 2013, 2015).  Given the key limitation of Bayesian models in considering source-
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to-source variability in data, a new framework was developed that conducts root-cause analysis based on 

deviations in key process variables, demonstrated on the Tennessee Eastman process (Kumari et al., 2020).  

Additionally, several machine learning-based approaches have been introduced – an approach was 

developed to leverage advancements in data science and machine learning to build predictive models for 

severity prediction using accident precursor data (Tamascelli et al., 2022).  Additionally, a parametric 

reduced-order modeling framework was introduced for consequence estimation of rare-events, based on 

the k-Nearest Neighbors machine learning algorithm, demonstrated on a cardon dioxide release case study 

(Kumari et al., 2021). In related work, optimized machine-learning algorithms were applied to predict 

accident outcomes using occupational accident data (Sarkar et al., 2019).  However, most rare event analysis 

methods that are purely data-driven, relying solely on historical data, have limitations due to the scarcity of 

rare-event data.  Hence, to circumvent this, it is crucial to complement data-driven techniques with 

simulation-based techniques, capable of simulating the various pathways indicative of rare unsafe or 

unreliable abnormal events, in unanticipated and un-postulated ways, especially in cases with very 

limited historical occurrences; e.g., when utilizing Markov Chain-Monte Carlo (MCMC)-based 

techniques. 

 

1.2. Path-Sampling Algorithms from Molecular Dynamics 

 

In molecular dynamics (MD), path-sampling algorithms are MCMC-based techniques applied 

routinely to explore, simulate, and quantify rare events computationally in stochastic nonequilibrium 

systems (Allen et al., 2006), crystal nucleation of hard spheres (Filion et al., 2010), methane hydrate 

nucleation (Arjun and Bolhuis, 2023; Bi and Li, 2014), and nucleation of sodium chloride crystals (Jiang 

et al., 2018).  In MD, a rare event is an event whose initiation time (i.e., time taken to initiate the rare event) 

is multiple orders of magnitude greater than its duration(Borrero and Escobedo, 2007; Hartmann et al., 

2014).   

 

Previously, in our research, the application of two specific algorithms: transition path-sampling 

(TPS) and forward-flux sampling (FFS), was explored.  As a first approach toward combining chemical 

process modeling with MD-based path-sampling to investigate rare abnormal events, we explored the 

application of TPS for the operation of an exothermic CSTR and an air separation unit (ASU) (Moskowitz 

et al., 2018).  Then, to improve on the limitations of the TPS approach, we explored the application of FFS 

to simulate efficiently and analyze rare abnormal events resulting from random perturbations in one or more 

process variables (Sudarshan et al., 2021).  Our analyses were demonstrated successfully for a relatively 

simple exothermic CSTR and resulted in numerous transition pathways between the desirable and 

undesirable regions, simulated efficiently in a piecewise manner.  However, while path-sampling 

algorithms are capable of simulating the reaction pathways and quantifying the probabilities and 

rates of rare abnormal events, the data generated during the simulations need to be analyzed 

carefully – hence, it is crucial to develop accurate predictive models that leverage the data generated 

during the simulations. 
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1.3. Predictive Modeling and Analytics, Machine Learning and Artificial Intelligence, Decision 

Sciences 

 

 Predictive modeling and analytics are crucial to advance scientific research, enabling researchers 

to analyze data of varying quantities and explore patterns or insights not previously envisioned.  These 

powerful techniques have transformed our understanding of data information, resulting in significant 

breakthroughs across scientific domains.  Machine learning (ML) serves as one of the fundamental pillars 

of predictive analytics.  A subset of the vast and rapidly evolving field of artificial intelligence (AI), ML 

refers to advanced statistical algorithms that generalize effectively from data and perform tasks without 

being explicitly programmed (Koza et al., 1996; Sarker, 2021; Wang et al., 2009).  Compared to traditional 

statistical methods that focus more on inference, ML focuses on predictions by using general-purpose 

learning algorithms, enabling one to find patterns not envisioned previously, especially in rich and unwieldy 

data (Bzdok, 2017; Bzdok et al., 2018, 2017) – this led to an exponential increase in ML-based research 

across several scientific domains in the past decade.   

Within chemical engineering too, as part of Industry 4.0, numerous research contributions that 

leverage advanced algorithms in the ML ecosystem have been conducted, such as for: catalysis (Kitchin, 

2018; Toyao et al., 2020), computational fluid dynamics (Hanna et al., 2020; Kochkov et al., 2021), process 

monitoring and fault detection (Angelopoulos et al., 2020; Arunthavanathan et al., 2022; Tran et al., 2021), 

smart manufacturing and predictive maintenance (Çınar et al., 2020; Kotsiopoulos et al., 2021), to name a 

few.  More recently, in line with the rapid increase in research on generative AI and large language models 

(LLMs), a novel time-series transformer (TST) - based model-predictive control framework was developed, 

demonstrated for a batch crystallization system (Sitapure and Kwon, 2023a, 2023b).  In related work, a 

generative transformer model was developed for autocompletion of process flowsheets, (Vogel et al., 2023).  

While the prospects of ML-based techniques and applications are promising, limitations must be addressed.  

For instance, complex ML models, including LLMs, involve several parameters, requiring extensive 

computational resources.  Additionally, from amongst enumerable ML algorithms, selection of relevant 

algorithms suitable for target applications is crucial, with model transparency and interpretability also a key 

concern (Carvalho et al., 2019).  

Note that “decision science” is an umbrella term, encompassing interdisciplinary quantitative 

techniques (e.g., risk assessment, machine learning, optimization, and the like), utilized to analyze, 

quantify, and improve decision-making across scientific domains (Kleinmuntz, 1990; Sharda et al., 2021).  

For instance, given predictions or forecasts by ML-based models, what are the actionable strategies that 

can be taken to achieve the specific goals and objectives. However, given the increased focus on 

developing more-accurate ML algorithms in literature, this decision science aspect of ML is unlikely 

to be addressed adequately. It seems clear that response actions taken by leveraging real-time 

predictions from ML models need to be addressed more carefully (Varshney and Alemzadeh, 2017) 

– a key focus of this paper. 

 

1.4. Multivariate Alarm Systems for Rare, Un-postulated Abnormal Events 

 

Based on our findings from initial analyses of TPS and FFS algorithms, we introduced novel, 

improved, multivariate alarm systems to mitigate rare un-postulated abnormal events, resulting from 

random perturbations (i.e., statistical noise) in one or more process variables, demonstrated for an 

exothermic CSTR (Sudarshan et al., 2023).  The branched-growth forward-flux sampling algorithm (BG-
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FFS) was applied to locate rare trajectories that proceed from the high-conversion, high-temperature basin 

A to the low-conversion, low-temperature basin B, in an efficient and piecewise manner. It yielded variable 

values at discrete crossing points, with  committer probabilities, pB, computed at the crossing points, 

enabling regression to yield a linear exponential model for pB as a function of the key process variables.  

This pB model was utilized to develop a multivariate alarm system, consisting of initial guesses for process 

variable limits associated with each pB threshold, and their response actions.  Then, to evaluate the quality 

and effectiveness of the multivariate alarm systems, we introduced improved rationalization strategies, with 

the alarm thresholds and response actions modified using key statistical metrics (Sudarshan et al., 2024).  

For the exothermic CSTR, our strategies resulted in a significant reduction in total alarms annunciated, with 

key focus on quality alarms, which, if ignored, were more likely to result in shifts to undesirable operating 

regions.  Finally, to evaluate the risk associated with the rationalized multivariate alarm systems, we utilized 

dynamic risk analysis (DRAn), wherein, using Bayesian statistics, probability distributions were 

constructed for the failure probabilities of the alarm systems, estimated using multiple dynamic simulations.  

But, these multivariate alarm systems consisted of static alarm thresholds (i.e., based on static process 

variable limits) obtained using simple OLS-based linear exponential models for pB.  Herein, this and other 

limitations are eliminated, as summarized next.   

 

1.5. Polymerization CSTR– Unsafe and Unreliable Operating Regions – Real-time pB Models 

 

In this manuscript, we extend our analyses to more complex polymerization CSTRs, particularly, 

in a PID-controlled polystyrene CSTR operating in its intermediate unstable operating region, considered 

desirable for polymerization reactors.  To model rare un-postulated abnormal events, random, statistical 

noise is introduced into the monomer feed concentration.  For the polystyrene CSTR operating in the 

unstable region, adequate statistical noise can lead to rare un-postulated abnormal shifts to only two possible 

regions; i.e., unsafe or unreliable. 

 

For data generation, the BG-FFS algorithm is utilized to simulate independently rare abnormal 

trajectories between desirable (i.e., unstable) and undesirable (i.e., unsafe or unreliable) operating regions, 

saving key process variable values at distinct crossing points, followed by computation of pB at all crossing 

points.  Then, to develop pB-process variable models in real-time, advanced ML algorithms are used to 

obtain accurate, predictive models for dynamic, multivariate alarm systems.  Next, our rationalization 

strategies, developed previously (Sudarshan et al., 2024), are used to improve alarm thresholds and response 

actions.  Finally, using DRAn, failure probabilities of the safety systems and their probability distributions 

are estimated, for the rationalized alarm systems, using multiple dynamic simulations, followed by 

sensitivity analyses to investigate the effects of varying other process parameters in response to alarms.  

Hence, given the response action strategies developed as part of the multivariate alarm systems that 

are based on real-time pB predictions, this paper addresses the decision science component of accident 

modeling, risk assessment, as well as machine learning. 
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2. MATERIALS AND METHODS 

 
2.1. Description of Polystyrene CSTR Model 

 

Figure 1 shows a temperature-controlled polystyrene CSTR that manipulates the coolant flowrate.  

Polymerization CSTRs have been studied extensively, including continuous polymerization of vinyl 

chloride and styrene (Brooks, 1981).  Additionally, the homopolymerization of styrene in a series of two 

CSTRs was investigated (Kim et al., 1991).  Then, a nonlinear model-predictive control (NMPC) algorithm 

was developed for control of a water-cooled styrene polymerization CSTR at its unstable steady-state 

(Hidalgo and Brosilow, 1990).  In related work, an approach was proposed to verify the stability and 

performance of controllers for a polystyrene CSTR in the presence of uncertainty (Gazi et al., 1996).  

Additionally, steady-state multiplicity and bifurcation analyses were conducted to study its operability; i.e., 

how the process dynamics varies with operating conditions and process parameters at steady-state (Russo 

and Bequette, 1998). 

 

 
  

Figure 1. Schematic of the polystyrene CSTR process model 

 

 For homopolymerization of styrene, Hidalgo and Brosilow (1990) and Russo and Bequette (1998) 

utilized a free-radical polymerization kinetic mechanism: 

 

                                                              I  
𝑘d
→    2R                 (initiator decomposition)                             (1) 

                                                     M  +   R   
𝑘i
→      P1                 (chain initiation)                                       (2) 

                                                   P𝑛    +   M   
𝑘p
→      P𝑛+1            (chain propagation)                                  (3) 

                                         P𝑛    +   P𝑚   
𝑘td
→      T𝑛 + T𝑚     (termination − by  disproportionation)         (4)                     

                                               P𝑛    +   P𝑚   
𝑘tc
→      T𝑛+𝑚           (termination − by  coupling)                    (5) 
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where I is the initiator (i.e., azobisisobutyronitrile − AIBN), M is the monomer (i.e., styrene), R is the free 

radical produced by initiator decomposition, P represents the growing polymer chain, T is the terminated 

polymer chain, and kd, ki, kp, ktd, ktc are the rate constants for initiator decomposition, chain initiation, 

propagation, termination by disproportionation, and termination by coupling.  The model assumptions, as 

mentioned in Hidalgo and Brosilow (1990) and Russo and Bequette (1998), are: 

 

i) The lifetimes of the radical species are short compared to the system time constants; hence, the 

quasi steady-state approximation is valid (i.e., net rates of reaction associated with the radicals ~ 

0). 

ii) The CSTR is assumed to be well-mixed. 

iii) The physical properties of the reaction mixture (e.g., density, heat capacity, heat transfer 

coefficient, etc.) are assumed constant. 

iv) Gel effect; i.e., sudden increase in the overall polymerization rate due to increases in the viscosity 

of the reaction mixture, thereby reducing the termination rate, is assumed to be negligible. 

v) The sum of the Arrhenius rate expressions for termination by coupling and disproportionation is 

expressed as a single overall chain termination rate (i.e., kt = ktc + ktd) 

 

With these assumptions, the material and energy balance equations for the dimensionless model, as 

developed by Russo and Bequette (1998), are: 

 

                                                              
𝑑𝑥1
𝑑𝜏

= 𝑞i𝑥1f −  (𝑞i + 𝑞m + 𝑞s)𝑥1 − 𝜙d𝜅d(𝑥3)𝑥1                                   (6) 

                                                        
𝑑𝑥2
𝑑𝜏

= 𝑞m𝑥2f −  (𝑞i + 𝑞m + 𝑞s)𝑥2 − 𝜙p𝜅p(𝑥3)𝑥2𝑥5                                   (7) 

                               
𝑑𝑥3
𝑑𝜏

=  (𝑞i + 𝑞m + 𝑞s)(𝑥3f − 𝑥3) +  𝛽𝜙p𝜅p(𝑥3)𝑥2𝑥5 −  𝛿(𝑥3 − 𝑥4)                              (8) 

                                                       
𝑑𝑥4
𝑑𝜏

=  𝛿1[𝑞c(𝑥4f − 𝑥4) + 𝛿𝛿2(𝑥3 − 𝑥4)]                                                        (9) 

                                                                         𝑥5 =  √
2𝑓𝜙d𝜅d(𝑥3)𝑥1
𝜙t𝜅t(𝑥3)

                                                                   (10) 

                                                                       𝜅d(𝑥3) = exp(
𝛾d𝑥3

1 + 
𝑥3
𝛾p

)                                                                  (11) 

                                                                      𝜅t(𝑥3) = exp (
𝛾t𝑥3

1 + 
𝑥3
𝛾p

)                                                                   (12) 

                                                                      𝜅p(𝑥3) = exp (
𝑥3

1 + 
𝑥3
𝛾p

)                                                                   (13) 

 

where x1, x2, x3, x4, x5 are the dimensionless initiator concentration, monomer concentration, reactor 

temperature, coolant temperature, and concentration of growing polymer; 𝑞i, 𝑞m, 𝑞s, 𝑞c are the 
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dimensionless flow rates for initiator, monomer, solvent and coolant streams;  𝜙d, 𝜙p , 𝜙t are Damkohler 

numbers for initiator decomposition, propagation, and termination;  𝛾d, 𝛾p, 𝛾t are dimensionless activation 

energies for initiator decomposition, propagation, and termination; 𝛽 is the dimensionless heat of reaction, 

𝛿 is the dimensionless heat-transfer coefficient, 𝛿1 is the dimensionless reactor volume, 𝛿2 is the 

dimensionless specific heat,  f is the initiator efficiency; x1f, x2f, x3f, x4f  are the dimensionless initiator feed 

concentration, monomer feed concentration, reactor feed temperature, and coolant feed temperature.  Table 

1 displays the values for the dimensionless process parameters.  Next, based on studies conducted by Russo 

and Bequette, (1998), steady-state bifurcation analysis is performed, with the dimensionless cooling-water 

flow rate; i.e., 𝑞𝑐, selected as the free bifurcation parameter, enabling identification of desirable and 

undesirable operating regions.  Looking ahead, in Section 3, Results and Discussion, see Figure 6. 

 

 

Table 1.  Dimensionless Process Parameters 

 

Parameter Value 

qi 0.1 

qm 0.4 

qs 0.48571 

𝜙d 0.01688 

𝜙p 2.1956  107 

𝜙t 9.6583  1012 

𝑥1f  0.06769 

𝑥2f 1.0 

𝑥3f 0.0 

𝑥4f -1.5 

𝛿 0.74074 

𝛿1 0.90569 

𝛿2 0.37256 

𝛽 13.17936 

f 0.6 

𝑥3,sp 0.85 

𝐾c 50 

𝜏D 0.9 

𝜏I 5 

 

 

2.2. Overview of Key Steps and Methods 

 

Figure 2 represents an overview of the key steps and methods utilized in this paper, with each step 

described extensively in subsequent sections. 
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Figure 2. Overview of key steps utilized in developing multivariate alarms 

 

 

2.3. Step 0: Preliminary Analyses 

 

As part of preliminary studies, steady-state bifurcation analysis is conducted for the polystyrene CSTR, 

with qc chosen as the free bifurcation parameter – from the resulting solution diagrams, stable and unstable 

branches are identified, based on which the desirable and undesirable operating regions are determined.  

Then, an appropriate control scheme, along with controller parameters, is selected experimentally, to ensure 

sufficiently tight control, while allowing rare abnormal shifts to the undesirable operating regions.  Given 

the desirable and undesirable operating regions, initial dynamic simulations are conducted inclusive of 

control and statistical noise in one or more process variables, recognizing rare un-postulated abnormal 

shifts, when they occur. 

 

2.4. Step 1:  Data Generation via Forward-flux Sampling 

 

FFS conducts simulations of the process trajectories in a discrete, piecewise manner, using evenly or 

unevenly placed interfaces; i.e., λi, i = 0,1, 2, …, n, where λ is an appropriate order parameter variable (e.g., 

temperature), and, λ0 and λn represent the bounds for basins A and B.  Initially, we utilized the direct 



10 

 

forward-flux sampling variant (DFFS) for the exothermic CSTR process model to simulate numerous rare 

abnormal trajectories between the desirable basin A and undesirable basin B, thereby, computing the 

associated transition probabilities and rates.  However, the DFFS variant is limited, because it simulates 

piecewise trajectories from random crossing points across each interface.  For accurate computations of the 

committer probabilities, it is desirable to simulate multiple trajectories from every crossing point at λi, as 

implemented in the BG-FFS algorithm (Allen et al., 2009; Borrero and Escobedo, 2007), demonstrated 

when developing the multivariate alarm systems for the exothermic CSTR (Sudarshan et al., 2023).   The 

steps involved in the BG-FFS algorithm, shown schematically in Figure 3, are: 

 

i)  Define the initial desirable basin A and terminal undesirable basin B. 

ii) Pick a suitable order parameter variable; i.e., 𝜆; typically, this is a process variable that has a strong 

influence on the process dynamics; i.e., is able to capture process deviations more-rapidly than other 

variables, and is not perturbed significantly using statistical noise; e.g., the reactor temperature. 

iii) Based on the chosen 𝜆, divide the space between the two basins into finite interfaces; i.e., 𝜆0, 𝜆1… 𝜆n, 

where 𝜆0 and 𝜆n represent the bounds for basins A and B. 

iv) Simulate a long initial trajectory that generates finite crossings across λ0; if required, repeat this step for 

multiple trajectories to generate sufficient crossing points, with all process variables saved at every crossing 

point. 

v) Compute the initial rate of transition across 𝜆0, 𝑟0, as the total crossings divided by the total time spent 

in basin A by all the initial trajectories.  

vi) Select a crossing point from among the saved crossings across 𝜆0 and simulate m0 trajectories from that 

point, each of which continues until 𝜆1 is crossed.  Save the variables at all such crossing points. 

vii) Simulate k1 trajectories from every crossing point across 𝜆1 that generate crossing points across 𝜆2.  

Save the variables at all such crossing points. 

viii) Iterate step vii) for all subsequent interfaces till 𝜆𝑛; i.e., simulate 𝑚𝑖 trajectories from all crossing 

points at 𝜆𝑖 that continue until 𝜆𝑖+1 is reached; save the variables at all such crossing points at 𝜆𝑖+1; ∀ 𝑖 = 

2, 3… 𝑛 − 1.  

ix) Compute the overall transition probability of reaching basin B from basin A: 

 

                                                                 𝑝A→B(𝜆𝑛|𝜆0) =  
𝑁(𝜆𝑛|𝜆0)

∏ 𝑚𝑖
𝑛−1
𝑖=0

                                                                     (14) 

 

where 𝑁(𝜆𝑛|𝜆0) is the number of branches that reach basin B (i.e., from 𝜆𝑛−1 ) and ∏ 𝑚𝑖
𝑛−1
𝑖=0  are the total 

possible number of branches. 

x) Compute the overall rate of transition, 𝑟A→B, as the product of 𝑟0 and 𝑝A→B(𝜆𝑛|𝜆0). 

xi) Repeat steps iv) – ix) for other crossing points at 𝜆0 and compute the average overall probability and 

rate of transition, i.e., 𝑝̅A→B and 𝑟̅A→B.   

 

 



11 

 

 

 

Figure 3. Schematic showing key steps for simulating abnormal trajectories using BG-FFS algorithm (refer to the 

points in Section 2.4.) 

 

 

Given multiple rare abnormal trajectories simulated efficiently and values of the key process 

variables saved, the BG-FFS simulations are conducted only a few times offline and need not be repeated.  

Note that every stored crossing point, with variables x, has an associated committer probability, 𝑝𝐵(𝑥) —  

defined as the probability that a trajectory fired from that point reaches; i.e., ‘commits’ to, basin B (Allen 

et al., 2009; Borrero and Escobedo, 2007; Peters and Trout, 2006).   To estimate 𝑝B for a crossing point 

across 𝜆𝑖, the variables at that point and the number of trajectories initiated from that point that successfully 
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crossed 𝜆𝑖+1, need to be saved.  Then, the probability that a trajectory initiated from a crossing point  j at 

𝜆𝑖 reaches the next interface; i.e.,  𝜆i+1, is (Borrero and Escobedo, 2007; Sudarshan et al., 2023): 

 

                                                                        𝑝𝑗
𝑖(𝜆𝑖+1|𝜆𝑖) =

𝑁𝑗
𝑖 

𝑚𝑖
                                                                                (15) 

 

where 𝑁𝑗
𝑖 is the number of successful trajectories reaching 𝜆𝑖+1 from point j at 𝜆𝑖, and 𝑚𝑖 is the total 

number of trajectories initiated from that point. Next, the 𝑝𝑗
𝑖(𝜆𝑖+1|𝜆𝑖) can be used to compute the committer 

probability to reach basin B of point j at 𝜆𝑖, 𝑝𝐵𝑗
𝑖: 

 

      𝑝B𝑗
𝑖 =  𝑝𝑗

𝑖(𝜆𝑖+1|𝜆𝑖)  ×  
∑ 𝑝B𝑘

𝑖+1𝑁𝑗
𝑖

𝑘=1

𝑁𝑗
𝑖

= 
∑ 𝑝B𝑘

𝑖+1𝑁𝑗
𝑖

𝑘=1

𝑚𝑖
; 𝑖 = 𝑁interfaces − 1,𝑁interfaces − 2, …0     (16) 

 

Note that Eqs. (15) and (16) are recursive formulae – stated differently, the committer probabilities 

are computed for all crossing points generated during BG-FFS simulations in reverse, i.e., from i = 

𝑁interfaces - 1 to i = 0, where 𝑁interfaces is the number of interfaces.  For instance, consider a simple example 

for demonstration purposes (Sudarshan et al., 2023): assuming 𝑁interfaces= 7, 𝑝𝐵𝑗
7 = 1, because at the last 

interface, it is concluded that the process has transitioned to basin B.  Next,   𝑝𝐵𝑗
6 = 𝑝𝑗

6(𝜆7|𝜆6) =  
𝑁𝑗
6

𝑚6
  , 

since ∑ 𝑝𝐵𝑘
7𝑁𝑗

6

𝑘=1 = 𝑁𝑗
6. Next, 𝑝𝐵𝑗

5 can be computed using the previously computed 𝑝𝐵𝑗
6.  This process is 

continued until 𝑝𝐵𝑗
0 — in this way, the committer probabilities are computed for all crossing points 

obtained during the BG-FFS simulations.  

Additionally, note that depending on the process parameter selected initially as the response-action 

variable (i.e., a variable that is varied in real-time in response to alarms; e.g., qi), the BG-FFS simulations 

and pB calculations are repeated for multiple discrete values of the response-action variable. 

 

 

2.5. Step 2:  Predictive Modeling via Machine Learning 

 

Figure 4 shows the pipeline encompassing all key stages for developing predictive models using machine 

learning.  With data generated during BG-FFS simulations (Figure 4, step I) pertaining to the key process 

variables and the estimated pB, followed by data preprocessing; i.e., Figure 4, step II (e.g., eliminating 

extreme outliers for crossing points generated across each 𝜆𝑖), the next step is to develop a predictive ML 

model that quantifies pB as a function of the key process variables (Figure 4, steps III-V).  Note – next, 

Figure 4, step III, is introduced briefly – followed by discussions of Figure 4, steps IV and V.  

 

Recently, Sudarshan et al. (2023), when developing a multivariate alarm system for an exothermic CSTR, 

created a simple, linear-exponential predictive model, with the coefficients estimated using ordinary least-

squares (OLS) regression: 

 

                                  𝑝B̂ =  0.81[𝑒𝑥𝑝(−8.3𝑇dim +  4.64𝐹c,dim +  0.04𝑇c,dim +  0.04𝐶dim)]                (17) 
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where Tdim is the dimensionless temperature; Fc,dim is the dimensionless CW flow rate; Tc,dim is the 

dimensionless CW temperature, and Cdim is the dimensionless reactant concentration.  However, for the 

polystyrene CSTR, as changes to the process are made in response to alarms (e.g., varying qi), the process 

dynamics also varies significantly, unable to be captured by parametric models with fixed mathematical 

structure (e.g., linear-exponential models), leading to inaccurate pB estimates and incorrect response 

actions.  Additionally, it is often cumbersome and inconvenient to experiment with different parametric 

models, one-by-one, and evaluate their applicability to the data. 

 

 

 

Figure 4. Pipeline encompassing all key stages in machine learning. 

 

Machine learning algorithms that do not assume structure, as in Eq. (17), are referred to as 

nonparametric learning algorithms.  Such algorithms are free to learn any functional form, based on the 

training data provided.  Typically, the training data in our analyses are tabular, as shown in Table 2 for N 

data points and four input variables.  Among various nonparametric algorithms, tree-based learning 

algorithms are preferred for tabular data, as clarified in several benchmark studies comparing  ML 

algorithms for multiple datasets (Grinsztajn et al., 2022; Shwartz-Ziv and Armon, 2022).  Most notably, 

despite their revolutionary advances in image (e.g., computer vision) and text [e.g., NLP (Natural Language 

Processing), LLMs (Large Language Models)] processing applications, deep neural networks appear to be 

outperformed by tree-based models for tabular data (Borisov et al., 2022; Grinsztajn et al., 2022). 

 

Table 2. Schematic for Tabular Training Data in our Analyses 

 

𝒑𝐁 𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 

𝑝B,1 𝑋1,1 𝑋2,1 𝑋3,1 𝑋4,1 

𝑝B,2 𝑋1,2 𝑋2,2 𝑋3,2 𝑋4,2 

     

𝑝𝐵,𝑁samples 𝑋1,𝑁samples 𝑋2,𝑁samples  𝑋3,𝑁samples  𝑋4,𝑁samples  

…
 

…
 

…
 

…
 

…
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XGBoost is a tree-based algorithm that has become popular since its development in 2014.  It is 

very effective for classification and regression tasks (Cerna et al., 2020; Li et al., 2019; Ma et al., 2021; 

Ogunleye and Wang, 2020), including classification of rare events (Ashraf et al., 2023; Wang et al., 2023).  

XGBoost, named for “eXtreme Gradient Boosting”, as developed by Chen and Guestrin (2016), is an 

ensemble learning algorithm, developed to provide high-predictive performance with efficient 

computational speed, capable of CPU (central processing unit) and GPU (graphical processing unit) 

parallelization.  Typically, XGBoost trains an ensemble of decision trees sequentially, wherein, each newly 

trained decision tree attempts to reduce the errors, w.r.t training data, in the previous tree, involving 

computations of gradients for a loss function (e.g., the RMSE in Eq.(28)).  Stated differently, the first 

decision tree (i.e., the weak learner) in the ensemble generates inadequate predictions, but through steady 

and sequential boosting (i.e., achieving improvements), XGBoost results in a powerful predictive model 

that represents complex relationships in the data, generating highly accurate predictions.  Hence, herein, for 

ML algorithm selection in Figure 4, step III, XGBoost is selected as the preferred algorithm.   

Figure 5 shows a schematic of a decision tree involving an example dataset created for 

demonstration purposes only, containing just 10 samples (Nsamples = 10), to predict pB as a function of 

temperature, T.  For this dataset, Table 3 shows pB and T for each of the samples.  At each iteration, the 

optimum split threshold for T is computed using the variance reduction method described in Breiman et al. 

(2017).  On this basis, the data is split further, with the splitting process terminated when insufficient data 

remain, after which the average pB is returned.  For instance, at the first split, the optimum split threshold 

for T is computed as T = 480 K – then, the data are divided into two sets; i.e., 5 samples for which, T <= 

480 K, and 5 samples for which, T > 480 K.  The splitting process continues for both sets until the number 

of samples remaining in a set is <= Nsamples, min (Nsamples, min is the minimum number of samples required in a 

set to continue splitting; e.g., in Figure 5, Nsamples, min = 3) thereby, returning the average pB for that set.  To 

check for consistency with the data in Table 3, note the average pB values returned at the end of the decision 

tree in Figure 5 – for instance, there are 2 samples for which, T <= 360 (i.e., T = {300, 340}; pB = {0.1, 

0.2}), with the average pB for these samples = 0.15, consistent with Figure 5.  Similarly, there are 3 samples 

for which, 360 < T <= 480 (i.e., T = {380, 420, 460}; pB = {0.3, 0.4, 0.5}), with their average pB = 0.4.  

Note that XGBoost involves training several decision trees sequentially, where each decision tree follows 

a splitting process similar to the one described for the example decision tree in Figure 5. For a detailed 

description of the XGBoost algorithm, refer to the XGBoost Algorithm: Steps Subsection 7.2 in the 

Appendix, and to the official document for the algorithm (Chen and Guestrin, 2016).          

                                                                                                                                                                                                                                                                                                           

Note that prior to model development, the data are divided into training and testing data using 

randomized splits.  Additionally, note that most ML models consist of two entities: hyperparameters to be 

set/optimized before training; and, internal model parameters that are optimized during training.  In general, 

the XGBoost model consists of several hyperparameters (e.g., one of which is the number of decision trees; 

note – Figure 5 could be the first decision tree) that need to be chosen carefully, as model performance is 

extremely sensitive to their choice.  Hence, for the XGBoost algorithm, model development consists of two 

key steps:  

 

i) Hyperparameter Optimization with Cross-Validation (Figure 4, step IV):  This involves computing the 

optimum set of hyperparameters for the ML model across multiple subsets of training data to ensure 
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generalization and robustness.  There are several open-source software packages available for 

hyperparameter optimization, including: Hyperopt (Bergstra et al., 2015), Optuna (Akiba et al., 2019), Ray 

tune (Liaw et al., 2018), Optunity (Claesen et al., 2014), and the like.  For the XGBoost model herein, the 

Optuna framework is chosen, utilizing a Bayesian optimization technique called a tree-structured parzen 

estimator; i.e.,  TPE (Bergstra et al., 2011; Watanabe, 2023) to determine the optimum set of 

hyperparameters.  Additionally, using detailed benchmark studies comparing various optimization 

techniques and open-source frameworks, Optuna-TPE provided the most favorable performance and 

computation times (Motz et al., 2022; Shekhar et al., 2022).  Typically, the hyperparameter optimization 

process is carried out with k-folds cross validation: 

  

A) Divide training data into k sets (i.e., “folds”) randomly.  Typically, k = 3, 4, or 5.  

B) Sample a combination of hyperparameters (e.g., the number of decision trees.  For more information 

regarding hyperparameters, please refer to the Appendix, Section 7.4.) 

C) Set i = 1. 

D) Place set i aside, and train the model using the remaining k - 1 sets.  (e.g., when k = 3, these are sets 2 

and 3.) 

E) Evaluate the performance of the trained model using set i as the validation set and compute the validation 

score (e.g., RMSE − root-mean-squared-error; in Section 3.3, see Eq. (28)).  

F) When i < k, set i = i + 1.  Return to D). 

G) When i = k, compute the average validation score. 

H) Return to B). (e.g., sample a different value for number of decision trees) 

I) Return the combination of hyperparameters that resulted in the maximum/minimum average validation 

score, depending on the chosen metric (e.g., return the number of decision trees that resulted in the minimum 

average RMSE). 

 

ii) Model training with the Optimum Hyperparameters (Figure 4, step V): Post optimization i), the ML 

model, with its optimum hyperparameters, is trained using the entire training data.      

 

 

Table 3. Example Dataset for the Decision Tree Trained in Figure 5 

 

Temperature, T (K) Committer Probability, pB 

300 0.1 

340 0.2 

380 0.3 

420 0.4 

460 0.5 

500 0.6 

540 0.7 

580 0.8 

620 0.9 

660 1.0 
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Figure 5. Schematic of a decision tree, a flowchart-like model that helps make decisions by answering a 

series of questions based on the input variables (e.g., temperature) of the data, ultimately leading to a 

decision or prediction. 

 

 

The trained ML model is then evaluated using the testing data, returning the evaluation score (Figure 4, 

step VI).  When the performance is satisfactory, the model is ready for deployment; i.e., fresh predictions are 

generated using the trained model as new input data are received (Figure 4, step VII).  Eventually, as output data 

become available, they are compared with the model predictions, following which, the output data and their 

corresponding input data are sent back to the data collection step as feedback for model refinement (Figure 4, 

step VIII).  Clearly, in practice, the ML pipeline is an infinite cycle, with continuous monitoring and model 

updates as data are received. 

 

 Herein, as dynamic simulations yield process variable values, real-time predictions for pB are estimated 

by deploying the trained XGBoost model.  Clearly, these predictions are utilized to sound dynamic 

multivariate alarms when pB >= pB,target  for defined pB,target values.  Consequently, automated response 

actions are activated that attempt to decrease pB in real-time.  These yield initial multivariate alarm systems, 

consisting of initial guesses for the alarm thresholds and response actions.  

 

2.6. Step 3:  Alarm Rationalization and Dynamic Risk Analyses (DRAn) 

 

For the multivariate alarm systems developed in Step 2, key questions are: Does every alarm indicate an 

impending rare abnormal event? Are there too many or too few alarms? Is every response action effective 

in returning the process to normal operation?  To address these issues, rationalization strategies, with 

improved alarm thresholds and response actions, were demonstrated for an exothermic CSTR, resulting in 

a reduction of nuisance alarms, by Sudarshan et al. (2024).  Note that the key aim of alarm rationalization 

is to reduce significantly both the number of false alarms and the total alarms annunciated, to ensure that 

every alarm is a quality alarm.  It is claimed that through rationalization, the total number of alarms can be 

reduced by 50%, coupled with reductions in the nuisance alarms (Timms, 2009). 
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Next, post rationalization, the risk associated with the multivariate alarm systems is evaluated using 

dynamic risk analysis (DRAn) — a technique developed over the past two decades to help achieve real-

time proactive risk management against rare abnormal events.  Typically, assuming availability of raw 

alarm data from process historians, DRAn involves: i) Tracking all possible postulated abnormal events 

listed as part of HAZOP studies using raw alarm data; ii) Creating event trees showing all possible paths 

taken by an abnormal event when propagating through the alarm systems; iii) Compacting the data into a 

concise and structured representation (Pariyani et al., 2012a); iv) Using the compacted data, to perform 

Bayesian computations to estimate failure probabilities of alarm systems, probability of trips, and 

probability of accidents (Pariyani et al., 2012b).  However, for our case (with random statistical noise, 𝜂, 

used to model un-postulated abnormal events – see, e.g., Eq. (20)), given the unavailability of raw alarm 

data, the DRAn methodology is modified: 

 

i) Conducting multiple batches of dynamic simulations of the process, inclusive of control and 

the rationalized multivariate alarms systems. For each simulation, recording key alarm statistics 

(e.g., number of alarms, number of alarms at the current level that were active when the next 

alarm level is reached, and the like). Then, computing alarm system failure probabilities (e.g., 

100 batches of dynamic simulations yield 100 failure probabilities for each alarm system). 

ii) Using these failure probability results, constructing an informed prior distribution (IPD)   

iii) When no alarm system failure data are available, constructing the likelihood distribution using 

assumed alarm failure data. 

iv) Using Bayes’ Rule, constructing the final posterior distribution for the failure probabilities as: 

 

                                               𝑓(𝑝failure,𝑖  | 𝐷) =  
𝑓(𝑝failure,𝑖) × 𝑓(𝐷|𝑝failure,𝑖)

∫ 𝑓(𝑝failure,𝑖) × 𝑓(𝐷|𝑥𝑖) 𝑑𝑝failure,𝑖
1

0

                                                      (18) 

 

where 𝑝failure,𝑖 represents the failure probabilities for alarm system i; 𝑓(𝑝
failure,𝑖

) is the IPD; 𝑓(𝐷|𝑝
failure,𝑖

) is 

the likelihood distribution constructed from likelihood data, D;  𝑓(𝑝
failure,𝑖

| 𝐷) is the posterior distribution.  

Hence, the low-variance IPD constructed based on multiple dynamic simulations results in a low-variance 

and reliable posterior distribution as compared to a non-informative flat prior that typically leads to an 

unreliable posterior, depending entirely on the high-variance likelihood distribution (Sudarshan et al., 

2024).   

 

 

2.7. Step 4:  Sensitivity Analyses 

 

Note that response actions are key components of multivariate alarm systems – to ensure that the alarm 

systems are effective, it is expected that the process parameter selected as the response-action variable in 

Section 2.4 has a reasonably strong influence on the committer probabilities.  Hence, in sensitivity analyses, 

the above steps, to estimate failure probabilities, are repeated for other process parameters that potentially 

could have stronger impacts on the committer probabilities (e.g., qm, qs, etc.).  Then, the results and statistics 

computed using DRAn are compared to identify the most effective response-action variable. 
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2.8. Computational Specifications and Software Utilized 

 

Note that all simulations, analyses, and results presented herein were conducted on a Windows 11 Desktop 

computer, having specifications: 

 

i) CPU: 12th - generation Intel i7-12700K with 12 cores (8 performance + 4 efficiency), 32 GB 

DDR5 RAM 

ii) GPU: NVIDIA RTX 3060 Ti, 8 GB RAM 

 

For bifurcation analyses conducted in step 0, the MATCONT toolbox, based on MATLAB, is 

utilized (Dhooge et al., 2003).  For all other steps, the Python programming language (versions 3.9 and 

3.11) is utilized, leveraging several powerful open-source software packages, including: NumPy (Harris et 

al., 2020), Pandas (McKinney, 2010) , SciPy (Virtanen et al., 2020), Matplotlib (Hunter, 2007), Scikit-

Learn (Pedregosa et al., 2018), XGBoost (Chen and Guestrin, 2016), Numba (Lam et al., 2015), Optuna 

(Akiba et al., 2019), to name a few.  Also, for efficient GPU-parallelization during model development, the 

NVIDIA Compute Unified Device Architecture (CUDA) toolkit (NVIDIA et al., 2022) is utilized.   

 

 

3. RESULTS AND DISCUSSIONS 

 

For each step in Section 2, this section presents results with discussions. 

 

3.1. Step 0: Preliminary Analyses 

 

Figure 6 shows the steady-state solution diagram for the polystyrene CSTR, with qc being the free 

bifurcation parameter.  The stable branches are shown in solid, and unstable branches in dotted lines.  The 

intermediate unstable region is selected as the desired region, given that, to ensure safe and reliable 

operation, this is the preferred operating region for most polymerization reactors.  Additionally, two stable, 

undesirable regions are observed; i.e., the unsafe region, with high conversion and high temperature, and 

the unreliable region, with low conversion and low temperature.  Clearly, two rare, abnormal shifts from 

the unstable operating region are possible: i) Unstable to Unsafe; ii) Unstable to Unreliable.  Note the key 

bifurcation points indicated using red asterisks; i.e., limit points, LP (i.e., the Jacobian matrix has at least 

one zero eigenvalue), and Hopf bifurcation point, H (i.e., the Jacobian matrix has a pair of complex-

conjugate eigenvalues with zero real part), associated with changes in the stability of the process (Kubíček 

and Marek, 1983). 
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Figure 6. Steady-state solution diagram for the polystyrene CSTR 

 

Next, a PID-control scheme is developed that controls x3 by manipulating qc, with constraints 

imposed on qc.  The controller parameters (i.e., controller gain, Kc, integral time constant, 𝜏I, and derivative 

time constant, 𝜏D) are selected experimentally to ensure both sufficiently tight control as well as to allow 

rare abnormal transitions to the undesirable regions.  Additionally, to model un-postulated abnormal events, 

random, statistical noise is introduced into the monomer feed concentration. With control and noise, the 

dimensionless modeling equations for the polystyrene CSTR are: 

 

                                                                
𝑑𝑥1
𝑑𝜏

= 𝑞i𝑥1f −  (𝑞i + 𝑞m + 𝑞s)𝑥1 − 𝜙d𝜅d(𝑥3)𝑥1                               (19) 

                              
𝑑𝑥2
𝑑𝜏

= 𝑞m(𝑥2f +  𝜼) −  (𝑞i + 𝑞m + 𝑞s)𝑥2 − 𝜙p𝜅p(𝑥3)𝑥2𝑥5;   𝜂 ~ 𝒩 (0,  𝜎𝜂
2)            (20) 

                                       
𝑑𝑥3
𝑑𝜏
 =  (𝑞i + 𝑞m + 𝑞s)(𝑥3f − 𝑥3) +  𝛽𝜙p𝜅p(𝑥3)𝑥2𝑥5 −  𝛿(𝑥3 − 𝑥4)                  (21) 

                                                                      
𝑑𝑥4
𝑑𝜏
  =  𝛿1[𝑞c(𝑥4f − 𝑥4) + 𝛿𝛿2(𝑥3 − 𝑥4)]                                    (22) 

                            𝑞c   =  𝑞c,0 −  𝐾c [(𝑥3,sp − 𝑥3 ) +  
1

𝜏I 
∫(𝑥3,sp − 𝑥3 )𝑑𝑡

′ + 𝜏D 

𝑑(𝑥3,sp − 𝑥3 )

𝑑𝑡

𝑡

0

]            (23) 

                                                                                     0 ≤  𝑞c ≤  5                                                                           (24) 

                                                                           𝑥5 =  √
2𝑓𝜙d𝜅d(𝑥3)𝑥1
𝜙t𝜅t(𝑥3)

                                                                 (25) 

                         𝑥1,0 = 0.0041; 𝑥2,0 = 0.2156;  𝑥3,0 = 0.951; 𝑥4,0 = −1.1191;  𝑞𝑐,0 = 1.5                   (26)                 

 

where  𝑥1,0,  𝑥2,0,  𝑥3,0,  𝑥4,0,  𝑞c,0 represent initial values.  Note that the statistical noise; i.e., 𝜂, is sampled at 

every integration time-step (with integration step-size; i.e., h = 0.001), from a normal distribution, 
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𝒩( 𝜇, 𝜎𝜂
2 ), with a mean; i.e., 𝜇 = 0, and variance; i.e., 𝜎𝜂

2 = 0.0014.  Note that for accurate analyses, 

identical initial conditions need to be considered for abnormal trajectories generated towards both 

undesirable regions.  Hence, the initial values in Eq. (26), as well the variance of statistical noise, i.e., 𝜎𝜂
2, 

are selected experimentally, based on trial-and-error simulations, to ensure multiple rare transitions are 

simulated from the unstable region.  Figure 7 shows the PID-controlled polystyrene CSTR (with values for 

the dimensionless controller tuning parameters in Table 1) under dynamic operation with noisy monomer 

feed concentrations, showing abnormal shifts to: a) Unreliable region and b) Unsafe region.  At low initiator 

flowrates, qi = 0.05, the reactor exhibits strong inverse response, causing rapid shifts in operation from the 

unstable region to the unreliable operating region; however, the reactor does not remain in the unreliable 

region and quickly returns to the unstable region.  At high initiator flowrates, qi = 0.12, the reactor shifts to 

the unsafe region, remains for some time, and returns to the unstable region.  Additionally, note the 

significant offset away from the desired set-point (i.e., x3, SP = 0.85), with potential reasons being:  increased 

sensitivity of the PID controller to statistical noise, integral windup due to the input constraints, causing the 

controller to undershoot, and the like.   

 

 

 

 

 

                                       (a)                                                                                                         (b) 

 

Figure 7. The polystyrene CSTR under dynamic operation with noisy monomer feed concentrations, showing 

abnormal shifts to: a) Unreliable region at low qi and b) Unsafe region at high qi 

 

3.2. Step 1:  Data Generation via Forward-flux Sampling 

 

Using BG-FFS, numerous rare abnormal trajectories are simulated efficiently in a piecewise manner – given 

two undesirable regions, the simulations are conducted independently for unsafe and unreliable shifts.  Note 

that the dimensionless reactor temperature; i.e., x3, is chosen as the order parameter variable.  Initially, the 

initiator flowrate, qi, is chosen as the response-action variable; hence, for each undesirable region, the BG-

FFS simulations are conducted for multiple discrete values of qi.  As part of exploratory data analysis, 

Figure 8 shows the average pB as a function of qi for various 𝜆𝑖, for the two abnormal shifts.  For shifts to 
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the unsafe region, the average pB appears to increase with qi; for shifts to the unreliable region, the trend is 

not very clear, with decreases in the average pB observed for intermediate qi. 

 

 

 

 

Figure 8. Average pB as function of qi for various 𝜆𝑖, for abnormal shifts to: a) Unsafe region and b) Unreliable 

region 

 

3.3. Step 2:  Predictive Modeling via Machine Learning 

 

Given two categories of abnormal shifts; i.e., unstable to unsafe and unstable to unreliable, two XGBoost 

models are developed independently by utilizing the steps mentioned in Section 2.5, for the data generated 

during BG-FFS simulations and pB calculations. Then, the trained XGBoost models are evaluated on the 

test data using the following evaluation scores: 

 

            𝑅2 = Coefficient of Determination =   1 −  
∑ (𝑝B,test(𝑖) − 𝑝̂B,test(𝑖))

2𝑁samples,test 
𝑖=1

∑ (𝑝B,test(𝑖) − 𝑝̅B,test )
2𝑁samples,test 

𝑖=1

                (27) 

      𝑅𝑀𝑆𝐸 = Root Mean Squared Error =   √
∑ (𝑝B,test(𝑖) − 𝑝̂B, test(𝑖))

2𝑁samples,test 
𝑖=1

𝑁samples,test 
                         (28) 

                             

                                                                    𝑅𝑀𝑆𝐸 % =  
𝑅𝑀𝑆𝐸

𝑝̅B,test
×  100                                                             (29) 

 

where 𝑝B,test  represents the 𝑝B in the test data, 𝑝̂B,test is the 𝑝B predicted using the trained XGBoost model 

for the test data, 𝑝̅B,test represents the mean 𝑝B for the test data, and 𝑁samples,test  represents the number of 

samples in the test data.  Figure 9 shows the performance and evaluation scores for the two XGBoost 

(a) (b) 
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models.  For both models, high 𝑅2 and reasonably low RMSE and RMSE% are observed, indicating strong 

predictive performance.  Note that the clock time recorded for development of each XGBoost model is ~ 

7-8 min, with GPU acceleration implemented during hyperparameter optimization.  Additionally, note that 

for reliable cross-validation during the hyperparameter optimization process, it is important to obtain lower 

standard deviations across folds, for the given evaluation metric selected for cross-validation (i.e., RMSE).  

For both XGBoost models, during cross-validated hyperparameter optimization, the ratio of standard 

deviation to mean for the RMSE is ~ 10-2, confirming the reliability of the cross-validation process. 

 

 

        (a)                                                                                           (b) 

 

Figure 9. Performance of the XGBoost model on test data and evaluation metrics for: a) Unstable to Unsafe; b) 

Unstable to Unreliable 

 

  

Given satisfactory performance on test data, both models are adequate to return real-time 

predictions of 𝑝B, given dynamic simulations not used to obtain the training or testing data.  Figure 10a 

shows x3 as function of dimensionless time for a new dynamic simulation, with Figure 10b showing real-

time 𝑝B predictions by using both XGBoost models.  Clearly, these predictions can be leveraged to develop 

dynamic, multivariate alarm systems; e.g., if the first alarm threshold for the unsafe region is set at 0.20, 

then, when real-time pB,Unsafe >= 0.20, the alarm goes off and its corresponding response action (e.g., slight 

decrease in qi) is activated instantaneously, attempting to decrease pB,Unsafe in real-time.  
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                                          (a)                                                                                                         (b) 

 

Figure 10. a) A new dynamic simulation showing x3 as function of time; b) Real-time 𝑝B predictions obtained by 

deploying the XGBoost models for the dynamic simulation 

 

3.4. Step 3: Alarm Rationalization and Dynamic Risk Analyses (DRAn) 

 

With real-time tracking of pB available from the XGBoost models, six-level initial multivariate alarm 

systems, consisting of alarm thresholds (defined using pB limits, where basin B is an unsafe or unreliable 

region) and response actions (defined using discrete qi values) are: 

 

1. High Alarm Systems: Alarm thresholds and response actions corresponding to the unsafe 

operating region. As initial guesses, these are: 

i) H (High): 𝑝B,Unsafe,H= 0.20; 𝑞i,H = 0.0975 

ii) HH (High-high): 𝑝B,Unsafe,HH= 0.40; 𝑞i,HH = 0.095 

iii) HHH (High-high-high): 𝑝B,Unsafe,HHH= 0.80; 𝑞i,HHH = 0.09 

 

2. Low Alarm Systems: Alarm thresholds and response actions corresponding to the unreliable 

operating region. As initial guesses, these are: 

i) L (Low): 𝑝B,Unreliable,L= 0.20; 𝑞i,L = 0.0975 

ii) LL (Low-low): 𝑝B,Unreliable,LL= 0.40; 𝑞i,LL = 0.095 

iii) LLL (Low-low-low): 𝑝B,Unreliable,LLL= 0.80; 𝑞i,LLL = 0.09 

 

 

Note the decreasing trend for qi-based response actions selected for both high and low alarm 

systems, as the undesirable region is approached – from Figure 8, while the trend for pB,Unreliable is unclear, 

an increasing trend is observed for pB,Unsafe (i.e., as qi increases, pB,Unsafe  increases); hence, a decreasing 

trend of response actions is chosen for both high- and low-alarm systems to ensure that safety is not 

compromised.  Additionally, note that response actions corresponding to each alarm level are assumed to 
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be completely automated, comparable to an “ideal” operator having negligible response times.   Figure 11 

represents a schematic of multivariate alarm systems in action.  For instance, consider a process trajectory 

(shown in black) initially operating in the normal operating region; as soon as it crosses the H-threshold 

limit defined for the primary alarm variable, the H-alarm goes off, and its corresponding response action 

(i.e., changes made to the response action variable, given the XGBoost models’ pB predictions) is activated, 

attempting to return the process to normal operation.  

 

 
 

Figure 11. Schematic showing multivariate alarm systems in action, given measurements available for a 

primary alarm variable. 

 

 

Note that the initial initiator flowrate; i.e., qi,init = 0.1. Next, as described in Section 2.6, the 

algorithm developed for rationalization strategies is utilized to evaluate the initial multivariate alarm 

systems – specifically, the alarm statistics for the initial six-level alarm system (see Table 4) is compared 

to that of four-level alarm system (defined in Table 5), using 100 dynamic simulations.  Figure 12 compares 

the alarm statistics for the two systems w.r.t high alarms.  Overall, the number of alarms that go off for the 

four-level system is higher than for the six-level system.  The number of instances of reaching the unsafe 

region is lower for the six-level system (i.e., 0 for six-level, but 2 for four-level).  Additionally, the 

percentage of unique high alarms that remain active when the next threshold is reached is observed to be 

much lower for the six-level system, implying greater effectiveness and success in reducing the real-time 

committer probabilities to below the limit.  Similarly, Figure 13 compares the alarm statistics w.r.t low 

alarms.  Despite more alarms in the four-level system, the number of instances of reaching the unreliable 

region is observed to be identical for both systems (i.e., 2).  Additionally, the percentage of unique low 
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alarms remaining active when the next threshold is reached is lower for the four-level system.  It is likely 

that when pB,Unreliable reaches intermediate values (i.e., ~ 0.4-0.6), the process is not very sensitive to qi 

changes , thereby, resulting in 100% failure of the LL alarm in the six-level system, as observed in Figure 

13b.  A potential reason for this is the inverse response behavior observed previously in Figure 7a – a 

phenomenon very challenging to mitigate. 

Hence, based on these rationalization studies, a five-level alarm system; i.e., H-HH-HHH-L-LL 

(summarized in Table 6), is preferable, to ensure effectiveness against shifts to both unsafe and unreliable 

regions.  To validate this, Figure 14 a-d shows the alarm statistics for the five-level system, based on 100 

dynamic simulations.  The number and percentage of high alarms reaching the next threshold are 

comparable to the six-level system, with zero instances of reaching the unsafe region. For the low alarms, 

the number of alarms is lower compared to the four-level system, with comparable percentages of unique 

low alarms reaching the next threshold. 

 

 

 

 

Alarm 

Threshold 

𝒑𝐁 at Threshold 

(initial) 

Response 

Action at 

Threshold 

(initial) 

H 𝑝B,Unsafe,H =  0.2 𝑞i, H = 0.0975 

HH 𝑝B,Unsafe,HH =  

0.4 

𝑞i, HH = 0.095 

HHH 𝑝B,Unsafe,HHH = 

0.8 

𝑞i,HHH = 0.09 

L 𝑝B,Unreliable,L = 

0.2 

𝑞i,L = 0.0975 

LL 𝑝B,Unreliable,LL = 

0.4 

𝑞i, LL = 0.095 

LLL 𝑝B,Unreliable,LLL = 

0.8 

𝑞i,LLL = 0.09 

 

Alarm 

Threshold 

𝒑𝐁 at Threshold 

(initial) 

Response 

Action at 

Threshold 

(initial) 

H 𝑝B,Unsafe,H =  0.4 𝑞i,H = 0.095 

HH 𝑝B,Unsafe,HH =  

0.8 

𝑞i,HH = 0.09 

L 𝑝B,Unreliable,L = 

0.35 

𝑞i,L = 0.095 

LL 𝑝B,Unreliable,LL = 

0.8 

𝑞i,LL = 0.09 

Table 4. Six-level Multivariate Alarm System, 

to be Evaluated during Rationalization  

Table 5. Four-level Multivariate Alarm System, 

to be Evaluated during Rationalization  
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                                   (a)                                                                                                   (b) 

 

Figure 12. Alarm statistics comparison between four-level and six-level alarm systems w.r.t high-alarm systems, 

showing: a) Number of high alarms; b) Percentage of unique high alarms that are active when next level is reached. 

 

 

                                   (a)                                                                                               (b) 

 

Figure 13. Alarm statistics comparison between four-level and six-level alarm systems w.r.t low-alarm systems, 

showing: a) Number of low alarms; b) Percentage of unique low alarms that are active when next level is reached. 
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Table 6. Rationalized Five-level Alarm System, i.e., H-HH-HH-L-LL 

 

Alarm 

Threshold 

𝒑𝐁 at Threshold 

(final) 

Response Action at 

Threshold (final) 

H 𝑝B,Unsafe,H =  0.2 𝑞i,H = 0.0975 

HH 𝑝B,Unsafe,HH =  0.4 𝑞i,HH = 0.095 

HHH 𝑝B,Unsafe,HHH = 0.8 𝑞i,HHH = 0.09 

L 𝑝B,Unreliable,L = 0.35 𝑞i,L = 0.095 

LL 𝑝B,Unreliable,LL = 0.8 𝑞i,LL = 0.09 

 

 

Note that while rationalization studies are important to evaluate the placement of alarm thresholds 

and choice of response actions, the alarm statistics are generated from just one batch of ~ 100 dynamic 

simulations; for more comprehensive analyses regarding the failure probabilities of the multivariate alarm 

systems, it is important to generate alarm statistics based on multiple such batches of dynamic simulations.  

Hence, for risk assessment, as described in Section 2.6., DRAn studies are conducted based on multiple 

dynamic simulations of the polystyrene CSTR, inclusive of control and the rationalized five-level 

multivariate alarm systems.  ~75 dynamic simulation batches are conducted, with each batch consisting of 

200 dynamic simulations.  For each of the five alarm systems, the failure probability is computed as: 

 

                                                                         𝑝failure, H =  
𝑁H→HH
𝑁H

                                                                        (30) 

                                                                  𝑝failure, HH    =  
𝑁HH→HHH
𝑁HH

                                                                    (31) 

                                                                    𝑝failure, HHH =  
𝑁HHH→Unsafe
𝑁HHH

                                                             (32) 

                                                                    𝑝failure, L      =  
𝑁L→LL
𝑁L

                                                                          (33) 

                                                                   𝑝failure, LL    =  
𝑁LL→Unreliable

𝑁LL
                                                            (34) 

 

where 𝑁H, 𝑁HH, 𝑁HHH, 𝑁L, 𝑁LL are the number of alarms for the H, HH, HHH, L and LL systems; 𝑁H→HH 

is the number of unique H alarms that are active when HH is reached; 𝑁HH→HHH is the number of unique 

HH alarms that are active when HHH is reached; 𝑁HHH→Unsafe is the number of unique HHH alarms that 

are active when the unsafe region is reached; 𝑁L→LL is the number of unique L alarms that are active when 

LL is reached; 𝑁LL→Unreliable is the number of unique LL alarms that are active when the unreliable region 

is reached. 
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Figure 14. Alarm statistics for the proposed five-level alarm system, showing: a) Number of high alarms; b) 

Percentage of unique high alarms remaining active when next threshold is reached; c) Number of low alarms; d) 

Percentage of unique low alarms remaining active when next threshold is reached. 
 

 

Figures 15 a-e represent the results generated from the DRAn studies, consisting of the histogram 

for the estimated failure-probabilities data, the Beta IPD developed for the data, and posterior distribution 

constructed using Bayes’ rule, using the IPD and the likelihood distribution.  Given the unavailability of 

failure data, for each of the five alarm systems, a binomial likelihood was assumed (Sudarshan et al., 2024).  

For more details regarding the computed parameters for the Beta IPDs and assumptions for likelihood 

distributions, please refer to the Appendix, Section 7.3.  Given that the Beta distribution is a conjugate prior 

of the binomial distribution, the resulting posterior also is a Beta distribution (Gelman et al., 2013).  The 

high-alarm systems appear to be reasonably effective, with a decreasing trend observed for the average 

failure probabilities as the unsafe region is approached.  For the low-alarm systems, the average failure 

probabilities appear to follow an increasing trend as the unreliable region is approached, with possible 

improvements to be investigated in the sensitivity analyses of Section 3.5. 

(a) (b) 

(c) (d) 
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3.5.  Sensitivity Analyses 

 

Thus far, the initiator flowrate, qi, has been selected as the response-action variable for the multivariate 

alarm systems.  In this Sensitivity Analyses subsection, other potential response-action variables are 

considered; particularly, the monomer flowrate; i.e., qm, and the solvent flowrate; i.e., qs.  Initially, BG-FFS 

simulations (i.e., Section 2.4.) are conducted for multiple discrete values of each response-action variable.  

With several crossing points and committer probabilities generated for each response-action variable, 

average committer probabilities are computed.  Then, Pearson correlation coefficients are computed 

between the average committer probabilities and response-action variables.  These measure the strength 

and direction of the linear association between the two averages (Kirch, 2008), and are computed as: 

 

                        𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝑢,𝑣 = 
∑ (𝑢𝑖 − 𝑢̅)(𝑣𝑖 − 𝑣)
𝑛discrete
𝑖=1

√∑ (𝑢𝑖 − 𝑢)
2𝑛discrete

𝑖=1
∑ (𝑣𝑖 − 𝑣̅)

2𝑛discrete
𝑖=1

                                                    (35) 

 

where 𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝑢,𝑣 is the Pearson correlation coefficient between variables, u and v.  In this case, u is the 

response-action variable (i.e., qi, qm, or qs); v is the average committer probability, 𝑝̅B;  𝑢̅ and 𝑣̅ are the 

mean values for u and v, with 𝑣̅ being the twice-averaged committer probability, and 𝑛discrete is the number 

of discrete values considered for the response-action variable.  

Table 7 shows the Pearson coefficients between average committer probabilities and the response-

action variables for both unsafe and unreliable regions. For the unsafe operating region, all three response-

action variables show strong correlation, with qs showing strong negative correlation, while the others show 

strong positive correlations.  For the unreliable region, all three response-action variables show positive 

correlations, with qi showing the weakest and qs showing the strongest correlation.  Despite qs showing 

relatively stronger positive correlation for the unreliable region, it is negatively correlated w.r.t to the unsafe 

region – this implies that a decrease in qs will result in decreases in pB,Unreliable, but at the cost of increased 

pB,Unsafe.  Given that safety should not be compromised, further sensitivity analyses are restricted to only qi 

and qm; qs is not considered in this study.  Also, note that sensitivity analyses conducted, herein, do not 

consider the effort required to vary the response-action variables. 

Next, steps 1 - 3 described in Section 2 are repeated to develop dynamic multivariate alarm systems 

with qm as the response-action variable (similar to those developed for qi in Sections 3.2-3.4) – note that 

based on the rationalization algorithm, a four-level multivariate alarm system (i.e., H-HH-L-LL, with qm 

response actions) is preferred.  Then, DRAn studies are conducted using the qm-based alarm systems, with 

their failure probability statistics compared with qi-based alarm systems developed in Section 3.  Table 8 

shows the average alarm statistics per batch of dynamic simulations (i.e., each batch consists of 200 

dynamic simulations), generated using DRAn studies for both qi- and qm-based alarm systems.  On average, 

high-alarm failure probabilities are higher for qm; for the L alarm system, qm has lower failure probabilities, 

with LL-failure probabilities being slightly lower for qi.  However, the average number of unsafe crossings 

observed for qm are significantly lower than qi, i.e., by ~ 77%; additionally, the average number of unreliable 

crossings are observed to be slightly lower for qm, i.e., by ~ 8%, with comparable average growing polymer 

concentrations (i.e.,  a measure of product quality).  Hence, despite relatively higher failure probabilities, 

the qm-based multivariate alarm systems are more effective than the qi-based systems, resulting in fewer 

instances of reaching the undesirable operating regions, with negligible loss in product quality. 



30 

 

 

Figure 15.  Results generated from DRAn studies, 

consisting of histogram for failure probability data, 

Beta IPD, and Beta Posterior for the five alarm 

systems: a) H; b) HH; c) HHH; d) L; e) LL. 

(a) (b) 

(c) (d) 

(e) 
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Table 7. Pearson Correlation Coefficients between Average Committer Probabilities and Response-Action Variables 

 

Response-Action 

Variable 

Pearson Coefficient 

for average pB,Unsafe 

Pearson Coefficient 

for average 

pB,Unreliable 

qi 0.9952 0.1464 

qm 0.9897 0.5937 

qs -0.9891 0.6951 

 

 

Table 8. Average Alarm Statistics generated based on DRAn studies for qi and qm as Response-Action Variables 

 

DRAn Alarm Statistic (Average) Response-Action Variable: 

qi 

Response-Action Variable: 

qm 

H Failure Probability 0.2732 0.4616 

HH Failure Probability 0.1391 0.2022 

HHH Failure Probability 0.055 - 

L Failure Probability 0.3583 0.0754 

LL Failure Probability 0.5724 0.6019 

Number of Unsafe Crossings 7.0133 1.5857 

Number of Unreliable Crossings 7.76 7.1571 

Growing Polymer Concentration (x5) 2.338  10-6 2.336  10-6 

 

 

4. CONCLUSIONS 

 

In our previous research, novel, improved, multivariate alarm systems were developed for rare un-

postulated abnormal events, using random statistical noise in one or more process variables – demonstrated 

for an exothermic CSTR (Sudarshan et al., 2023).  But, their alarm thresholds were based on static process 

variable limits, often leading to increased nuisance alarms and/or missed alarms.   

 

Herein, our methods are extended for a more complex and realistic PID-controlled polystyrene 

CSTR model, involving abnormal shifts from a desirable unstable region towards two undesirable unsafe 

and unreliable operating regions.  As a BG-FFS algorithm locates multiple rare abnormal trajectories 

towards these two undesirable regions, key process variables and committer probabilities, pB, are obtained.  

Then, the XGBoost ML algorithm is utilized, resulting in accurate and reliable predictive models for pB as 

a function of the key process variables.  The XGBoost models are deployed in real-time to develop initial 

dynamic bidirectional multivariate alarm systems based on pB predictions, a major improvement as 

compared with the static unidirectional systems developed previously for the exothermic CSTR.   

Additionally, note the direct influence of the XGBoost models’ predictions on decision-making, i.e., 

varying the response action variables based on the predicted pB, addressing the decision science aspect of 

machine learning and risk assessment. Then, rationalization strategies developed previously are utilized to 

evaluate and modify the initial alarm systems − with qi selected as the response-action variable, a five-level 
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alarm system; i.e., H-HH-HHH-L-LL, is preferred.  Next, DRAn studies are performed, based on which, 

the high-alarm systems appear to be reasonably effective, with decreasing trends closer to the unsafe region; 

whereas, due to increasing failure probabilities, the low-alarm systems are shown to require improvements.  

Then, sensitivity analyses are shown to be helpful – as they investigate the impact of other potential 

response-action variables; i.e., qm and qs.   

 

5. FUTURE WORK 

 

In spite of improved findings herein, limitations remain to be addressed.  This section addresses 

two possibilities for future research. 

 

5.1. Exploring Further Improvements to the Multivariate Alarm Systems  

 

 In this paper, the multivariate alarm systems developed consisted of single response-action 

variables for abnormal transitions to both unsafe as well as unreliable regions.  However, it is likely that 

considering multiple variables is beneficial – e.g., when variable c1 has greater influence on committer 

probabilities towards the unsafe region, and variable c2 has greater influence on committer probabilities 

towards the unreliable regions.  However, the increased computational costs, as well as the impact of this 

approach on safety, need to be considered (e.g., as observed in Section 3.5., decreasing qs increases the 

reliability of the process, but is detrimental to safety) i.e., the FFS simulations need to be repeated for 

multiple discrete combinations of the response action variables. 

 Additionally, note that the alarm rationalization framework introduced previously in Sudarshan et 

al. (2024), and demonstrated in Section 3.4., herein, involved experimenting with empirically-chosen 

combinations of alarm thresholds and response actions – a process that can be very cumbersome and 

inconvenient.  Moreover, it is important to enhance the rationalization process by exploring automated or 

semi-automated techniques, capable of selecting optimum alarm thresholds and response actions more-

intelligently. 

Moreover, as more-advanced control schemes are becoming popular (e.g., MPC, reinforcement-

learning control, and the like), attempts should be made to analyze the impact of statistical noise sensitivity 

on controller offset (as observed in Figure 7), as well as impact of more-robust control schemes on 

generating sufficient un-postulated abnormal events using FFS. 

 

5.2. Hybrid Modeling to Incorporate Plant Data and Regular Model Refinements  

  

As observed in Figure 4, the ML pipeline is an infinite cycle, with regular model refinements 

enabled by feedback, as more data are recorded.  However, herein, a feedback loop to refine the alarm 

systems by updating XGBoost model predictions does not exist due to lack of plant data.  In future research, 

hybrid computational models (e.g., physics-informed neural networks; i.e., PINNs) involving underlying 

physics (i.e., material and energy balances, kinetics, transport phenomena, and the like), coupled with plant 

data from open-source databases and/or industrial collaborations, should be developed.  Such hybrid models 

can simulate abnormal trajectories via FFS, followed by ML-based predictive-models that facilitate regular 

updates of the alarm systems as data are received.   
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5.3. More Advanced Models for Unpostulated Abnormal Events  

 

To model un-postulated abnormal events herein, statistical noise is utilized, with random samples 

drawn from the normal distribution, with specified means and variances.  Additionally, for the polystyrene 

CSTR operating in the unstable region, given adequate statistical noise, rare un-postulated abnormal shifts 

can lead to only two regions; i.e., unsafe and unreliable.  But, for some abnormal events (or 

combinations/sequences of events), other distributions are preferable.  In future research, more advanced 

abnormal event models should be considered; e.g., using mixed probability distributions, trained using 

random samples from distributions involving multiple parameters. 
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7. APPENDIX 

 

This Appendix contains three subsections. 

 

7.1. Abbreviations (Acronyms) 

 

AI Artificial Intelligence 

AIBN Azobisisobutyronitrile 

ASU Air Separation Unit 

BG-FFS Branched-Growth Forward-Flux Sampling 

CPU Central Processing Unit 

CSTR Continuous Stirred Tank Reactor 

DFFS Direct Forward-Flux Sampling 

DRAn Dynamic Risk Analyses 

FFS Forward-Flux Sampling 

GPU Graphical Processing Unit 

HAZOP Hazard and Operability Study 

IPD Informed Prior Distribution 

IoT Internet of Things 

LLM Large Language Model 

MCMC Markov-Chain Monte-Carlo 

MD Molecular Dynamics 

ML Machine Learning 

NMPC Nonlinear Model Predictive Control 

OLS Ordinary Least Squares 

PID Proportional Integral Derivative 

RMSE Root Mean Squared Error 

SIS Safety Instrumented Systems 

TPE Tree-structured Parzen Estimator 

TPS Transition-Path Sampling 
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TST Time Series Transformer 

XGBoost eXtreme Gradient Boosting 

 

 

7.2. XGBoost Algorithm: Steps 

 

Given the training data; i.e., {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁samples

; number of decision trees in the ensemble; i.e., M; the 

learning rate; i.e., 𝛼 (i.e., a measure of the contribution of the previous tree to the newly trained tree); and 

a differentiable loss function; i.e., 𝐿(𝑦, 𝑓(𝑥)) (e.g., RMSE in Eq. (28)); the XGBoost algorithm proceeds 

as (Chen and Guestrin, 2016): 

 

1.  Develop a weak initial model: 

                                                                         𝑓0(𝑥) = argmin
𝑓
∑𝐿(𝑦𝑖 , 𝑓) +  Ω(𝑓)

𝑁

𝑖=1

                                        (36)  

 

where Ω(𝑓) is the regularization term, typically utilized to reduce overfitting (i.e., low errors on in-

sample training data, but high errors on out-of-sample testing data, leading to poor predictive models). 

 

2.  Repeat following steps for m = 1 to M: 

 2.1. Compute Gradients and Hessians: 

                                                                           𝑔̂𝑚(𝑥𝑖) =  
𝜕𝐿 (𝑦𝑖 , 𝑓(𝑚−1)(𝑥𝑖))

𝜕𝑓(𝑚−1)(𝑥𝑖)
                                                    (37) 

                                                                          ℎ̂𝑚(𝑥𝑖) =  
𝜕2𝐿 (𝑦𝑖 , 𝑓(𝑚−1)(𝑥𝑖))

𝜕𝑓2(𝑚−1)(𝑥𝑖)
                                                   (38) 

 

2.2. Train decision tree m for the training data {𝑥𝑖 , −
  𝑔̂𝑚(𝑥𝑖)

ℎ̂𝑚(𝑥𝑖)
}
𝑖=1

𝑁
by solving the following 

optimization problem: 

 

                                𝜙̂𝑚(𝑥) = argmin
𝜙
[∑

1

2
ℎ𝑚(𝑥) (𝜙(𝑥𝑖) − 

  𝑔̂𝑚(𝑥𝑖)

ℎ̂𝑚(𝑥𝑖)
)

2

+  Ω(𝜙)

𝑁

𝑖=1

]            (39) 

 

                                                                  𝑓̂𝑚(𝑥) =  𝛼𝜙̂𝑚(𝑥)                                                              (40)  

2.3. Update the model: 

 

                                                          𝑓̂(𝑚)(𝑥) = 𝑓(𝑚−1)(𝑥𝑖) +  𝛼𝜙̂𝑚(𝑥)                                          (41) 

3.  Compute final model: 

                                                                              𝑓(𝑥) = 𝑓(𝑀)(𝑥) = ∑ 𝑓𝑚(𝑥)

𝑀

𝑚=0

                                                   (42) 
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7.3. Computed Parameters for Beta IPDs and Assumptions for Likelihood Distributions for qi-based 

Alarm Systems 

 

Consider the following 𝐵𝑒𝑡𝑎 (𝑎𝑖 ,  𝑏𝑖) IPD for the failure probability of alarm system i, 𝑝failure,𝑖: 

 

          𝑓(𝑝
failure,𝑖

) = 𝐵𝑒𝑡𝑎 (𝑎𝑖 ,  𝑏𝑖) =   
Γ(𝑎𝑖 + 𝑏𝑖)

Γ(𝑎𝑖)Γ(𝑏𝑖)
 𝑝
failure,𝑖

𝑎𝑖−1(1 − 𝑝
failure,𝑖

)
𝑏𝑖−1;  𝑎𝑖 > 0; 𝑏𝑖 >  0           (43) 

 

where the gamma function, Γ(𝑎𝑖), is: 

                                                                         Γ(𝑎𝑖) =  ∫ 𝑡
𝑎𝑖 − 1𝑒−𝑡

∞

0

𝑑𝑡                                                                  (44) 

 

The 𝑎𝑖 and 𝑏𝑖 parameters for the Beta distribution are: 

 

                                                        𝑎𝑖 = 𝜇𝑖 (
𝜇𝑖(1 − 𝜇𝑖)

𝜎𝑖2
− 1) ,   𝑖𝑓 𝜎𝑖

2 < 𝜇𝑖(1 − 𝜇𝑖)                                     (45) 

                                                       𝑏𝑖  = (1 − 𝜇𝑖) (
𝜇𝑖(1 − 𝜇𝑖)

𝜎𝑖2
− 1) ,   𝑖𝑓 𝜎𝑖

2 < 𝜇𝑖(1 − 𝜇𝑖)                           (46) 

 

where 𝜇𝑖 and 𝜎𝑖
2 represent the mean and variance of the failure probabilities for alarm system i. Note that 

i corresponds to the alarm system level; i.e., i = H, HH, L, LL, and the like. Table 9 shows the Beta 

distribution parameters computed for each of the five qi – based alarm systems. 

 Typically, the likelihood distribution; i.e., 𝑓(𝐷|𝑝
failure,𝑖

), is developed utilizing available alarm data; 

i.e., D.  However, given the unavailability of alarm data, likelihood distributions need to be assumed for 

each of the five qi-based multivariate alarm systems; i.e., H-HH-HHH-L-LL.  Hence, for each, a binomial 

likelihood distribution is assumed: 

 

𝑓(𝐷|𝑝failure,𝑖) = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛binom,𝑖 , 𝑘binom,𝑖)

=   
𝑛binom,𝑖!

(𝑛binom,𝑖 − 𝑘binom,𝑖)!
 𝑝failure,𝑖

𝑘binom,𝑖  (1 − 𝑝failure,𝑖)
𝑛binom,𝑖 − 𝑘binom,𝑖              (47) 

 

where 𝑛binom,𝑖 is the number of instances an alarm went off at a level i (stated differently, the number of 

instances a particular alarm system was activated; e.g., the H alarm system); 𝑘binom,𝑖 is the number of 

failures corresponding to alarm system i.  Table 10 shows the parameters for the binomial likelihood 

distributions assumed for each of the five alarm qi – based systems.  Note the general decreasing trend 

assumed for the parameters as the undesirable region is approached. 
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Table 9.  Parameters for Beta IPDs Computed for qi-based Five-level  

(i.e., H-HH-HH-L-LL) Alarm Systems 

 

Alarm System Level ai (Beta IPD Parameter) bi (Beta IPD Parameter) 

H 6.94 18.47 

HH 5.16 31.91 

HHH 4.90 84.13 

L 14.44 25.87 

LL 7.05 5.27 

 
 

Table 10.  Parameters for Binomial Likelihood Distributions Assumed for qi-based Five-level  

(i.e., H-HH-HH-L-LL) Alarm Systems 

 

Alarm System Level nbinom,i (Binomial Distribution 

Parameter) 

kbinom,i (Binomial Distribution 

Parameter) 

H 75 10 

HH 60 5 

HHH 30 0 

L 40 10 

LL 20 5 

 

 

7.4. Hyperparameters for XGBoost Model 

 

Hyperparameters of ML models are parameters that are external to the model training process – stated 

differently, these parameters are required to be set/optimized before the training process, unlike internal 

model parameters optimized during training. Appropriate selection of hyperparameters is crucial for the 

predictive performance of ML models; poor choice can lead to unsatisfactory performance, such as 

overfitting, i.e., poor performance on test data, despite the model performing well on the train data. 

 Note that XGBoost consists of several hyperparameters – optimizing every hyperparameter is 

computationally expensive, and possibly inefficient as well.  Hence, in this paper, only a few key 

hyperparameters crucial to prevent overfitting were optimized using Bayesian Optimization through the 

Optuna package in Python, while the rest remained at their default values: 

 

i)  n_estimators:  Number of decision trees in the ensemble 

ii) learning_rate: Scaling factor that determines contribution of each decision tree in the ensemble. 

iii) subsample: Fraction of data used in training each decision tree – minimizes overfitting by introducing 

randomness 

iv) reg_alpha:  Parameter for L1 regularization – minimizes overfitting by penalizing large coefficients. 

v) reg_lambda: Parameter for L2 regularization – minimizes overfitting by penalizing sum of squared 

coefficients. 
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vi) max_delta_step: Maximum step-size permitted for a leaf output in each decision tree. 

 

For more information regarding these and other hyperparameters, the readers are encouraged to refer to the 

official documentation for XGBoost (Chen and Guestrin, 2016; xgboost developers, 2023). 
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