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Abstract. The article presents a modified CORDIC algorithm for im-
plementing a Givens rotator. The CORDIC algorithm is an iterative
method for computing trigonometric functions and rotating vectors with-
out using complex calculations. The authors propose two modifications
for improving the classical CORDIC algorithm: completing iterations
with one-directional rotation of the vector at the final stages and choosing
a scaling factor value that can be implemented with low-cost dedicated
hardware utilising canonical signed digits representation. The modified
algorithm is implemented in a pipeline approach using Verilog language
in an Altera Cyclone V System-on-Chip FPGA. The results show that
the proposed algorithm achieves higher accuracy and lower latency than
the classic CORDIC algorithm.
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1 Introduction

With their pivotal role in numerical linear algebra, Givens rotators serve as in-
dispensable tools across various mathematics and computer science domains.
Primarily renowned for their efficacy in the QR decomposition (QRD) of matri-
ces, where the strategic zeroing of matrix elements is a common practice [1–4],
Givens rotators exhibit versatility that extends beyond traditional linear algebra
applications. These rotators form the cornerstone for implementing point rota-
tion within 2D coordinate systems [5–7], as well as in the intricate realms of 3D
space, showcasing adaptability in various variants [8].

Beyond mathematics, Givens rotators find practical utility in computer vision
and image processing applications. A notable example includes their integral
role in estimating head direction (orientation/position) within images or frames
[9]. This feature holds significant implications for tracking positions or gazes,
particularly in the dynamic landscapes of virtual reality (VR), augmented reality



2 F. Author et al.

(AR), and mixed-reality (XR) systems. As technology advances, implementing
Givens rotators emerges as a crucial element in enhancing the precision and
efficacy of position tracking in these immersive environments.

While Givens rotators focus on matrix manipulations and factorisations, the
coordinate rotation digital computer (CORDIC) algorithm is more geared to-
wards trigonometric function calculations, emphasising simplicity and hardware
efficiency. They are complementary in specific applications, where Givens rota-
tions are used for matrix transformations, and CORDIC is employed for efficient
angle computations, such as coordinate rotations. Currently, CORDIC remains
one of the main approaches to rotation [10–14].

In this article, we propose CORDIC’s modified algorithm and its embedded
implementation in an FPGA. We compare it with an earlier implementation that
was our reference and the starting point for our considerations.

2 Review of algorithms and solutions

The critical component of a Givens rotator is an orthogonal rotation matrix, and
in the basic form, it is a 2x2 matrix [5, 6]. The elements of this matrix assume
values defined by trigonometric functions, and the orthogonality of the matrix
arises from the Pythagorean trigonometric identity. This orthogonality property
also allows using Givens rotators to implement orthogonal filters (orthogonal
state equations) in a pipelined structure [15].

An important aspect when applying Givens rotators is their realisation to
minimise computation complexity. The basic approach of software implementa-
tion of this is based on using multiplication and addition operations [3]. However,
more commonly encountered implementations utilise an iterative CORDIC al-
gorithm [16], often using an FPGA/CPLD chip [17].

In general, the CORDIC algorithm appears in two fundamental variants [18]:

– For determining the coordinates of a point after rotation according to the
values of the rotation matrix (values of trigonometric functions sin() and
cos()). This is a typical implementation for Givens rotators [4, 19].

– For determining the values of trigonometric functions for a specified angle,
usually associated with QR decomposition [1–3, 20].

The mathematical basis of the CORDIC algorithm involves conditional ad-
dition/subtraction operations and bit-shifts (as division/multiplication by 2).
CORDIC was invented (and is commonly used) as an algorithm based on simple
fixed-point operations. But, some variants utilise floating-point arithmetic [19].
The CORDIC algorithm and its individual iterations have been modified and
improved for many years [18]. The motivations for improving CORDIC are:

– Increased precision with fewer iterations.
– Reduced iteration complexity (fewer arithmetic/logical operations).
– Lower utilisation of computational unit resources (e.g., fewer ALUs elements

in FPGA/CPLD).
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– Higher operating frequency (higher sampling rate for iterations).

An alternative to the CORDIC algorithm is the BKM algorithm, which can also
be used for implementing Givens rotators [21]. However, BKM is more complex
and, therefore, rarely employed.

3 CORDIC algorithm and its modified version

The classical CORDIC algorithm takes the input vector [xin, yin]
T and the ro-

tation angle θ ∈ {−Pi/2,+Pi/2}, then the output vector [xout, yout]
T can be

found from [
xout

yout

]
=

[
cosθ −sinθ
sinθ cosθ

] [
xin

yin

]
(1)

In the CORDIC method, angle θ is presented through the arctangent set of
constant angles

θ =
m∑
i=0

σi arctan(2
−i) (2)

where a signed basis of bi-directional rotation σi ∈ {−1, 1} is used with the
weight of the corresponding angle arctan(2−i). The main idea of the classical
CORDIC method is the linear convergence of the method (only one correct
bit of the result per iteration) associated with the need to implement three
simultaneous iteration equations (for xi+1, yi+1, zi+1) in the case of applying a
pipeline structure of the computation.

xi+1 = xi − σi2
−iyi;

yi+1 = yi + σi2
−ixi;

zi+1 = zi − σi arctan(2
−i);

σi = sign(zi), i = (0, ..,m)

needs m+ 1 elementary bi-directional rotation.
Initial values:

z0 = θ,

x0 = xin,

y0 = yin

Rotations, in this case, are called pseudo-rotations and have gain factor

K =
m∏
i=0

√
1 + 2−2i (3)

and scaling factor

P =
1

K



4 F. Author et al.

Rotations equations take the matrix form[
xi+1

yi+1

]
=

[
1 −σi2

−i

σi2
−i 1

] [
xi

yi

]
(4)

If we complete all m+ 1 iterations according to a formula (4), we obtain:[
xm+1

ym+1

]
= (

m∏
i=0

[
1 −σi2

−i

σi2
−i 1

]
)

[
xi

yi

]
= K ∗

[
cosθ −sinθ
sinθ cosθ

] [
xin

yin

]
(5)

or [
xm+1

ym+1

]
=

[
cosθ −sinθ
sinθ cosθ

] [
K ∗ xin

K ∗ yin

]
(6)

It follows from the last equation that the rotated vector will be modified in the
Cordic procedure, so it is necessary to perform scaling operations and obtain
the corrected values of the components of the output vector. To do this, we
must scale the components of the output vector as follows (then the connection
between vectors [xm+1, ym+1]

T and [xout, yout]
T is):[

xout

yout

]
= P ∗

[
xm+1

ym+1

]
=

[
P ∗ xm+1

P ∗ ym+1

]
(7)

The Cordic Rotation Algorithm approximates rotation through iterative steps
without relying on complex trigonometric computations. This makes it partic-
ularly suitable for hardware implementations or applications with generalizable
computational efficiency. Algorithm 1 presents a generalised pseudocode version
of the classic CORDIC rotation algorithm for eleven iterations.

Our proposed approach for improving the classic CORDIC algorithm is based
on two principles:

– Completion of iterations with the help of one-directional rotation of the
vector at the final stages (only the first half of iterations has a significant
effect on the value of the gain factor [22], and the second half starting with
i = m/2 + 1 - can be marginalised, in our paper m = 16).

– Calculating the scaling factor value for the first half of the iteration by
selectively choosing the iteration steps used to calculate the gain factor in
a way that can be implemented in inexpensive dedicated hardware, with a
canonical signed digits approach. Of course, such a choice of iteration steps
determines an adequate selection of the value arctg(2−i).

The first 11 iterations of classical CORDIC are performed according to equa-
tion (4), but the individual iteration steps are chosen according to the following
scheme i = (1, 1, 2, 2, 4, 4, 4, 5, 6, 7, 8). In fact, iteration steps are selected in such
a way and with full premeditation that the scaling factor P is represented as
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Algorithm 1: Cordic Rotation Algorithm
Input: x, y, angle
Output: x, y

1 theta_table = [arctan(2−i) for i in 1 to 11]
2 P = 0.6072530315291345
3 θ = 0.0
4 P2i = 1
5 for current_angle in theta_table do
6 σ = 1
7 if θ ≥ angle then
8 σ = −1

9 θ = θ + σ · current_angle
10 x_temp = x− σ · y · P2i
11 y = σ · P2i · x+ y
12 x = x_temp
13 P2i = P2i/2

14 x = x · P
15 y = y · P
16 return x, y

Fig. 1. The output multiplier is built on the shift-add principle
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the simplest possible number in the signed canonical digit system (shifts and
summations). After 11 iterations, we have the following computation results:

x9, y9, σ9, z9.

The next stage is multiplication x9 and y9 by scaling factor P . In this article,
we use P = 0.748065769 ≈ 1−2−2−2−9+2−16 (approximation error 0.000004).

In the last stage, next two variables (x9 and y9) are multiplied on the residual
angle z9. The multiplications are performed according to the principle of addition
and summations (see Figure 1) :

x17 = x9 − σ9z9y9;

y17 = y9 + σ9z9x9;

z9 = a9 ∗ 2−9 + a10 ∗ 2−10 + a11 ∗ 2−11 + a12 ∗ 2−12+

+a13 ∗ 2−13 + a14 ∗ 2−14 + a15 ∗ 2−15 + a16 ∗ 2−16;

ai ∈ {0, 1}, i = 9, ..., 16

A detailed hardware implementation is given in the next section.

3.1 Realisationation

This improvement algorithm was implemented for the realisation of a rotator
in Altera Cyclone V System-on-Chip (SoC) FPGA (5CSXFC6D6F31C6N). An
FPGA programmable chip is an ideal hardware system for implementing iterative
algorithms in a pipeline approach. This allows each iteration to do calculations
with subsequent input data simultaneously.

All operations involve basic arithmetic and logical operations (e.g. addition,
subtraction, bit shifts). Using simple operations makes it possible to use higher
clock frequencies for data inputs than when using complex operations (e.g. mul-
tiplication). Based on the presented CORDIC algorithm, the rotator is imple-
mented using the Verilog language [23] in the development environment Quartus
Prime [24].

All elements are implemented with the use of a fixed-point representation.
The precision of registers and variables is Q8.12 U2 (8 integer bits and 12 frac-
tional bits) format for coordinates (i.e. x and y) and Q2.18 U2 (2 integer bits
and 18 fractional bits) for other values (θ). All values are quantised via round
(round a number to the nearest in a given representation, if it is required). The
pseudocode of one iteration is presented in Algorithm 2.

The variable E is a number from the sequence, which determines the variable
arctgE. Value of the arctgE can be calculated from the equation arctgE =
arctg(2−E). Sequence for E is constant for any rotator (any angle θ). Table 1
shows values of E and arctgE for each iteration.

Algorithm 3 describes a full rotator using pseudocode. The one iteration
(scheme) of the presented CORDIC algorithm is also shown in Figure 2. The
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Algorithm 2: Pseudocode of one iteration of the presented CORDIC
algorithm

Input: X,Y, T,E
Output: Xi, Y i, T i

1 do in parallel
2 arctgE = arctg[E] //values for each iteration are tabulated

3 do in parallel if T≥0
4 Xi = X-(Y >> E)
5 Y i = Y + (X >> E)
6 T i = T -arctgE

7 do in parallel if T<0
8 Xi = X + (Y >> E)
9 Y i = Y -(X >> E)

10 T i = T + arctgE

Table 1. Values of sequence E and arctgE for each iteration

Number of iteration Values of E
Values of arctgE

after quantisation to
fixed-point format

1 1 0.463645935
2 1 0.463645935
3 2 0.244979858
4 2 0.244979858
5 4 0.062419891
6 4 0.062419891
7 4 0.062419891
8 5 0.031238556
9 6 0.015625
10 7 0.0078125
11 8 0.00390625
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scheme is generated with the use the RTL Viewer tool. Also, to test proper
operation, simulations were performed in the Intel ModelSim environment (a
dedicated simulator for Intel FPGA programming technology). Figure 3 shows
the waveforms for the inputs of subsequent iterations and output data of the
selected input data case. The values are displayed with limited precision due to
the lack of space on the graph. Clock signal period is written to 20ns.

Algorithm 3: Pseudocode of the presented CORDIC algorithm
Input: Xin, Yin, Tin
Output: Xout, Yout

1 do in parallel
2 X1 = Xin
3 Y1 = Yin
4 T1 = Tin //angle θ
5 [Xi1,Yi1,Ti1] = iteration1[X1,Y1,T1, E1] //E1=1
6 [X2,Y2,T2] = [Xi1,Yi1,Ti1]
7 [Xi2,Yi2,Ti2] = iteration2[X2,Y2,T2, E2] //E2=1
8 [X3,Y3,T3] = [Xi2,Yi2,Ti2]
9 [Xi3,Yi3,Ti3] = iteration3[X3,Y3,T3, E3] //E3=2

10 [X4,Y4,T4] = [Xi3,Yi3,Ti3]
11 [Xi4,Yi4,Ti4] = iteration4[X4,Y4,T4, E4] //E4=2
12 [X5,Y5,T5] = [Xi4,Yi4,Ti4]
13 [Xi5,Yi5,Ti5] = iteration5[X5,Y5,T5, E5] //E5=4
14 [X6,Y6,T6] = [Xi5,Yi5,Ti5]
15 [Xi6,Yi6,Ti6] = iteration6[X6,Y6,T6, E6] //E6=4
16 [X7,Y7,T7] = [Xi6,Yi6,Ti6]
17 [Xi7,Yi7,Ti7] = iteration7[X7,Y7,T7, E7] //E7=4
18 [X8,Y8,T8] = [Xi7,Yi7,Ti7]
19 [Xi8,Yi8,Ti8] = iteration8[X8,Y8,T8, E8] //E8=5
20 [X9,Y9,T9] = [Xi8,Yi8,Ti8]
21 [Xi9,Yi9,Ti9] = iteration9[X9,Y9,T9, E9] //E9=6
22 [X10,Y10,T10] = [Xi9,Yi9,Ti9]
23 [Xi10,Yi10,Ti10] = iteration10[X10,Y10,T10, E10] //E10=7
24 [X11,Y11,T11] = [Xi10,Yi10,Ti10]
25 [Xi11,Yi11,Ti11] = iteration11[X11,Y11,T11, E11] //E11=8
26 Xtemp = Xi11−(Xi11»2)−(Xi11»9)+(Xi11»16)
27 Ytemp = Yi11−(Yi11»2)−(Yi11»9)+(Yi11»16)
28 Xtemp2 = Xtemp*Ti11 //implementation by multiple shifts and

summations
29 Ytemp2 = Ytemp*Ti11 //implementation by multiple shifts and

summations
30 Xout = Xtemp−Ytemp2
31 Yout = Ytemp+Xtemp2
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Fig. 2. The scheme of the first iteration of the presented CORDIC algorithm (from
RTL Viewer of Quartus Prime), where: X[•], Y[•] - input coordinates of the rotated
point; T[•] - input value of the angle θ; E[•] - input value from the sequence; Xi[•],
Yi[•] - output coordinates of the rotated point; Ti[•] - output value of the angle θ.

Fig. 3. Input waveforms of successive iterations and output values for the selected
input data case: Xin = 100, Y in = −10, T in = 0.875.
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4 Measurements

The presented CORDIC algorithm is implemented in an FPGA structure, and
a measurements are made for selected input values. 100 different values each for
x, y and θ are randomly selected (Table 3 and Fig. 5, Fig. 6 and Fig. 7 illustrate
the select values). In this way, 1003 = 1000000 different combinations of input
data are obtained. The input data is processed by the system on finite precision
calculations (like a hardware structure in an FPGA chip). For comparison, the
second realisations of CORDIC algorithm from [25] is implemented.

The algorithm [25] is based on the values of the trigonometric functions sin()
and cos() for the angle of rotation θ. In successive iterations, the values of these
functions approach zero (by summing/subtracting successive values of 2−i). The
input is also the sum and difference of the x and y coordinates. The output
coordinates are also obtained by summing/subtracting the values of (x + y)−i

and (x−y)−i (depending on the sign of sin() and cos() in next iterations). Thus,
successive approximations of the coordinates of a point after rotation coincide
with zeroing the values of the trigonometric functions of the angle of rotation.

In both realisations, the precision of the registers is the same (Q8.12 for x
and y and Q2.18 for θ, sin(θ) and cos(θ)). Values sin(θ) and cos(θ) are quantised
via round to suitable format. To determine errors, a dedicated script is written
in Scilab which for the same input data determined the output at with full
precision. The scheme of the error determination for the implemented systems
on Figure 4 is presented.

Accordingly, {xa(n), ya(n)} realisation are output data from our new pro-
posed realisation of CORDIC and {xb(n), yb(n)} realisation are output from
referenced realisation of CORDIC from [25].

Fig. 4. The scheme of error determination.
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For easier comparison, from the output data of both systems, mean, max,
and mean square errors are respectively determined:

meandx =

∑N
n=1 |dx•(n)|

n

meandy =

∑N
n=1 |dy•(n)|

n

maxdx = MAX {|dx•(n)|} for n=1,2,...,N

maxdy = MAX {|dy•(n)|} for n=1,2,...,N

msdx =

√∑n
i=1 (dx•(n))

2

N

msdy =

√∑n
i=1 (dy•(n))

2

N

where:
dx•(n) = x•(n) − xfp(n) - error of x from selected CORDIC realisation of a
rotator with finite precision;
dy•(n) = y•(n) − yfp(n) - error of y from selected CORDIC realisation of a
rotator with finite precision;
x•(n) = {xa(n), xb(n)};
y•(n) = {ya(n), yb(n)};
xfp(n), yfp(n) - output data from full precision system;
N = 1003 - numbrealisation samples (sets);
MAX{•} - a max function.

Table 2 shows the described statistical values for obtained results. Completed
measurements and research highlight that the presented CORDIC realisation
consistently yields lower errors compared to the version from [25]. The Table 2
clearly shows that the statistical parameters obtained with our algorithm are
less than half of those achievable with the CORDIC from [25]. The test on a
large number of input data also confirms the correct operation of the algorithm
in the full data range.

At the same time, the indicated results were obtained with a smaller number
of iterations (the presented algorithm requires 11, while the implementation in
accordance with [25] required 16). This also means lower consumption of FPGA
processor resources and lower latency (delay between the first input sample and
the first output sample). All the more reason to see significant progress in the
presented solution.
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Table 2. Result for both realisation of rotator with CORDIC algorithm for 1003 dif-
ferent inputs

Statistical
parameters

For the presented
realisation of

CORDIC algorithm

For CORDIC
algorithm from [25]

meandx• 0.000404 0.000871
meandy• 0.000344 0.000873
maxdx• 0.002187 0.005113
maxdy• 0.001809 0.004646
msdx• 0.000500 0.001113
msdy• 0.000430 0.001099

Fig. 5. Graph of input values Xin
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Fig. 6. Graph of input values Yin

Fig. 7. Graph of input values θin
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Table 3. Values of input data X, Y and θ

No. Xin Yin θin No. Xin Yin θin
1 54.686768 -13.691650 0.1776543 51 18.411133 38.604980 -0.8566322
2 7.2453613 27.958984 -1.3416557 52 -31.682617 25.765869 1.1263771
3 -35.985840 21.395508 -1.4022789 53 -39.565430 54.284912 -0.7227516
4 33.136475 -33.696045 0.2222099 54 23.140869 -53.439209 0.6395493
5 -2.8244629 26.485596 1.3384476 55 -10.260498 -55.881348 -1.3748894
6 -44.203369 -22.261475 0.4598045 56 21.527344 19.163818 -0.9397888
7 -32.554443 -2.5603027 -0.5633698 57 41.037842 -24.477783 1.3701820
8 2.25 33.317139 0.7503815 58 54.882324 14.881836 1.3425331
9 -53.773682 -23.946289 0.7742653 59 41.742920 -40.162109 -1.3309402
10 -8.0004883 -19.677246 0.0965271 60 30.294678 11.783936 1.1404228
11 49.181641 30.155518 0.9295235 61 -61.528076 -10.580811 0.0332298
12 60.213623 59.224609 0.8558731 62 37.803711 46.683594 1.1209145
13 -5.7312012 -47.788330 -0.3750763 63 -31.557373 -63.023438 1.2699356
14 5.9826660 -15.373535 -1.0399971 64 -29.861084 -16.056152 -0.9068604
15 -51.795898 -1.9924316 -0.8022614 65 31.992920 -53.655518 -1.3718338
16 -10.700928 1.9377441 -0.9709969 66 -8.7856445 8.2387695 -1.4570351
17 31.282471 -52.482910 1.1290512 67 17.609863 -24.588379 0.6099663
18 27.670410 22.790527 -1.4500771 68 24.364990 -42.585693 0.0637779
19 -27.226562 -0.2170410 -0.8927536 69 18.544678 60.291016 -1.3251991
20 -14.371338 -57.136475 0.3126755 70 -34.749512 -59.960205 -0.0350609
21 20.920166 -61.917969 0.4943581 71 5.9055176 51.533203 0.9105721
22 -2.0537109 12.845215 0.2130623 72 -25.404785 -52.716797 -0.3540306
23 -4.4880371 -26.485840 -1.4655914 73 -59.287842 -13.067871 -0.2065315
24 -18.754395 17.931396 -1.0358696 74 -42.360596 -19.529541 0.7719536
25 -20.282471 56.011963 1.3166656 75 8.3732910 25.858398 -1.4639931
26 -9.9829102 7.6108398 -1.1705666 76 -63.537598 -46.740723 1.4983902
27 6.9682617 60.286621 -0.4913292 77 -6.9572754 25.703125 1.3526115
28 -22.028320 54.686035 -0.1704292 78 -56.674561 53.873535 0.5973282
29 -11.200928 -51.004639 0.3290825 79 -1.0581055 10.558350 1.3801918
30 -43.733154 28.613281 -0.3980331 80 -40.010498 -13.555908 0.9557190
31 -14.684570 42.085938 -0.7365456 81 7.6435547 -50.685059 0.1027145
32 55.576416 54.473877 -1.1620560 82 44.739990 -50.711426 -0.8232880
33 -4.0180664 -57.550293 0.7624626 83 -53.906494 -2.4414062 1.0680122
34 44.377441 -42.698486 -1.3940582 84 14.691650 -62.891113 -1.4600182
35 -48.661621 56.344482 -0.2734604 85 -35.538818 44.604736 0.5777702
36 50.292236 55.258545 0.5201035 86 44.992676 -55.353760 -1.0067711
37 -8.3117676 -47.870117 -0.9015388 87 26.354736 -2.6320801 1.0023117
38 49.995850 19.341797 1.2544518 88 37.930664 41.502930 -0.2214317
39 -1.6289062 27.339600 0.4810982 89 14.147217 -4.8681641 -0.4543991
40 -20.791748 6.0939941 -1.0403938 90 49.769043 35.700439 0.3698921
41 62.570068 32.607666 -0.5035858 91 46.766357 -29.708008 0.7878532
42 -61.264404 48.277344 1.3361053 92 42.550049 -24.773682 1.2350807
43 23.336426 17.103027 -1.2712784 93 -38.079834 62.423096 0.2882652
44 -63.429443 -33.214844 0.0814323 94 -23.784912 -43.524414 0.1655083
45 17.252686 33.524170 0.6752968 95 24.986572 38.187012 1.0634651
46 4.7851562 -30.674072 0.7812843 96 -37.671631 -1.8007812 0.1593971
47 -35.454834 -48.004150 0.2856369 97 2.3264160 -57.724609 -0.0062294
48 29.522949 -6.2275391 -0.3152084 98 55.588623 -44.486084 0.7303886
49 -6.8962402 -36.974854 0.5320129 99 2.1872559 4.4125977 1.2736359
50 58.912354 -56.394775 -1.1868744 100 -6.7250977 19.757568 0.6630516
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5 Conclusion

In summary, the implemented CORDIC algorithm within an FPGA structure
underwent a comprehensive evaluation, contrasting its performance with the
standard CORDIC algorithm presented in [25]. The assessment involved pro-
cessing 100 varied values for x, y, and θ, generating a total of 1000000 diverse
input combinations. Both FPGA based implementations employed finite preci-
sion calculations, utilizing Q8.12 precision for x and y, and Q2.18 precision for
θ, sin(θ), and cos(θ).

To gauge the accuracy of the systems, a dedicated Scilab script computed
output data at full precision for identical input sets. The error assessment pro-
cedure, depicted in Figure 4, compared output data from the newly proposed
CORDIC realization (xa(n), ya(n)) with the referenced implementation from [25]
(xb(n), yb(n)).

For comparative analysis, mean, max, and mean square errors for output x
and y components are determined (following the formulas for meandx, meandy,
maxdx, maxdy, msdx, and msdy). Detailed data are presented in Table 2.

The superior accuracy demonstrated by the FPGA implementation of the
CORDIC algorithm positions it as a compelling choice for real-time applications
requiring precise trigonometric calculations. Beyond its performance in tradi-
tional CORDIC applications, the enhanced accuracy may particularly benefit
Givens rotator implementations. The refined precision could contribute to more
accurate transformations and improved overall performance in applications re-
lying on Givens rotators, potentially leading to advancements in areas such as
signal processing, numerical linear algebra, and applications like virtual reality.
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