
Low Latency Recoding CORDIC Algorithm for
FPGA Implementation

Pawel Poczekajlo2[0000−0003−4742−7872], Leonid Moroz4[0000−0003−4131−309X],
Ewa Deelman1[0000−0001−5106−503X], Michela Taufer3[0000−0002−0031−6377],

Pawel Gepner4[0000−0003−0004−1729], and Jerzy Krawiec4[0000−0001−5535−1850]

1 University of Southern California, Marina del Rey CA 90292, USA
USC Information Sciences Institute

deelman@isi.edu
2 Koszalin University of Technology, Koszalin, Poland

Faculty of Electronics and Computer Science
pawel.poczekajlo@tu.koszalin.pl

3 University of Tennessee, Knoxville,TN, USA
Department of Electrical Engineering and Computer and Science

mtaufer@utk.edu
4 Warsaw University of Technology, Warsaw, Poland

Faculty of Mechanical and Industrial Engineering
{leonid.moroz, pawel.gepner,jerzy.krawiec}@pw.edu.pl

Abstract. The Coordinate Rotation Digital Computer (CORDIC) al-
gorithm is widely recognized for its fast real-time processing capabilities,
making it highly suitable for hardware implementations in diverse appli-
cations such as signal processing, high-performance computing, and edge
computing devices. Despite its advantages, the traditional CORDIC algo-
rithm’s iterative computational method introduces significant challenges,
including a complex structure and high hardware resource consumption,
which can limit its efficiency and scalability in certain applications.
In this article, we introduce an innovative and efficient variation of the
CORDIC algorithm designed to address these challenges. Our proposed
algorithm significantly reduces the number of required operations while
maintaining computational accuracy, thereby optimizing performance.
Furthermore, we demonstrate that this streamlined algorithm can be
effectively implemented on Field-Programmable Gate Arrays (FPGAs),
leveraging their reconfigurable hardware to achieve enhanced processing
speeds and reduced resource utilization. This advancement not only im-
proves the feasibility of using CORDIC in resource-constrained environ-
ments but also expands its applicability in modern computing contexts.

Keywords: CORDIC · algorithm · recoded · FPGA · latency.

1 Introduction

The main drawback of the classical CORDIC method [17,18,5] is its low speed
due to its linear convergence (only one correct bit of the result per iteration) and

2 P. Poczekajlo et al.

the hardware complexity associated with the need to implement three simulta-
neous iteration equations for xi+1, yi+1, zi+1 when applying a pipeline structure
to the computation:

xi+1 = xi − σi2
−iyi;

yi+1 = yi + σi2
−ixi;

zi+1 = zi − σi arctan(2
−i);

σi = sign(zi), i = (0, ...,m)

(1)

that needs m+ 1 elementary rotations.
To reduce the number of iterations, hybrid structures have been developed

that use three steps sequentially: table-based + CORDIC + piecewise-linear mul-
tiplication (linear approximation) [19,16,1]. To simplify the hardware complex-
ity, a CORDIC method with angle recoding has been proposed [14,13,11,10,9,15],
which reduces the system CORDIC iterations (1) to only two equations for
xi+1, yi+1. The simplest in terms of hardware implementation is the CORDIC
angle recoding method [14,3]. Recently, there have been several new publica-
tions on the topic of angle transcoding in CORDIC, one of them being [15]. The
theory described therein does not allow for flexible separation of iterations be-
tween memory table size and CORDIC. Therefore, it cannot lead to a significant
reduction in latency and an increase in the operating frequency of the CORDIC.
The algorithm in [14,3] exhibits a drawback as large size of memory (type LUT)
is required for large values of m (a table of size not less than 2(m/3) ×m bits is
needed without the possibility of its reduction). Additionally, the output multi-
pliers are implemented in the {-1,1} basis, preventing the use of multipliers that
are part of the DSP blocks in modern FPGA devices.

This work addresses the challenges described above by introducing a new
approach to angle recoding that allows flexible adjustment of the memory table
size and the number of CORDIC iterations. The performance issue is the main
motivation of the work (primarily occupancy of the hardware structure and
computation time).

2 Description of the Proposed Method

2.1 Known approaches to angle recoding

Let’s consider an arbitrary angle θ given in radians (θ ∈ {0, 2 − 2−m}), repre-
sented as

θ =

m∑
i=0

ai2
−i (2)

where a binary basis of coefficients ai ∈ {0, 1} is used with the weight of the
corresponding digit 2−i. In the CORDIC method, this angle is presented through
the arctangent set of constant angles

θ =
m∑
i=0

σi arctan(2
−i) (3)

2. DESCRIPTION OF THE PROPOSED METHOD 3

where a signed basis of rotation direction σi ∈ {−1, 1} is used with the weight of
the corresponding angle arctan(2−i). This set acts as a new arctangent system
when iteratively rotating the unit vector

{x0, y0} = {1, 0} (4)

around the origin in the Cartesian coordinate system by an angle θ [19].
One of the drawbacks of the traditional CORDIC method is the sequential

execution of all consecutive iterations, which results in its high latency. The
latency has two main causes. First, it is necessary to maintain a constant value
of the scaling factor P :

P =
m∏
i=0

1√
1 + 2−2i

(5)

All iterations must be carried out; skipping them is not allowed.
Second, there is some ambiguity in the subsequent direction σi of vector

rotation. To find the actual value of σi for any i, all previous iterations must be
calculated before estimating σi.

Let’s consider an approach that can eliminate the second reason, which is
the bottleneck of the CORDIC method. In this case, the first reason remains
valid: the constancy of the value P . To achieve this, instead of the binary basis
of coefficients ai, a signed basis bi ∈ {−1, 1} similar to σi can be applied, for
example, bi = 2ai−1 (other options for bi are provided below). This substitution
leads to a clear choice of the vector rotation direction because bi = −1 when
ai = 0 and bi = 1 when ai = 1. Thus, the ambiguity in estimating σi in the
next rotation step is eliminated, simplifying the method’s structure by avoiding
the calculation of this estimate. This technique is known as angle recoding θ
[14,13,11,10,15]. It is known that during the recoding of the angle θ into θr, any
of the three formulas can be used [14,13,15]:

θr =
m+1∑
i=1

bi2
−i (6)

where bi = 2ai−1 − 1 [14];

θr =
m∑
i=0

bi2
−i−1 (7)

where bi = 2ai − 1 [13];

θr =
m∑
i=0

bi2
−i (8)

where bi = 2ai − 1 [15].
In this work, we use formula (5). If we perform the recoding θr in the case

of the binary basis of coefficients ai, we get

θr =
m∑
i=0

bi2
−i−1 =

m∑
i=0

(2ai − 1)2−i−1 (9)

4 P. Poczekajlo et al.

= −(1/2)m+1 +
m∑
i=0

ai2
−i. (10)

The relationship between the angles θ and θr is as follows:

θ = θr − θc (11)

where
θc = −(1/2)m+1 (12)

2.2 Our approach recoding CORDIC

If we want to apply formula (5) for the CORDIC method, we need to encode (5)
as an angle θrr in the arctangent system. Thus, we will have

θrr =
m∑
i=0

bi arctan(2
−i−1) =

m∑
i=0

(2ai − 1) arctan(2−i−1)

=
m∑
i=0

2ai arctan(2
−i−1)−

m∑
i=0

arctan(2−i−1) (13)

or
θrr = θrv − θrc; (14)

where

θrv =
m∑
i=0

2ai arctan(2
−i−1); (15)

θrc = −
m∑
i=0

arctan(2−i−1). (16)

Then the approximation of the angle θ (similar to (7)) for recoding CORDIC
will be:

θrv = θrr − θrc (17)

To implement formula (12), the CORDIC method with the following iterative
equations can be applied:

xi+1 = xi − biyi · 2−i−1;

yi+1 = yi + bixi · 2−i−1;

i = (0, 1, 2, ...,m);

x0 = P cos(−θrc); (18)

y0 = P sin(−θrc);

bi = 2ai − 1;

2. DESCRIPTION OF THE PROPOSED METHOD 5

P =
1∏m

i=0

√
1 + 2−2i−2

.

As a result, we get ym+1 = sin(θrv) and xm+1 = cos(θrv). Obviously, the
angle θrv will be smaller than the angle θ by the value del (lag angle)

del = θ − θrv =
m∑
i=0

aidi =

=
m∑
i=0

ai[2
−i − 2 arctan(2−i−1)]. (19)

To correctly determine the sine and cosine of the given θ angle, it is necessary
to additionally rotate the vector { xm+1, ym+1} by the lag angle del.
Let’s estimate the number of iterations within which we should consider the
value del. For this, let’s set the condition:

di ≤ 2−m, (20)

then the inequality must hold:

di = 2−i − 2 arctan(2−i−1) ≤ 2−m. (21)

Using the Taylor series expansion for arctan(2−i−1), we obtain:

2−i − 2

(
2−i−1 − 2−3i−3

3

)
≤ 2−m, (22)

or
i = ma = ⌈(m− 2− log2 3) /3⌉ (23)

- for this value of i, the condition di ≤ 2−m will be satisfied.
Starting from this value i = ma, the approximate equality holds (with accu-

racy to m bits):
2−ma − 2 arctan(2ma−1) ≤ 2−m. (24)

For example if m = 16, then ma = 5.
Hence, the value del for this m should be computed within only these limits

of i:

del =

ma∑
i=0

aidi. (25)

The use of the recoding approach allows excluding one of the three compo-
nents of CORDIC - determining the next direction of micro-rotations σi (approx-
imately one-third of hardware resources are saved in FPGA implementation),
and also eliminates the need to continuously store the micro-rotation angles
arctan(2−i−1).

Let’s divide the input angle θ (1) into three angles:

θ = θ1 + θ2 + θ3 (26)

6 P. Poczekajlo et al.

We process angle θ1 to which we add a constant angle θrc using the look-up
table method (where m1 + 1 is the number of most significant bits of angle θ
fed into the LUT, for example, m1 = 1...m2 for m = 16), angle θ2 using the
recoding CORDIC method (bits from m1 + 1 to m2, for example, m2 = 8...m
for m = 16), and angle θ3 using the method of output multiplication (bits from
m2 + 1 to m), where:

θ1 =

m1∑
i=0

ai2
−i;

θ2 =

m2∑
i=m1+1

ai2
−i; (27)

θ3 =
m∑

i=m2+1

ai2
−i;

and ai ∈ {0, 1}.
Applying the table method involves reading precomputed sine and cosine

values of the angle θ1−θrc from LUT. Here, the angle θrc is necessary to consider
the recoding. These values are obtained using the formulas:

xm1
= P cos(θ1 − θrc);

ym1
= P sin(θ1 − θrc);

P =

m2∏
i=m1+1

1√
1 + 2−2i−2

; (28)

θrc = −
m2∑

i=m1+1

arctan(2−i−1).

For angle θ2, we use the iterative equations of our recoding for CORDIC:

xi+1 = xi − biyi · 2−i−1;

yi+1 = yi + bixi · 2−i−1; (29)

i = (m1 + 1, ...,m2);

In the final stage, we use the method of output multiplication with the angle z,

xm+1 = xm2+1 − zym2+1;

ym+1 = ym2+1 + zxm2+1. (30)

The formula defines the angle z:

z = θ3 + del, (31)

where del =
∑ma

i=m1+1 ai[2
−i − 2 arctan(2−i−1)].

The uniqueness of our approach to angle conversion in the CORDIC method
compared to existing ones lies in the following modifications:

2. DESCRIPTION OF THE PROPOSED METHOD 7

– we propose to organise the computation of the sine and cosine of the input
Theta angle with a scheme of LUT+ CORDIC+ linear interpolation, which
gives the flexibility to choose the number of older bits of the angle (m- ex-
ponential of the Theta argument represented in binary code) that determine
the size of the LUT type array and reduce the number of CORDIC itera-
tions. This flexibility gives the possibility to dispense with a rigidly defined
LUT size up to m/3 as in [14];

– this flexibility of our approach additionally gives the possibility to organise
the implementation of the computation scheme: CORDIC+ linear interpo-
lation [15], LUT + linear interpolation (the fastest computation scheme in
the approach) according to the user’s needs;

– we propose a new conversion approach taking into account the deformation
of the input theta angle (an absolutely unique approach that did not exist
before) when using a LUT, which gives the possibility to reduce the error
significantly (which cannot be done in [14]).

Fig. 1. Schematic view of our CORDIC algorithm

Our modified, recoded CORDIC algorithm is presented in the schematic
view in Figure 1 and its FPGA implementation block scheme in Figure 2, where
it is easy to observe the flow and relationships for signals and variables. This
approach allows for the efficient implementation of an FPGA architecture aimed
at achieving high computational throughput. The physical realization of the
algorithm consists of three basic blocks: A lookup table (LUT), CORDIC, and
Multiplier. The presented scheme is directly linked to the pseudo-code of the
Algorithm 1. Also shown is the full cycle of calculating the output values for an
example angle in Algorithm 2.

The LUT block has been implemented with a 3-bit input and two 20-bit
outputs. The output of the LUT gives the values x3, y3 according to formula
(11), which serve as input parameters for the CORDIC block. In our approach,

8 P. Poczekajlo et al.

Algorithm 1 Pseudocode of the proposed algorithm.
Input a in binary format
a← {0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1}
xx← {1037958, 973957, 849399, 672030,

452877, 205567,−54525,−311226}
yy ← {128268, 381076, 610190, 801365, 942715,

1025452, 1044432, 998473}
x← {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
y ← {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
j ← a[0]× 4 + a[1]× 2 + a[2]
x[3]← xx[j]
y[3]← yy[j]
for i← 3 to 8 do

if a[i] == 1 then
x[i+ 1]← x[i]− (y[i] >> (i+ 1))
y[i+ 1]← y[i] + (x[i] >> (i+ 1))

else
x[i+ 1]← x[i] + (y[i] >> (i+ 1))
y[i+ 1]← y[i]− (x[i] >> (i+ 1))

end if
end for
d3← 170
d4← 21
d5← 3
del← a[3]× d3 + a[4]× d4 + a[5]× d5
Theta3← a[9]×2048+a[10]×1024+a[11]×512+a[12]×256+a[13]×128+a[14]×
64 + a[15]× 32 + a[16]× 16
z ← del + Theta3
x17← x[9]− ((z × y[9]) >> 20)
y17← y[9] + ((z × x[9]) >> 20)
return x17, y17

we can arbitrarily choose the number of the most significant bits of the angle θ
(the argument) in the binary code, which determines the size of the LUT and
reduces the number of iterations. The table size can vary from 1 to m/2 at the
designer’s request (note that with m/2, there are no CORDIC iterations, and
the algorithm’s structure takes the form of LUT + linear interpolation).

In the CORDIC block, each iteration of the algorithm from x3 to x9 is
implemented as a pipeline stage by logic elements, and it has two 20-bit outputs.
This block has a pipelined structure consisting, in this case, of 5 stages. Each
stage has two adders with an output register for each adder.

The Multipliers block performs hardware multiplication by the residual angle
z, as described in theory and Algorithm 1.

The outputs of the Multipliers block are 20 bits, and they are implemented
by dedicated blocks on the FPGA. The efficiency of the proposed approach is
achieved by implementing a table-based computation method for the most signif-
icant bits of the input angle. It reduces the number of iterations of the CORDIC

3. FPGA IMPLEMENTATION AND RESULTS 9

Fig. 2. Implementation block scheme of the algorithm in FPGA chip

block. In addition, our approach allows for flexible resizing of the table (number
of high-angle bits as an input LUT parameter). However, we have used only
the three oldest bits for this purpose. In the best-known FPGA implementation
of the conventional CORDIC algorithm for high throughput, all iterations from
x1 to x16 are unrolled, and each iteration is implemented as a pipelined stage.
Such an implementation method, therefore, requires high latency and many logic
elements. In contrast, our implementation of the CORDIC requires fewer logic
elements. Moreover, it causes shorter latency due to fewer pipeline stages. It is
worth mentioning that computing m-bit sin(x) and cos(x) in a pipeline, fash-
ion requires 3(m+g) additions of size m+g where g is a number of guard bits
ensuring last-bit accuracy [4].

The remainder of this article examines the practical implementation of the
proposed method on an FPGA circuit and compares it with the well-known
built-in CORDIC implementation in the Altera library and other CORDIC im-
plementations presented in the literature. A comprehensive analysis of the cur-
rent advancement in CORDIC algorithms is presented in [15]. We compared
our approach to the best implementation of the CORDIC algorithms presented
in this article.

3 FPGA Implementation and Results

The hardware implementation is done in Verilog language in the Quartus Prime
environment for the Cyclone EP4CE115 FPGA chip. The implementation of

10 P. Poczekajlo et al.

the algorithm in the FPGA chip is made of basic logic elements (gates, registers,
flip-flops) - without DSP blocks (to have a fair comparison with other implemen-
tations). Figure 2 shows a block diagram of the implementation of the algorithm
in an FPGA.

The function calculating sin() and cos() values from Altera IP Core li-
braries (ALTERA_CORDIC) are also implemented for comparison. For the
ALTERA_CORDIC libraries, implementations with outputs with 16 bits of
fractional precision (fixed-point) are made. Furthermore, the implementations
of the ALTERA_CORDIC library are made only on logic elements (without
DSP blocks).

The Altera library supports fixed-point calculations with a computational
core controlled by latency or frequency. Code for the VHDL or Verilog HDL
description language can be generated. The returned results are rounded to one
of the two closest numbers that can be represented in the selected format.

The ALTERA_CORDIC library supports several functions:

– determining trigonometric sine and cosine functions for a given angle (SinCos
Function);

– determining the value for 2-argument arctangent (Atan2 Function);
– determining the angle and magnitude of the input vector for the given input

coordinates (Vector Translate Function);
– determining the coordinates of a point after rotation by a given angle (Vector

Rotate Function).

For the purposes of the conducted research, the focus was only on SinCos Func-
tion. This function can be configured in two ways, depending on the input angle
range:

– for the angle range [−π,+π] (signed), the values of the sine and cosine func-
tions take the full range [−1,+1] (this is important because some systems
do not return the boundary values −1 and +1);

– for the angle range [0,+π/2] (unsigned), the output sine and cosine values
take the full range [0,+1].

When configuring the library, it is possible to set additional parameters (format)
of inputs/outputs. The following can be entered: number of fraction bits (1 to
64, but there must be no more for the output than for the input); width of
fixed-point data and the sign of the fixed-point data (signed or unsigned).

Figure 3 shows the implementation model of both versions of the CORDIC
algorithm.

3.1 Testing scenario and evaluation methodology

The performance evaluation of CORDIC algorithms on FPGA devices differs
from their evaluation on general-purpose computing platforms like CPUs and
GPUs. While similar metrics such as speed, precision, and resource usage are
considered, the architectural differences between FPGAs and these platforms
lead to distinct evaluation criteria.

3. FPGA IMPLEMENTATION AND RESULTS 11

Fig. 3. Implementation model of both versions of the CORDIC algorithm (from RTL
tool in Quartus Prime)

For CPUs and GPUs, performance is often measured in terms of execution
time, computational accuracy, and resource efficiency (e.g., cycles, bandwidth,
and cache use). Energy efficiency is particularly critical in high-performance and
mobile computing. The performance evaluation of CPUs and GPUs and their
key metrics are well described in various studies[7,2,12,6,8].

FPGA-based evaluations emphasize the unique flexibility and hardware con-
figurability of these devices. FPGAs excel in implementing repetitive computa-
tions, such as those required by CORDIC algorithms, through parallelism and
pipelining. Key metrics in this context include:

– Throughput/Latency: While both are critical, FPGA designs often opti-
mize throughput—completing multiple operations concurrently—while main-
taining acceptable latency levels.

– Precision/Accuracy: FPGAs enable customization of data bit-widths, op-
timizing computational precision for specific applications. This reduces re-
source consumption and power usage, offering a balance between accuracy
and efficiency.

– Logic Occupation: Efficient use of FPGA resources, such as Look-Up Ta-
bles (LUTs) and Flip-Flops, is vital for achieving high performance without
excessive costs.

For testing purposes, 104 input samples (θ angle) are prepared. They are
determined with a fit to the bit representation (register lengths).

We measure the following metrics:

– Occupancy of the FPGA chip - number of LUTs (Lookup Tables) - values
returned from the report after compilation in the Quartus Prime environ-
ment;

– Maximum and minimum absolute error - determined according to:

max{q(j)− qfp(j)}
min{q(j)− qfp(j)}

(32)

12 P. Poczekajlo et al.

for j = 1, 2, ..., 104, where q(j) is the value obtained from a given implemen-
tation, qfp(j) is the full precision value for a given angle (determined in the
SciLab computer environment);

– Time required to return the result (latency) - determined as the minimum
period (=1/clock frequency) for which all 104 input samples (given one after
another) returned the expected result.

We compare [15] and aggregate the results in tables 1, 2 and 3.

Table 1. Results of FPGA occupancy.

CORDIC Realisation LUTs
Presented CORDIC algorithm 1597
ALTERA_CORDIC with 16-bits fractional outputs 2866
CORDIC algorithm [15] 1438
BBR-CORDIC [34] from [15] 1643
CORDIC II [38] from [15] 1433

Table 2. Results of response time (latency).

CORDIC Realisation Time (ns)
Presented CORDIC algorithm 56
ALTERA_CORDIC with 16-bits fractional outputs 94
CORDIC algorithm [15] 60
BBR-CORDIC [34] from [15] 60
CORDIC II [38] from [15] 90

Table 3. Results of maximum and minimum absolute errors.

CORDIC Realisation Max error Min error

Presented CORDIC algorithm 4.78e-06 (sin)
4.84e-06 (cos)

-1.12e-05 (sin)
-1.27e-05 (cos)

ALTERA CORDIC with 16-bit fractional outputs 1.33e-05 (sin)
1.37e-05 (cos)

-1.21e-05 (sin)
-1.14e-05 (cos)

CORDIC algorithm [15] 3.04e-05 (sin)
3.04e-05 (cos)

-3.04e-05 (sin)
-3.04e-05 (cos)

In addition, it is worth noting that the ALTERA_CORDIC library used
does not get the configured parameters. Declaratively, the implemented version
of ALTERA_CORDIC should return a result in less than 53ns. The results from
ALTERA_CORDIC for the 104 samples used were unsatisfactory - most of the

4. CONCLUSION 13

results were incorrect. As the clocking was lowered, the results improved. The
ALTERA_CORDIC library returned correct results only when feeding samples
with a period of 94ns - much more than the declared value. At the same time,
ALTERA_CORDIC has the highest occupancy, which is due to the poor opti-
mization of the ready-made library 1. The only advantage of this library is the
accuracy (precision of calculations), which is comparable with other implemen-
tations 3. Presented CORDIC algorithm has occupancy (LUTs) at a very good
level - only slightly higher than the lowest results 1. The advantage of the pre-
sented algorithm is the latency time (56ns) which allows higher sampling (and
processing) frequencies 2. The aspect of smaller errors is also important (even an
order lower than for other algorithms in the case of max errors) 3. Other errors
are at similar levels (about 1.2e-05). Numerical accuracy is preserved while pro-
viding faster processing. CORDIC algorithm [15] has by far the largest errors
- which may be related to almost the lowest hardware occupancy (LUTs). Typ-
ically, lower occupancy is obtained by reducing fractional bits, and this results
in larger errors.

4 Conclusion

The use of our approach has allowed high performance and efficiency improve-
ments of the CORDIC method, with up to 40% power consumption reduction
and up to 21% delay reduction, offering overall occupancy reduction of up to
44% (compared to the presented implementation of ALTERA_CORDIC). The
approximate CORDIC has been characterized by its absolute arithmetic error,
which shows negligible average and maximal errors, i.e., RMS relative errors
being only 0.0014%.

In this work, we give the basics of the recoding theory and formalize it in
detail using algorithms suitable for hardware implementation on the FPGA plat-
form. We propose a flexible algorithm for freely choosing the number of most
significant bits of the angle θ that sets the size of the LUT and reduces the
number of iterations. In addition, the difference from [3] is that the residual
angle, by which the values from the CORDIC output are multiplied, is always
positive. This simplifies the structure of the output multipliers (unsigned mul-
tiplication can be used). The proposed approach simplifies the angle recoding
method’s software and hardware implementation and gives it an advantage over
the built-in library functions offered by FPGA developers.

Acknowledgments. This research was partly supported by PLGrid Infrastructure
at ACK Cyfronet AGH, Krakow, Poland. This work was also partly supported by the
National Science Foundation under grant #2331153.

References

1. Antelo, E., Bruguera, J., Zapata, E.: Unfolded redundant cordic vlsi architectures
with reduced area and power consumption. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 31(5), 872–880 (May 2023)

14 P. Poczekajlo et al.

2. Ciznicki, M., Kopta, P., Kulczewski, M., Kurowski, K., Gepner, P.: Elliptic solver
performance evaluation on modern hardware architectures. Parallel Processing
and Applied Mathematics 8384 (2014). https://doi.org/10.1007/978-3-642-
55224-3_16

3. Curticapean, F., Niittylahti, J.: A hardware efficient direct digital frequency syn-
thesizer. IEEE Journal of Solid-State Circuits 58(4), 876–884 (Apr 2023)

4. Dinechin, F., Istoan, M., Sergent, G.: Fixed-point trigonometric functions on fpgas.
ACM SIGARCH Computer Architecture News 41, 83–88 (06 2014). https://doi.
org/10.1145/2641361.2641375

5. Doe, J., Smith, J., Johnson, A.: Implementation of floating point cordic algorithm
using 45 nm technology. IEEE Transactions on Computers 72(3), 450–458 (Mar
2023)

6. Gepner, P.: Using avx2 instruction set to increase performance of high performance
computing code. Computing and Informatics 36(5), 1001–1018 (2017)

7. Gepner, P., Fraser, D.L., Kowalik, M.F.: Second generation quad-core intel xeon
processors bring 45 nm technology and a new level of performance to hpc applica-
tions. Computational Science – ICCS 2008, ICCS 2008 5101 (2008)

8. Gepner, P., Gamayunov, V., Fraser, D.L.: Effective implementation of dgemm on
modern multicore cpu. Procedia Computer Science 9, 126–135 (2012). https://
doi.org/10.1016/j.procs.2012.04.014

9. Hu, Y.H., Naganathan, S.: An angle recoding method for cordic algorithm imple-
mentation. IEEE Transactions on Computers 42(1), 74–79 (Jan 1993)

10. Juang, T.: Low latency angle recoding methods for the higher bit-width parallel
cordic rotator implementations. IEEE Transactions on Circuits and Systems II:
Express Briefs 55(11), 1139–1143 (Nov 2008)

11. Juang, T.B., Hsiao, S.F., Tsai, M.Y.: Para-cordic: Parallel cordic rotation algo-
rithm. IEEE Transactions on Circuits and Systems I: Regular Papers 51(8), 1515–
1524 (Aug 2004)

12. Kopta, P., Kulczewski, M., Kurowski, K., Piontek, T., Gepner, P., Puchalski, M.,
Komasa, J.: Parallel application benchmarks and performance evaluation of the
intel xeon 7500 family processors. Procedia Computer Science 4, 372–381 (2011).
https://doi.org/10.1016/j.procs.2011.04.039

13. Kuhlmann, M., Parhi, K.K.: P-cordic: A precomputation based rotation. EURASIP
Journal on Applied Signal Processing 2002(1), 936–943 (2002). https://doi.org/
10.1155/S1110865702205028

14. Madisetti, A., Kwentus, A.Y., Willson, A.N.: A 100 mhz, 16-b, direct digital fre-
quency synthesizer with 100-dbc spurious-free dynamic range. IEEE Journal of
Solid-State Circuits 34(8), 1034–1043 (1999)

15. Qin, M., Liu, T., Hou, B., Gao, Y., Yao, Y., Sun, H.: A low-latency rdp-cordic algo-
rithm for real-time signal processing of edge computing devices in smart grid cyber-
physical systems. Sensors 22(19) (2022). https://doi.org/10.3390/s22197489

16. Timmermann, D., Hahn, H., Hosticka, B.: Low latency time cordic algorithms.
IEEE Transactions on Computers 41, 1010–1015 (1992)

17. Volder, J.E.: The cordic trigonometric computing technique. IEEE Transactions
on Electronic Computers EC-8(3), 330–334 (Sep 1959)

18. Walther, J.S.: A unified algorithm for elementary functions. In: Proc. AFIPS Conf.
vol. 38, pp. 385–389 (1971)

19. Wang, S., Piuri, V., Swartzlander, E.E.: Hybrid cordic algorithms. IEEE Transac-
tions on Computers 46(11), 1260–1263 (Nov 1997)

https://doi.org/10.1007/978-3-642-55224-3_16
https://doi.org/10.1007/978-3-642-55224-3_16
https://doi.org/10.1007/978-3-642-55224-3_16
https://doi.org/10.1007/978-3-642-55224-3_16
https://doi.org/10.1145/2641361.2641375
https://doi.org/10.1145/2641361.2641375
https://doi.org/10.1145/2641361.2641375
https://doi.org/10.1145/2641361.2641375
https://doi.org/10.1016/j.procs.2012.04.014
https://doi.org/10.1016/j.procs.2012.04.014
https://doi.org/10.1016/j.procs.2012.04.014
https://doi.org/10.1016/j.procs.2012.04.014
https://doi.org/10.1016/j.procs.2011.04.039
https://doi.org/10.1016/j.procs.2011.04.039
https://doi.org/10.1155/S1110865702205028
https://doi.org/10.1155/S1110865702205028
https://doi.org/10.1155/S1110865702205028
https://doi.org/10.1155/S1110865702205028
https://doi.org/10.3390/s22197489
https://doi.org/10.3390/s22197489

4. CONCLUSION 15

Algorithm 2 Example of calculation of values according to the presented algo-
rithm for a selected angle (step by step).

The vectors xx, yy, x, y a values d3, d4, d5 are completed as in Algorithm 1.
Theta = 0.967086792(rad)× 216 = 63379 = (01111011110010011)BCD
a = {0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1}
j = 3
x[3] = 672030
y[3] = 801365
for i = 3 to 8 (consecutive iterations) do

for i = 3 and a = 1
x[4] = 621945
y[4] = 843366

for i = 4 and a = 1
x[5] = 595590
y[5] = 862801

for i = 5 and a = 0
x[6] = 609071
y[6] = 853495

for i = 6 and a = 1
x[7] = 602404
y[7] = 858253

for i = 7 and a = 1
x[8] = 599052
y[8] = 860606

for i = 8 and a = 1
x[9] = 597372
y[9] = 861776

end for
del = 191
Theta3 = 2352
z = 2543
x17 = 595283
y17 = 863224
x17/220 = 0.567706108(cos)
y17/220 = 0.823234558(sin)

	Low Latency Recoding CORDIC Algorithm for FPGA Implementation

