
  

  

Abstract1— As robot systems continue to be advanced and 
implemented across industries, they do so typically by two 
methodologies, including standalone systems and collaborative ones. 
Standalone systems are typically set in their own areas, away from 
human workers. Collaborative robots share a common workspace 
with their human counterparts and work with them to complete 
tasks together efficiently and safely. Within this category of 
robotics, there exists another subcategory that describes the 
method of implementation and usage rather than simply the type of 
system. This subcategory involves how the machine will interact 
with workers and understand its role in interaction. Thus, it raises 
interest in the field of learning from demonstrations, where the 
robot may dynamically learn the behavior that is desired by the user 
rather than being explicitly hardcoded to perform its task. In this 
work, we develop a deep Q-network-based robot learning paradigm 
for human-robot partnerships in shared tasks. The proposed 
approach is validated in real-world human-robot collaborative 
contexts. In addition, to assess the performance of this approach 
and the acceptance from practitioners, we conduct a multi-metric 
user study. Implementation and evaluation results indicate that the 
developed solution works effectively for human-robot teamwork 
and receives high support from active users who rate it very well on 
several key metrics. The future work of this study is also discussed. 

I. INTRODUCTION 

As Industry 4.0 continues to revolutionize manufacturing 
sectors, new technologies in line with its values are 
consistently being produced. These values include further 
automation of factories, the implementation of smart systems 
within them through models such as Industrial IoT, and an 
overall transfer of some autonomy to machines, facilitated by 
information systems [1-3]. Industry 4.0 was the natural step 
in the sector, making use of new, versatile technologies to 
enhance productivity. What it does not place emphasis on, 
however, is the human worker who will inevitably be working 
within these factories. Now, with the approaching rise of 
Industry 5.0, human-centricity becomes a focal point [4]. 

Though research into Industry 5.0 is admittedly scarce, 
the three pillars that uphold it are well-defined: sustainability, 
resiliency, and human-centricity. Sustainability refers to not 
only the reduction in environmental impact, but also the 
efficient use of natural resources and support of an effective 
economy. Resiliency involves the robustness of systems in 
the face of disruptions and the ability to recover quickly to a 
stable state during and after geopolitical shifts. Finally, the 
most pertinent for this research is the focus of human-
centricity. Human-centricity could be defined as an approach 
that places human interests and needs at the center of the 
production process [5]. Lu et al. noted that future human-
 

 
G. Modery, W. Wang, and R. Li are with the School of Computing, Montclair 
State University, Montclair, NJ 07043 USA. (corresponding author: wangw@ 
montclair.edu) 
Y. Chen is with ABB Corporate Research Center, Raleigh, NC 27606 USA. 
M. Zhou is with the Department of Electrical and Computer Engineering, New 
Jersey Institute of Technology, Newark, NJ 07102 USA. 

machine teams will need to place these values at the center of 
manufacturing planning and control [6]. This places much 
emphasis on adaptive robotic systems that work with people 
fluently. Systems that are capable of adaptation to their work 
environment, as well as their companions, are crucial for 
supporting the human-centric vision of Industry 5.0. In 
human-robot collaborative contexts, the collaborative machines 
will be used for their strengths, such as performing repetitive 
and labor-intensive tasks, while humans will exercise their 
strengths, such as critical thinking and personalization [7, 8]. 
These collaborative machines are specifically designed to 
accommodate human partnerships, reinforcing their role in 
the human-centric focus of Industry 5.0. 

It is the purpose of this work to develop a robot learning 
paradigm and evaluate the acceptance of one such adaptive 
robotic system by human participants in human-robot 
collaborative contexts through a user study. As humans enter 
a place of greater importance in the human-robot dynamic, it 
is only natural that systems must exist to accommodate them 
to the best of their ability, and these humans accept the system 
itself. These systems should be adaptable, but also offer fluent 
and flexible interaction so as not to harm the user’s satisfaction 
nor their productivity. We present a reinforcement learning-
based human-robot collaborative approach and a user study 
to evaluate it. This work seeks to identify if this is a solution 
to human-centered human-robot collaboration (HRC) that has 
potential in the industry through the collection of subjective 
ratings of participants. These participants interact with the 
robot in a variable-length collaborative assembly task and, 
through a multi-metric survey, provide feedback on the 
system as well as the interaction as a whole by several key 
evaluation indicators. This work seeks to determine from the 
data how acceptable users of the system find it and 
potentially establish areas of necessary improvement.  

II. RELATED WORK  

Reinforcement learning (RL) has been used in several 
robotics applications, such as object grasping [9], in which 
the robots consistently attempt to perform a grasping action 
and improve their policy from that data. This is primarily 
robot-oriented, meaning that after taking an action, the robot 
examines the quality of that action and handles its policy 
adjustments without outside intervention. It has been applied 
to collaborative robotics as well, where Gomes et al. presented 
that the working environment of such robots is often 
subjected to unforeseen modifications by people [10]. While 
reinforcement learning may be utilized for enhancing the 
grasping capabilities of robots, that is not the only extent of 
its applications. Multi-agent systems, such as in [11], are 
more in line with a collaborative system. In this work, the 
collaborative task involved a ball in a maze game that 
required a human to control one axis of rotation and a robot to 
control the other, demanding cooperation and giving the agent 
the opportunity to learn from its partner. Notably, the authors 
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noted that there are certain complications that come from 
bringing humans into the operation (e.g., unpredictability). 
This issue highlights the importance of intention prediction, 
which is a component that is considered in this study and will 
be discussed in greater detail in the following sections. 

Reinforcement learning demands a significant number of 
experiences to learn from teachers to reach the optimal policy 
[12]. As it takes humans practice to reach high performance 
in a task, reinforcement learning agents are no different. In 
virtual environments where agents are taught to play games, 
one can simply let the simulation continue without many delays. 
In robotics, however, there exist several issues as described in 
detail in [13], though perhaps most obvious is the delays in 
sensors and actuators of the robot that is training. For this 
reason, it is common to use simulated environments to cut 
down on the time required for robot training in the real world, 
even if they do not perfectly represent the real-world 
conditions that the agent will ultimately operate in [10]. To 
mitigate these gaps, we make use of the real-world human-
robot collaborative environment in this study to gather 
subjective ratings of such an RL collaborative system. 

III. TLPC FRAMEWORK 

This paradigm builds on our prior studies in the 
development and refinement of a Teaching-Learning-Prediction 
-Collaboration (TLPC) framework, which is designed to permit 
robots to learn from and collaborate with humans [14, 15]. 
This dynamic system is created to accommodate personalized 
tasks that may vary between users. As research continues, 
the particular operations in each phase of this framework 
may shift, though the overarching theme is the same. 

In this framework, the components of human-robot 
collaboration are broken down into distinct phases, including 
teaching, learning, prediction, and collaboration. The teaching 
phase involves a human operator demonstrating the task 
being completed in a particular way to the robot. The 
specific manner of task completion may differ from user to 
user, and as such furthers the importance of permitting 
customizability in the interaction. Following the teaching 
stage, the learning phase involves the robot using its collected 
task knowledge and applying it through a generalized method, 
such as state machines. In the prediction and collaboration 
phases, the robot examines its environment’s current states 
to predict the human’s next action with its learned knowledge. 
This prediction permits the robot to take action to 
collaborate and assist the user in the completion of their task. 
For the TLPC framework, specific implementations vary in 
their execution of each phase. In this study, we will develop 
a deep Q-network-based robot learning approach within 
TLPC for human-robot teams in real-world collaborative 
tasks and evaluate the proposed solution via a user study. 

IV. APPROACHES 

A. Deep Q-Learning 

Reinforcement learning is a paradigm designed to enable 
active learning by an agent via permitting it to take actions 
within its environment and examine the quality of those 
actions to learn and optimize its policy. The selection of 
these actions raises the prediction problem [16]. That is, to 
determine the state or action-value function for a policy. The 

primary focus of reinforcement learning, from a high-level 
view, is to enable the agent to learn the optimal policy for 
sequential decision problems and, in doing so, maximize its 
rewards for a given task. In essence, RL involves an agent – 
the executor of selected actions – operating within an 
environment. This environment exists in a current state at a 
given time t, which the agent observes and considers to 
select its next action. This state, ts  from state space S is 
input into the prediction model and, by following policy 

( | )t ta sπ , produces an action ta  from action space A [16]. 
Upon taking the action ta , the environment transitions into a 
state 1ts +  and the environment returns a scalar reward tr  
given by the reward function ( , )R s a . Additionally, in an 
episodic setup, a terminal state d is eventually reached, at 
which point it restarts. The experiences from which the 
reinforcement occurs are stored as a 5-tuple: 

1( , , , , )t t t ts a r s d+ .                          (1) 

Deep Q-learning is an extension of traditional 
reinforcement learning methods that utilizes a deep neural 
network to address the prediction problem by approximating 
the Q-values for a given state. These Q-values are 
approximated using the Bellman equation [17]: 

( , ) ( , ) max ( ', ')Q s a r s a Q s aγ= + .                (2) 

In the Bellman equation, the Q-value for state action pair 
(s, a) is calculated as the sum of the immediate reward 
gained by taking action a while in state s and the maximum 
reward for the next state 's , over all possible actions 'a . 
The discount factor γ  is applied to the latter half of the 
equation to offset the value of future rewards compared to 
immediate ones, defined as (0,1]γ ∈ . In our implementation, 
we utilize a double Q-learning setup [18]. That is, using one 
main network to predict the Q-values of a given state and 
another target network for stability by using it to calculate 
the loss at each step. 

B. TLPC Framework Deep Q-Network Implementation 

The particular details of the implementation of the TLPC 
framework will vary depending on the approach, and this is 
especially true of the learning phase. Variability in human 
execution of tasks is difficult for deterministic models to 
adapt to, and as such, demands a dynamic system that can 
circumvent this barrier. Thus, in order to maximize the 
effectiveness of the human-robot partnership, an active 
learning agent, such as one driven by reinforcement 
learning, is a promising option [6]. Additionally, Akalin et 
al. remarked that many human-robot interactions may be 
structured as sequential decision-making tasks which, by 
nature, are typical RL problems [19]. 

 
Fig. 1. The TLPC framework deep Q-network implementation. 

This work adapts the TLPC framework to accommodate 



  

active learning by enabling the collaborative robot to receive 
and apply real-time feedback from its human partner through 
a deep Q-learning algorithm. Fig. 1 outlines the TLPC 
framework deep Q-network (DQN) implementation. First, the 
teaching stage involves the user demonstrating assembly 
sequences to the observing robot within their workspace. These 
sequences are of variable length and are structured according 
to their preferences. The demonstrated sequences are denoted 
as ζ , where individual sequences are denoted as iζ . 

The learning phase of this framework breaks the sequence 
into states, or experiences, which the prediction model may 
train with. States within this model, s, are represented as 
matrices of shape (LT, NA), where LT is the maximum 
length of a given task (though there is theoretically no limit), 
and NA is the number of possible actions represented as one-
hot encoded vectors that are the length of the action space 
and are by default initialized to zero. The states of a given 
human-robot collaborative task can be expressed as follows: 

[ ]T
1 2, , , LTs s s s=  ,            (3) 

[0, 0, ,1, , 0] for 1, ,is i LT= =   .        (4) 

Next, the demonstration data is acquired as transitions within 
the replay buffer β . For each sequence µ  at iζ , transitions 
τ  are created according to the 5-tuple structure used in 
reinforcement learning setups, which can be generated by: 

0: 1 0: 1{ ( ), ( ), , ( ), }j j j jv r dτ σ µ µ σ µ+ += .            (5) 

 Note that σ  represents the function that turns the sequence 
of observed components into the state representation described 
above, v is the one-hot vector encoding function, r is the 
reward given by the reward function, and d is the flag that 
indicates whether this transition leads into a done state. 

 With the creation of transition jτ , it can be added to the 
replay buffer: 

{ }jUβ β τ= .            (6) 

 The prediction model is pre-trained with these transitions 
created from the demonstration data to permit faster 
convergence to the optimal policy and to reduce the amount 
of direct feedback required by the user. This pre-training 
makes use of four loss types, including the one and n-step 
double Q-learning losses, a large margin classification loss, 
and an L2 regularization loss. The one and n-step double Q-
learning losses are forms of temporal difference (TD) loss, 
and they use the Huber loss function in their implementation. 
This function utilizes both mean squared error and mean 
absolute error [17], which is defined as: 

2

2

1 ( ( ) ) if ( ) ,
2( , , ( ))

1( ) if ( ) .
2

f x y f x y
L y f x

f x y f x y

δ
δ

δ δ δ

 − − ≤= 
 − − − >


    (7) 

The Huber loss function, L , is used for its suitability in 
handling outliers in data with these two error types. It does 
so by making use of the δ parameter, which establishes the 
threshold for switching between the two components of the 

function. Additionally, y is the target value, and f(x) is the 
predicted value. The large-margin classification loss forces 
the values of non-demonstrator actions to be at least a margin 
lower than the value of the demonstrator’s action, effectively 
prioritizing them above all others [20]. which is defined as: 

( ) max[ ( , ) ( , )] ( , )E EJ Q Q s a l a a Q s a= + − ,       (8) 

where Ea  represents the action of the demonstrator, and 
( , )El a a  is the margin function that is positive if Ea a≠ , 

and 0 if Ea a= . Finally, the L2 regularization loss is applied 
to prevent overfitting on the demonstration data. 

Simulated environments are used for the application of 
policy optimization, in which the agent may explore actions 
within its action space and thus build its experiences from 
which it trains. Positive rewards are given for actions that 
align with the demonstration data, and negative ones are 
given for those that do not. These simulated experiences 
may not entirely represent the desired behavior of the robot, 
and as such, experiences that the robot takes within the 
physical environment have their rewards weighted 
differently. Following this process and with learning 
completed, the robot examines the state of the assembly 
process, then makes a prediction of the next state and takes 
action to retrieve the appropriate next part for the operator. 
Thus, the robot enters the prediction-collaboration phase. 
Should the robot make the incorrect selection for its human 
partner, the user will reject the part and place it back into the 
secondary workspace. The rejection of the selection will 
indicate to the robot that this state transition was improper, 
and the experience will be collected into the robot’s memory 
as such with a negative reward associated with it. Alternatively, 
upon making the correct selection, the user will accept the 
part into their primary workspace and the state transition will 
be considered proper and will be held appropriately with a 
positive reward. This process is presented in Fig. 2 below. 

 
Fig. 2. Human-robot feedback process. 

Naturally, all of these experiences, both proper and 
improper, will be used to enhance the robot’s operation. 
Sampling the replay buffer for acquired experiences, the 
robot briefly regresses into the learning phase of the TLPC 
framework to reinforce its prediction model before returning 
to the prediction-collaboration stage to continue working 
with the user. In this way, an active learning structure is 
modeled that enables real-time feedback and learning during 
the interaction. Additionally, though the robot begins with 
the demonstration data, it serves only as a starting point for 
the model. That being the case, a human operator need not 
be a professional at their task, as they may reject and approve 
selections as they see fit, and the robot will continue to 
advance in its abilities and knowledge through this feedback.  



  

V. USER STUDY DESIGN 

A. Experimental Platform 
A user study is conducted to evaluate the performance of 

the proposed approach and the acceptance of a human-robot 
collaborative system that learns and operates through the 
reinforcement learning paradigm. It makes use of the 
following equipment: a Franka robot, an Intel RealSense 
D435i camera mounted to the end-effector of the robot, two 
Lenovo P520 ThinkStations, and fifteen wooden parts with 
letters on. The parts are used to represent assembly tasks for 
participants engaging in the study. One ThinkStation runs the 
MoveIt Commander Python API to plan and execute the 
robot’s movement trajectory commands as well as to run the 
developed robot learning algorithm, and the other hosts the 
survey that is connected to the database where the results are 
anonymously collected. The RealSense camera provides the 
robot with a view of its workspace and the participant’s 
selection area. Fig. 3 shows the experimental setup. 

 
Fig. 3. Experimental setup [21]. 

B. Task Design 
The task design for the user study is as follows. 

Participants of the study stand across from the robot with the 
end effector in the “hand-off” state, which permits the 
camera to view the primary workspace, or selection area, of 
the user. One sequence at a time, they position the parts in a 
particular order of any length that they desire, producing 
three orderings for the robot to learn. Participants are 
encouraged to keep the sequences similar enough so as to 
demonstrate the approaches’ capability to adapt to such 
scenarios, though such a choice is not necessary and entirely 
different sequences can be used. For example, consider the 
selection of two orderings of the parts: ROBOT and 
ROMOT. When the robot examines the state RO, the deep 
Q-learning approach to the issue encourages the robot to 
make the decision between which action, B or M, will 
ultimately produce the maximum reward. The more often a 
sequence is employed during interaction, the more this 
knowledge will be reinforced, and thus the robot will be 
more confident in its prediction of these transitions. 

After the sequences are demonstrated to the robot, it will 
enter its learning phase in which it pretrains briefly on the 
state transitions produced from the demonstration data 
following the learning process outlined in section IV.B. 
During this time, participants are instructed to take the first 
one or few parts of their sequence and add them to their 
primary workspace. Once the robot completes its learning 
process, it examines the starting state and begins its 
prediction-collaboration phase from there. To extend the 
previous example, consider that, while the robot is learning, 
the participant selects R from the secondary workspace and 
adds it to theirs. Once it finishes, the robot will select and 

execute the best-predicted action – in this case, O – and 
retrieve that component for the user. Alternatively, starting 
with RO is also a possibility, and the robot will pick up 
wherever the task begins. This ability to “jump into” any 
state that the environment may be in is one of the many 
valuable qualities of the reinforcement learning approach, 
especially for real-world contexts. 

C. Data Collection 
The data collected from this user study is gathered from a 

survey provided at the start and end of the experiment. We 
recruit 21 participants for this study (8 are female and 13 are 
male). Prior to interacting with the robot, participants are 
asked to answer two questions, including prior robotics 
experience and attitude towards robots. We request a self-
evaluation from participants regarding their prior experience 
with robots, scaled from “none” to “much” on a four-point 
scale, as well as their attitude towards robots on a scale from 
“don’t like” to “like” on a three-point scale. Both metrics are 
selected to gather background information from the 
participant that may help to gather insights into potential 
biases of their ratings of the interaction, particularly the 
rating of trust [22].  

The post-interaction survey questions that are asked of 
participants include overall efficiency, reliability of actions, 
selected component accuracy, learning speed, adaptability to 
task, perceived safety, overall comfort, and trust. These 
questions are offered on a nine-point Likert scale [15]. We 
allow participants to evaluate the system’s efficiency after 
the collaboration. This is done first with a direct question, 
but also with more specific queries to help identify the 
reasoning behind the selection. These queries are the 
reliability of actions metric, the selected component 
accuracy metric, and the learning speed metric. Participants’ 
ratings of the robot’s adaptability to the task are also 
collected. Safety and comfort are also evaluated, and these 
are often related to the metric of trust [23]. In the context of 
this study, trust defines how likely an agent (the participant) 
is to trust another (the robot) to perform its duty based on its 
previous activity. By evaluating the metrics of safety and 
comfort, trust may be better understood. 

D. Methods of Data Analysis 
We evaluate the survey results in two ways. First, we 

compare three metrics (comfort, safety, and efficiency) that 
were used in our previous work, which utilized a state 
machine approach for modeling learning and collaboration 
in a similar assembly task [15]. From this, we seek to 
determine the difference in responses, if any, between the 
two approaches. In order to perform these evaluations, we 
make use of the two-tailed Brunner-Munzel (BM) test, which 
is a nonparametric rank-based test that is considered to be more 
robust when compared to other rank-based tests such as the 
Wilcoxon Rank Sum test, for example in [25]. Nonparametric 
tests are used in our evaluation as our data is not normally 
distributed. Additionally, a significance level of α=0.05 is 
used in the evaluation. 

VI. RESULTS AND EVALUATION 

A. Real-world Human-robot Collaboration Validation 
Fig. 4 visually demonstrates the implementation and 



  

validation of the developed approach. In this human-robot 
collaborative task, the action space is discrete and of size 14.  
In stage 1, the user demonstrates their sequences to the robot. 
In stage 2, while the robot is pre-training with demonstration 
data, the user assembles part of their sequence. Stages 3 and 
4 show the robot retrieving the incorrect part, and the user 
rejecting the selection. Stage 5 shows the robot retrieving the 
correct and final part of the sequence, which the user accepts 
and adds to their workspace, completing the task. 

 
Fig. 4. Implementation and validation of the developed approach in real-

world human-robot collaborative tasks. 

B. Overall Efficiency Ratings Analysis and Comparison 
Fig. 5 compares the efficiency ratings between the state-

machine-based approach and the developed one from the 
user study. Visual inspection of the charts shows a more 
even distribution of responses in the high range for this 
study’s ratings when compared to the state-machine method, 
which receives more “excellent” ratings. Performing the 
Brunner-Munzel test produces a p-value of 0.47, which is 
beyond our designated significance level of α=0.05. We 
determine that there exists no statistically significant difference 
between the datasets. We also consider why efficiency ratings 
for the deep Q-network-based approach to the task were 
generally lower than the state-machine counterpart, particularly 
in the frequency of “excellent” ratings. We presume that this 
is due to the sample-intensive nature of reinforcement 
learning that, while most effective over longer periods of 
time, may appear to be inefficient for short interactions.  

 
Fig. 5. Comparison of efficiency ratings for state-machine (left) and DQN 

(right) approaches. 

 
Fig. 6. Comparison of safety ratings for state-machine (left) and DQN 

(right) approaches. 

C. Safety Ratings Analysis and Comparison 
We compare the two methodologies’ ratings on the metric 

of safety. Fig. 6 shows many similarities between the two 
approaches, and the Brunner-Munzel test shows no statistically 
significant difference with a p-value of 0.74. But from the 
number of “excellent” ratings, we find that more participants 

prefer the deep Q-network-based approach. As noted before, 
safety is a contributor to human feelings of trust in human-
robot interaction and is therefore useful to evaluate. 

D. Comfort Ratings Analysis and Comparison 
The comparison of participants’ comfort throughout the 

interaction with the robot is presented in Fig. 7. First, from 
the percentage of ratings of “excellent”, participants feel 
more comfortable with the developed approach. In addition, 
these distributions appear to be similar upon visual 
inspection and this hypothesis is confirmed with the BM 
test. The test produces a final p-value of 0.24, which is over 
the selected significance level. Similar to safety, overall 
feelings of comfort in a human-robot interactive context 
assist in better understanding trust. 

 
Fig. 7. Comparison of comfort ratings for state-machine (left) and DQN 

(right) approaches. 

E. Efficiency Subcategories Ratings Analysis 
As previously noted, the metrics (reliability of actions, 

selected component accuracy, and learning speed) shown in 
Fig. 8 are factors contributing to the rating of efficiency. As 
such, they may be used to determine which areas are most 
impactful. Ratings across these areas appear to be fairly 
similar, though the accuracy of the robot’s selections appears 
to have been, on average, rated slightly higher. In addition, 
from the ratings of “Excellent” and “Very Good” by 
participants, it can be observed that the developed approach 
of this work offers positive impacts on effective human-
robot collaboration in shared tasks.  

 
Fig. 8. Participants’ ratings on the reliability of actions (left), selected 

component accuracy (middle), and learning speed (right). 

F. Adaptability Ratings Analysis 
The metric pertaining to the adaptability of the system is 

also examined. Similar to other ratings by participants, the 
deep Q-network-based approach to a collaborative assembly 
task is commonly felt to be considerably adaptable, 
receiving support at lowest as “somewhat good” up to 
“excellent,” as shown in Fig. 9. 

       
           Fig. 9. Adaptability ratings.                Fig. 10. Trust ratings. 



  

G. Trust Ratings Analysis 
The metric of trust is valuable to consider in any human-

robot interaction. As demonstrated in Fig. 10, with our 
developed approach, there exists a high level of trust 
between participants of this study and the DQN-enabled 
robot that they interact with. In addition, Fig. 11 assists in 
understanding potential biases towards the metric of trust 
given the user’s personal ratings of previous experience and 
overall attitude towards robots. As might be expected, 
participants’ attitudes towards robots uncover perhaps a 
slight bias in their rating of the presented system, with those 
that have higher levels of interest in robotics rating their 
trust higher. Additionally, it appears that those with more 
previous experience with robots tend to rate their feelings of 
trust lower after interacting with the system. 

  
Fig. 11. Participants’ trust responses by attitude and experience. 

VII. CONCLUSIONS AND FUTURE WORK 
In this work, we designed and tested a deep Q-learning-

based TLPC implementation for a collaborative robot system 
in human-robot assembly contexts through a user study. 
Using the collected data, we compared this approach against 
a previous state machine-enabled approach to establish 
potential differences in subjective ratings of the systems for 
the designated task. Additionally, we examined other metrics 
as well to gather further insights into users’ feelings about 
the system. We found that, while no statistically significant 
differences exist between the two approaches for the metrics, 
the ratings of participants across the board for the developed 
approach of this work were higher. Participants in the user 
study indicated that they felt a high degree of safety, 
comfort, and trust during the interaction with the robot.  

While the developed approach is implemented and 
assessed in this study, assembly tasks in industrial settings 
are typically more complex than what is being validated. 
Additionally, given a non-expert demonstrator, the quality of 
the initial learning phase would certainly be impacted as 
well. The proposed approach, especially with its property of 
user feedback, offers the opportunity for the robot to extend 
its learning beyond its demonstration data, surpassing its 
initial performance and potentially even the human’s. We 
seek to use the results of this work to consider potential 
improvements to TLPC as well as alternatives that may 
perform better in such contexts. 
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