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Abstract — As robot systems continue to be advanced and
implemented across industries, they do so typically by two
methodologies, including standalone systems and collaborative ones.
Standalone systems are typically set in their own areas, away from
human workers. Collaborative robots share a common workspace
with their human counterparts and work with them to complete
tasks together efficiently and safely. Within this category of
robotics, there exists another subcategory that describes the
method of implementation and usage rather than simply the type of
system. This subcategory involves how the machine will interact
with workers and understand its role in interaction. Thus, it raises
interest in the field of learning from demonstrations, where the
robot may dynamically learn the behavior that is desired by the user
rather than being explicitly hardcoded to perform its task. In this
work, we develop a deep Q-network-based robot learning paradigm
for human-robot partnerships in shared tasks. The proposed
approach is validated in real-world human-robot collaborative
contexts. In addition, to assess the performance of this approach
and the acceptance from practitioners, we conduct a multi-metric
user study. Implementation and evaluation results indicate that the
developed solution works effectively for human-robot teamwork
and receives high support from active users who rate it very well on
several key metrics. The future work of this study is also discussed.

I. INTRODUCTION

As Industry 4.0 continues to revolutionize manufacturing
sectors, new technologies in line with its values are
consistently being produced. These values include further
automation of factories, the implementation of smart systems
within them through models such as Industrial IoT, and an
overall transfer of some autonomy to machines, facilitated by
information systems [1-3]. Industry 4.0 was the natural step
in the sector, making use of new, versatile technologies to
enhance productivity. What it does not place emphasis on,
however, is the human worker who will inevitably be working
within these factories. Now, with the approaching rise of
Industry 5.0, human-centricity becomes a focal point [4].

Though research into Industry 5.0 is admittedly scarce,
the three pillars that uphold it are well-defined: sustainability,
resiliency, and human-centricity. Sustainability refers to not
only the reduction in environmental impact, but also the
efficient use of natural resources and support of an effective
economy. Resiliency involves the robustness of systems in
the face of disruptions and the ability to recover quickly to a
stable state during and after geopolitical shifts. Finally, the
most pertinent for this research is the focus of human-
centricity. Human-centricity could be defined as an approach
that places human interests and needs at the center of the
production process [5]. Lu et al. noted that future human-
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machine teams will need to place these values at the center of
manufacturing planning and control [6]. This places much
emphasis on adaptive robotic systems that work with people
fluently. Systems that are capable of adaptation to their work
environment, as well as their companions, are crucial for
supporting the human-centric vision of Industry 5.0. In
human-robot collaborative contexts, the collaborative machines
will be used for their strengths, such as performing repetitive
and labor-intensive tasks, while humans will exercise their
strengths, such as critical thinking and personalization [7, 8].
These collaborative machines are specifically designed to
accommodate human partnerships, reinforcing their role in
the human-centric focus of Industry 5.0.

It is the purpose of this work to develop a robot learning
paradigm and evaluate the acceptance of one such adaptive
robotic system by human participants in human-robot
collaborative contexts through a user study. As humans enter
a place of greater importance in the human-robot dynamic, it
is only natural that systems must exist to accommodate them
to the best of their ability, and these humans accept the system
itself. These systems should be adaptable, but also offer fluent
and flexible interaction so as not to harm the user’s satisfaction
nor their productivity. We present a reinforcement learning-
based human-robot collaborative approach and a user study
to evaluate it. This work seeks to identify if this is a solution
to human-centered human-robot collaboration (HRC) that has
potential in the industry through the collection of subjective
ratings of participants. These participants interact with the
robot in a variable-length collaborative assembly task and,
through a multi-metric survey, provide feedback on the
system as well as the interaction as a whole by several key
evaluation indicators. This work seeks to determine from the
data how acceptable users of the system find it and
potentially establish areas of necessary improvement.

II. RELATED WORK

Reinforcement learning (RL) has been used in several
robotics applications, such as object grasping [9], in which
the robots consistently attempt to perform a grasping action
and improve their policy from that data. This is primarily
robot-oriented, meaning that after taking an action, the robot
examines the quality of that action and handles its policy
adjustments without outside intervention. It has been applied
to collaborative robotics as well, where Gomes et al. presented
that the working environment of such robots is often
subjected to unforeseen modifications by people [10]. While
reinforcement learning may be utilized for enhancing the
grasping capabilities of robots, that is not the only extent of
its applications. Multi-agent systems, such as in [11], are
more in line with a collaborative system. In this work, the
collaborative task involved a ball in a maze game that
required a human to control one axis of rotation and a robot to
control the other, demanding cooperation and giving the agent
the opportunity to learn from its partner. Notably, the authors



noted that there are certain complications that come from
bringing humans into the operation (e.g., unpredictability).
This issue highlights the importance of intention prediction,
which is a component that is considered in this study and will
be discussed in greater detail in the following sections.

Reinforcement learning demands a significant number of
experiences to learn from teachers to reach the optimal policy
[12]. As it takes humans practice to reach high performance
in a task, reinforcement learning agents are no different. In
virtual environments where agents are taught to play games,
one can simply let the simulation continue without many delays.
In robotics, however, there exist several issues as described in
detail in [13], though perhaps most obvious is the delays in
sensors and actuators of the robot that is training. For this
reason, it is common to use simulated environments to cut
down on the time required for robot training in the real world,
even if they do not perfectly represent the real-world
conditions that the agent will ultimately operate in [10]. To
mitigate these gaps, we make use of the real-world human-
robot collaborative environment in this study to gather
subjective ratings of such an RL collaborative system.

III. TLPC FRAMEWORK

This paradigm builds on our prior studies in the
development and refinement of a Teaching-Learning-Prediction
-Collaboration (TLPC) framework, which is designed to permit
robots to learn from and collaborate with humans [14, 15].
This dynamic system is created to accommodate personalized
tasks that may vary between users. As research continues,
the particular operations in each phase of this framework
may shift, though the overarching theme is the same.

In this framework, the components of human-robot
collaboration are broken down into distinct phases, including
teaching, learning, prediction, and collaboration. The teaching
phase involves a human operator demonstrating the task
being completed in a particular way to the robot. The
specific manner of task completion may differ from user to
user, and as such furthers the importance of permitting
customizability in the interaction. Following the teaching
stage, the learning phase involves the robot using its collected
task knowledge and applying it through a generalized method,
such as state machines. In the prediction and collaboration
phases, the robot examines its environment’s current states
to predict the human’s next action with its learned knowledge.
This prediction permits the robot to take action to
collaborate and assist the user in the completion of their task.
For the TLPC framework, specific implementations vary in
their execution of each phase. In this study, we will develop
a deep Q-network-based robot learning approach within
TLPC for human-robot teams in real-world collaborative
tasks and evaluate the proposed solution via a user study.

IV. APPROACHES
A. Deep Q-Learning

Reinforcement learning is a paradigm designed to enable
active learning by an agent via permitting it to take actions
within its environment and examine the quality of those
actions to learn and optimize its policy. The selection of
these actions raises the prediction problem [16]. That is, to
determine the state or action-value function for a policy. The

primary focus of reinforcement learning, from a high-level
view, is to enable the agent to learn the optimal policy for
sequential decision problems and, in doing so, maximize its
rewards for a given task. In essence, RL involves an agent —
the executor of selected actions — operating within an
environment. This environment exists in a current state at a
given time ¢, which the agent observes and considers to
select its next action. This state, s, from state space S is

input into the prediction model and, by following policy
7(a, |s,), produces an action a, from action space 4 [16].

Upon taking the action g, , the environment transitions into a

state s,,, and the environment returns a scalar reward 7,

t+1

given by the reward function R(s, @). Additionally, in an

episodic setup, a terminal state d is eventually reached, at
which point it restarts. The experiences from which the
reinforcement occurs are stored as a 5-tuple:

(Sfﬂat)r[:S[Jrlﬂd)' (1)

Deep Q-learning is an extension of traditional
reinforcement learning methods that utilizes a deep neural
network to address the prediction problem by approximating
the (-values for a given state. These (-values are
approximated using the Bellman equation [17]:

O(s,a)=r(s,a)+ymaxQ(s', a") . 2)

In the Bellman equation, the Q-value for state action pair
(s, a) is calculated as the sum of the immediate reward
gained by taking action a while in state s and the maximum
reward for the next state s', over all possible actions a'.
The discount factor y is applied to the latter half of the

equation to offset the value of future rewards compared to
immediate ones, defined as y € (0, 1]. In our implementation,

we utilize a double Q-learning setup [18]. That is, using one
main network to predict the O-values of a given state and
another target network for stability by using it to calculate
the loss at each step.

B. TLPC Framework Deep Q-Network Implementation

The particular details of the implementation of the TLPC
framework will vary depending on the approach, and this is
especially true of the learning phase. Variability in human
execution of tasks is difficult for deterministic models to
adapt to, and as such, demands a dynamic system that can
circumvent this barrier. Thus, in order to maximize the
effectiveness of the human-robot partnership, an active
learning agent, such as one driven by reinforcement
learning, is a promising option [6]. Additionally, Akalin et
al. remarked that many human-robot interactions may be
structured as sequential decision-making tasks which, by
nature, are typical RL problems [19].

Learning Prediction-Collaboration
Initially, a prediction model is pre-trained on
demonsiration data o give the robot a
head-start on learning.

The robot examines the current state
of the environment and takes the best
predicted action.

Drawing from experiences, the fobot's

model trains to better learn the user’s the action is saved in the robot's
working preferences. memory accordingly.

! ' ]

Fig. 1. The TLPC framework deep Q-network implementation.

‘The user's acceptance or rajection of

This work adapts the TLPC framework to accommodate



active learning by enabling the collaborative robot to receive
and apply real-time feedback from its human partner through
a deep Q-learning algorithm. Fig. 1 outlines the TLPC
framework deep Q-network (DQN) implementation. First, the
teaching stage involves the user demonstrating assembly
sequences to the observing robot within their workspace. These
sequences are of variable length and are structured according
to their preferences. The demonstrated sequences are denoted
as ¢, where individual sequences are denoted as ¢

The learning phase of this framework breaks the sequence
into states, or experiences, which the prediction model may
train with. States within this model, s, are represented as
matrices of shape (L7, NA), where LT is the maximum
length of a given task (though there is theoretically no limit),
and NA is the number of possible actions represented as one-
hot encoded vectors that are the length of the action space
and are by default initialized to zero. The states of a given
human-robot collaborative task can be expressed as follows:

s=[s), 850 8,,]" (3)
Si:[0305'“31:"'so]forizl’”"LT' (4)

Next, the demonstration data is acquired as transitions within
the replay buffer S . For each sequence x at ¢, transitions

7 are created according to the 5-tuple structure used in
reinforcement learning setups, which can be generated by:

;= {O-(/Uo:j ), V(,ujﬂ ). 7 O-(Iu():j+1 ). d}. (6))

Note that o represents the function that turns the sequence
of observed components into the state representation described
above, v is the one-hot vector encoding function, 7 is the
reward given by the reward function, and d is the flag that
indicates whether this transition leads into a done state.

With the creation of transition 7, it can be added to the
replay buffer:

B=pUiz ;}. (6)

The prediction model is pre-trained with these transitions
created from the demonstration data to permit faster
convergence to the optimal policy and to reduce the amount
of direct feedback required by the user. This pre-training
makes use of four loss types, including the one and n-step
double Q-learning losses, a large margin classification loss,
and an L2 regularization loss. The one and n-step double Q-
learning losses are forms of temporal difference (TD) loss,
and they use the Huber loss function in their implementation.
This function utilizes both mean squared error and mean
absolute error [17], which is defined as:

1
2
ﬂf@j—ﬂ—%&ziﬂfuj—ﬂ>5.

(f(x)-») if|f(x)-)] <6,

L(o,y, f(x))= (7)

The Huber loss function, L, is used for its suitability in
handling outliers in data with these two error types. It does
so by making use of the J parameter, which establishes the
threshold for switching between the two components of the

function. Additionally, y is the target value, and f{x) is the
predicted value. The large-margin classification loss forces
the values of non-demonstrator actions to be at least a margin
lower than the value of the demonstrator’s action, effectively
prioritizing them above all others [20]. which is defined as:

J(Q) = max[O(s, a) + (a;, )] = O(s, a) , ®)

where a, represents the action of the demonstrator, and
l(ag,a) is the margin function that is positive if a #a,,
and 0 if @ = a, . Finally, the L2 regularization loss is applied
to prevent overfitting on the demonstration data.

Simulated environments are used for the application of
policy optimization, in which the agent may explore actions
within its action space and thus build its experiences from
which it trains. Positive rewards are given for actions that
align with the demonstration data, and negative ones are
given for those that do not. These simulated experiences
may not entirely represent the desired behavior of the robot,
and as such, experiences that the robot takes within the
physical environment have their rewards weighted
differently. Following this process and with learning
completed, the robot examines the state of the assembly
process, then makes a prediction of the next state and takes
action to retrieve the appropriate next part for the operator.
Thus, the robot enters the prediction-collaboration phase.
Should the robot make the incorrect selection for its human
partner, the user will reject the part and place it back into the
secondary workspace. The rejection of the selection will
indicate to the robot that this state transition was improper,
and the experience will be collected into the robot’s memory
as such with a negative reward associated with it. Alternatively,
upon making the correct selection, the user will accept the
part into their primary workspace and the state transition will
be considered proper and will be held appropriately with a
positive reward. This process is presented in Fig. 2 below.

=
IR

Fig. 2. Human-robot feedback process.

Naturally, all of these experiences, both proper and
improper, will be used to enhance the robot’s operation.
Sampling the replay buffer for acquired experiences, the
robot briefly regresses into the learning phase of the TLPC
framework to reinforce its prediction model before returning
to the prediction-collaboration stage to continue working
with the user. In this way, an active learning structure is
modeled that enables real-time feedback and learning during
the interaction. Additionally, though the robot begins with
the demonstration data, it serves only as a starting point for
the model. That being the case, a human operator need not
be a professional at their task, as they may reject and approve
selections as they see fit, and the robot will continue to
advance in its abilities and knowledge through this feedback.



V. USER STUDY DESIGN

A. Experimental Platform

A user study is conducted to evaluate the performance of
the proposed approach and the acceptance of a human-robot
collaborative system that learns and operates through the
reinforcement learning paradigm. It makes use of the
following equipment: a Franka robot, an Intel RealSense
D435i camera mounted to the end-effector of the robot, two
Lenovo P520 ThinkStations, and fifteen wooden parts with
letters on. The parts are used to represent assembly tasks for
participants engaging in the study. One ThinkStation runs the
Movelt Commander Python API to plan and execute the
robot’s movement trajectory commands as well as to run the
developed robot learning algorithm, and the other hosts the
survey that is connected to the database where the results are
anonymously collected. The RealSense camera provides the
robot with a view of its workspace and the participant’s
selection area. Fig. 3 shows the experimental setup.

g

Fig./3A Experimental setup [21]. -

B. Task Design

The task design for the user study is as follows.
Participants of the study stand across from the robot with the
end effector in the ‘“hand-off” state, which permits the
camera to view the primary workspace, or selection area, of
the user. One sequence at a time, they position the parts in a
particular order of any length that they desire, producing
three orderings for the robot to learn. Participants are
encouraged to keep the sequences similar enough so as to
demonstrate the approaches’ capability to adapt to such
scenarios, though such a choice is not necessary and entirely
different sequences can be used. For example, consider the
selection of two orderings of the parts: ROBOT and
ROMOT. When the robot examines the state RO, the deep
Q-learning approach to the issue encourages the robot to
make the decision between which action, B or M, will
ultimately produce the maximum reward. The more often a
sequence is employed during interaction, the more this
knowledge will be reinforced, and thus the robot will be
more confident in its prediction of these transitions.

After the sequences are demonstrated to the robot, it will
enter its learning phase in which it pretrains briefly on the
state transitions produced from the demonstration data
following the learning process outlined in section IV.B.
During this time, participants are instructed to take the first
one or few parts of their sequence and add them to their
primary workspace. Once the robot completes its learning
process, it examines the starting state and begins its
prediction-collaboration phase from there. To extend the
previous example, consider that, while the robot is learning,
the participant selects R from the secondary workspace and
adds it to theirs. Once it finishes, the robot will select and

execute the best-predicted action — in this case, O — and
retrieve that component for the user. Alternatively, starting
with RO is also a possibility, and the robot will pick up
wherever the task begins. This ability to “jump into” any
state that the environment may be in is one of the many
valuable qualities of the reinforcement learning approach,
especially for real-world contexts.

C. Data Collection

The data collected from this user study is gathered from a
survey provided at the start and end of the experiment. We
recruit 21 participants for this study (8 are female and 13 are
male). Prior to interacting with the robot, participants are
asked to answer two questions, including prior robotics
experience and attitude towards robots. We request a self-
evaluation from participants regarding their prior experience
with robots, scaled from “none” to “much” on a four-point
scale, as well as their attitude towards robots on a scale from
“don’t like” to “like” on a three-point scale. Both metrics are
selected to gather background information from the
participant that may help to gather insights into potential
biases of their ratings of the interaction, particularly the
rating of trust [22].

The post-interaction survey questions that are asked of
participants include overall efficiency, reliability of actions,
selected component accuracy, learning speed, adaptability to
task, perceived safety, overall comfort, and trust. These
questions are offered on a nine-point Likert scale [15]. We
allow participants to evaluate the system’s efficiency after
the collaboration. This is done first with a direct question,
but also with more specific queries to help identify the
reasoning behind the selection. These queries are the
reliability of actions metric, the selected component
accuracy metric, and the learning speed metric. Participants’
ratings of the robot’s adaptability to the task are also
collected. Safety and comfort are also evaluated, and these
are often related to the metric of trust [23]. In the context of
this study, trust defines how likely an agent (the participant)
is to trust another (the robot) to perform its duty based on its
previous activity. By evaluating the metrics of safety and
comfort, trust may be better understood.

D. Methods of Data Analysis

We evaluate the survey results in two ways. First, we
compare three metrics (comfort, safety, and efficiency) that
were used in our previous work, which utilized a state
machine approach for modeling learning and collaboration
in a similar assembly task [15]. From this, we seek to
determine the difference in responses, if any, between the
two approaches. In order to perform these evaluations, we
make use of the two-tailed Brunner-Munzel (BM) test, which
is a nonparametric rank-based test that is considered to be more
robust when compared to other rank-based tests such as the
Wilcoxon Rank Sum test, for example in [25]. Nonparametric
tests are used in our evaluation as our data is not normally
distributed. Additionally, a significance level of a=0.05 is
used in the evaluation.

VI. RESULTS AND EVALUATION

A. Real-world Human-robot Collaboration Validation
Fig. 4 visually demonstrates the implementation and



validation of the developed approach. In this human-robot
collaborative task, the action space is discrete and of size 14.
In stage 1, the user demonstrates their sequences to the robot.
In stage 2, while the robot is pre-training with demonstration
data, the user assembles part of their sequence. Stages 3 and
4 show the robot retrieving the incorrect part, and the user
rejecting the selection. Stage 5 shows the robot retrieving the
correct and final part of the sequence, which the user accepts

Fig. 4. Implementation and validation of the developed appfoach in real-
world human-robot collaborative tasks.

B. Overall Efficiency Ratings Analysis and Comparison

Fig. 5 compares the efficiency ratings between the state-
machine-based approach and the developed one from the
user study. Visual inspection of the charts shows a more
even distribution of responses in the high range for this
study’s ratings when compared to the state-machine method,
which receives more “excellent” ratings. Performing the
Brunner-Munzel test produces a p-value of 0.47, which is
beyond our designated significance level of «=0.05. We
determine that there exists no statistically significant difference
between the datasets. We also consider why efficiency ratings
for the deep Q-network-based approach to the task were
generally lower than the state-machine counterpart, particularly
in the frequency of “excellent” ratings. We presume that this
is due to the sample-intensive nature of reinforcement
learning that, while most effective over longer periods of
time, may appear to be inefficient for short interactions.

19.0%

26.6%

Fig. 5. Comparison of efficiency ratings for state-machine (left) and DQN
(right) approaches.

Fig. 6. Comparison of safety ratings for state-machine (left) and DQN
(right) approaches.

C. Safety Ratings Analysis and Comparison

We compare the two methodologies’ ratings on the metric
of safety. Fig. 6 shows many similarities between the two
approaches, and the Brunner-Munzel test shows no statistically
significant difference with a p-value of 0.74. But from the
number of “excellent” ratings, we find that more participants

prefer the deep Q-network-based approach. As noted before,
safety is a contributor to human feelings of trust in human-
robot interaction and is therefore useful to evaluate.

D. Comfort Ratings Analysis and Comparison

The comparison of participants’ comfort throughout the
interaction with the robot is presented in Fig. 7. First, from
the percentage of ratings of “excellent”, participants feel
more comfortable with the developed approach. In addition,
these distributions appear to be similar upon visual
inspection and this hypothesis is confirmed with the BM
test. The test produces a final p-value of 0.24, which is over
the selected significance level. Similar to safety, overall
feelings of comfort in a human-robot interactive context
assist in better understanding trust.

28%9% a8%
55%

Fig. 7. Comparison of comfort ratings for state-machine (left) and DQN
(right) approaches.

E. Efficiency Subcategories Ratings Analysis

As previously noted, the metrics (reliability of actions,
selected component accuracy, and learning speed) shown in
Fig. 8 are factors contributing to the rating of efficiency. As
such, they may be used to determine which areas are most
impactful. Ratings across these areas appear to be fairly
similar, though the accuracy of the robot’s selections appears
to have been, on average, rated slightly higher. In addition,
from the ratings of “Excellent” and “Very Good” by
participants, it can be observed that the developed approach
of this work offers positive impacts on effective human-
robot collaboration in shared tasks.

-4

Fig. 8. Participants’ ratings on the reliability of actions (left), selected
component accuracy (middle), and learning speed (right).

F. Adaptability Ratings Analysis

The metric pertaining to the adaptability of the system is
also examined. Similar to other ratings by participants, the
deep Q-network-based approach to a collaborative assembly
task is commonly felt to be considerably adaptable,
receiving support at lowest as “somewhat good” up to
“excellent,” as shown in Fig. 9.

Fig. 10. Trust ratings.




G. Trust Ratings Analysis

The metric of trust is valuable to consider in any human-
robot interaction. As demonstrated in Fig. 10, with our
developed approach, there exists a high level of trust
between participants of this study and the DQN-enabled
robot that they interact with. In addition, Fig. 11 assists in
understanding potential biases towards the metric of trust
given the user’s personal ratings of previous experience and
overall attitude towards robots. As might be expected,
participants’ attitudes towards robots uncover perhaps a
slight bias in their rating of the presented system, with those
that have higher levels of interest in robotics rating their
trust higher. Additionally, it appears that those with more
previous experience with robots tend to rate their feelings of
trust lower after interacting with the system.

1

Trust Responses by Attitude Trust Responses by Experience

50 o 50

Don't Like. Like None Little Moderate Much

Neutral
Attitude Level Experience Level

Fig. 11. Participants’ trust responses by attitude and experience.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we designed and tested a deep Q-learning-
based TLPC implementation for a collaborative robot system
in human-robot assembly contexts through a user study.
Using the collected data, we compared this approach against
a previous state machine-enabled approach to establish
potential differences in subjective ratings of the systems for
the designated task. Additionally, we examined other metrics
as well to gather further insights into users’ feelings about
the system. We found that, while no statistically significant
differences exist between the two approaches for the metrics,
the ratings of participants across the board for the developed
approach of this work were higher. Participants in the user
study indicated that they felt a high degree of safety,
comfort, and trust during the interaction with the robot.

While the developed approach is implemented and
assessed in this study, assembly tasks in industrial settings
are typically more complex than what is being validated.
Additionally, given a non-expert demonstrator, the quality of
the initial learning phase would certainly be impacted as
well. The proposed approach, especially with its property of
user feedback, offers the opportunity for the robot to extend
its learning beyond its demonstration data, surpassing its
initial performance and potentially even the human’s. We
seek to use the results of this work to consider potential
improvements to TLPC as well as alternatives that may
perform better in such contexts.
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