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Abstract—Although collaborative robots aim to boost
productivity in manufacturing, misalignment between robot’s
actions and the human’s intentions of the collaboration can
cause discomfort or frustration, potentially discouraging future
collaborations. Inspired by human-to-human interactions, this
paper aims to help solve this problem by enabling a collaborative
robot to adjust how it moves and acts based on human emotions
to improve the overall collaboration process. To achieve this
goal, an emotion-based robotic action optimization system was
developed and integrated into a collaborative robot. The system
utilizes hierarchical reinforcement learning (HRL) to train and
guide the robot to adjust its actions according to detected human
emotions. Specifically, this paper introduces (1) a HRL model
that leverages a vision-audio-based emotion recognition model
to determine and adjust robot actions (movement speed, drop-
off distance, reaction time, and rate of success) according to
human emotions. The goal of this model is to avoid negative
emotions of the human user that are triggered by the robot
actions. (2) A robot motion control method driven by recognized
human intentions and actions from the HRL model, guiding the
robot arm and gripper to adjust movements and deliver parts as
desired. (3) objective and subjective evaluation experiments to
evaluate the effectiveness of the developed system. The results
and analysis of the experiments demonstrated the effectiveness
of our developed system in a human-robot collaboration setting.

1. INTRODUCTION

In the manufacturing scene, human-robot collaboration is
set in stone in the way the robots interact with their human
collaborators. The main purpose of these collaborations is to
improve productivity and efficiency, relying on repetitive and
predictable movements to do so [1]-[4]. This method of
interactions can be effective, but the preprogrammed motions
could potentially deter any future collaborations or even leave
the human collaborators feeling uncomfortable or irritated by
the robot’s actions if they do not align with the human’s
expectations. As such, a challenge in enhancing human-robot
collaboration would be to take a human’s emotional state into
consideration when a collaborative robot decides its next
sequence of actions. To enable a collaborative robot to adapt
its actions based on the emotions of its human collaborator and
draw inspiration from human-to-human interactions, this
paper develops an emotion-based robotic action optimization
system. The system employs a hierarchical reinforcement
learning approach to train the robot to modify its actions while
considering the emotions of its human collaborator. This
optimization system has been developed and integrated into a
Franka Emika Panda robot arm [5], utilizing a human’s
recognized emotions [6], [7] to adjust its various actions with
changes in its movement speed, drop-off distance, reaction
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time, and rate of success. Specifically, our work includes the
following three parts. First, the training of a hierarchical
reinforcement learning model that uses the recognized visual-
audio information-based emotions to determine the desired
robot actions that need to be optimized. Second, recognizing
the human collaborator’s intentions via vocal commands to
enable the robot to call upon a specific order of saved joint
state positions to assist in co-assembly tasks. Third, validation
experiments and subjective user evaluations to evaluate the
effectiveness of the robot’s changing actions through real-
world assembly tasks. The results and analysis of the
experiment help demonstrate the effectiveness of our
developed system in a human-robot collaboration setting.

This paper’s contributions are: (1) developing an emotion-
based robotic action optimization system that adjusts robot
actions to human emotions for a friendly human-robot
collaboration; (2) creating a hierarchical reinforcement
learning system that updates user preferences online and in

real-time, enabling flexible, easy training; and (3)
implementing a lightweight method that considers
personalized emotional factors, allowing the robot to

dynamically respond to emotional changes.
II. RELATED WORKS

A. Deep Learning in Manufacturing Robots

Deep leamning [8] has been applied to manufacturing
robots for tasks like object detection. Chen et al. [9] used a
faster R-CNN to train a URS robot to recognize objects such
as tools and office supplies. The model, trained with various
backbones (VGG-M, VGG-16) and different datasets,
achieved 67.9% accuracy on a 10-class test set. Deep learning
can also help predict human motion in human-robot
collaboration. For example, Liu et al. [10] used a combined
CNN-LSTM model to forecast human movements during a
computer assembly task, achieving up to 83% accuracy.
Another study done by Male et al. [11] used a CNN and
wearable IMUs to help a UR3 robot recognize its environment
and a human's actions during an assembly task. The system,
tested in assembling a box and seat, accurately predicted action
status in both offline and online trials. Wang et al [1] proposed
a teaching-learning collaboration (TLC) model and deployed
it on a UR10 robot arm. Based on maximum entropy inverse
reinforcement learning, this TLC model (MaxEnt-IRL)
allowed a human to program the collaborative robot using
natural language instructions to demonstrate how to complete
the assembly task. Another example, developed by Murphy et
al [6], utilizes a lightweight facial recognition based on
convolutional neural networks (CNN) to enable a Franka



Emika Panda collaborative robot to understand human
emotions during co-assembly tasks.

B. Reinforcement Learning in Robotics Control

Reinforcement learning [12] enables robots to learn
through trial and error, receiving rewards based on their
actions. Implementation ranges from simple Q-Learning tables
[13] to complex models combining reinforcement learning
with deep learning [14], [15] for handling larger action spaces.
Svaco et al. [16] developed a reinforcement learning algorithm
for a UR3 robot to minimize actions when moving an object to
a target. Their system achieved optimal performance with a
learning rate of 0.4 and a discount factor of 0.6 as training
progressed. Utilizing deep reinforcement learning, robots can
learn to traverse complex paths to a designated target [17],
[18]. For example, Iskandar et al. [19] used deep reinforcement
learning to train swarm robots to navigate toward a target.
Each simulated Webot learned individually while interacting
with the swarm and environment. Over time, their total
number of collisions decreased while gained rewards and the
number of goals reached increased. Reinforcement learning is
also used frequently in robots designed for manufacturing as
well. One example of such was deployed by Pane et al. [20]
onto a URS robot to train it to follow shaped paths. Using an
actor-critic method, the robot’s performance was measured by
temporal difference rewards. Tested on square, circle, and
custom paths, the reinforcement learning approach
outperformed PD, MPC, and ILC controllers on the square and
circular task. Another study by Oliff et al. [21] introduced a
deep Q-learning (DQN) agent in a human-robot manufacturing
simulation. Using shaped rewards to enforce assembly rules,
their system reduced idle time and minimized performance
disparities across operators and robots.

III. SYSTEM OVERVIEW

This paper introduces an emotion-based robotic action
optimization (ERAO) system (Fig. 1) designed for
collaborative robots. The system focuses on optimizing four
key factors that influence co-assembly tasks and human
emotions: movement speed, drop-off distance, reaction time,
and success rate. These factors are selected due to their
significant impact on collaboration quality and task success,
which in turn affect human emotional responses during
interaction. To recognize human emotions, the system uses a
combination of visual and audio data, analyzing both facial
expressions and speech. Additionally, human intentions are
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Figure 1. ERAO System Overview

identified using natural language processing. Based on the
detected emotions and intentions, the robot employs a
hierarchical reinforcement learning framework to optimize its
actions which is aiming to enhance human satisfaction by
promoting neutral or positive emotional states. The
hierarchical reinforcement learning framework include two
layers: a higher layer for selecting what type of action
adjustment the robot must make and a lower layer for the sub-
action choices for each adjustment type. Depending on a
person’s recognized emotions and the previously trained
values in the sets of Q-tables, the system chooses first from the
higher layer which type of adjustment is needed, then repeat
the process on the lower layer with the specific action choice.
Throughout the collaboration, the human can vocally
command the collaborative robot to hand them the next
necessary assembly part. Once the robot recognizes the intent
of the command, it will go through set joint state positions for
the target gesture to retrieve the assembly part and hand it to
the human. Depending on real-time human emotions, the
system will be rewarded or penalized to further improve its
action selection process.

IV. METHODOLOGY

A. Hierarchical Reinforcement Learning

Our system uses hierarchical reinforcement learning [12],
[22], [23] to enable a collaborative robot to adjust its actions
based on the user’s analyzed emotions. The system iteratively
learns over many trials to gain cumulative rewards for its
actions. The robot has its current state s defined from the
current human emotion. There is a set of potential states S =
{51,585, ... Sy} for the total of ¥ human emotions. In the
collaboration, the robot will select an action a to take from a
set of potential actions A = {a,, a,, ... ay } that will reward or
penalize the robot if the outcome of the action was desirable
or not, where N is the total number of potential actions. The
reward R at time t can be represented as:

+R[5q Reward
R,=4 0  Neutral )
—R[5q Penalty

where R 4] is a reward value for a state and action pair[s, a],
which is positive when the system is rewarded for a preferred
action and negative when penalized for an unpreferred one.
When choosing sequential actions, the system measures the
quality of the action using Q-Learning [13], finding the
optimal decision-making policy based on the state and action
pair. These preferences are saved in a table @, where the rows
are based on the potential states s and the columns are based
on the potential actions a (Fig. 2). The table is updated after
each action using the following equation:

Qls,a] = Qls,al + a(r +y(Qls",a'D = Qls,a])  (2)

where Q[s, a] is the reward value in the table for state s and
action a, a represents the learning rate, r represents the
current reward for the state and action pair [s, a], y represents
a discount factor for future rewards Q for the value in the table
for the next for state s’ and action a’. Using the table, the
system can then choose its next action with the following
function:
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Figure 2. Structure of Hierarchical Reinforcement Leaming
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a(s,e) = { (3)
where the selected action a based on a decaying epsilon value
€ representing the probability of exploring other actions by
comparing it to a randomly generated decimal value x
between zero and one, x~U(0,1). The function returns an
action within the action set A, which would either be a random
action choice in the set, or as the action with the maximum
value in the reward table Q based on the current state s.

The system's decision-making has two layers, illustrated
by the heatmaps in Fig. 2. Both layers use the human
collaborator’s emotional states as input but differ in their
action sets. The higher layer selects the type of change:
movement speed, drop-off distance, reaction time, or success
rate. The lower layer then chooses a specific action for that
type: stop, slow, or default speed for movement; close, middle,
or far for drop-off; no, slight, or heavy delay for reaction time;
and correct or incorrect tool pickup for success rate. Based on
the proposed hierarchical reinforcement learning, the system
determines its action type first, then calculates an optimized
sub-action from the action type. The reward for that sub-action
is then given to the respective lower layer table. The higher
layer also receives the reward from the sub-action, but
weighted to balance the choices so one is not preferred over
the other. This can be represented as

Rzllgh — Réower *x wehoice[g ] 4)
where the higher layer reward R:l 9§ set by the lower layer
reward R{°¢" multiplied by the weight of the action choice
wehoice at the state and action pair [s, a]. The weight for the
higher layer action choice is added to have the selection be
balanced instead of preferring one action over another, and is
done after each iteration of training the higher layer. It is
calculated using the following equation:

6))

wehoice[s gl =1 —q (M)

X choicesigq)

where wfh°¢€[s,a] denotes the action choice weight at
training iteration { for each state and action pair [s,a], a
represents the leamning rate, and choices, ) represents the
count of selected action type choices stored in a separate table
generated from the previous training iteration, whose values
are based on the state and action pair [s, a].

B. Human Intention Recognition

For the robot to assist its human collaborator in our
experiments, it needs to be able to follow human instructions.
This paper utilizes a microphone next to the robot to recognize
the user’s voice and recognize human verbal command using
Google Speech-to-Text API [24].

C. Robot Action Control

The system will command the robot to plan its movement
using ROS Moveit [25] to grab the next part. Once the part is
secured in the gripper, the robot will return to its previous
position above the part so there would be no collisions, then
hands off the part to the user in the desired action type
calculated by the hierarchical reinforcement learning method
introduced in the previous Section IV-A. Each time the robot
must grab a selected part; it references an array of set positions
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Figure 4. Human-Robot Co-assembly

with the index being of the part to grab. Each position for the
robot can be represented as:
P? = {U¢, VO € la, 61,V
€ [vminr 17max]r E € [1r K]}

where P¥ denotes the joint setting for arm gesture ¢, ¢ €
{above, grab, drop of f} is sets of saved positions for the
robot to call upon to properly grab a part for the user, ];p

(6)

denotes the rotation angle for joint £ in gesture ¢, V;p denotes
the speed for joint & in gesture ¢ . J ép € [a,0] and V;’ €
[Vimin» Vmax] define the ranges for the rotation angle and the
speed. & € [1, K] defines the total number of joints on the arm
of the collaborative robot.

V. EXPERIMENT

A. Experimental Setup

Fig. 3 displays the experimental setup, where a
collaborative robot will work alongside a human worker to
complete the assembly. The robot used in this experiment is a
Franka Emika Panda robot [5]. The setup also includes a web
camera and microphone to analyze a person’s facial
expressions [6]-[7] and tone of voice to determine their overall
dominant emotion during collaboration [6]. The resulting
emotion output [6]-[7] is sent to the robot controller to decide
how to change its actions accordingly. In the collaborative
task, the robot assisted with assembling a birdhouse by
handing over requested parts upon verbal cues from the user.
As shown in Fig. 4, the user requests a part (a), the robot
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Figure 5. Average Reward Per Episode Graphs

retrieves (b) and hands it over (c), and the user continues
assembly (d), requesting the next part, which the robot
prepares (e). User emotions were captured via microphone and
webcam during the interaction. Based on detected user
emotions [26] (anger, disgust, fear, happiness, neutral, sadness,
and surprise), particularly negative ones, robots use
hierarchical reinforcement learning to adjust actions
(movement speed, drop off distance, reaction time, and/or
success rate) to improve human satisfaction, measured by
increased neutral and happy responses. Meanwhile, the Q-
tables in the hierarchical reinforcement learning model are
updated in real time to adapt to user preferences. Initially, Q-
tables were pre-trained using randomly generated emotions.
To evaluate the robot’s adaptability in collaborative assembly,
participants worked with the robot on repeated birdhouse
assembly tasks. Trained Q-tables were recorded after
approximately 15 and 30 minutes for later comparison.
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B. Experimental Results

Before collaborating with a human, the robot requires
initial training to avoid indecision from zeroed Q-values. To
address this, it undergoes a brief simulated run using randomly
selected emotions to establish a baseline for action-reward
associations. As shown in Fig. 5, training begins with the
lower layer of action choices, followed by the higher layer
using prior results. Initial average rewards may fluctuate near
extreme values but gradually stabilize between 0.3 and 0.4,
indicating convergence and Q-table stabilization. In Fig. 5(b),
average rewards for action types converge earlier, benefiting
from prior lower-layer training. With this baseline, the system
then trained with participants, generating two personalized Q-
tables per person, one after ~15 minutes and another after ~30
minutes. These tables reflect each user’s prevalent emotions
and preferred robot actions. Fig. 6 shows heatmaps of action
type Q-tables used by the system to choose changes in
movement speed, drop-off distance, reaction time, or success
rate. The left column (Fig. 6 (al), Fig. 6 (b1), and Fig. 6 (c1))
displays Q-tables trained after one bird house assembly
averaging at around 15 minutes of training, while the right
column (Fig. 6 (a2), Fig. 6 (b2), and Fig. 6 (c2)) displays Q-
tables after two bird house assemblies averaging at around 30
minutes of training. Each participanthad a set of these Q-tables
specifically for them, resulting in any preferences being visible
when observing which values differed in one table compared
to another. For example, in Fig. 6(al) and Fig. 6(bl),
participants had slightly higher values in drop-off distance and
success rate choices when fear was detected, while in Fig.
6(cl), the participant had similar values across the board for
that emotion. Between the first and second training sessions,
different values in the Q-tables changed displaying either a

TABLE I. QUESTIONNAIRE FOR THE SUBJECTIVE EVALUATION EXPERIMENT

No. Item

1 On a scale from 1-5, do you feel the developed system
was useful for the assigned task?
2 On a scale from 1-5, do you feel the developed system was easy

to use?

3 On a scale from 1-5, do you feel the developed system was safe to
use?

4 On a scale from 1-5, do you feel satisfied with how the developed
system operated?

5 On ascale from 1-5, do you feel people would like to work with a
collaborative robot that adjusts its actions according to their
emotions, like the one in the experiment?

6 On a scale from 1 to 5, how important do you feel it is to have a
collaborative robot that adjusts its actions according to human
emotions to assist with assigned assembly tasks?

7 On a scale from 1 to 5, do you feel the system's behaviors
were relevant to the presented assembly task?

8 On a scale from 1-5, how would you rate the quality of the
collaboration outcome?

9 On a scale from 1-5, how comfortable were you working with Factor Total Average SD
the collaborative robot that adjusts its actions according to your Usefulness 83.5 4.395 0.542
emotions? Ease of use 80.0 4211 0.769

10 | Onascale from 1 to 5, do you think a robot system that adjusts its Safety of the system 93.5 4.921 0.251
actions based on your emotions can enhance your interaction with Satisfaction 79.5 4.184 0.606
it? Preference to work with 86.5 4.553 0.664

11 | Onascale from 1 to 5, do you think the robot adjusting its actions Importance 82.5 4.342 0.746
helps you feel better when you are in negative emotions? Relevance to the task 78.5 4.132 0.797

12 | On a scale from 1 to 5, were you aware that the robot was Quality 79.0 4.158 0.747
attempting to make you feel happier or better via adjusting its Comfort 91.5 4.816 0.380
actions, especially when you were experiencing negative Enhances Interaction 84.0 4421 0.672
emotions, even if its efforts did not immediately affect your User Feels Better 71.0 3.737 1.110
emotion? User Awareness 71.5 3.763 1.019

reinforcement of someone’s preferences if the value increased,
or a correction if the value decreased. For example, the values
for reaction time choices at anger and disgust as well as values
for drop-off distance at happy and neutral had increased from
Fig. 6(cl) to Fig. 6(c2), while the values for choices based on
fear decreased and evened out from Fig. 6(b1) to Fig. 6(b2).
Some preferences for participants were similar, seen in the
higher values for distance choices from happy and neutral
emotions. These preferences may be due to how participants
reacted to the robot being common or could be any preferences
from the reward values becoming known.

C. Subjective Evaluation

To evaluate system performance and user acceptance, 20
participants (11 male, 9 female) were recruited. Thirteen were
aged 18-22, five were 24-30, and two were 60-70.
Participants rated their experience on a 1-5 Likert scale
through a questionnaire covering twelve factors, as shown in
Table 1. A rating of 5 indicates very good quality, high
comfort, or strong agreement, while a rating of 1 reflects very
poor quality, high discomfort, or strong disagreement. Table II
displays the results of the subjective evaluation. The highest-
rated factor was system safety (avg. 4.921), showing strong
agreement that the system felt safe. Comfort followed closely
(avg. 4.816, SD 0.380), indicating consistent feelings of ease
during interaction. Perceived importance and preference for
working with the system also scored high (avgs. 4.342 and
4.553, SDs 0.746 and 0.664), suggesting general approval with
slight variation. Quality, usefulness, and ease of use had
similar averages (4.158, 4.395, and 4.211) and moderate SDs,
reflecting that most participants found the robot helpful and
easy to work with. Relevance (avg. 4.132, SD 0.797) and
satisfaction (avg. 4.184) were also rated well, though
relevance showed more varied opinions. Participants agreed
that emotion-based changes improved collaboration (avg.
4.421, SD 0.672). Emotional impact had the lowest average
(3.737) and highest SD (1.110), showing mixed responses to
this factor. Awareness of the robot's emotional adjustments
was similarly mixed responses (avg. 3.763, SD 1.019),
suggesting varied participant perception. Overall, the
subjective evaluation confirmed the system’s effectiveness
and highlighted areas for improvement. These findings will
inform future studies with a larger participant pool to further
enhance user experience.

VI. CONCLUSION & FUTURE WORKS

This paper presented an emotion-based robotic action
optimization system that adapts robot behavior in response to

TABLE II. SUBJECTIVE EVALUATION RESULTS




human emotional changes using a hierarchical reinforcement
learning approach. Co-assembly of a birdhouse was used for
both objective and subjective evaluations, demonstrating the
system’s effectiveness and informing areas for improvement.
Future work will involve analyzing participant feedback to
enhance system quality and acceptance.
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