
  

  

Abstract—Although collaborative robots aim to boost 

productivity in manufacturing, misalignment between robot’s 

actions and the human’s intentions of the collaboration can 

cause discomfort or frustration, potentially discouraging future 

collaborations. Inspired by human-to-human interactions, this 

paper aims to help solve this problem by enabling a collaborative 

robot to adjust how it moves and acts based on human emotions 

to improve the overall collaboration process. To achieve this 

goal, an emotion-based robotic action optimization system was 

developed and integrated into a collaborative robot. The system 

utilizes hierarchical reinforcement learning (HRL) to train and 

guide the robot to adjust its actions according to detected human 

emotions. Specifically, this paper introduces (1) a HRL model 

that leverages a vision-audio-based emotion recognition model 

to determine and adjust robot actions (movement speed, drop-

off distance, reaction time, and rate of success) according to 

human emotions. The goal of this model is to avoid negative 

emotions of the human user that are triggered by the robot 

actions. (2) A robot motion control method driven by recognized 

human intentions and actions from the HRL model, guiding the 

robot arm and gripper to adjust movements and deliver parts as 

desired. (3) objective and subjective evaluation experiments to 

evaluate the effectiveness of the developed system. The results 

and analysis of the experiments demonstrated the effectiveness 

of our developed system in a human-robot collaboration setting. 

I. INTRODUCTION 

In the manufacturing scene, human-robot collaboration is 
set in stone in the way the robots interact with their human 
collaborators. The main purpose of these collaborations is to 
improve productivity and efficiency, relying on repetitive and 
predictable movements to do so [1]–[4]. This method of 
interactions can be effective, but the preprogrammed motions 
could potentially deter any future collaborations or even leave 
the human collaborators feeling uncomfortable or irritated by 
the robot’s actions if they do not align with the human’s 
expectations. As such, a challenge in enhancing human-robot 
collaboration would be to take a human’s emotional state into 
consideration when a collaborative robot decides its next 
sequence of actions. To enable a collaborative robot to adapt 
its actions based on the emotions of its human collaborator and 
draw inspiration from human-to-human interactions, this 
paper develops an emotion-based robotic action optimization 
system. The system employs a hierarchical reinforcement 
learning approach to train the robot to modify its actions while 
considering the emotions of its human collaborator. This 
optimization system has been developed and integrated into a 
Franka Emika Panda robot arm [5], utilizing a human’s 
recognized emotions [6], [7] to adjust its various actions with 
changes in its movement speed, drop-off distance, reaction 
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time, and rate of success. Specifically, our work includes the 
following three parts. First, the training of a hierarchical 
reinforcement learning model that uses the recognized visual-
audio information-based emotions to determine the desired 
robot actions that need to be optimized. Second, recognizing 
the human collaborator’s intentions via vocal commands to 
enable the robot to call upon a specific order of saved joint 
state positions to assist in co-assembly tasks. Third, validation 
experiments and subjective user evaluations to evaluate the 
effectiveness of the robot’s changing actions through real-
world assembly tasks. The results and analysis of the 
experiment help demonstrate the effectiveness of our 
developed system in a human-robot collaboration setting.  

This paper’s contributions are: (1) developing an emotion-
based robotic action optimization system that adjusts robot 
actions to human emotions for a friendly human-robot 
collaboration; (2) creating a hierarchical reinforcement 
learning system that updates user preferences online and in 
real-time, enabling flexible, easy training; and (3) 
implementing a lightweight method that considers 
personalized emotional factors, allowing the robot to 
dynamically respond to emotional changes. 

II. RELATED WORKS 

A. Deep Learning in Manufacturing Robots 

Deep learning [8] has been applied to manufacturing 
robots for tasks like object detection. Chen et al. [9] used a 
faster R-CNN to train a UR5 robot to recognize objects such 
as tools and office supplies. The model, trained with various 
backbones (VGG-M, VGG-16) and different datasets, 
achieved 67.9% accuracy on a 10-class test set. Deep learning 
can also help predict human motion in human-robot 
collaboration. For example, Liu et al. [10] used a combined 
CNN-LSTM model to forecast human movements during a 
computer assembly task, achieving up to 83% accuracy. 
Another study done by Male et al. [11] used a CNN and 
wearable IMUs to help a UR3 robot recognize its environment 
and a human's actions during an assembly task. The system, 
tested in assembling a box and seat, accurately predicted action 
status in both offline and online trials. Wang et al [1] proposed 
a teaching-learning collaboration (TLC) model and deployed 
it on a UR10 robot arm. Based on maximum entropy inverse 
reinforcement learning, this TLC model (MaxEnt-IRL) 
allowed a human to program the collaborative robot using 
natural language instructions to demonstrate how to complete 
the assembly task. Another example, developed by Murphy et 
al [6], utilizes a lightweight facial recognition based on 
convolutional neural networks (CNN) to enable a Franka 
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Emika Panda collaborative robot to understand human 
emotions during co-assembly tasks. 

B. Reinforcement Learning in Robotics Control 

Reinforcement learning [12] enables robots to learn 
through trial and error, receiving rewards based on their 
actions. Implementation ranges from simple Q-Learning tables 
[13] to complex models combining reinforcement learning 
with deep learning [14], [15] for handling larger action spaces. 
Švaco et al. [16] developed a reinforcement learning algorithm 
for a UR3 robot to minimize actions when moving an object to 
a target. Their system achieved optimal performance with a 
learning rate of 0.4 and a discount factor of 0.6 as training 
progressed. Utilizing deep reinforcement learning, robots can 
learn to traverse complex paths to a designated target  [17], 
[18]. For example, Iskandar et al. [19] used deep reinforcement 
learning to train swarm robots to navigate toward a target. 
Each simulated Webot learned individually while interacting 
with the swarm and environment. Over time, their total 
number of collisions decreased while gained rewards and the 
number of goals reached increased. Reinforcement learning is 
also used frequently in robots designed for manufacturing as 
well. One example of such was deployed by Pane et al. [20] 
onto a UR5 robot to train it to follow shaped paths. Using an 
actor-critic method, the robot’s performance was measured by 
temporal difference rewards. Tested on square, circle, and 
custom paths, the reinforcement learning approach 
outperformed PD, MPC, and ILC controllers on the square and 
circular task. Another study by Oliff et al. [21] introduced a 
deep Q-learning (DQN) agent in a human-robot manufacturing 
simulation. Using shaped rewards to enforce assembly rules, 
their system reduced idle time and minimized performance 

disparities across operators and robots. 

III. SYSTEM OVERVIEW 

This paper introduces an emotion-based robotic action 
optimization (ERAO) system (Fig. 1) designed for 
collaborative robots. The system focuses on optimizing four 
key factors that influence co-assembly tasks and human 
emotions: movement speed, drop-off distance, reaction time, 
and success rate. These factors are selected due to their 
significant impact on collaboration quality and task success, 
which in turn affect human emotional responses during 
interaction. To recognize human emotions, the system uses a 
combination of visual and audio data, analyzing both facial 
expressions and speech. Additionally, human intentions are 

identified using natural language processing. Based on the 
detected emotions and intentions, the robot employs a 
hierarchical reinforcement learning framework to optimize its 
actions which is aiming to enhance human satisfaction by 
promoting neutral or positive emotional states. The 
hierarchical reinforcement learning framework include two 
layers: a higher layer for selecting what type of action 
adjustment the robot must make and a lower layer for the sub-
action choices for each adjustment type. Depending on a 
person’s recognized emotions and the previously trained 
values in the sets of Q-tables, the system chooses first from the 
higher layer which type of adjustment is needed, then repeat 
the process on the lower layer with the specific action choice. 
Throughout the collaboration, the human can vocally 
command the collaborative robot to hand them the next 
necessary assembly part. Once the robot recognizes the intent 
of the command, it will go through set joint state positions for 
the target gesture to retrieve the assembly part and hand it to 
the human. Depending on real-time human emotions, the 
system will be rewarded or penalized to further improve its 
action selection process. 

IV. METHODOLOGY 

A.  Hierarchical Reinforcement Learning 

Our system uses hierarchical reinforcement learning [12], 
[22], [23] to enable a collaborative robot to adjust its actions 
based on the user’s analyzed emotions. The system iteratively 
learns over many trials to gain cumulative rewards for its 
actions. The robot has its current state 𝑠  defined from the 
current human emotion. There is a set of potential states 𝑆 =
{𝑠1 , 𝑠2, … 𝑠Ψ}  for the total of Ψ  human emotions. In the 
collaboration, the robot will select an action 𝑎 to take from a 

set of potential actions 𝐴 = {𝑎1, 𝑎2, … 𝑎𝑁} that will reward or 
penalize the robot if the outcome of the action was desirable 
or not, where 𝑁 is the total number of potential actions. The 
reward 𝑅 at time 𝑡 can be represented as: 

 𝑅𝑡 = {

+𝑅[𝑠,𝑎] 𝑅𝑒𝑤𝑎𝑟𝑑

0 𝑁𝑒𝑢𝑡𝑟𝑎𝑙
−𝑅[𝑠,𝑎] 𝑃𝑒𝑛𝑎𝑙𝑡𝑦

 (1) 

where 𝑅[𝑠,𝑎] is a reward value for a state and action pair[𝑠, 𝑎], 
which is positive when the system is rewarded for a preferred 
action and negative when penalized for an unpreferred one. 
When choosing sequential actions, the system measures the 
quality of the action using Q-Learning [13], finding the 
optimal decision-making policy based on the state and action 
pair. These preferences are saved in a table 𝑄, where the rows 
are based on the potential states 𝑠 and the columns are based 
on the potential actions 𝑎 (Fig. 2). The table is updated after 
each action using the following equation: 

𝑄[𝑠, 𝑎] = 𝑄[𝑠, 𝑎] + 𝛼(𝑟 + 𝛾(𝑄[𝑠′, 𝑎′]) − 𝑄[𝑠, 𝑎]) (2) 

where 𝑄[𝑠, 𝑎] is the reward value in the table for state 𝑠 and 
action 𝑎 , 𝛼  represents the learning rate, 𝑟  represents the 
current reward for the state and action pair [𝑠, 𝑎], 𝛾 represents 
a discount factor for future rewards 𝑄 for the value in the table 
for the next for state 𝑠′  and action 𝑎′ . Using the table, the 
system can then choose its next action with the following 
function:  

 
Figure 1. ERAO System Overview 



  

 
𝑎(𝑠, 𝜀) = {

𝑟𝑎𝑛𝑑𝑜𝑚(𝐴)                              𝜀 < 𝑥 

𝑎𝑟𝑔𝑚𝑎𝑥 (𝑄[𝑠, 𝐴])                       𝜀 ≥ 𝑥
 (3) 

where the selected action 𝑎 based on a decaying epsilon value 
𝜀  representing the probability of exploring other actions by 
comparing it to a randomly generated decimal value 𝑥 
between zero and one, 𝑥~𝑈(0,1) . The function returns an 
action within the action set 𝐴, which would either be a random 
action choice in the set, or as the action with the maximum 

value in the reward table 𝑄 based on the current state 𝑠. 

The system's decision-making has two layers, illustrated 
by the heatmaps in Fig. 2. Both layers use the human 
collaborator’s emotional states as input but differ in their 
action sets. The higher layer selects the type of change: 
movement speed, drop-off distance, reaction time, or success 
rate. The lower layer then chooses a specific action for that 
type: stop, slow, or default speed for movement; close, middle, 
or far for drop-off; no, slight, or heavy delay for reaction time; 
and correct or incorrect tool pickup for success rate. Based on 
the proposed hierarchical reinforcement learning, the system 
determines its action type first, then calculates an optimized 
sub-action from the action type. The reward for that sub-action 
is then given to the respective lower layer table. The higher 
layer also receives the reward from the sub-action, but 
weighted to balance the choices so one is not preferred over 
the other. This can be represented as 

 𝑅𝑡
ℎ𝑖𝑔ℎ

= 𝑅𝑡
𝑙𝑜𝑤𝑒𝑟 ∗ 𝑤𝑐ℎ𝑜𝑖𝑐𝑒 [𝑠, 𝑎] (4) 

where the higher layer reward 𝑅𝑡
ℎ𝑖𝑔ℎ

 is set by the lower layer 

reward 𝑅𝑡
𝑙𝑜𝑤𝑒𝑟  multiplied by the weight of the action choice 

𝑤𝑐ℎ𝑜𝑖𝑐𝑒  at the state and action pair [𝑠, 𝑎]. The weight for the 
higher layer action choice is added to have the selection be 
balanced instead of preferring one action over another, and is 
done after each iteration of training the higher layer. It is 
calculated using the following equation:  

 
𝑤𝑖

𝑐ℎ𝑜𝑖𝑐𝑒[𝑠, 𝑎] = 1 − 𝛼 (
𝑐ℎ𝑜𝑖𝑐𝑒𝑠[𝑠,𝑎]

∑ 𝑐ℎ𝑜𝑖𝑐𝑒𝑠[𝑠,𝑎]𝑎

) (5) 

where 𝑤𝑖
𝑐ℎ𝑜𝑖𝑐𝑒[𝑠, 𝑎]  denotes the action choice weight at 

training iteration 𝑖  for each state and action pair [𝑠, 𝑎] , 𝛼 

represents the learning rate, and 𝑐ℎ𝑜𝑖𝑐𝑒𝑠[𝑠,𝑎]  represents the 

count of selected action type choices stored in a separate table 
generated from the previous training iteration, whose values 
are based on the state and action pair [𝑠, 𝑎]. 

B. Human Intention Recognition 

For the robot to assist its human collaborator in our 
experiments, it needs to be able to follow human instructions. 
This paper utilizes a microphone next to the robot to recognize 
the user’s voice and recognize human verbal command using 

Google Speech-to-Text API [24]. 

C. Robot Action Control 

 The system will command the robot to plan its movement 
using ROS Moveit [25] to grab the next part. Once the part is 
secured in the gripper, the robot will return to its previous 
position above the part so there would be no collisions, then 
hands off the part to the user in the desired action type 
calculated by the hierarchical reinforcement learning method 
introduced in the previous Section IV-A. Each time the robot 
must grab a selected part; it references an array of set positions 

 
Figure 3. Experimental Setup 

 
Figure 2. Structure of Hierarchical Reinforcement Learning 



  

with the index being of the part to grab. Each position for the 

robot can be represented as: 

 𝑃𝜑 = {(𝐽𝜉

𝜑
, 𝑉𝜉

𝜑
)|𝐽𝜉

𝜑
∈ [𝛼, 𝜃], 𝑉𝜉

𝜑

∈ [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥], 𝜉 ∈ [1, 𝐾]} 
(6) 

where 𝑃𝜑  denotes the joint setting for arm gesture 𝜑 , 𝜑 ∈
{𝑎𝑏𝑜𝑣𝑒, 𝑔𝑟𝑎𝑏, 𝑑𝑟𝑜𝑝 𝑜𝑓𝑓} is sets of saved positions for the 

robot to call upon to properly grab a part for the user, 𝐽𝜉

𝜑
 

denotes the rotation angle for joint 𝜉 in gesture 𝜑, 𝑉𝜉

𝜑
 denotes 

the speed for joint 𝜉  in gesture 𝜑 . 𝐽𝜉

𝜑
∈ [𝛼, 𝜃]  and 𝑉𝜉

𝜑
∈

[𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥] define the ranges for the rotation angle and the 
speed.  𝜉 ∈ [1, 𝐾] defines the total number of joints on the arm 

of the collaborative robot. 

V. EXPERIMENT 

A. Experimental Setup 

Fig. 3 displays the experimental setup, where a 
collaborative robot will work alongside a human worker to 
complete the assembly. The robot used in this experiment is a 
Franka Emika Panda robot [5]. The setup also includes a web 
camera and microphone to analyze a person’s facial 
expressions [6]-[7] and tone of voice to determine their overall 
dominant emotion during collaboration [6]. The resulting 
emotion output [6]-[7] is sent to the robot controller to decide 
how to change its actions accordingly. In the collaborative 
task, the robot assisted with assembling a birdhouse by 
handing over requested parts upon verbal cues from the user. 
As shown in Fig. 4, the user requests a part (a), the robot 

retrieves (b) and hands it over (c), and the user continues 
assembly (d), requesting the next part, which the robot 
prepares (e). User emotions were captured via microphone and 
webcam during the interaction. Based on detected user 
emotions [26] (anger, disgust, fear, happiness, neutral, sadness, 
and surprise), particularly negative ones, robots use 
hierarchical reinforcement learning to adjust actions 
(movement speed, drop off distance, reaction time, and/or 
success rate) to improve human satisfaction, measured by 
increased neutral and happy responses. Meanwhile, the Q-
tables in the hierarchical reinforcement learning model are 
updated in real time to adapt to user preferences. Initially, Q-
tables were pre-trained using randomly generated emotions. 
To evaluate the robot’s adaptability in collaborative assembly, 
participants worked with the robot on repeated birdhouse 
assembly tasks. Trained Q-tables were recorded after 
approximately 15 and 30 minutes for later comparison. 

 
Figure 4. Human-Robot Co-assembly 

 
Figure 5. Average Reward Per Episode Graphs 

 
Figure 6. Heatmaps of Participants’ Action Choice Q-Tables 



  

B. Experimental Results 

Before collaborating with a human, the robot requires 
initial training to avoid indecision from zeroed Q-values. To 
address this, it undergoes a brief simulated run using randomly 
selected emotions to establish a baseline for action-reward 
associations. As shown in Fig. 5, training begins with the 
lower layer of action choices, followed by the higher layer 
using prior results. Initial average rewards may fluctuate near 
extreme values but gradually stabilize between 0.3 and 0.4, 
indicating convergence and Q-table stabilization. In Fig. 5(b), 
average rewards for action types converge earlier, benefiting 
from prior lower-layer training. With this baseline, the system 
then trained with participants, generating two personalized Q-
tables per person, one after ~15 minutes and another after ~30 
minutes. These tables reflect each user’s prevalent emotions 
and preferred robot actions. Fig. 6 shows heatmaps of action 
type Q-tables used by the system to choose changes in 
movement speed, drop-off distance, reaction time, or success 
rate. The left column (Fig. 6 (a1), Fig. 6 (b1), and Fig. 6 (c1)) 
displays Q-tables trained after one bird house assembly 
averaging at around 15 minutes of training, while the right 
column (Fig. 6 (a2), Fig. 6 (b2), and Fig. 6 (c2)) displays Q-
tables after two bird house assemblies averaging at around 30 
minutes of training. Each participant had a set of these Q-tables 
specifically for them, resulting in any preferences being visible 
when observing which values differed in one table compared 
to another. For example, in Fig. 6(a1) and Fig. 6(b1), 
participants had slightly higher values in drop-off distance and 
success rate choices when fear was detected, while in Fig. 
6(c1), the participant had similar values across the board for 
that emotion. Between the first and second training sessions, 
different values in the Q-tables changed displaying either a 

reinforcement of someone’s preferences if the value increased, 
or a correction if the value decreased. For example, the values 
for reaction time choices at anger and disgust as well as values 
for drop-off distance at happy and neutral had increased from 
Fig. 6(c1) to Fig. 6(c2), while the values for choices based on 
fear decreased and evened out from Fig. 6(b1) to Fig. 6(b2). 
Some preferences for participants were similar, seen in the 
higher values for distance choices from happy and neutral 
emotions. These preferences may be due to how participants 
reacted to the robot being common or could be any preferences 
from the reward values becoming known. 

C. Subjective Evaluation 

To evaluate system performance and user acceptance, 20 
participants (11 male, 9 female) were recruited. Thirteen were 
aged 18–22, five were 24–30, and two were 60–70. 
Participants rated their experience on a 1–5 Likert scale 
through a questionnaire covering twelve factors, as shown in 
Table I. A rating of 5 indicates very good quality, high 
comfort, or strong agreement, while a rating of 1 reflects very 
poor quality, high discomfort, or strong disagreement. Table II 
displays the results of the subjective evaluation. The highest-
rated factor was system safety (avg. 4.921), showing strong 
agreement that the system felt safe. Comfort followed closely 
(avg. 4.816, SD 0.380), indicating consistent feelings of ease 
during interaction. Perceived importance and preference for 
working with the system also scored high (avgs. 4.342 and 
4.553, SDs 0.746 and 0.664), suggesting general approval with 
slight variation. Quality, usefulness, and ease of use had 
similar averages (4.158, 4.395, and 4.211) and moderate SDs, 
reflecting that most participants found the robot helpful and 
easy to work with. Relevance (avg. 4.132, SD 0.797) and 
satisfaction (avg. 4.184) were also rated well, though 
relevance showed more varied opinions. Participants agreed 
that emotion-based changes improved collaboration (avg. 
4.421, SD 0.672). Emotional impact had the lowest average 
(3.737) and highest SD (1.110), showing mixed responses to 
this factor. Awareness of the robot's emotional adjustments 
was similarly mixed responses (avg. 3.763, SD 1.019), 
suggesting varied participant perception. Overall, the 
subjective evaluation confirmed the system’s effectiveness 
and highlighted areas for improvement. These findings will 
inform future studies with a larger participant pool to further 
enhance user experience. 

VI. CONCLUSION & FUTURE WORKS 

This paper presented an emotion-based robotic action 
optimization system that adapts robot behavior in response to 

TABLE I. QUESTIONNAIRE FOR THE SUBJECTIVE EVALUATION EXPERIMENT 

No. Item 

1 On a scale from 1-5, do you feel the developed system 

was useful for the assigned task? 

2 On a scale from 1-5, do you feel the developed system was easy 

to use? 

3 On a scale from 1-5, do you feel the developed system was safe to 

use? 

4 On a scale from 1-5, do you feel satisfied with how the developed 

system operated? 

5 On a scale from 1-5, do you feel people would like to work with a 

collaborative robot that adjusts its actions according to their 

emotions, like the one in the experiment? 

6 On a scale from 1 to 5, how important do you feel it is to have a 

collaborative robot that adjusts its actions according to human 
emotions to assist with assigned assembly tasks?  

7 On a scale from 1 to 5, do you feel the system's behaviors 
were relevant to the presented assembly task? 

8 On a scale from 1-5, how would you rate the quality of the 
collaboration outcome? 

9 On a scale from 1-5, how comfortable were you working with 
the collaborative robot that adjusts its actions according to your 

emotions? 

10 On a scale from 1 to 5, do you think a robot system that adjusts its 

actions based on your emotions can enhance your interaction with 

it?  

11 On a scale from 1 to 5, do you think the robot adjusting its actions 

helps you feel better when you are in negative emotions? 

12 On a scale from 1 to 5, were you aware that the robot was 

attempting to make you feel happier or better via adjusting its 
actions, especially when you were experiencing negative 

emotions, even if its efforts did not immediately affect your 

emotion? 

 

TABLE II. SUBJECTIVE EVALUATION RESULTS 

Factor Total Average SD 

Usefulness 83.5 4.395 0.542 

Ease of use 80.0 4.211 0.769 

Safety of the system 93.5 4.921 0.251 

Satisfaction 79.5 4.184 0.606 

Preference to work with 86.5 4.553 0.664 

Importance 82.5 4.342 0.746 

Relevance to the task 78.5 4.132 0.797 

Quality 79.0 4.158 0.747 

Comfort 91.5 4.816 0.380 

Enhances Interaction 84.0 4.421 0.672 

User Feels Better 71.0 3.737 1.110 

User Awareness 71.5 3.763 1.019 

 



  

human emotional changes using a hierarchical reinforcement 
learning approach. Co-assembly of a birdhouse was used for 
both objective and subjective evaluations, demonstrating the 
system’s effectiveness and informing areas for improvement. 
Future work will involve analyzing participant feedback to 
enhance system quality and acceptance. 
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