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Abstract—Based on transformed ℓ1 regularization, trans-
formed total variation (TTV) has robust image recovery that
is competitive with other nonconvex total variation (TV) regu-
larizers, such as TVp, 0 < p < 1. Inspired by its performance,
we propose a TTV-regularized Mumford–Shah model with fuzzy
membership function for image segmentation. To solve it, we
design an alternating direction method of multipliers (ADMM)
algorithm that utilizes the transformed ℓ1 proximal operator.
Numerical experiments demonstrate that using TTV is more
effective than classical TV and other nonconvex TV variants in
image segmentation.

Index Terms—image segmentation, total variation, ADMM,
fuzzy membership function

I. INTRODUCTION

Image segmentation partitions an image into disjoint re-
gions, where each region shares similar characteristics such
as intensity, color, and texture. Penalizing the total length of
the edges/boundaries of objects in an image, one fundamental
model in image segmentation was proposed by Mumford and
Shah [1]. Given a bounded, open set Ω ⊂ R2 with Lipschitz
boundary and an observed image f : Ω → R, the Mumford–
Shah (MS) functional to be minimized for segmentation is

min
u,C

λ

∫
Ω

|f − u|2 dx+ µ · length (C) +

∫
Ω\C

|∇u|2 dx

where µ and λ are positive parameters, C ⊂ Ω is a compact
curve representing the boundaries between disparate objects,
and u : Ω → R is a piecewise-smooth function on Ω\C. While
the MS model is robust to noise, it can be difficult to solve
numerically because the unknown set of edges needs to be
discretized [2].

Simplifying the MS model, Chan and Vese [3] developed a
model that approximates a two-region, or two-phase, image f
with a piecewise-constant function u. They model the region
boundary C with a Lipschitz continuous level-set function [4].
A multiphase model [5] was later formulated using multiple
level-set functions, but it can only be applied to images with
exactly 2k number of regions for k ∈ N. Another method [6]
to describe the different regions of an image is by a fuzzy
membership function U = (u1, . . . , uN ), where

N∑
i=1

ui(x, y) = 1, 0 ≤ ui(x, y) ≤ 1 for i = 1, . . . , N, (1)
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at each pixel (x, y) ∈ Ω. Under this framework, each image
pixel can belong to multiple regions simultaneously with prob-
ability in [0, 1]. As a result, the general N -phase segmentation
problem [6] is proposed:

min
U,c

N∑
i=1

{∫
Ω

(f − ci)
2ui dx+ λ

∫
Ω

|∇ui| dx
}
, (2)

where c = (c1, c2, . . . , cN ) ∈ RN . Some variants of (2) have
been developed for different cases. For example, (2) with ℓ1
fidelity instead of ℓ2 fidelity was proposed to perform image
segmentation under impulsive noise [7]. To deal with image
inhomogeneity, (2) was revised to account for a multiplicative
bias field [8].

Since the total variation (TV) regularization
∫
Ω
|∇u| dx

applies the ℓ1 regularization on the image gradient, noise is
suppressed while edges are preserved. However, TV can result
in blocky artifacts and staircase effects along the edges [9].
Because TV regularization is a convex proxy of the ∥∇u∥0,
which exactly counts the number of jump discontinuities
representing the image edges, nonconvex alternatives were
investigated, showcasing more accurate results. Based on the
ℓp, 0 < p < 1, quasinorm that outperforms ℓ1 regularization
in compressed sensing problems [10], the TVp regularization
found success in image restoration [11], motivating the TVp

variant [12] of (2). However, ℓ1 − ℓ2 regularization [13]
outperformed the ℓp regularization in compressed sensing ex-
periments, thereby motivating the development of the weighted
anisotropic–isotropic TV (AITV) [14]. An AITV variant [15]
of (2) was later formulated.

In recent years, the transformed ℓ1 (TL1) regularization
has been effective at robustly finding sparse solutions in
signal recovery [16], [17] and deep learning [18]. The TL1
regularization is given by

∥x∥TL1(a) =

n∑
i=1

ρa(xi), x ∈ Rn, (3)

where

ρa(t) =
(a+ 1)|t|
a+ |t|

, t ∈ R,

and a ∈ (0,∞) determines the sparsity of the solution. Trans-
formed TV (TTV) [19] extends TL1 onto the image gradient,
serving as an effective regularization that can outperform TV
and AITV in image recovery.
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In this paper, we propose an image segmentation model
that combines fuzzy membership function and the TTV reg-
ularization. To effectively solve the model, we propose an
alternating direction method of multipliers (ADMM) algorithm
[20] utilizing the closed-form TL1 proximal operator [16]. Our
numerical results show that the proposed model and algorithm
are effective in obtaining accurate segmentation results.

II. PROPOSED APPROACH

For simplicity, we will use discrete notation, i.e., matrices
and vectors, throughout the rest of the paper. We represent
an image f as an m × n matrix in the Euclidean space
X := Rm×n, equipped with the usual inner product denoted
by ⟨·, ·⟩. To discretize the image gradient, we introduce the
space Y := X × X with the inner product by ⟨p, q⟩ =
⟨p1, q1⟩ + ⟨p2, q2⟩ where p = (p1, p2), q = (q1, q2) ∈ Y .
The discrete gradient operator ∇ : X → Y is given by
(∇u)i,j = ((∇xu)i,j , (∇yu)i,j), where ∇x,∇y are the hor-
izontal and vertical difference operators.

The discrete version of (2) is formulated by

min
U∈S,c∈RN

N∑
k=1

⟨(f − ck)
2, uk⟩+ λ∥∇uk∥2,1,

where

S =

U ∈ XN :

m∑
i=1

n∑
j=1

ui,j = 1, ui,j ≥ 0 ∀i, j


and ∥p∥2,1 =

∑m
i=1

∑n
j=1

√
(p1)2i,j + (p2)2i,j for p =

(p1, p2) ∈ Y . However, being based on the ℓ1 norm, TV may
not be effective in edge preservation and noise suppression
as its nonconvex counterparts such as TTV. Therefore, we
propose the following TTV-regularized segmentation model:

min
U∈S,c∈RN

N∑
k=1

⟨(f − ck)
2, uk⟩+ λ∥∇uk∥TL1(a), (4)

where

∥∇u∥TL1(a) =

m∑
i=1

n∑
j=1

(ρa(∇xui,j) + ρa(∇yui,j)) . (5)

To solve (4), we develop an ADMM algorithm. We introduce
auxiliary variables V = (v1, . . . , vN ) and D = (d1, . . . , dN )
such that uk = vk and dk = ∇vk for k = 1, . . . , N . The
augmented Lagrangian is the following:

L(U,D, V, p, q, c) =

N∑
k=1

[
⟨(f − ck)

2, uk⟩+ λ∥dk∥TL1(a)
]

+ χS(U) + ⟨p, U − V ⟩+ β1

2
∥U − V ∥22

+

N∑
k=1

(
⟨qk,∇vk − dk⟩+

β2

2
∥∇vk − dk∥22

)
,

where χS is an indicator function for the simplex S, p and
qk = ((qx)k, (qy)k), k = 1, . . . , N, are Lagrange multipliers,

and β1, β2 > 0 are penalty parameters. For each iteration t,
the ADMM algorithm is as follows:

U t+1 ∈ argmin
U

L(U,Dt, V t, pt, qt, ct),

Dt+1 ∈ argmin
D

L(U t+1, D, V t, pt, qt, ct),

V t+1 ∈ argmin
v

L(U t+1, Dt+1, V, pt, qt, ct),

pt+1 = pt + β1(U
t+1 − V t+1),

qt+1
k = qtk + β2(∇vt+1

k − dt+1
k ), k = 1, . . . , N,

ct+1
k ∈ argmin

ck

N∑
j=1

(f − ck)
2ut+1

k , k = 1, . . . , N.

Now we describe how to solve each subproblem. With F t =(
(f − ct1)

2, (f − ct2)
2, . . . , (f − ctN )2

)
, the U -subproblem can

be rewritten as

U t+1 ∈ argmin
U

⟨F t + pt, U⟩+ β1

2
∥U − V t∥22 + χS(U)

= argmin
U∈S

β1

2

∥∥∥∥U −
(
V t − F t + pt

β1

)∥∥∥∥2
2

= projS

(
V t − F t + pt

β1

)
,

where projS is the projection onto a simplex. The simplex
projection algorithm is described in [21]. Each kth component
of the D-subproblem can be solved individually as follows:

dt+1
k ∈ argmin

dk

λ∥dk∥TL1(a) +
β2

2

∥∥∥∥dk −
(
∇vtk +

qtk
β2

)∥∥∥∥2
2

.

(6)

Reducing (6) at each pixel (i, j), we have

(dt+1
k )i,j =

(
prox λ

β2
∥·∥TL1(a)

(
∇x(vk)

t
i,j +

((qx)k)
t
i,j

β2

)
,

prox λ
β2

∥·∥TL1(a)

(
∇y(vk)

t
i,j +

((qy)k)
t
i,j

β2

))
,

(7)

where

proxλ∥·∥TL1(a)
(x) = argmin

y
∥y∥TL1(a) +

1

2λ
∥y − x∥22 (8)

is the proximal operator for TL1. The TL1 proximal operator
has a closed-form solution provided in the lemma below.

Lemma 1 ( [16]): Given x ∈ Rn, the optimal solution to
(8) is

proxλ∥·∥TL1(a)
(x) = (Ta,λ(x1), . . . , Ta,λ(xn)) ,

with

Ta,λ(t) =

{
0 if |t| ≤ τ(a, λ),

ga,λ(t) if |t| > τ(a, λ)

where

ga,λ(t) = sign(t)
(
2

3
(a+ |t|) cos

(
ϕa,λ(t)

3

)
− 2a

3
+

|t|
3

)
,
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ϕa,λ(t) = arccos

(
1− 27λa(a+ 1)

2(a+ |t|)3

)
,

and

τ(a, λ) =

{√
2λ(a+ 1)− a

2 if λ > a2

2(a+1) ,

λa+1
a if λ ≤ a2

2(a+1) .

The V -subproblem is separable with respect to each vk, so it
can be simplified as

vt+1
k ∈ argmin

vk

⟨ptk, ut+1
k − vk⟩+

β1

2
∥ut+1

k − vk∥22

+ ⟨qtk,∇vk − dt+1
k ⟩+ β2

2
∥∇vk − dt+1

k ∥22,

which is equivalent to the first-order optimality condition

(β1I − β2∆)vk = ptk + β1u
t+1
k −∇⊤(qtk − β2d

t+1
k ).

Assuming periodic boundary condition, we can solve this via
Fourier Transform F [22]. Hence, we have

vt+1
k = F−1

(
F(ptk + β1u

t+1
k −∇⊤(qtk − β2d

t+1
k ))

β1I − β2F(∆)

)
.

Lastly, solving the ck-subproblem is equivalent to

ct+1
k =

∑
i,j

fi,j(u
t+1
k )i,j∑

i,j

(ut+1
k )i,j

.

The overall ADMM algorithm to solve (4) is summarized
in Algorithm 1.

Algorithm 1 ADMM for (4)
Require: Image f ; regularization parameter λ; sparsity parameter a; penalty parameter

β1, β2.
1: Initialize V 0, p0, q0, c0.
2: Set t = 0.
3: while ∥Ut−Ut−1∥F

∥Ut∥F
> ϵ do

4: Compute Ut+1 = projS
(
V t − Ft+pt

β1

)
. See [21] for projection algorithm.

5: Compute Dt+1 according to (7).

6: Compute vt+1
k = F−1

(
F(ptk+β1u

t+1
k

−∇⊤(qtk−β2d
t+1
k

))

β1I−β2F(∆)

)
for each

k = 1, . . . , N .
7: Compute pt+1 = pt + β1(U

t+1 − V t+1)
8: Compute qt+1

k = qtk + β2(∇vt+1
k − dt+1

k ) for each k = 1, . . . , N .

9: Compute ct+1
k =

∑
i,j

fi,j(u
t+1
k )i,j∑

i,j

(u
t+1
k )i,j

for each k = 1, . . . , N .

10: t := t + 1.
11: end while
12: return Ut, Ct.

III. EXPERIMENTAL RESULTS

We compare the performance of the proposed TTV-
regularized image segmentation model with its counterparts
regularized by (isotropic) TV [8], TVp [12], and AITV [15].
The algorithm we use for TV is similar to Algorithm 1 in
that we use the ℓ2,1 proximal operator in (7). For TVp, we
use the ADMM algorithm following [12] but without the
bias term for fair comparison and set p = 1/3 as suggested.

(a) Vessel 1 (b) Vessel 2 (c) Vessel 3

(d) Brain 1 (e) Brain 2 (f) Brain 3 (g) Brain 4

Fig. 1: Original images for testing. (a)-(c) Retinal vessel
images from the DRIVE dataset [23]. Image size is 584×565
with pixel intensities 191 (vessel) and 104 (background). (d)-
(g) Brain images from the BrainWeb dataset [24]. Image
size is 104 × 87 with pixel intensities 10 (background),
48 (cerebrospinal fluid), 106 (grey matter), and 154 (white
matter).

For AITV, we use the difference-of-convex algorithm (DCA)
[25] designed in [15] and set α = 0.5 as suggested. The
image segmentation models are applied to the images shown
in Figure 1. For Figures 1a-1c, we perform binary segmenta-
tion to identify the retina vessels, while for Figures 1d-1g,
we perform multiphase segmentation (N = 4) to identify
the cerebrospinal fluid (CSF), grey matter (GM), and white
matter (WM) separate from the background. We evaluate the
segmentation performance by two metrics: DICE index [26]
and Jaccard similarity index [27]. The parameters for each
segmentation method are carefully tuned so that we obtain the
best DICE indices. Specifically, for Algorithm 1 that solves
(4), we set β1 = β2 = 0.25 and find the optimal parameter
λ in the range [0.0025, 0.05] for both binary and multiphase
segmentation. For binary segmentation, we select the best
value for a ∈ {5, 10, 100} while for multiphase segmentation,
we select for a ∈ {1, 5, 10}. Algorithm 1 is initialized with
the results of fuzzy c-means clustering [28] and it terminates
either when ∥Ut−Ut−1∥F

∥Ut∥F
< 10−4 or after 200 iterations. The

experiments are performed in MATLAB R2022b on a Dell lap-
top with a 1.80 GHz Intel Core i7-8565U processor and 16.0
GB of RAM. The code for Algorithm 1 is available at https:
//github.com/JimTheBarbarian/Official-TTV-Segmentation.

Before applying the segmentation algorithms, the images
in Figure 1 are normalized to [0, 1] followed by Gaussian
noise corruption. The retina vessel images are corrupted with
Gaussian noise of mean 0 and variance 0.01. Table I reports
the performances and times of the segmentation methods on
the retina vessel images while Figure 2 shows some of their
results. TTV (a = 10, 100) has the highest DICE and Jaccard
similarity indices across the three images although requiring
about 80 seconds to complete, thereby being slower than TV
and TVp. The brain images are corrupted with Gaussian noise
of mean 0 and variance 0.04. Table II reports the performances
and times of the multiphase segmentation, while Figure 3
shows the segmentation results of Figure 1g. By its DICE and
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(a) Vessel 1

(b) Vessel 2

Fig. 2: Segmentation results of Figures 1a-1b (after normalization) corrupted by Gaussian noise of mean 0 and variance 0.01.

Jaccard similarity indices, TTV (a = 1) is best at segmenting
CSF across the four images while TTV (a = 5, 10) remains
competitive against AITV in segmenting GM and WM. On
average, TTV (a = 1, 5) is among the top two best-performing
methods. Although it can be outperformed by AITV, it is at
least three times faster. In Figure 3, we see that TTV (a = 5)
is most effective in segmenting CSF, especially compared to
TV and TVp. Moreover, comparable to TV and AITV, it is
able to identify most of the GM and WM regions. Overall,
using TTV, the proposed method is able to effectively identify
narrow, thin regions such as the retina vessels and CSF.

IV. CONCLUSION

We designed a segmentation model that combines fuzzy
membership functions and TTV and developed an ADMM
algorithm to solve it. Our experiments demonstrated that TTV
is an effective regularizer for image segmentation, especially
when segmenting narrow regions where edge preservation is
important. For future directions, we will extend our proposed
model to color images.
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