
Robust Agility via Learned Zero Dynamics Policies

Noel Csomay-Shanklin1∗, William D. Compton1∗, Ivan Dario Jimenez Rodriguez1∗,
Eric R. Ambrose2, Yisong Yue1, Aaron D. Ames1

Abstract— We study the design of robust and agile controllers
for hybrid underactuated systems. Our approach breaks down
the task of creating a stabilizing controller into: 1) learning a
mapping that is invariant under optimal control, and 2) driving
the actuated coordinates to the output of that mapping. This ap-
proach, termed Zero Dynamics Policies, exploits the structure of
underactuation by restricting the inputs of the target mapping
to the subset of degrees of freedom that cannot be directly
actuated, thereby achieving significant dimension reduction.
Furthermore, we retain the stability and constraint satisfaction
of optimal control while reducing the online computational
overhead. We prove that controllers of this type stabilize hybrid
underactuated systems and experimentally validate our ap-
proach on the 3D hopping platform, ARCHER. Over the course
of 3000 hops the proposed framework demonstrates robust
agility, maintaining stable hopping while rejecting disturbances
on rough terrain.

I. INTRODUCTION

The underactuated dynamics inherent to legged locomo-
tion, swimming, and dexterous manipulation impose funda-
mental limits on controller performance and necessitate a
critical understanding of the system’s flow to achieve com-
plex behaviors. Underactuation prevents arbitrarily shaping
a system’s dynamics, undermining the assumptions of many
control-theoretic methods such as feedback linearization [1]
and offline trajectory tracking. This work leverages recent
advances in controller design for underactuated systems [2],
[3], optimal control [4], and their integration with compu-
tational learning methods to design feedback strategies that
exploit the structure of underactuation, enabling the agile and
robust behavior shown in Figure 1.

A predominant method for controlling underactuated sys-
tems is Model Predictive Control (MPC) [5], [6], which
leverages concepts from optimal control over a prediction
horizon to achieve stabilization [7]. Performance of MPC
controllers improves with longer horizons and finer time
discretizations, both of which conflict with its strict real-
time computational requirements. To address the high com-
putational cost of full-model optimization problems, some
methods leverage a gradation of model fidelities along a
time horizon [8], [9]. Other methods rely on offline trajectory
optimization to generate desirable behaviors, and then track
these behaviors online [10]. For underactuated systems, the
online tracking problem can be non-trivial, often requiring

∗denotes equal contribution. 1Authors are with the Department of
Computing and Mathematical Sciences, California Institute of Technology,
Pasadena, CA 91125. 2Authors are with NASA Jet Propulsion Laboratory.

This research was supported by Technology Innovation Institute (TII),
NSF Graduate Research Fellowship No. DGE-1745301, AeroVironment,
NSF Grant No. 1918655 and Raytheon, Beyond Limits, JPL RTD 1643049.

Fig. 1: Experiments run with Zero Dynamics Policies: a) treadmill hopping
with disturbances up to 1 mile per hour, b) 1.5” stair climbing and 20° ramp
descending, c) disturbance rejection, and d) hopping across a 2x4.

additional feedback mechanisms to stabilize the underactu-
ated states such as regulators [11].

Reinforcement learning (RL) [12] takes the concept of of-
fline computation even further, using concepts from stochas-
tic optimal control and parallelized simulation environments
to synthesize feedback controllers. RL methods have shown
robust performance [13], [14] when the policy is trained
in sufficiently randomized domains. Current methods in RL
improve policies through simulator rollouts [15], typically
at the expense of high data complexity. Although these can
work well, they exhibit extreme sensitivity to cost function
parameters and ignore the underlying system structure.

Heuristics, on the other hand, are able to leverage intuition
about system structure, and can achieve stabilization with
minimal online or offline computational overhead. In the
context of legged locomotion, the Raibert Heuristic for
hopping [16], inverted pendulum models for walking [17],
and spring-loaded pendulums for running [18] all reason
about where a legged robot’s feet should be placed in order
to stabilize the center of mass. While these methods may be
less formal than the methods above and require significant
domain expertise to implement, they tend to reason (perhaps
implicitly) about the fundamental control structure needed to
address the underactuation.

The above methods generally intersect in two places:
first, an application of feedback to the actuated states based
on the position of underactuated states (either explicitly or
through replanning), and second, a dependence on optimality

ar
X

iv
:2

40
9.

06
12

5v
1

 [c
s.R

O
]

10
 S

ep
 2

02
4

https://vimeo.com/923800815?share=copy
https://vimeo.com/923800815?share=copy

to generate stable, desirable behaviors. We propose a method
which combines these two ideas, using optimality to ensure
stability while reasoning explicitly about the structure of
underactuation. Specifically, we leverage the notion of zero
dynamics to explicitly decompose the system into actuated
and unactuated coordinates [19], [20], [21], [22]. We pair
this paradigm with optimal control to learn a mapping from
the unactuated state to a desired actuated state, termed a
Zero Dynamics Policy (ZDP), which is then stabilized using
a tracking controller. This perspective aligns with prior work
on Hybrid Zero Dynamics (HZD) [20]; however, rather than
assuming stability of the zero dynamics manifold or relying
on phasing variables and periodicity, we use optimal control
to provably and constructively synthesize stable output-
zeroing manifolds.

We propose a general framework for the control of hybrid
underactuated systems and apply it to hopping, which exem-
plifies the challenges of such systems due to the large number
of passive degrees of freedom, tight input constraints, and
short ground phases. Our empirical validation of ZDPs on the
ARCHER 3D hopping robot showcases an agile and stable
controller as seen in Figure 1 and the supplemental video
[23]. Over the course of more than 3000 hops, our method
achieves state of the art disturbance rejection, hops over long
distances on a treadmill, navigates an obstacle course and
rough terrain without vision, and is precise enough to reliably
hop across narrow bridges.

II. PRELIMINARIES

A. Hybrid Dynamics and Lyapunov Stability

Consider an n−degree of freedom robotic system with
coordinates q ∈ Q and state x = (q, q̇) ∈ X ≜ TQ. Using
the Euler Lagrange equations, we write the continuous-time
dynamics in control-affine form as:

ẋ =

[
q̇

−D(q)−1H(q, q̇)

]
︸ ︷︷ ︸

f(x)

+

[
0

D(q)−1B

]
︸ ︷︷ ︸

g(x)

u (1)

where D : Q → Rn×n is the positive-definite mass-inertia
matrix, H : X → Rn contains the Coriolis and gravity terms,
B ∈ Rn×m is the selection matrix, and u ∈ Rm is the
control input. For the following discussion we assume that
B has (column) rank m < n, i.e. (1) is underactuated.

As the robot experiences impulsive effects, it is subject to
the instantaneous momentum transfer equation:

x+ = ∆(x−), (2)

with ∆ : X → X representing the impact map. Combining
(1) and (2), the complete hybrid dynamics can be written as:

H =

{
ẋ = f(x) + g(x)u x /∈ S
x+ = ∆(x−) x− ∈ S

where S ⊂ X is an appropriately defined switching surface,
for example the foot making or breaking contact with the
ground [10].

Towards developing a stabilizing feedback controller
for (1), define a collection of continuous time outputs
y : X → Rm that we would like to drive to zero. For outputs
of relative degree two [1], consider the error coordinates
e = (y, ẏ) ∈ E ⊆ R2m. These errors can be constructively
stabilized via a RES-CLF, defined as:

Definition 1. [24] For the system (1), Vε : E → R is said
to be a rapidly exponentially stabilizing control Lyapunov
function (RES-CLF) if there exists a λ, k1, k2 > 0, such that
for all ε ∈ (0, 1):

k1∥e∥2 ≤ Vε(e) ≤ k2∥e∥2

inf
u

V̇ε(x,u) ≤ −λ

ε
Vε(e). (3)

Valid relative degree ensures the existence of a nonempty
set K, defined to be the set of all controllers satisfying the
inequality (3). Any controller k ∈ K renders the continuous
time output exponentially stable, i.e. there exists M, λ̃ > 0
such that:

∥e(t)∥ ≤ Me−
λ̃
ε t∥e(0)∥,

whereby tuning ε down enables arbitrarily fast convergence.

B. From Hybrid Dynamics to Discrete-Time Dynamics
We will be interested in modeling H as a discrete-time

dynamical system via its impact-to-impact dynamics. To this
end, let xk ∈ X denote the robot state just before impact, P
denote an admissible parameter set for vk ∈ P , a discrete
parameterization of the control input over a single continuous
phase, and tk ∈ R≥0 be the duration of the continuous
phase. We reformulate our hybrid control system into discrete
dynamics via:

xk+1 = F(xk,vk), (4)

where F : X×P → X composes the the impact map (2) with
the flow of (1) under a parameterized feedback controller
u = k(x(t),vk) ∈ K. In the context of hopping, we take
vk to be the desired impact angle. This parameterization of
control input allows us to reason about the effect of impact
conditions on the resulting system dynamics, which are the
primary means of stabilizing legged systems. Note that here
we assume the existence of a lower bound between impact
times so that F is well defined. For a complete discussion
of how to achieve this representation from the underlying
hybrid dynamics, see [22]. Similar to the continuous-time
case, the stability of the discrete time error dynamics can be
reasoned about via Lyapunov theory:

Definition 2. For the system ek+1 = F(ek), V : E → R
is a discrete exponential Lyapunov function if it is positive
definite and there exists an α ∈ (0, 1], k1, k2 > 0 such that:

k1∥ek∥2 ≤ V (ek) ≤ k2∥ek∥2

∆V (e) = V (ek+1)− V (ek) ≤ −αV (ek).

The existence of such a Lyapunov function is necessary
and sufficient for exponential stability of a system, i.e. the
existence of M > 0, β ∈ [0, 1) such that:

∥ek∥ ≤ Mβk∥e0∥.

C. Discrete-Time Optimal Control
We leverage optimal control to synthesize inputs vk which

stabilize the discrete time system in (2) while satisfying input
constraints. To this end, consider the following infinite-time
optimal control problem:

V (x0) ≜ min
xk,vk

∞∑
k=0

c(xk,vk) (5)

s.t. xk+1 = F(xk,vk)

h(xk,vk) ≤ 0

where V : X → R is termed the value function, c : X×P →
R is a positive-definite cost function and h : X × P → Rp

contains any state-input constraints. With this, we can define
the state-action value function Q : X × P → R as:

Q(xk,vk) = c(xk,vk) + V (xk+1),

which defines the optimal control input at any state xk

through following optimization program:

v∗
k(xk) = argmin

vk

Q(xk,vk) (6)

s.t. h(vk,xk) ≤ 0

We rely on iteratively solving convex approximations of this
nonconvex problem via iLQR. In Section III we show that
tracking the output of optimal controllers in continuous time
results in exponential stability of the discrete time dynamics.

D. Outputs and Zero Dynamics
Understanding the structure of underactuation provides

key insight into constructing stabilizing controllers for these
systems. To analyze the states that actuation directly impacts,
consider the following coordinate change:

η = Φη(x) ≜

[
B⊤q
B⊤q̇

]
, z = Φz(x) ≜

[
Nq

ND(q)q̇

]
(7)

for η ∈ N ⊂ X and z ∈ Z ⊂ X , where N ∈ R(n−m)×n is
chosen to be a basis for the left nullspace of B. It is easily
verified that the coordinate change Φ(x) ≜ (Φη(x),Φz(x))
is a diffeomorphism between X and N × Z; therefore,
Φ−1 exists and any conclusions of stability of (η, z) are
directly transferable back to x. In these coordinates, the
hybrid dynamics are given by:

η̇ = f̂(η, z) + ĝ(η, z)u, ż = ω(η, z), Φ−1(η, z) /∈ S
η+ = ∆η(η

−, z−), z+ = ∆z(η
−, z−), Φ−1(η, z) ∈ S

termed the actuated dynamics and the unactuated dynamics,
respectively. Note that these coordinates were exactly chosen
such that ĝ(η, z) is full rank and dz

dxg(x) ≡ 0; as such, this
mapping decomposes the state space into coordinates which
can directly be controlled, and those which cannot.

Assuming the continuous time input does not effect the
impact map or impact time1, applying Φ to the discrete
dynamics (4) results in:

ηk+1 = F̂(ηk, zk,vk), zk+1 = Ω(ηk, zk). (8)

1This assumption is needed so that Ω is not a function of vk and is well
justified on ARCHER as impact angle weakly effects impact time.

Now, consider a mapping ψθ : Z → N and associated
discrete-time error ek = ηk − ψθ(zk). The goal will be to
design ψθ such that driving ek to zero results in stability of
the overall system. This choice of error parameterization is
inspired by other successful results in robotics; the Raibert
Heuristic [16], reduced order models [18], and regulators
for HZD gaits [21] all reason about where to place a robot’s
feet (the actuated state) as a function of their center of mass
state (the underactuated state). We aim to generalize these
methods and reason explicitly about constructive methods to
generate provably stable behaviors. The construction of the
mapping ψθ induces an associated manifold Mψ ⊂ X via:

Mψ ≜ {(ηk, zk) | ηk = ψθ(zk)}. (9)

We will be interested in enforcing conditions such that Mψ

is controlled invariant, defined as:

Definition 3. The manifold Mψ is controlled invariant if
for all (ηk, zk) ∈ Mψ there exists a vk ∈ P such that the
next state remains on the manifold, i.e.:(

F(ηk, zk,vk), Ω(ηk, zk)
)
∈ Mψ.

Assuming a controlled invariant manifold Mψ , we now
have the notion of discrete-time zero dynamics:

Definition 4. The discrete-time zero dynamics associated
with a controlled invariant manifold Mψ are given by:

zk+1 = Ω(ψθ(zk), zk).

These dynamics are autonomous but determined by choice
of ψθ; therefore, the goal of this work will be to design ψθ
such that the zero dynamics are stable. We show that stability
on Mψ paired with a suitably defined output controller
results in stability of the overall system.

III. DISCRETE-TIME ZERO DYNAMICS POLICIES

We propose a discrete-time mapping from the underactu-
ated state, zk, to a desired actuated state, ηk. This mapping,
ψθ : Z → N , will encode the desired position of the
actuated coordinates given the location of the unactuated co-
ordinates at impact. The job of the continuous time controller
is to drive η(t) to the desired preimpact location, ψθ(zk+1).

In this section, we will first reason about the ability
of continuous time controllers to render Mψ attractive
and invariant by driving the error e to zero. Second, we
demonstrate that if the manifold has stable zero dynamics
(trajectories on the manifold converge to the origin), then
stabilizing the manifold stabilizes the entire system. Finally,
we propose a learning pipeline which leverages optimal
control to find a manifold with the desired properties.

A. Constructive Stabilization of the Zeroing Manifold

We show that the structure of the proposed manifold
allows constructive stabilization techniques:

Lemma 1. Consider a controlled invariant manifold Mψ .
There exists a continuous-time control law k ∈ K which
results in exponential stabilization of ∥ηk −ψθ(zk)∥.

Proof: Consider a point (ηk, zk) and the evaluation
of the current and next states on the manifold: ψθ(zk)
and ψθ(zk+1), respectively. As the η(t) dynamics are
feedback linearizable, there exists a dynamically feasible
trajectory ηd(t) such that ηd(0) = (ψθ(zk))

+, and ηd(tk) =
ψθ(zk+1), where tk is the impact time and (·)+ denotes
a postimpact state. For example, ηd(t) can be constructed
using Bezier polynomials [25]. Using a controller k ∈ K,
i.e. satisfying the RES-CLF condition (3), we can obtain
exponential convergence to this trajectory in continuous time:

∥η(t)− ηd(t)∥ ≤ Me−
λ
ε t∥η+

k − (ψθ(zk))
+∥,

for M,λ > 0. Taking T∗ > 0 to be the lower bound between
impact times, the impact states are uniformly bounded by:

∥ηk+1 −ψθ(zk+1)∥ ≤ Me−
λ
ε T∗∥η+

k − (ψθ(zk))
+∥.

Then, using the properties of the impact map we have:

∥η+
k − (ψθ(zk))

+∥ = ∥∆η(ηk, zk)−∆η(ψθ(zk), zk)∥
≤ L∆∥ηk −ψθ(zk)∥,

substituting into the bound above, and choosing ε > 0
sufficiently small that α = ML∆e

−λ
ε T∗ ∈ (0, 1], we have:

∥ηk+1 −ψθ(zk+1)∥ ≤ α∥ηk −ψθ(zk)∥,

proving exponential stability to the manifold, as de-
sired. ■

Remark 1. The desired trajectory ηd(t) is being implicitly
replanned at impact via ψθ as a function of the underactuated
state zk. Additionally, the manifold Mψ is invariant under
the discrete dynamics F, but is notably not hybrid invariant.

B. Composite Stability

The previous section demonstrated a method for con-
structing a controller to exponentially stabilize the system
to a controlled invariant manifold Mψ . We now show that
exponentially stabilizing the system to a manifold with stable
zero dynamics results in composite exponential stability of
the entire system:

Theorem 1. Consider a controlled invariant manifold Mψ

whose zero dynamics are exponentially stable. Any control
law exponentially stabilizing ∥ηk − ψθ(zk)∥ stabilizes the
discrete-time composite system (ηk, zk) to the origin.

Proof: Define ek = ηk − ψθ(zk). By Lemma 1,
there exists a continuous-time controller k ∈ K rendering
the discrete error dynamics exponentially stable. As such,
converse Lyapunov theory guarantees the existence of a
Lyapunov function Ve : E → R satisfying:

k1∥ek∥2 ≤ Ve(ek) ≤ k2∥ek∥2

∆Ve(ek) ≤ −k3∥ek∥2

Similarly, the stability of Mψ implies the existence of a
Lyapunov function Vz : Z → R satisfying:

k4∥zk∥2 ≤ Vz(zk) ≤ k5∥zk∥2

∆Vz(zk) = Vz(Ω(ψθ(zk), zk))− Vz(zk) ≤ −k6∥zk∥2

Fig. 2: A depiction of the two necessary properties of Mψ : a) invariance
under the discrete map F, and b) stability.

The Lyapunov function Vz will additionally satisfy [24]:

|Vz(z)− Vz(z
′)| ≤ k7∥z− z′∥ (∥z∥ − ∥z′∥) ≜ Γ(z, z′).

Consider the composite Lyapunov function candidate
V (ek, zk) ≜ σVe(ek) + Vz(zk) with σ > 0, whereby:

min{σk1, k4}∥e, z∥2 ≤ V (e, z) ≤ max{σk2, k5}∥e, z∥2.

Furthermore, since zk is exponentially stable on Mψ , dis-
crete sequences on Mψ will be exponentially decreasing:

∥zk+1∥ = ∥Ω(ψθ(zk), zk)∥ ≤ Mλ∥zk∥,

for λ ∈ [0, 1) and M > 0. Compute the difference of ∆V :

∆V = σ∆Ve(ek) + Vz(Ω(η, zk))− Vz(zk)

= σ∆Ve(ek) + ∆Vz(zk)

+ Vz(Ω(ηk, zk))− Vz(Ω(ψθ(zk), zk))

≤ −σk1∥ek∥2 − k6∥zk∥2

+ Γ(Ω(ηk, zk),Ω(ψθ(zk), zk))

= −σk1∥ek∥2 − k6∥zk∥2

+ k7L
2
Ω∥ek∥2 + 2Mλk7LΩ∥ek∥∥zk∥

= −
[
∥ek∥
∥zk∥

]⊤ [
σk1

2 − c(σ) −Mλk7LΩ

−Mλk7LΩ k6

] [
∥ek∥
∥zk∥

]
where c(σ) = k7L

2
Ω − σ

2 k1, and Γ(Ω(η, z),Ω(ψθ(z), z)) is
bounded using Lipschitz properties of the dynamics. Choos-
ing σ > max

{
2M2λ2k2

7L
2
Ω

k1k6
,
2k7L

2
Ω

k1

}
ensures the matrix

is positive definite; therefore, V is a Lyapunov function
certifying composite stability. ■

Remark 2. Figure 2 depicts each of the assumptions used
to prove stability in Theorem 1, namely discrete invariance
and exponential stability of Mψ . Subsequent sections will
develop constructive techniques leveraging optimal control
and learning for finding such manifolds.

C. Stability via Optimal Control

We will leverage optimality to enforce the stability on
Mψ . This choice is motivated by the fact that asymptotic
stability is a necessary condition for an optimal controller
to be well defined [4]. As Theorem 1 rests on assumptions
of exponential stability, we define conditions under which
optimality implies exponential stability:

Theorem 2. Let V (xk) be the value function for the optimal
control problem defined in (5), where the cost function is
quadratic, c(xk,vk) = x⊤

k Qxk + v⊤
k Rvk, and the domain

X is compact. If there exists an ε > 0 such that the
LQR approximation of (5) taken by linearizing the dynamics
around the equilibrium point satisfies:

vLQR(xk) = −Kxk ∈ H(xk) ∀xk ∈ Bε(0), (10)

with H(xk) ≜ {vk ∈ P | h(xk,vk) ≤ 0}, then the nonlinear
system is exponentially stable under the optimal controller.

Proof: We begin by showing the optimal controller (5)
is exponentially stabilizing in a neighborhood of the origin.
Then, we extend this claim to the entire state space. In
a sufficiently small ball around the origin, LQR (10) will
be exponentially stabilizing for the nonlinear system [1],
as it locally satisfies input bounds. This implies constants
MLQR, δ > 0 and λLQR ∈ [0, 1) such that:

∥xk∥ ≤ MLQRλ
k
LQR∥x0∥ ∀x0 ∈ Bδ(0), ∀k ∈ Z+.

We first show that the optimal trajectory emanating from
an initial condition x0 ∈ Bδ(0) is similarly exponentially
stable. For any M > 0, λ ∈ (0, 1), consider two cases:
Case 1: There exists a finite index set {ki}Ni=0 satisfying:

∥xki∥ ≥ Mλki∥x0∥.

Compute the maximum violation ratio R ≥ 1 given by:

R ≜ max
i∈{0,...,N}

∥xki
∥

Mλki∥x0∥
.

If the index set is empty, take R = 1. Then

∥xk∥ ≤ RMλk∥x0∥ ∀k ∈ Z+

And the trajectory is exponentially stable.
Case 2: There exists a infinite index set {kj}∞j=0 satisfying:

∥xkj
∥ ≥ Mλkj∥x0∥. (11)

We will establish that V (xk) is an exponential Lyapunov
function (Definition 2) along the trajectory, and thus the
trajectory is exponentially stable. First, we bound the value
function difference:

∆V (xk) = V (xk)− V (xk−1) = −x⊤
k Qxk − v⊤

k Rvk

≤ −λmin(Q)∥xk∥2 (12)

Next, we need to show that V (xk) is bounded by quadratics.
Because the LQR controller is suboptimal for the nonlinear
system, applying it increases the cost relative to V (xk):

V (x0) ≤
∞∑
k=0

x⊤
k Qxk + (Kxk)

⊤R(Kxk)

≤
∞∑
k=0

(
λ̄(Q) + λ̄(K⊤RK)

)
∥xk∥2

≤
∞∑
k=0

(
λ̄(Q) + λ̄(K⊤RK)

)
M2

LQRλ
2k
LQR∥x0∥2

=
M2

LQR

1− λ2
LQR

(
λ̄(Q) + λ̄(K⊤RK)

)
∥x0∥2

where λ and λ are the minimum and maximum eigenvalue
oeprators, respectively.

Finally, using (11), we can lower bound V (xk) by:

V (x0) =

∞∑
j=0

x⊤
kj
Qxkj

+ v⊤
kj
Rvkj

≥
∞∑
j=0

λ(Q)∥xkj
∥2

≥
∞∑
j=0

λ(Q)M2λ2kj∥x0∥2

=

[
M2

1− λ2

(
λ̄(Q) + λ̄(K⊤RK)

)
− c

]
∥xk∥2

Where c is the sum of the terms removed from the geometric
series. Lastly, The above bounds hold for each point on the
trajectory; therefore, V is a Lyapunov function certifying
exponential stability of the trajectory.

Finally, we extend the claim outside of the ball around
the origin. As V ≻ 0 and ∆V ≺ 0, the optimal controller
is asymptotically stable [4]. By compactness of X and (12),
the time to enter Bδ(0) is bounded by:

K ≜
supx0∈X V (x0)

infx0∈X\Bδ(0) ∆V (x0)
≤

supx0∈X V (x0)

λ(Q)δ2
.

Because trajectories converge exponentially in Bδ(0),

∥xk∥ ≤ Mλk−K∥xK∥ ∀x0 ∈ Bδ(0), ∀k ≥ K

for M > 0, λ ∈ [0, 1). By compactness of X , trajectories
are uniformly bounded ∥xk∥ ≤ B; therefore:

∥xk∥ ≤ max{B,M}λ−K

min{1, δ}
λk∥x0∥ ∀k ∈ Z+

is an exponential upper bound for the entire trajectory. ■

D. Constructing the Zeroing Manifold via Learning

By Theorem 2, a manifold which is invariant under
the optimal controller will be exponentially stable. Such a
manifold then satisfies the assumptions of Theorem 1 and can
be constructively stabilized resulting in composite stability of
the entire system.

We will now present a learning method which leverages
optimal control to ensure the assumptions of controlled
invariance and stability of Mψ as depicted in Figure 2
are met. Specifically, we will search for a manifold that
is invariant under the optimal action, i.e. the controller that
keeps sequences of states in the manifold coincides with the
optimal controller for (5).

To concisely define the loss function consider the variable

ζθ(z) ≜

[
ψθ(z)

z

]
(13)

which encodes a point on the manifold. The loss function is:

L(θ) = E
z∼UNIFORM

∥η∗
1 (ζθ(z))−ψθ (z∗1 (ζθ(z)))∥

2
2 , (14)

Fig. 3: a) The loss function exactly measures the extent to which the man-
ifold is not invariant under optimal action b) a Monte Carlo approximation
of the spatial loss is used, wherein the optimal policy is backpropogated
through to update the surface.

where z∗1 = Ω(ψ(z), z) and η∗
1 = F̂(ψ(z), z,v∗), with v∗

the optimal control input. The expectation is taken over a
uniform distribution over Z . The loss function directly mea-
sures how far an initial condition on the manifold deviates
from the manifold under one discrete step of the optimal
controller as depicted in Figure 3.

The learning pipeline outlined in Algorithm 1 starts an
epoch by sampling a batch of points from Z , therefore
enabling a dimension reduction as compared to the complete
state space. The network is then evaluated to produce a set
of points on the current manifold, {ζθ(zi)}Ni=1. We then
approximately solve the optimal control problem (5). Finally,
we simulate the system forwards one step to obtain (η∗

1 , z
∗
1)

which the loss computation in (14) requires. If ψθ attains
zero loss, because of continuity of the network and the loss
function we can conclude that the resulting manifold Mψ is
invariant under the optimal control and can render the full
order system stable by satisfaction of the preconditions for
Theorem 1.

IV. APPLICATION OF ZDP TO ARCHER
We deployed the ZDP method on the 3D hopping robot

ARCHER. To discuss the application of ZDPs to ARHCER,
consider the pose of the robot q = (p, q) ∈ Q where p ∈ R3

represents the global position in world frame and q ∈ S3 the
robot’s orientation quaternion. Taking the velocities to be
v = (ṗ,ω) ∈ TqQ for ṗ ∈ R3 the global linear velocity
and ω ∈ s3 the body frame angular rates, we can represent
the full state as x = (q,v) ∈ X ≜ TQ.

ARCHER evolves under hybrid dynamics. As such, its
flight and ground phase dynamics are governed by (1)
and it has two impact maps of the form (2) (one for the
ground to flight transition, and another for flight to ground).
We treat the vertical hopping as an autonomous system,
and we will focus our attention on how to stabilize the
position of the robot via orientation. The flight dynamics
can be decomposed into actuated states, i.e. the orientation
coordinates, and unactuated states, i.e. position coordinates:

η =

[
q
ω

]
, z =

[
p
ṗ

]
.

Take (ηk, zk) to be a preimpact state. The ground phase
does not depend on the control input, and the continuous-
time evolution of the z coordinates has an extremely weak
dependence on the discrete-time control input vk. We can
assume Ω is independent from vk because the effect of
different control inputs on impact time is negligible.

Algorithm 1 Monte Carlo Zero Dynamics Policy Training

1: hyperparameters: (Ξ, ρ,Υ)
2: Number of MC samples, Learning Rate and Number of Steps
3: Initialize θ ▷ Pretrained with reasonable policy
4: for i = 1 : Υ do
5: z ∼ UNIFORM(z, z)

6: ζθ ←
[
ψθ(z)

z

]
7: x0 ← Φ−1(ζθ)
8: x∗

1:T ,v
∗
1:T ← iLQR(x0)

9:

[
η∗
1 (ζθ(z))

z∗1 (ζθ(z))

]
← Φ(x1)

10: θi+1 ← θi − ρ∇θ
∑

z ∥η
∗
1 (ζθ(z))−ψθ (z∗1 (ζθ(z)))∥22

11: end for
12: return θ

A. Online Control Implementation
Given a function ψθ, the controller aims to stabilize its as-

sociated zeroing manifold Mψ . Consider a state (η(t), z(t))
during the flight phase. We set the desired orientation to
ηd(t) = ψθ(z(t)), and update this continuously throughout
the flight phase. The desired set point is converted to
a quaternion, qd, which we stabilize using the following
quaternion PD controller in the flight phase:

u = −Kplog(q−1
d q)−Kdω,

for suitable gains Kp,Kd. This controller is applied at 1kHz.
One key addition to the controller as compared to previous

work [26] is the application of flywheel spindown in the
ground phase. When the robot is in contact with the floor,
the following control action is applied:

u = −γϑ̇,

where ϑ̇ ∈ R3 represents the flywheel speed. This allows
the system to maintain lower flywheel speeds and mitigates
the problem of speed-torque constraints. This ground phase
controller preserves the theoretical assumptions since the
ground phase control is independent of output of the policy.

There are a few implementation differences from our
theoretical implementation. The controller used in the proof
of Lemma 1 differs from ours by (1) predicting the preimpact
state zk+1, (2) tracking a trajectory ηd(t) defined by a
bezier polynomial, and (3), using a RES-CLF. Empirically,
a well tuned PD controller was sufficient to stabilize the
continuous time system, and the feedforward input tracking
that a trajectory would provide was not necessary.

B. ZDP Optimization and Learning Details
Notice that for discrete-time systems, (5) is a nonlinear

program even if the value function is available. To solve this
optimal control problem, we employ Iterative LQR (iLQR),
subject to box input constraints [27]. The iLQR problem is
solved in the x variable, so the initial condition is obtain via
x = Φ−1(η, z). We implemented Algorithm 1 in the JAX
[28] and used a Network of 2 Layers with 256 hidden units
each using ReLu activations. In our implementation of iLQR,
we assume that the low-level controller has perfect tracking
and exactly achieves the desired angle with zero angular

Fig. 4: A snapshot of the experiments conducted with ARCHER, including
set point tracking, disturbance rejection, and hopping over rough terrain.

velocity. This considerably simplifies the flight dynamics and
therefore the trajectory optimization, allowing them to be
solved for in closed form. The input bounds H(xk) were
chosen such that the torque applied during flight is bounded
by the difference between the post-impact state and the
desired preimpact state. We require gradients of the optimal
control, dv

dx , as presented in [29] – note that if no constraints
are active, then this gradient is exactly the feedback matrix
K = Q−1

vvQvx from the iLQR algorithm.
iLQR requires a stabilizing initial guess in order to con-

verge; therefore, we use a Raibert heuristic for the first
rollout. To eliminate this dependence, other optimal control
methods could be used, for instance SQP. The authors
experienced difficulty with the speed and accuracy of large-
scale QP solvers in JAX and leveraged the fact that iLQR
solves many small QPs for speed and stability. Additionally,
for computational efficiency, we limit the number of iLQR
iterations to five (empirically enough to obtain convergence
for this system). The full code base for this project can be
found at [30].

V. RESULTS AND LIMITATIONS

A. Hardware Results

A collection of the experiments conducted on ARCHER
can be seen in Figure 4. The ARCHER hardware platform
[31] consists of three KV115 T-Motors with 250 g flywheel
masses attached for orientation control, and one U10-plus
T-Motor attached to a 3-1 gear reduction to the foot via a
cable and pulley system. The robot is powered by two 6
cell LiPo betteries connected in series, which can supply
up to 50.8 V at over 100 A of current to the four ELMO
Gold Solo Twitter motor controllers. The policy ψθ was
exported from JAX to an ONNX file, which is evaluated
at 1kHz on an Ubuntu 20.04 machine with AMD Ryzen

Fig. 5: Left: A comparison between LQR (top) and ZDPs (bottom) while
tracking a 2 m setpoint. Right: The output of the trained policy and the
actual state at impact over 3000 hops, as compared to an LQR controller.

5950x @ 3.4 GHz and 64 Gb RAM and torques are passed
directly to the robot over ethernet. This controller does not
require this amount of compute to run, and could be feasibly
implemented on an NVIDIA Jetson or comparable board. A
Kalman filter with projectile dynamics is used to filter the
position estimates from optritrack in the flight phase. The
manif library [32] is used to compute the log map for the
quaternion PD controller.

We logged over 3,000 stable hops when deploying the
ZDP method on the ARCHER hardware platform, a selection
of which can be seen in Figure 4 and in the supplemental
video [23]. Figure 5 depicts the desired impact angle, i.e.
the learned policy evaluation, and the actual impact angle
over the complete collection of all hardware tests. In general,
as predicted by the theory, this manifold is both invariant
under the feedback controller, and stable. Also interesting
to note is that around the origin, the learned policy alignes
with LQR, as presented in Theorem 2. Notably, away from
the origin, the learned policy diverges from LQR in order
to maintain stability under the enforced input contstraints. A
comparison between the trained policy and the application
of a naive LQR controller when trying to track a setpoint 2
m away is seen in the left part of Figure 5, wherein ZDPs
maintain stability by implicitly enforcing discrete invariance
and optimality over a horizon.

The tight trajectory tracking and system behavior is seen in
Figure 6, where ARCHER was asked to follow two laps of a
1 m square trajectory. As seen on the right of Figure 6, using
a PD controller at the feedback level empirically resulted in
the error (and therefore the torques) converging exponentially
fast to a small neighborhood of zero during the flight phase.
During this torque application, the flywheel speed can be
seen to grow, while the ground phase controller is able to
successfully regulate them close to zero.

B. Limitations

As training this policy involves querying the optimal
control input and its gradients, each iteration of the training
process is computationally expensive (2 seconds per iteration
for a batch size of 30). The use of iLQR required a stabilizing
controller to initialize the rollout and therefore can only
do local improvements on a stabilizing policy. Furthermore,
to avoid sampling initial conditions in the training pipeline
which the hopper cannot stabilize, the policy ψθ was pre-
trained with a conservative Raibert heuristic.

Fig. 6: Square trajectory tracking. Left pane: overhead view with positional
hardware data overlayed (top) and velocity tracking (bottom). Right pane:
wheel velocities (top), torque (mid), and error (bottom) in the ground (green)
and flight (red) phase with mean and 2σ deviation.

VI. CONCLUSION AND FUTURE WORK

We have proposed a method of synthesizing stabilizing
feedback controllers for hybrid underactuated systems. By
exploiting the zero dynamics decomposition, we demon-
strated both theoretically and experimentally that stabilizing
such systems can effectively be decomposed into designing
a mapping which renders the discrete zeroing manifold
invariant under optimal controllers and pairing it with a
suitable tracking controller. Future work includes merging
the proposed methods with RL controllers, applying to
other legged systems, and developing a parallel theory for
continuous time systems.

VII. ACKNOWLEDGEMENTS

We would like to thank Murtaza Hathiyari for aiding with
C++ code development and hardware experiment testing.

REFERENCES

[1] S. Sastry, “Linearization by State Feedback,” in Nonlinear Systems:
Analysis, Stability, and Control, ser. Interdisciplinary Applied Mathe-
matics, S. Sastry, Ed. Springer, 1999, pp. 384–448.

[2] I. D. J. Rodriguez, N. Csomay-Shanklin, Y. Yue, and A. D. Ames,
“Neural gaits: Learning bipedal locomotion via control barrier func-
tions and zero dynamics policies,” in Proceedings of The 4th Annual
L4DC, vol. 168. PMLR, Jun 2022, pp. 1060–1072.

[3] W. Compton, I. D. J. Rodriguez, N. Csomay-Shanklin, Y. Yue, and
A. D. Ames, “Constructive nonlinear control of underactuated systems
via zero dynamics policies,” preprint arXiv:2408.14749, 2024.

[4] D. Liberzon, Calculus of Variations and Optimal Control Theory: A
Concise Introduction. Princeton University Press, 2012.

[5] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[6] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model
predictive control: Stability and optimality,” Automatica, vol. 36, no. 6,
pp. 789–814, 2000.

[7] P. M. Wensing, M. Posa, Y. Hu, A. Escande, N. Mansard, and A. D.
Prete, “Optimization-based control for dynamic legged robots,” Trans.
Rob., vol. 40, p. 43–63, oct 2023.

[8] C. Khazoom, S. Hong, M. Chignoli, E. Stanger-Jones, and S. Kim,
“Tailoring solution accuracy for fast whole-body model predictive
control of legged robots,” preprint arXiv:2407.10789, 2024.

[9] H. Li and P. M. Wensing, “Cafe-mpc: A cascaded-fidelity model
predictive control framework with tuning-free whole-body control,”
preprint arXiv:2403.03995, 2024.

[10] E. Westervelt, J. Grizzle, and D. Koditschek, “Hybrid zero dynamics
of planar biped walkers,” IEEE Transactions on Automatic Control,
vol. 48, no. 1, pp. 42–56, Jan. 2003.

[11] J. Reher, “Dynamic bipedal locomotion: From hybrid zero dynamics
to control lyapunov functions via experimentally realizable methods,”
Ph.D. dissertation, California Institute of Technology, 2021.

[12] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estima-
tion,” in Proceedings of ICLR, 2016.

[13] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.

[14] Z. Li, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath,
“Reinforcement learning for versatile, dynamic, and robust bipedal
locomotion control,” preprint arXiv:2401.16889, 2024.

[15] H. J. Suh, M. Simchowitz, K. Zhang, and R. Tedrake, “Do differ-
entiable simulators give better policy gradients?” in ICML. PMLR,
2022, pp. 20 668–20 696.

[16] M. H. Raibert, H. B. Brown, and M. Chepponis, “Experiments in
Balance with a 3D One-Legged Hopping Machine,” IJRR, vol. 3, no. 2,
pp. 75–92, Jun. 1984, publisher: SAGE Publications Ltd STM.

[17] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The
3d linear inverted pendulum mode: A simple modeling for a biped
walking pattern generation,” in Proceedings 2001 IEEE/RSJ ICIRS
(Cat. No. 01CH37180), vol. 1. IEEE, 2001, pp. 239–246.

[18] B. Han, H. Yi, Z. Xu, X. Yang, and X. Luo, “3d-slip model based
dynamic stability strategy for legged robots with impact disturbance
rejection,” Scientific Reports, vol. 12, no. 1, p. 5892, 2022.

[19] A. Isidori, “Elementary Theory of Nonlinear Feedback for Single-
Input Single-Output Systems,” in Nonlinear Control Systems, ser.
Communications and Control Engineering. London: Springer, 1995,
pp. 137–217.

[20] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero
dynamics of planar biped walkers,” IEEE Transactions on Automatic
Control, vol. 48, no. 1, pp. 42–56, 2003.

[21] J. Reher and A. D. Ames, “Control lyapunov functions for compliant
hybrid zero dynamic walking,” preprint arXiv:2107.04241, 2021.

[22] X. Da and J. Grizzle, “Combining trajectory optimization, supervised
machine learning, and model structure for mitigating the curse of
dimensionality in the control of bipedal robots,” The International
Journal of Robotics Research, vol. 38, no. 9, pp. 1063–1097, 2019.

[23] “Supplemental video.” [Online]. Available: https://vimeo.com/
923800815

[24] A. D. Ames and I. Poulakakis, “Hybrid zero dynamics control of
legged robots,” Bioinspired Legged Locomotion: Models, Concepts,
Control and Applications, pp. 292–331, 2017.

[25] N. Csomay-Shanklin, A. J. Taylor, U. Rosolia, and A. D. Ames,
“Multi-rate planning and control of uncertain nonlinear systems:
Model predictive control and control lyapunov functions,” in 2022
IEEE 61st CDC. IEEE, 2022, pp. 3732–3739.

[26] N. Csomay-Shanklin, V. D. Dorobantu, and A. D. Ames, “Nonlinear
Model Predictive Control of a 3D Hopping Robot: Leveraging Lie
Group Integrators for Dynamically Stable Behaviors,” in 2023 ICRA.
London, United Kingdom: IEEE, May 2023, pp. 12 106–12 112.

[27] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential
dynamic programming,” in 2014 ICRA. IEEE, 2014, pp. 1168–1175.

[28] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary,
D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-
Milne, and Q. Zhang, “JAX: composable transformations of
Python+NumPy programs,” 2018.

[29] B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter, “Differen-
tiable mpc for end-to-end planning and control,” Advances in neural
information processing systems, vol. 31, 2018.

[30] “Code,” 2024. [Online]. Available: https://github.com/ivandariojr/
LearnedZeroDynamicsPolicies

[31] E. R. Ambrose, “Creating ARCHER: A 3D Hopping Robot with
Flywheels for Attitude Control,” Ph.D. dissertation, California Institute
of Technology, 2022.

[32] J. Deray and J. Solà, “Manif: A micro Lie theory library for state
estimation in robotics applications,” Journal of Open Source Software,
vol. 5, no. 46, p. 1371, 2020.

https://vimeo.com/923800815
https://vimeo.com/923800815
https://github.com/ivandariojr/LearnedZeroDynamicsPolicies
https://github.com/ivandariojr/LearnedZeroDynamicsPolicies

	Introduction
	Preliminaries
	Hybrid Dynamics and Lyapunov Stability
	From Hybrid Dynamics to Discrete-Time Dynamics
	Discrete-Time Optimal Control
	Outputs and Zero Dynamics

	Discrete-Time Zero Dynamics Policies
	Constructive Stabilization of the Zeroing Manifold
	Composite Stability
	Stability via Optimal Control
	Constructing the Zeroing Manifold via Learning

	Application of ZDP to ARCHER
	Online Control Implementation
	ZDP Optimization and Learning Details

	Results and Limitations
	Hardware Results
	Limitations

	Conclusion and Future Work
	Acknowledgements
	References

