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Abstract

Hypothesis selection, also known as density estimation, is a fundamental problem
in statistics and learning theory. Given a sample set from an unknown distribution
P and a finite class of candidate distributions (hypotheses)H := H1, H2, . . . ,Hn,
the goal is to design an algorithm that selects a distribution Ĥ from H that best
describes P . The accuracy of the algorithm is measured by the distance between
Ĥ and P , compared to the distance between the closest distribution in H and P

(denoted by OPT). Specifically, we aim for ∥Ĥ −P∥TV to be at most α ·OPT+ ϵ
for some small ϵ and α.
While the value of ϵ can be reduced with an increasing number of samples, α is
an inherent characteristic of the algorithm. Achieving α < 3 is impossible, even
with only two candidate hypotheses, unless the number of samples is proportional
to the domain size of P [Bousquet, Kane, Moran ’19]. Finding a computationally
efficient algorithm that achieves the optimal α has been a primary focus of research
since the early work of [Devroye, Lugosi ’01]. Before our work, the algorithms
achieving α < 5 required time Ω(n2). We present the first algorithm that operates
in almost linear time (Õ(n/ϵ3)) and achieves α = 3. This result improves upon
a long line of hypothesis selection research. Previously known algorithms had
either worse time complexity, a larger α factor, or additional assumptions about the
problem setting. Additionally, we provide another (almost) linear-time algorithm
with better dependency on the additive accuracy parameter ϵ, albeit with a slightly
worse accuracy parameter of α = 4.

1 Introduction

Hypothesis selection, also known as density estimation, is a fundamental problem in statistics and
learning theory. This problem involves identifying a density function that accurately represents
the distribution of a given dataset. Suppose we are given a dataset of samples drawn from an
unknown distribution P and a finite class of known distributions, representing different hypotheses:
H := {H1, H2, . . . ,Hn}. The goal is to select a distribution inH that is close to P in total variation
(TV) distance.

Typically, learning a distribution over a domain X with an ϵ error in TV distance requires Ω(|X |/ϵ2)
samples, which presents a substantial lower bound in sample complexity for distributions over large
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domains. Surprisingly, the findings of Yatracos, Devroye, and Lugosi revealed that for hypothesis
selection, this sample complexity can be independent of the domain size and only logarithmic in
the number of hypotheses [Yat85, DL96, DL97]. With just s := Θ(log n/ϵ2) samples from P , it
is possible to learn P within error α · OPT + ϵ, where OPT denotes the distance of the nearest
distribution inH to P . Specifically, Devroye and Lugosi introduced two algorithms for this problem:
the Scheffé tournament, which operates in O(n2 · s) time1 and achieves α = 9; and the minimum
distance estimate, which runs in O(n3 · s) time and achieves α = 3 [DL01, Chapter 6]. In these
results, although ϵ can be decreased as the number of samples increases, α remains an inherent
parameter of the algorithm.

Significant effort has been directed towards finding computationally efficient algorithms for this
problem while maintaining sample efficiency. The trade-off between the accuracy parameter α
and computational efficiency has been a focal point. Mahalanabis and Stefankovic in [MS08]
enhanced the minimum distance estimate, improving the time complexity to O(n2 · s). They also
introduced a nearly linear-time algorithm that achieves α = 3, but requires exponential time in n
for preprocessing the classH. Other nearly linear-time algorithms were developed achieving α = 9
in [AJOS14, AFJ+18, AAC+23]2 and α = 5 in [ABS23]. Furthermore, linear-time algorithms have
been presented under the assumption that the algorithm receives the value of OPT (or its upper
bound) as input [DK14, ABS23]. However, achieving α < 3 is not possible unless the number of
samples becomes poly(|X |), as indicated in [BKM19].

Despite the long-standing history of this problem, the following question remained open:

Is there an algorithm for hypothesis selection with the optimal number of samples s = O(log(n)/ϵ2)
and optimal accuracy parameter α = 3 that runs in O(n · s) time?

We present the first almost linear-time algorithm that uses the optimal number of samples and achieves
the optimal accuracy parameter α = 3. Our algorithm runs in Õ(n · s / ϵ) time (see Theorem 2).
Additionally, we introduce another algorithm with improved dependency on ϵ, running in Õ(n · s)
time while obtaining a slightly higher accuracy parameter, α = 4 (see Theorem 3). Our results
represent a significant step forward, as they are the first in decades to achieve time complexity linear
in n for any α < 5. See Table 1.

Applications of Hypothesis Selection The primary application of hypothesis selection is to identify
the best distribution from a set of known models that represent potential underlying data distributions
we can effectively manage. For example, this set might include Poisson, gamma, and binomial
distributions with various parameters used to model the number of arrivals per time unit. This
makes hypothesis selection applicable to tasks like interpretable distribution selection and strategy
optimization, where the objective is to choose the most suitable model from available options.

Another key strength of hypothesis selection is its agnostic nature, allowing it to adapt even when
the true distribution lies outside the considered class. This robustness makes it effective in noisy
data settings, with applications in denoising and anomaly detection. From a theoretical standpoint,
hypothesis selection is fundamental in learning structured distributions, particularly when combined
with the cover method, as seen in learning mixtures of Gaussians [DK14, SOAJ14]. For additional
references, see Section 1.3.

Importance of improving ααα by a constant factor In most learning algorithms, the error guarantee
decreases polynomially as the number of samples increases, so constant factors may not be as crucial.
However, this is not the case in hypothesis selection. The output hypothesis is guaranteed to be
(α · OPT + ϵ)-close to P in total variation distance. While increasing the number of samples can
reduce ϵ to negligible levels, it does not improve the term α · OPT. Hence, α is an inherent property
of the algorithm and directly impacts the best achievable error guarantee. Therefore, even a constant
improvement in α is significant.

One might argue that, alternatively, OPT could be reduced by carefully curating the classH. However,
beyond the practical challenges of finding a better H, it is unclear whether this can be achieved

1This time bound assumes constant-time comparisons of the Hi’s density functions. See Section 1.1.
2Theorem 4.1 in [AAC+23] states the result for α = 27. However, according to personal correspondence

with the authors, it is possible to modify their algorithm in conjunction with the minimum distance estimate and
improve α to 9.
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without significantly increasing the size of the hypothesis classH. For example, in the cover method,
when aiming to learn a distribution within a class C, we set H to be a γ-net that serves as a cover
for C, ensuring that OPT < γ. While using a finer γ-net can reduce OPT, it may also drastically
increase the size ofH, thereby increasing the algorithm’s running time, since the size of the net can
grow super-polynomially with respect to γ. For instance, in the case of mixtures of k Gaussians, the
size of the net depends on γ as roughly O(γ−3·k) (see [SOAJ14]). Thus, reducing γ by a factor of
three could exponentially increase the size ofH in terms of k, thereby increasing both the running
time and sample complexity, ultimately resulting in an inefficient algorithm.

Table 1: Summary of Past Results in Hypothesis Selection. All algorithms use s = Θ(log n/ϵ2)
samples.

Result α Time Complexity Additional requirement
Min distance estimate [DL01] 3 O(n3 · s)
Scheffé tournament [DL01] 9 O(n2 · s)
Min distance estimate [MS08] 3 O(n2 · s)

[AJOS14, AFJ+18] 9 Õ(n · s)

[ABS23] 5 Õ(n · s)
[AAC+23] 9 O(n · s/ log n)

[MS08] 3 O(n · s) Exponential time preprocessing

[DK14, ABS23] ≥ 3 Õ(n · s) Assume knowledge of OPT
Lower bound [BKM19] Achieving α < 3 requires poly(|X |) samples

This work:Algorithm 1 3 Õ(n · s / ϵ)

This work: Algorithm 4 4 Õ (n · s)

1.1 Problem Setup

Suppose we have an unknown distribution P over a domain X and a set of n known distributions
H := {H1, H2, . . . ,Hn}. Let OPT denote the distance between P and the closest distribution to it
in H 3: OPT(H, P ) := minH∈H ∥H − P∥TV . We use the standard access model for this problem
as introduced in [DL01]. The algorithm accesses the distributions through the following types of
queries:

1. The algorithm can request a sample from the unknown distribution P .

2. The algorithm can compare the PDF of two known distributions: For every domain element
x ∈ X and every pair of indices i and j, it can ask if Hj(x) < Hi(x). This is equivalent to
asking if x is in the Scheffé set of Hi and Hj (defined in Equation (2)).

3. The algorithm can query the probability mass of the Scheffé sets according to all the known
distributions.

Remark 1. The last requirement of our model can be relaxed. Only estimates of the probability
masses of the Scheffé sets are needed for our algorithms. Thus, one can alternatively assume sample
access to Hi’s, and estimate these values via samples.

Definition 1.1 (Proper learner for hypothesis selection). Suppose algorithm A is given parameters
ϵ, δ ∈ (0, 1), α ∈ R>0 and has access to an unknown distribution P and a class of n known
distributions H (as described above). We say A is an (α, ϵ, δ)-proper learner for the hypothesis
selection problem if for every P andH, A outputs Ĥ ∈ H for which, with probability at least 1− δ,

∥Ĥ − P∥TV ≤ α · OPT(H, P ) + ϵ . (1)

3We omit the arguments (H, P ) when they are clear from the context.
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We refer to α as the accuracy parameter, ϵ as the error (or proximity) parameter, and δ as the
confidence parameter of the algorithm.

1.2 Main theorems

Below, we provide informal versions of our theorems.

Theorem 2. For every ϵ, δ ∈ (0, 1), Algorithm 1 is an (α = 3, ϵ, δ)-proper learner for hypothesis
selection that uses s = O(log(n/δ)/ϵ2) samples and time Õ(n · s / (δ3ϵ)) = Õ(n/(δ3ϵ3)).

Theorem 3. For every ϵ, δ ∈ (0, 1), Algorithm 4 is an (α = 4, ϵ, δ)-proper learner for hypothesis
selection that uses s = O(log(n/δ)/ϵ2) samples and time Õ(n ·s · log(1/δ)) = Õ(n · log2(1/δ)/ϵ2)).

For formal statements, see Theorem 5 (Appendix A) and Corollary B.1 (Appendix B).

Our results are the first to achieve time complexity linear in n for any α < 5. To achieve this, we
introduce novel algorithmic techniques that will hopefully be broadly useful—see Section 3 for an
overview. Both algorithms use the optimal number of samples. The first algorithm obtains optimal
accuracy parameter α = 3 with a time complexity of Õ(n/(δ3 ϵ) · s), which is off by an O(1/(δ3 ϵ))
factor. Our second algorithm achieves the optimal time complexity up to logarithmic factors while
achieving a slightly higher α = 4. Our results leave a fascinating open question: Can one combine
the best aspects of both algorithms, maintaining α = 3, achieving O(n · s) time (or even lower), and
sample complexity s = O(log(n/δ)/ϵ2)?

Remark 4. Readers may be surprised by the polynomial dependence on 1/δ in Theorem 2. In many
settings, the success probability of a learning algorithm can be amplified from a constant, say 2/3,
to at least 1− δ at a cost of at most log(1/δ) in running time and sample complexity. However, in
hypothesis selection, there is no (known) general technique for boosting the confidence parameter
while keeping α the same. The issue is that choosing the best output from several runs of a given
algorithm requires executing a second hypothesis selection algorithm, which introduces another
factor of α in the approximation—leading to a total factor of at least 9. As a result, these kinds of
two-phase algorithms are not sufficient in the low α regime. Some previous results, such as [ABS23],
also suffer from a polynomial dependency on δ.

1.3 Other related work

Hypothesis selection has been studied in various settings including improper setting. In [BKM19],
the authors consider the improper version of the problem where the output hypothesis Ĥ may not
necessarily be in H. They presented an improper learner with accuracy guarantee α = 2. The
sample complexity of their algorithm was improved by [BBK+21], who gave an algorithm with
nearly optimal sample complexity and the same accuracy parameter α = 2. It is worth noting that
our algorithms are proper learners and solve this problem with a slightly better sample complexity. In
addition, like other proper learners, our algorithms select their output from a predefined set, which
can facilitate choosing a distribution with specific structural property (e.g., mixture of Gaussians). In
certain applications, this selection ensures consistency with the problem’s underlying assumptions,
which enhances interpretability and robustness.

The problem of hypothesis selection in sublinear time was studied for distributions on discrete
domains [AAC+23]. Among other results, the authors developed a data structure that upon receiving
samples from a unknown distribution P returns a hypothesis Ĥ in o(n) time. While their algorithm
runs in sublinear time, their sample complexity depends on the domain size of the distribution, and
their setting allows pre-processing of the classH in polynomial time. Another interesting variation
for hypothesis selection is designing differentially private learners for the problem which has received
attention over the past few years [BKSW19, CKM+19, GKK+20].

An important application of hypothesis selection arises when there is a structural assumption on the
underlying distributions. One approach for learning these classes is to selectively choose a cover
for the class. One can then use the learners for the standard hypothesis selection problem (which
we study in the paper) and use the cover as the class H. Examples of such structural assumptions
include Poisson binomial distributions [DDS12], mixtures of Gaussians [KMV12, DK14, SOAJ14,
DKS17, KSS18, ABM18, ABH+20], distributions with piecewise polynomial PDFs [ADLS17], and
histograms [Pea95, CDSS14, CDKL22]. See Diakonikolas [Dia16] for a survey of results.
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2 Preliminaries

Notation: We use the following notation throughout this article. We use [n] to indicate the set
{1, 2, . . . , n}. For a distribution Q over X , Q(x) denotes the PDF of Q at the domain element x ∈ X .
For any measurable subset of the domain S ⊆ X , Q(S) indicates the probability mass of the set S
according to Q. We use ∥Q1 − Q2∥TV := supS⊆X |Q1(S)−Q2(S)| to denote the total variation
distance between Q1 and Q2. We say Q1 is ϵ-close to Q2 if ∥Q1 −Q2∥TV is at most ϵ. Conversely,
we say Q1 is ϵ-far from Q2 if ∥Q1 −Q2∥TV is greater than ϵ. We use the standard O,Ω,Θ notation
for asymptotic functions. Additionally, we use Õ, Ω̃, and Θ̃ to hide polylog factors.

Scheffé sets: For every pair of hypotheses Hi and Hj in H, we define the Scheffé set of Hi and
Hj as follows:

Si,j :=
{
{x ∈ X | Hi(x) < Hj(x)} if i ≤ j
Sj,i if i > j

(2)

It is known that the Scheffé set maximizes the probability discrepancy between Hi and Hj , thus fully
characterizing the total variation distance between the two distributions:

∥Hi −Hj∥TV = sup
S⊆X
|Hi(S)−Hj(S)| = |Hi (Si,j)−Hj (Si,j)| . (3)

The optimal hypothesis: Recall that we assume the algorithm is given samples drawn from an
unknown distribution P . Let Hi∗ denote the closest hypothesis in H to P . That is, Hi∗ is the
hypothesis for which ∥Hi∗ − P∥TV = OPT. When there is more than one hypothesis with this
property, we pick one arbitrarily as Hi∗ .

Semi-distances: For every pair i, j in [n], we define wj(Hi) to be |Hi (Si,j)− P (Si,j)|. In words,
wj(Hi) is the distance of Hi to P observed on the Scheffé set of Hi and Hj . For every pair
i, j ∈ [n], we use ŵj(Hi) to denote an estimate of wj(Hi) based on the observed sample. For
the sake of consistency, we define wi(Hi) to be zero. In addition, we define the score function
W (Hi) := maxj∈[n] wj(Hi). Similarly, Ŵ (Hi) is defined to be maxj∈[n] ŵj(Hi).

Refined access model: Similar to previous work [DL01, MS08], we use estimates of the semi-
distances. One can easily estimate these quantities, denoted by ŵj(Hi), via the access model we have
described earlier by letting ŵj(Hi) be the empirical ratio of the samples that are in Si,j . Throughout
this paper, we assume that there are two universal parameters δ′ = Θ(δ) and ϵ′ = Θ(ϵ), for which
with probability 1− δ′ every ŵj(Hi) is within ϵ′ of wj(Hi):

∀i, j ∈ [n] : |ŵj(Hi)− wj(Hi)| ≤ ϵ′.

A simple application of the Hoeffding bound and the union bound shows that one can compute all of
the estimates via s = O(log(n/δ′)/ϵ′

2
) samples, and each estimate can be computed in O(s) time.

Our algorithms access the distributions inH ∪ {P} only via querying ŵj(Hi). This fact brings the
sample complexity of our algorithms to s = O(log(n/δ′)/ϵ′

2
) samples. The time complexity of our

algorithms is determined by the number of queries they make to the ŵj(Hi)’s, multiplied by time
that we spend on each query, O(s). Moreover, in the proofs of our theorems, we assume without loss
of generality that all the ŵj(Hi)’s are accurate. Conditioning on the accuracy will not decrease the
probability of correctness of any of our algorithms by more than δ′ due to Fact C.1.

3 Overview of our techniques

In this section, we provide a high-level discussion of our algorithm. The important notations and
definitions used here are provided in Section 2. For the high-level discussions in this section, we
assume we have access to the exact values of the semi-distances wj(Hi). In the formal proofs
presented in subsequent sections, we will substitute each wj(Hi) with an estimated value ŵj(Hi).
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If the error of these estimates is below ϵ′ = Θ(ϵ), it can be shown that the overall impact of this
substitution on our final distance guarantee (Equation 1) is at most Θ(ϵ). See the “Refined access
model” in Section 2 for further details.

3.1 Background: Semi-distances and the minimum distance estimate

To solve the hypothesis selection problem, we seek a certificate that ensures we output a hypothesis Ĥ
such that ∥Ĥ−P∥TV is at most 3OPT. Similar to previous work, our algorithms operate based on the
probability masses of the Scheffé sets (Equation (2)) of pairs of hypotheses inH. The semi-distance
wj(Hi), defined as |Hi (Si,j)− P (Si,j)|, captures the “distance” between Hi and P as measured on
this particular set Si,j . One suggestion for readers to internalize the semi-distances is to view them as
a distance between Hi and P that is measured from the perspective of Hj . By definition, wj(Hi) is
always a lower bound for ∥Hi − P∥TV:

wj(Hi) := |Hi (Si,j)− P (Si,j)| ≤ sup
S⊆X
|Hi(S)− P (S)| = ∥Hi − P∥TV.

However, it is possible for wj(Hi) to be much lower, making it difficult for an algorithm to estimate
the TV distance between Hi and P just using semi-distances.

Nevertheless, for each hypothesis Hi, a specific semi-distance wi∗(Hi), associated with the optimal
hypothesis Hi∗ , determines its quality. As shown in the following proof, if wi∗(Hi) ≤ OPT, then
Hi is 3,OPT-close to P , with the total variation distance between Hi and P bounded by wi∗(Hi)
and OPT via the triangle inequality:

∥Hi − P∥TV ≤ ∥Hi −Hi∗∥TV + ∥Hi∗ − P∥TV = |Hi (Si,j)−Hj (Si,j)|+ OPT (By Eq. 3)
≤ wi∗(Hi) + wi(Hi∗) + OPT ≤ wi∗(Hi) + 2OPT.

This observation implies that if we assert that wi∗(Hi) is bounded by OPT, we can output Hi as our
final solution to the problem and be done. The challenge is that we neither know i∗ nor OPT.

This issue is addressed by the minimum distance estimate presented in [DL01, MS08] using a score
function W (Hi), as defined earlier: W (Hi) := maxj∈[n] wj(Hi). The minimum distance estimate
outputs a hypothesis Ĥ that minimizes W (Hi). We can assert that, for the output of this algorithm,
Ĥ , wi∗(Ĥ) is at most OPT. This approach simultaneously bypasses the issues of not knowing i∗

and OPT.

Note that W (Hi) serves as a proxy for the quality of Hi since W (Hi) is an upper bound for wi∗(Hi).
Using W (Hi), we can address the issue of not knowing i∗. On the other hand, although OPT is not
known, we have a good lower bound for OPT, which is W (Hi∗). Putting these observations together,
we obtain:

∥Ĥ − P∥TV ≤ wi∗(Ĥ) + 2OPT ≤W (Ĥ) + 2OPT ≤W (Hi∗) + 2OPT ≤ 3OPT.

These inequalities are derived using the triangle inequality and the fact that Ĥ was chosen to be the
argmini∈[n] W (Hi). See Figure 1 for an illustration of the above inequality.

The primary hurdle with the minimum distance estimate is that it is costly to compute. Computing
each W (Hi) takes O(n · s) time, bringing the total time complexity of the algorithm to O(n2 · s).
One might naturally conjecture that sampling may help to compute an estimate of W (Hi). Instead
of using W (Hi) := maxj∈[n] wj(Hi), we can use W̃ (Hi) := maxj∈R wj(Hi) where R is a set of
random indices in [n]. The issue with this approach is that there is no guarantee of i∗ being selected
in R, making W̃ (Hi) too low while Hi may be far from P . Hence sampling, if used in a trivial
manner, is not beneficial.

3.2 The algorithm with α = 3

In this section, we present an overview of Algorithm 1 that attains α = 3. The details of this algorithm
and its related theorems are provided in Section A. At a high level, similar to the minimum distance
estimate, we work towards finding a hypothesis that minimizes W (Hi). To increase efficiency, we
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P (Si,j) Hi∗ (Si,j)Hi (Si,j)

≤ OPT

wi∗(Hi)

≤ W (Hi)

wi(Hi∗)

∥Hi −Hi∗∥TVH
i

OPT

H
i∗

P

∥H
i −

P∥
TV

TV distance = absolute difference of probabilities on Scheffé set

Probability of Si,j according
to different distributions:

Figure 1: A description of bounding ∥Hi − P∥TV via W (Hi) and OPT

work with estimates of W (Hi)’s, denoted by W̃ (Hi). The general structure of our algorithm is
as follows: Initially, all W̃ (Hi) are set to zero. At every step, we come up with several pairs of
hypotheses Hi and Hj and update our estimates by setting W̃ (Hj) to max(W̃ (Hj), wi(Hj)). Our
approach ensures that at every step, W̃ (Hi) is equal to maxj∈R wj(Hi) for a small, carefully chosen
set R. Eventually, we output a hypothesis with roughly the smallest W̃ (Hi).

Focusing on small W̃̃W̃W : Our first idea is to focus on updating the W̃ for hypotheses whose W̃ (Hi)

values are around the current minimum W̃ . The rationale for this action comes from a simple fact:
W̃ (Hj) always underestimates the value of W (Hj). Hence, if we observe that W̃ (Hi) is substantially
larger than the current minimum, then W (Hi) is also substantially larger than the current minimum.
This implies that Hi is not a suitable candidate for the minimum at this stage of the algorithm, and it
can be ignored for now.

Bucketing hypotheses based on W̃̃W̃W : To implement this idea, we partition the hypotheses into
k = Θ(1/ϵ′) buckets B := {B1, B2, . . . , Bk} based on W̃ (Hi). The bucket ℓ contains all the
hypotheses Hi such that W̃ (Hi) ∈ [(ℓ − 1)ϵ′, ℓ ϵ′). At every step, we focus on the smallest non-
empty bucket Bℓ (the smallest ℓ for which |Bℓ| ̸= 0). Bℓ contains all the hypotheses whose W̃ (Hj)

is around the minimum W̃ . We pick pairs of hypotheses, Hi ∈ H and Hj ∈ Bℓ, and update W̃ (Hj).
Note that our updates may increase W̃ (Hj), and we may remove Hj from Bℓ and put it into a
larger bucket (a bucket with a larger index ℓ). Also, observe that we never move a hypothesis into a
smaller bucket since W̃ (Hj) never decreases. We continue our updates to reach one of the following
outcomes:

• Bℓ becomes empty. That is, our updates made all W̃ (Hi) fall out of the range of these
buckets [0, ℓ ϵ′). Thus, every W̃ (Hi) (and consequently every W (Hi)) is at least ℓ ·ϵ′. Every
time that we empty out a bucket, we have increased our threshold for minimum W (Hi) by
ϵ′. Hence, we are getting closer to a bucket with the true minimum, which we hope to reach
in O(1/ϵ′) steps.

• Bℓ is not empty, but we can confidently confirm most of the hypotheses in Bℓ are an
acceptable output for the algorithm. Although we cannot ensure that Hi∗ is indeed in Bℓ,
we can find an acceptable final answer by selecting a random hypothesis in Bℓ.

Which pairs to update? Next, we outline our update scheme to implement the above ideas in
linear time. To enhance time efficiency, our aim is to optimize the updating process to ensure
both quality and quantity in the chosen updates. Quality, in this context, relates to the extent of
change in W̃ (Hj) following an update: We consider Hi to have made a substantial update to Hj if
W̃ (Hj) + ϵ′ < ŵj(Hi). Such updates cause a significant shift, increasing the value of W̃ (Hj) by
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more than ϵ′ and subsequently moving Hj to a different bucket with a higher index ℓ. We refer to this
event as Hi removing Hj from its bucket. The quantity, on the other hand, relates to the number of
Hj instances that a given Hi can remove from Bℓ. An ideal Hi eliminates a substantial portion of
hypotheses from Bℓ (say a constant fraction). We call such an Hi a prompting hypothesis. Now, if
for O(log |Bℓ|) rounds we find a prompting hypothesis and update all the W̃ (Hj) for Hj ∈ Bℓ, we
will empty out the bucket Bℓ, and we can move forward.

Finding a prompting hypothesis: To find a prompting hypothesis quickly, we iterate over all Hi

inH, sample a few Hj , and check if Hi substantially updates W̃ (Hj). If Hi substantially improves
a large fraction of the sampled hypotheses, then we declare that Hi is a prompting hypothesis. See
Section A.1.1 for further details. In addition to that, we provide a more advanced version of this
procedure in Section A.1.2 that allows us to shave off an O(log n) factor.

Getting stuck? Here is your way out: What happens when Bℓ is not empty, and we cannot find
a prompting hypothesis? We show that if we do not find a prompting hypothesis, then a random
hypothesis in Bℓ is an acceptable answer.

The surprising part about this statement is that it holds regardless of the size of the bucket Bℓ due to
hypothesis sampling procedure we have to find a prompting hypothesis. In search for a prompting
hypothesis, we iterate over all Hi and sample roughly O(log n/δ) many hypotheses Hj’s in Bℓ. We
check, if Hi can remove them from the bucket. Note that if Hi was not found to be prompting, it
implies that Hi∗ cannot substantially update most of the hypotheses in Bℓ. Thus, We have that with
high probability for 1− δ fraction of the hypotheses in Bℓ, wi(Hj) ≤ ϵ′ · ℓ.
The clever hack here is an observation about Hi∗ . Earlier, we discussed that we are looking for a
hypothesis Hi with wi∗(Hi) ≤ OPT. We claim that a random hypothesis in the last Bℓ (almost) has
this property. On one hand, given that Hi∗ was not found to be a prompting hypothesis, for 1− δ
fraction of Hi in Bℓ, wi∗(Hi) must be at most ℓ · ϵ′. On the other hand, the fact that all the previous
buckets, B1, . . . , Bℓ−1, are empty indicates Hi∗ has shown a semi-distance of at least (ℓ − 1) ϵ′.
Hence, OPT, which is at least as large as all Hi∗ semi-distances, is at least (ℓ − 1) ϵ′. Therefore,
wi∗(Hi) ≤ ϵ′ + OPT. Therefore, for 1− δ fraction of the hypotheses in Bℓ, they are 3OPT+Θ(ϵ)
close to P . For a formal argument, see Lemma A.1.

Now, assume the search for the prompting hypothesis fails. Recall that during the search, we have
checked every single hypothesis inH. During the search, at some point, we must have stumbled upon
Hi∗ and did not declare it as a prompting hypothesis. In this case, either our sampling for substantial
updates failed (which happens with small probability), or we can infer that there are not too many
far hypotheses in Bℓ. Either way, we can output a random hypothesis from Bℓ as the final sample
without increasing the error probability by too much.

Dependency on δ: It is worth noting that this last step results in a polynomial dependency on
δ (as opposed to a more desirable dependency of log(1/δ)). This is mainly due to the fact that to
ensure that a random hypothesis in Bℓ is not too far, with a probability of 1 − δ in a single round,
we have to try O(log(n)/δ) hypotheses in Bℓ and check if Hi∗ is prompting them. Hence, relying
on this structural property of Hi∗ makes a polynomial dependency on δ inevitable. Improving the
dependency on δ for this algorithm would require new algorithmic ideas.

3.3 The algorithm with α = 4

We introduce another (almost) linear-time algorithm for the hypothesis selection problem, where the
time complexity shows improved dependency on ϵ. However, this algorithm has a slightly worse
accuracy parameter compared to our previous algorithm: α = 4. This algorithm and the subsequent
theorems are provided in Section B.

Algorithm with a guessed upper bound of OPTOPTOPT: As mentioned earlier, unlike previous work,
our algorithm does not receive any prior information about the value of OPT. It might be speculated
that there exists an easy reduction between our problem and another version of hypothesis selection,
where an auxiliary parameter σ is provided to the algorithm such that OPT ≤ σ. A learner without
the knowledge of σ can make a guess about σ and run one of the existing algorithms that works with
the knowledge of an upper bound of OPT (e.g., [ABS23]) and check if it finds a good hypothesis or
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not. With this procedure in mind, we can run a binary search to find the smallest σ for which we find
a hypothesis.4 However, a challenge with this approach is that the algorithm might yield a hypothesis
even when σ < OPT, making it difficult for us to refute the hypothesis that is found. Even if the
output Ĥ satisfies W (Ĥ) > σ, it does not necessarily invalidate our guessed value σ.

To overcome this challenge, we design an algorithm, namely A, with enhanced accuracy guarantees
for the output hypothesis. We provide A with the value σ. We treat σ as a "guess" for which we
hope that OPT ≤ σ. We require the algorithm to either refute our guess and declare OPT > σ, or
output a hypothesis Ĥ with a reasonable distance to P , irrespective of the relationship between OPT

and σ. More precisely, the distance of the output hypothesis should be bounded by: ∥Ĥ − P∥TV ≤
α ·max(OPT, σ) + ϵ. With these revised guarantees, it is permissible to run a binary search over
different values of σ in {ϵ, 2 ϵ, . . . , ⌈1/ϵ⌉ ϵ}, and output the hypothesis that A returns on the smallest
σ. For the rest of this discussion, we focus on designing A and a provided parameter σ.

Seeds and finding an acceptable hypothesis via seeds: In this algorithm, we introduce a new
concept called a seed for hypotheses. A seed provides us with a structural property that enables us to
identify an acceptable hypothesis, regardless of the relationship between Hi∗ and the seed. More
formally, for a hypothesis Hi, we defineMa,b(Hi) as the set of hypotheses Hj such that wj(Hi) is
between a and b:

Ma,b(Hi) := {Hj ∈ H | a < ŵj(Hi) ≤ b} .

We may omit the subscript ofM when it is clear from the context. We say a hypothesis Hi is a seed
if almost all of its ŵj(Hi) are low and its W (Hi) is not too large. The quality of a seed is determined
by three parameters: a, b, and m.

Definition 3.1 (Seed). Given parameters a, b ∈ R≥0, and a non-negative integer m, we say a
hypothesis is an (a, b,m)-seed if the following hold: 1) Ŵ (Hi) ≤ b, and 2) |Ma,b(Hi)| ≤ m.

A seed with a small-sized setM and a small b exhibits an interesting property: Suppose we have
a seed Hi with a constant-sized set M. In this case, in O(n) time, we can compute W (Hj) of
every hypothesis Hj in M. Now, let Hℓ ∈ M be one of the hypotheses that minimize W (Hj):
Hℓ := argminHj∈M W (Hj). We claim either Hi or Hℓ is acceptable output in this case.

When Hi∗ is inH \M, we can infer that wi∗(Hi) is at most b (or, more precisely, b+ ϵ′). From our
earlier discussion, if b is sufficiently small (compared to σ), we can show that Hi is close to P . In
cases where Hi∗ is inM, although we do not have strong guarantees for Hi itself, we have a very
good answer already: Hℓ is essentially a minimum distance estimate for the setM which includes
Hi∗ . Thus, we can conclude: First, Hℓ is an acceptable output because it is 3OPT-close; second,
W (Hℓ) is a lower bound for OPT.

Now, as we described, we have two acceptable outputs for two cases of the problem. For Hi∗ ∈ H\M,
Hi is an acceptable answer. For Hi∗ ∈M, Hℓ is an acceptable answer. The only problem is that we
do not know which case we are in. Our strategy is to pick a hypothesis that is still reasonably close
to P even if we are in the other case. Let us fix a threshold value T . We compare W (Hℓ) with Tσ:
1) If W (Hℓ) ≤ T · σ, as we have discussed earlier, Hℓ is (T · σ + 2OPT)-close to P . This bound
holds regardless of where Hi∗ is. 2) Next, if W (Hℓ) > T · σ, we cannot say Hℓ is a good choice for
us. However, we can conclude that Hi is a close hypothesis to P even when Hi∗ happens to be inM.
In this case, we know that OPT ≥W (Hℓ) > T · σ. We take advantage of this knowledge and obtain
the following bound:

∥Hi∗ − P∥TV = b σ + 2OPT ≤
(

b

T
+ 2

)
OPT .

Thus, regardless of where Hi∗ is, Hi is (max(a, b/T ) + 2) ·max (σ,OPT). Now, the algorithm is
fairly straightforward. If W (Hℓ) is small, output Hℓ; otherwise, output Hi. We summarize these four
cases in the following table. Depending on a and b, we set T to minimize the maximum distance we

4This idea works to some extent, but it causes α to be increased by 2, which is not useful in our setting.
See [ABS23] for more details.
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endure in these cases. It is worth noting that in this argument, we did not rely on any prior knowledge
concerning the relationship between σ and OPT.

Hi∗ ∈M Hi∗ ∈ H \M

W (Hℓ) > T · σ ∥Hi − P∥TV ≤ a · σ + 2OPT ∥Hi − P∥TV ≤ (b/T + 2)OPT

W (Hℓ) > T · σ ∥Hℓ − P∥TV ≤ T · σ + 2OPT ∥Hℓ − P∥TV ≤ T · σ + 2OPT

Table 2: Four cases when we process a good seed.

How to find the first seed? Here, we provide an overview of our approach for identifying an initial
seed. For a detailed explanation of the algorithm and its performance, refer to Section B.1.

To start, fix two parameters, a = σ and b = 3σ. To identify a seed hypothesis, we iterate over all
hypotheses H1, . . . ,Hn, checking whether each hypothesis Hi is a strong seed (i.e., a seed with a
small |M|) by sampling several Hj’s and verifying if wj(Hi) is at most a. Roughly speaking, for
an integer m ∈ [n], if we sample approximately Õ(n/m) Hj’s and find that no wj(Hi) > a, we
can, with high probability, confirm that the size ofM does not exceed m. This approach requires
O(n2/m) time.

There are, however, a few caveats with this method. First, if a seed is identified using the above
approach, it may have a large W (Hi) > b. In this case, we can infer that Hi is likely far from P .
Given the time invested in identifying Hi, we aim to leverage this information. Broadly, observing
that wj(Hi) ≤ a implies that many hypotheses are close to Hi (assuming that wi(Hj) values are
also small). Knowing that Hi is far from P , we can mark all hypotheses close to Hi as also far,
allowing us to proceed with the search. While this may seem counterproductive, marking a significant
number of hypotheses as “far” constitutes progress for our algorithm. Specifically, if, at some point,
all hypotheses are marked, we can declare that σ < OPT.

The second caveat is more challenging. Ideally, we seek a seed with a constant m, but finding such a
seed would require Õ(n2/m) = Õ(n2) time. Consequently, for a linear-time algorithm, we can only
afford to find seeds where m = Θ(n). In other words, the quality of the seed we can initially identify
is much lower than the quality required for a producing solution. This leads to our next idea: boosting
a seed, which is an approach to incrementally improve the seed’s quality in roughly O(log n) steps.

Boosting a Seed: In this process, we use an initial seed to iteratively find a stronger seed with a
reduced value of |M|. For a formal argument, see Section B.2. Assume a rate parameter η ∈ (0, 1).
As discussed earlier, by spending O(n/η) time, we can identify a seed with m ≈ η · n. Initially,
m = |M| might be O(n). Hence, rather than calculating W (Hj) exactly for all Hj ∈ M, we
compute an approximate maximum semi-distance W̃ (Hj) by sampling t hypotheses. Specifically, for
each Hj ∈M, we set W̃ (Hj) := maxHk

ŵk(Hj), where Hk’s are sample hypotheses. Using these
approximate values W̃ , we process the seed as follows. Let Hℓ denote the hypothesis minimizing
W̃ (Hj), with the following possible outcomes:

1. High W̃ (Hℓ): If W̃ (Hℓ) is high, all W̃ (Hj) (and thus W (Hj)) values are likely large,
making Hi an acceptable final solution.

2. Low W̃ (Hℓ): While this does not guarantee a low W (Hℓ), it suggests that most wi(Hℓ)
values are small. Based on the value of W (Hℓ), we consider two cases:

2.1 W (Hℓ)≫ W̃ (Hℓ): Hℓ is likely far from P but has many close hypotheses, allowing
us to mark these nearby hypotheses as far.

2.2 Moderate W (Hℓ): In this case, Hℓ can serve as our new seed, as it yields a smaller set
M(Hℓ) than Hi.

Note that when we select Hℓ as our new seed,M(Hℓ) is roughly O(n/t). However, we compute
W̃ (Hj)’s for only |M(Hi)| ≈ η · n many hypotheses. Hence, with an increased sample size
t = O(1/η2), this approach yields a smaller |M(Hℓ)| ≈ η2 · n. The step of the process requires
O(|M| · t) = m/η2 = O(n/η), paralleling the initial search. By repeating, we progressively reduce
m = |M|, and for a constant η, m decreases by a fixed factor until reaching a constant m seed, as
desired.
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Algorithm 1 An algorithm for hypothesis selection with α = 3.
1: procedure SELECT-HYPOTHESIS(H, ϵ, δ, and query access to ŵj(Hi)’s)
2: W̃ (Hi)← 0 for every i ∈ [n]
3: k ← ⌊1/ϵ′⌋+ 1
4: B1 ← H
5: B2, . . . , Bk ← ∅
6: ϵ′ ← ϵ/3
7: δ′ ← δ/3
8: γ ← δ′

9: δfn ← δ′/k
10: δfp ← γ · δ′/(4 k n log(n))
11: for ℓ = 1, . . . , k do ▷ Iterating over buckets
12: for i = 1, . . . , n do ▷ Iterating over hypotheses to find a prompting one
13: if |Bℓ| = 0 then
14: Break the “for” loop and move on to the next bucket.
15: if IS-PROMPTING(B, ℓ, Hi, γ, ϵ

′, δ′) then ▷ Checks if Hi is prompting.
16: Cℓ i ← 0 ▷ A counter for the number of hypotheses that Hi removes from Bℓ

17: for Hj ∈ Bℓ do ▷ Update all hypotheses in Bℓ via the prompting hypothesis
18: if ŵi(Hj) > W̃ (Hj) + ϵ′ then
19: W̃ (Hj)← max

(
W̃ (Hj), ŵi(Hj)

)
20: Move Hj to B⌈W̃ (Hj)/ϵ′⌉
21: Cℓ i ← Cℓ i + 1
22: if Cℓ i

Cℓ i+|Bℓ| < γ/2 then ▷ It indicates Hi was not prompting.
23: Output ⊥ and halt.
24: i← 0 ▷ Restarts the “for” loop.
25: if |Bℓ| ̸= 0 then
26: Ĥ ← a random hypothesis in Bℓ

27: Output Ĥ and halt.

A Almost linear time algorithm with α = 3α = 3α = 3

In this section, we focus on our first result, the algorithm with α = 3. The pseudocode of our
approach is presented in Algorithm 1. We prove the performance of this algorithm in Theorem 5. An
overview of our approach is described in Section 3.2.

At a high level, our algorithm begins with all W̃ (Hi) set to zero, and all hypotheses placed in B1.
We then iterate over all buckets. In round ℓ, we check if there is a prompting hypothesis Hi ∈ H
that can move a significant fraction of hypotheses from Bℓ. Specifically, we look for an Hi that
moves a γ-fraction of hypotheses from Bℓ by updating them, where γ = Θ(δ). If we find such a
hypothesis Hi, we update all the hypotheses in Bℓ and move as many as possible out of Bℓ. During
this process, we count the number of hypotheses that Hi removes from Bℓ, which is tracked by Cℓ i

in the algorithm. If the actual fraction of hypotheses removed from Bℓ is less than γ/2, we infer that
IS-PROMPTING falsely declared Hi as a prompting hypothesis (false positive). Thus, the algorithm
returns ⊥. Otherwise, we restart the search by setting i = 1 and iterate over all Hi to find the next
prompting hypothesis. We continue this process until no prompting hypothesis is found or the bucket
is emptied. If we completely empty a bucket, we move on to the next one. If not, we select a random
hypothesis in Bℓ as the final output and halt.

Theorem 5. SupposeH is a class of n known hypotheses and P is an unknown hypothesis. Assume
the algorithm has access to accurate estimates of ŵj(Hi)’s that have an error of at most ϵ′. Let ϵ
and δ be two parameters in (0, 1). If 3 ϵ′ ≤ ϵ, then Algorithm 1 is an (α = 3, ϵ, δ)-proper learner for
P inH. The running time of our algorithm is Õ((n/(δ3ϵ)) · Tq), where Tq is the time to obtain each
ŵj(Hi).

Proof. Our proof consists of three parts:
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1. If the algorithm returns Ĥ , with high probability, Ĥ is not too far from P .

2. While the algorithm may not produce a hypothesis all the time, the overall failure probability
of the algorithm is low.

3. The running time of the algorithm meets the desired bounds in the theorem.

The output Ĥ̂ĤH is close with high probability. Suppose we output Ĥ ∈ Bℓ at step ℓ. Our goal is to
show that Ĥ is (3OPT+ ϵ)-close to P with probability 1− δ′. We define two events Eℓ and Eℓ for
each ℓ ∈ [k] based on the fraction of far hypotheses in Bℓ in Line 25:5

Eℓ := the event that a non-empty Bℓ in Line 25 contains at least ⌈γ · |Bℓ|⌉
hypotheses that are (3OPT+ ϵ)-far from P .

Eℓ := the event that a non-empty Bℓ in Line 25 contains fewer than ⌈γ · |Bℓ|⌉
hypotheses that are (3OPT+ ϵ)-far from P .

Conditioning on the event Eℓ, fewer than a γ fraction of the hypotheses in Bℓ are far. Since Ĥ is a
randomly selected hypothesis in Bℓ, the probability of Ĥ being far is less than γ:

Pr
[[[
∥Ĥ − P∥TV > 3OPT+ ϵ | Eℓ

]]]
< γ . (4)

Next, we focus on the case where Eℓ holds: at least a γ fraction of the hypotheses in Bℓ are
(3OPT+ ϵ)-far from P . In the following lemma, we show that Hi∗ is a prompting hypothesis for
such a Bℓ. The proof of this lemma is available in Section A.2.

Lemma A.1. Suppose Bℓ ⊆ H is the smallest non-empty bucket for which at least a γ fraction of its
hypotheses are (3OPT+ ϵ)-far from P . Then Hi∗ is a prompting hypothesis that can remove a γ
fraction of the hypotheses in Bℓ.

If we output a hypothesis in Bℓ, clearly, the prompting hypotheses had failed to empty out the bucket.
Therefore, the last time the algorithm was iterating over all i’s in [n], the IS-PROMPTING procedure
returned false for every single Hi, and no “restart” happened. However, during those iterations, at
some point, i reached i∗, implying that the IS-PROMPTING procedure did not catch that Hi∗ is a
prompting hypothesis. This event happens with probability at most δfn.

Pr[[[Eℓ ]]] ≤ Pr[[[ IS-PROMPTING returns false for Hi∗ and Hi∗ is a prompting hypothesis]]]
≤ Pr[[[ IS-PROMPTING returns false for Hi∗ | Hi∗ is a prompting hypothesis]]] ≤ δfn .

(5)

Given Equation (4) and Equation (5), we bound the probability of outputting a far Ĥ as follows:

Pr
[[[

Outputting Ĥ and ∥Ĥ − P∥TV > 3OPT+ ϵ
]]]

=
k∑

ℓ=1

Pr
[[[
∥Ĥ − P∥TV > 3OPT+ ϵ | Eℓ

]]]
·Pr[[[Eℓ ]]]

+
k∑

ℓ=1

Pr
[[[
∥Ĥ − P∥TV > 3OPT+ ϵ | Eℓ

]]]
·Pr

[[[
Eℓ
]]]

≤
k∑

ℓ=1

Pr[[[Eℓ ]]] +
k∑

ℓ=1

γ ·Pr
[[[
Eℓ
]]]

≤ k · δfn + γ ≤ 2 δ′ .

5It is worth noting that we are using the Eℓ notation somewhat non-rigorously here. This notation does not
represent the complementary event of Eℓ. Instead, it denotes the complementary event of Eℓ conditioning on the
outputting of Ĥ from the bucket Bℓ.
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The last line is due to the fact that we set δfn = δ′/k and γ = δ′.

Bounding the overall error probability: We have shown that if we output Ĥ , it is an acceptable
answer with high probability. Now, we need to show that the overall error probability of the algorithm
is not too high as well.

Our first claim is that the algorithm always ends, meaning that we do not restart the “for” loop
infinitely many times in Line 24. Note that the restart happens only after we check that at least γ/2
of the hypotheses are removed from Bℓ in Line 22. Therefore, the total number of restarts for any
given bucket is at most log1/(1−γ/2)(|Bℓ|) + 1 ≤ 4 log(n)/γ times.

In addition, we claim the algorithm does not end without outputting Ĥ or ⊥. Every Hi belongs to
some bucket at every step of the algorithm. This is due to the assumption that ŵj(Hi) is in [0, 1].
Thus, W̃ (Hi) is always between 0 ≤ W̃ (Hi) ≤ 1 < kϵ′. Thus, it is not possible to reach |Bℓ| = 0
for all ℓ ∈ [k] in Line 25. For the bucket that cannot be emptied out, the algorithm outputs either ⊥
or Ĥ .

Next, we show that the probability of outputting ⊥ is at most δ′. Note that the algorithm outputs ⊥
when Hi was not able to remove at least γ/2 of the hypotheses in Bℓ. As we have established earlier,
the restart happens only 4 log(n)/γ times for every bucket. Therefore, the IS-PROMPTING procedure
is invoked at most 4kn log(n)/γ times overall. Each time we have a chance of δfp of declaring a
hypothesis prompting erroneously. The algorithm in Line 22 checks if the error has happened, and it
outputs ⊥ when it does. Hence, we have:

Pr[[[Outputting ⊥]]] ≤ 4kn log(n)

γ
· δfp ≤ δ′ . (6)

The final inequality follows from setting δfp = γ · δ′/(4 k n log(n)). Thus, we can bound the overall
error probability as follows:

Pr[[[Wrong answer]]] = Pr[[[Outputting ⊥]]]

+Pr
[[[

Outputting Ĥ s.t. ∥Ĥ − P∥TV > 3OPT+ ϵ
]]]
≤ 3 δ′ ≤ δ .

The last inequality holds since δ′ = δ/3.

Running time: The initialization takes O(n+k) time. The algorithm runs over k buckets. For each
bucket, we may restart the “for” loop O(log(n)/γ) times. Within each “for” loop before restarting,
we invoke the IS-PROMPTING procedure O(n) times where, with the exception of one of them, all
return false. Let T (i)

false indicate the time that the procedure spends on Hi in the false case. Also,
set this quantity be Ttrue if the procedure returns true (which happens at most once before restarting).
If we find a prompting hypothesis, we query the ŵi(Hj)’s O(n) times, and spend O(n · Tq) for this
step. Hence, the total time complexity is:

Total time complexity = O

(
k · log(n)

γ
·

(
n∑
i

T
(i)
false + Ttrue + n · Tq

))
.

Advanced version of IS-PROMPTING: We described the guarantees of the advanced version
of the IS-PROMPTING procedure in Lemma A.3. In that lemma, we have shown that the running
time of the false case is proportionate to the number of hypotheses we remove from Bℓ during the
procedure of IS-PROMPTING. We denote this quantity in the r-th search for the prompting hypothesis
Hi in bucket bℓ via n

(ℓ,i)
r . Since the total number of hypotheses that we can remove is at most O(n),

we have:
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n∑
i

T
(i)
false =

n∑
i

O
((

log
(
δ−1
fn

)
+ log log

(
δ−1
fp

))
· Tq/γ

2 + n(ℓ,i)
r · Tq/γ

)
= O

(
n ·
(
log
(
δ−1
fn

)
+ log log

(
δ−1
fp

))
· Tq/γ

2 + n · Tq/γ
)

= O
(
n ·
(
log
(
δ−1
fn

)
+ log log

(
δ−1
fp

))
· Tq/γ

2
)

Using the setting of our parameters, δfp = γ · δ′/(4 k n log(n)) = O(n log n/(δ ϵ)) and δfn =
δ′/k = O(1/(δ ϵ)).

n∑
i

T
(i)
false = O

(
n

δ2
·
(
log

(
1

δ ϵ

)
+ log log

( n

δ ϵ

))
· Tq

)
= O

(
n

δ2
·
(
log

(
1

δ ϵ

)
+ log log (n)

)
· Tq

)
.

Moreover, for the case that a prompting hypothesis is found:

Ttrue = O
(
log
(
δ−1
fp

)
·
(
log
(
δ−1
fn

)
+ log log

(
δ−1
fp

))
· Tq/γ

2
)

= O

(
1

δ2
· log

( n

δ ϵ

)
·
(
log

(
1

δ ϵ

)
+ log log

( n

δ ϵ

))
· Tq

)
= O

(
1

δ2
· log

( n

δ ϵ

)
·
(
log

(
1

δ ϵ

)
+ log log (n)

)
· Tq

)
.

Hence, the total time complexity is:

Total time complexity = O

(
k · log(n)

γ
·

(
n∑
i

T
(i)
false + Ttrue + n · Tq

))

= O

(
log(n)

δ3 ϵ
·

(
n · log log n+ n · log

(
1

δ ϵ

)
+

(
log

(
1

δ ϵ

))2
)
· Tq

)
= Õ

( n

δ3ϵ
· Tq

)
.

Simple version of IS-PROMPTING: In this version, we only have one possible confidence
parameter, which is min(δfn, δfp). Hence, using Lemma A.2, we have:

T
(i)
false = Ttrue = O

(
log
(
(min(δfn, δfp))

−1
)
· Tq/γ

2
)
.

Total time complexity = O

(
k · log(n)

γ
·

(
n∑
i

T
(i)
false + Ttrue + n · Tq

))

= O

(
n · log(n)

δ3 ϵ
·
(
log
( n

δ ϵ

))
· Tq

)
= Õ

( n

δ3ϵ
· Tq

)
.

Thus, the proof is complete.
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A.1 Identifying prompting hypothesis

In this section, we provide two algorithms for identifying a prompting hypothesis. The simple
algorithm, presented in Section A.1.1, involves sampling the hypotheses in a bucket to estimate the
fraction of the hypotheses that Hi can move, using a standard application of the Hoeffding bound.
The advanced algorithm, presented in Section A.1.2, is based on the fact that we require different
confidence parameters for false negative and false positive errors, given our analysis for Algorithm 1.
We also show that the time complexity of this algorithm, in the case it returns false, is proportional
to the number of hypotheses we can remove from the bucket during this procedure, which later helps
us to use an amortized argument for the overall time spent on false returns.

A.1.1 Simple version of IS-PROMPTING

Algorithm 2 An algorithm to identify a prompting hypothesis (simple version).
1: procedure IS-PROMPTING-SIMPLE(B, ℓ, Hi, γ, ϵ

′, δ, and query access to ŵj(Hi)’s)
2: t←

⌈
8 log(2/δ)/γ2

⌉
3: ur ← 0 ▷ ur counts # sampled hypotheses that Hi updates
4: repeat t times
5: Hj ← a random hypothesis in Bℓ

6: if ŵi(Hj) > W̃ (Hj) + ϵ′ then
7: ur ← ur + 1
8:
9: if ur

t < 3 γ
4 then

10: return false
11: else
12: return true

Lemma A.2. Suppose we are given two parameters δ, ϵ′ ∈ (0, 1), and three positive integers
n, k, and ℓ ∈ [k]. Assume we are given a class of hypotheses H, its partition into k buckets
B = {B1, B2, . . . , Bk}, and a hypothesis Hi ∈ H. The IS-PROMPTING-SIMPLE procedure in
Algorithm 2 receives H,B, ℓ,Hi, δfp, δfn, and ϵ′ as its input and returns true or false with the
following guarantees:

• If Hi substantially updates at least a γ-fraction of the hypotheses in Bℓ, then IS-PROMPTING-
SIMPLE returns true with probability at least 1− δ.

• If Hi substantially updates less than a γ/2-fraction of the hypotheses in Bℓ, then IS-
PROMPTING-SIMPLE returns false with probability at least 1− δ.

• We have the following guarantees for the algorithm:

Number of queries to ŵi(Hj)’s: O
(
log(δ−1)/γ2

)
,

Running time: O
(
log(δ−1) · Tq/γ

2
)
,

where Tq is the time to obtain each ŵj(Hi).

Proof. This is a simple application of the Hoeffding bound:

Pr
[[[∣∣∣u

t
−E

[[[ u
t

]]]∣∣∣ ≥ γ

4

]]]
≤ 2 exp

(
−2 t γ2

)
≤ δ .

A.1.2 Advanced version of IS-PROMPTING

We present an overview of the algorithm for the advanced version of IS-PROMPTING. Suppose we
are given a parameter γ, and our goal is to design an algorithm that does the following with high
probability: it returns true when Hi can substantially update a γ-fraction of the hypotheses in Bℓ,
and it returns false when Hi can substantially update less than a γ/2 fraction of the hypotheses in
Bℓ.
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For this new procedure, we take advantage of an asymmetry that exists between returning false
and true. This asymmetry arises mainly from the analysis of Algorithm 1. Roughly speaking, for
every bucket ℓ, to find a single prompting hypothesis, we check O(n) (potentially non-prompting)
hypotheses. On the other hand, we only need log1/γ(Bℓ) prompting hypotheses to empty out the
whole bucket. Hence, we expect that the procedure returns mostly false rather than true.

Another difference here is the cost we pay for mistakenly declaring true or false. When we declare
a hypothesis prompting, we iterate over all hypotheses in Bℓ and check if we can remove them from
the bucket. If the hypothesis was not actually prompting, we have paid a substantial cost (in time)
without making progress. Thus, we cannot have too many hypotheses that the algorithm declares
prompting while they are not (false positives). However, the probability of mistakenly missing a
prompting hypothesis does not have to be this small (false negatives).

Below is a more precise definition of these errors:

δfp := Pr[[[Returning true | Hi substantially updates less than a γ/2 fraction]]]
δfn := Pr[[[Returning false | Hi substantially updates at least a γ fraction]]]

Given the analysis of our algorithm, we can show that the probability of false positives must be
around Õ(1/ |Bℓ|) = Õ(1/n). On the other hand, our analysis is robust as long as the probability of
false negatives is roughly O(δ), where δ is the overall confidence of our algorithm. (The reason for
this choice of parameter may not be obvious from this high-level discussion; however, it is a direct
artifact of our analysis.) This gap is particularly large when δ is a small constant, as is common in the
literature.

The IS-PROMPTING procedure (Algorithm 3) is designed in a way that has different time complexities
depending on its output being true or false. The procedure uses more than O(log n) (more like
O(log n · log(1/δ)/γ2)) time if it returns true. However, the main advantage is that it uses much
less time when the output is false. In fact, instead of paying O(log n), we only spend O(log(1/δ))
time plus an amortized cost of O(1/γ) for the O(Bℓ) calls to the procedure.

The algorithm runs in roughly O(log n) rounds. In each round, it draws a few random hypotheses
from Bℓ (roughly O(log(1/δ)/γ2)). In each round, we check if the fraction of hypotheses Hi can
substantially update is close to γ. At any round, if we see that the fraction is not close to γ, we
return false. The hope is that for a non-prompting hypothesis, we either stop very quickly or the
hypothesis passes too many rounds without us noticing that it is not prompting. Therefore, we must
have seen an inflated number of substantial updates in these rounds. Before returning false, we
perform those substantial updates among the sampled hypotheses that we have observed to remove
those movable hypotheses from Bℓ.

We can capitalize on this fact in our cost analysis. In fact, we can show that in the false case, if the
procedure takes roughly O(t/γ) time, it must have removed t hypotheses from the bucket. Thus, one
can show that the amortized cost of these elongated rounds is only O(1/γ).6

Lemma A.3. Suppose we are given three parameters δfp, δfn, ϵ′ ∈ (0, 1), and three positive integers
n, k, and ℓ ∈ [k]. Assume we are given a classes of hypotheses H, its partition into k buckets
B = {B1, B2, . . . , Bk} and a hypothesis Hi ∈ H. The IS-PROMPTING procedure in Algorithm 3
receives H,B, ℓ,Hi, δfp, δfn, and ϵ′ as its input and returns true or false with the following
guarantees:

• If Hi substantially updates at least γ fraction of the hypotheses in Bℓ, then IS-PROMPTING
returns true with probability at least 1− δfn.

• If Hi substantially updates less than γ/2 fraction of the hypotheses in Bℓ, then IS-
PROMPTING returns false with probability at least 1− δfp.

6The parameters in this high-level discussion lack precision. For a rigorous analysis, refer to our proof of
Lemma A.3.
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Algorithm 3 An algorithm to identify a prompting hypothesis.
1: procedure IS-PROMPTING(B, ℓ, Hi, γ, ϵ

′, δfn, δfp, and query access to ŵj(Hi)’s)

2: R←
⌈
log3/2

(
1

δfp

)⌉
3: S0 ← ∅ ▷ S is a set of hypotheses that Hi can update substantially.
4: for r = 1, . . . , R do
5: if |Sr−1|

Bℓ
≥ γ

2 then
6: return true
7: Sr ← Sr−1

8: ur ← 0 ▷ ur indicates # hypotheses Hi updates
9: repeat t :=

⌈
48 log(2R/δfn)

γ2

⌉
times

10: G
(r)
j ← a random hypothesis in Bℓ

11: if ŵi

(
G

(r)
j

)
> W̃

(
G

(r)
j

)
+ ϵ′ then

12: ur ← ur + 1

13: Sr ← Sr ∪ {G(r)
j }

14:
15: if |Sr| − |Sr−1| < γ·t

8 then
16: for Hj ∈ Sr do
17: W̃ (Hj)← max

(
W̃ (Hj), ŵi(Hj)

)
18: Move Hj to B⌈W̃ (Hj)/ϵ′⌉
19: return false
20: if ur

t < 3 γ
4 then

21: for Hj ∈ Sr do
22: W̃ (Hj)← max

(
W̃ (Hj), ŵi(Hj)

)
23: Move Hj to B⌈W̃ (Hj)/ϵ′⌉
24: return false
25: return true

• If the algorithm returns true, we have the following guarantees for the algorithm:

Number of queries to ŵi(Hj)’s: O
(
log
(
δ−1
fp

)
·
(
log
(
δ−1
fn

)
+ log log

(
δ−1
fp

))
/γ2
)
,

Running time: O
(
log
(
δ−1
fp

)
·
(
log
(
δ−1
fn

)
+ log log

(
δ−1
fp

))
· Tq/γ

2
)
.

• Suppose the algorithm returns false. Assume n(ℓ,i)
r indicates the number of hypotheses that

the algorithm removes from Bℓ. Then, we have the following guarantees for the algorithm:

Number of queries to ŵi(Hj)’s: O
((

log
(
δ−1
fn

)
+ log log

(
δ−1
fp

))
/γ2 + n(ℓ,i)

r /γ
)
,

Running time: O
((

log
(
δ−1
fn

)
+ log log

(
δ−1
fp

))
· Tq/γ

2 + n(ℓ,i)
r · Tq/γ

)
.f

In above bounds, where Tq denotes the time complexity to obtain each ŵj(Hi).

Proof. The probabilities in this proof are taken over the random choices of G(r)
j ’s. Note that S

contains at the hypotheses for which we can change.

Probability of false positive: First, we show that probability of outputting true, while Hi can
substantially update less γ/2 fraction of hypotheses in Bℓ, is at most δfp. The algorithm return
true in two places. First, at the beginning of each round, we check whether Sr−1 contains at least
γ/2-fraction of hypotheses. This answer is always correct with probability one. Since the algorithm
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has an evidence that Hi can certainly update at least γ/2 of hypotheses in Bℓ. Thus, this case does
not affect our false positive rate δfp.

Second, the algorithm returns true after all rounds end. This case only happens when ur/t is at least
3γ/4 in every round in Line 20. It is not hard to see that ur is a binomial random variable with t
trials. The success probability of each trial is the ratio of the hypotheses in Bℓ that Hi can update
substantially. Thus, in the case where Hi substantially updates less than γ fraction of hypotheses, by
Markov’s inequality, we have:

Pr[[[Returning true | Hi substantially updates less than γ/2-fraction]]]

= Pr

[[[
∀r ∈ [R] :

ur

t
≥ 3γ

4

]]](
Pr

[[[
ur

t
≥ 3γ

4

]]])R

≤ (2/3)R ≤ δfp

Probability of false negative: Suppose that Hi substantially updates at least γ-fraction of the
hypotheses in Bℓ. That is, Hi can update each G

(r)
j with probability at least γ. Fix a round r. We

bound the probability of returning false in Line 19 and Line 24.

In Line 19, we return false when |Sr| − |Sr−1| < γ·t
8 . That is, the number of new hypotheses we

added to Sr is not too large. Consider the random hypotheses we draw at round r. Our claim is that
most of these random hypotheses are not in Sr−1. The probability that one G

(r)
j be selected from

Sr−1 is |Sr−1| / |Bℓ|. However, this expectation is less than γ/2. Otherwise, the algorithm would
have returned true earlier in Line 5. With this information in mind, we can use the Hoeffding bound
and get:

Pr

[[[
number of G(r)

j ∈ Sr−1 ≥
5 γ · t
8

]]]
= Pr

[[[
number of G(r)

j ∈ Sr−1

t
≥ 5 γ

8
=

γ

2
·
(
1 +

1

4

)]]]

≤ Pr

[[[
number of G(r)

j ∈ Sr−1

t
>
|Sr−1|
|Bℓ|

+
γ

4

]]]

≤ exp
(
−2 t (γ/4)2

)
≤ δfn

2R
.

In Line 24, we return false if ur/t is less than 3 γ/4. By Chernoff bound, we have:

Pr

[[[
ur

t
< γ ·

(
1− 1

4

)]]]
≤ exp

(
− t γ

3 · 42

)
=

δfn
2R

.

Taking the union bound over all rounds, we obtain:

Pr[[[Returning false | Hi substantially updates at least γ-fraction]]] ≤ δfn .

Running time: In the case the algorithm return true, the algorithm makes O(R · t) queries to
ŵi

(
G

(r)
j

)
’s. And, it runs in the O(R · t · Tq) . If algorithm returns false in round r, similarly it

makes O(r · t) queries to ŵi

(
G

(r)
j

)
’s. And, it runs in the O(r · t · Tq) . Note that with the exception

of the last round in every round r′ ∈ [r − 1]. At least (γ · t)/8 new hypotheses are added to Sr′ .
Therefore, the size of Sr is at least (γ · t · (r − 1))/8. We remove all of these hypotheses before
we output false which cause the size of Bℓ to drop by n

(ℓ,i)
r := |Sr|. In this case, the algorithm

makes O(t+ n
(ℓ,i)
r /γ) queries to ŵi

(
G

(r)
j

)
’s. And, it runs in the O

((
t+ n

(ℓ,i)
r /γ

)
· Tq

)
. Thus,

the proof is complete by setting R :=
⌈
log3/2(1/δfp)

⌉
and t :=

⌈
48 log(2R/δfn)/γ

2
⌉
.
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A.2 Proof of Lemma A.1

Lemma A.1. Suppose Bℓ ⊆ H is the smallest non-empty bucket for which at least a γ fraction of its
hypotheses are (3OPT+ ϵ)-far from P . Then Hi∗ is a prompting hypothesis that can remove a γ
fraction of the hypotheses in Bℓ.

Proof. We show that Hi∗ can substantially update W̃ of any far hypothesis in Bℓ. Let Hf denote a
(3OPT+ ϵ)-far hypothesis. First, observe that ŵi∗ (Hf ) must be large compared to OPT:

ŵi∗ (Hf ) ≥ wi∗ (Hf )− ϵ′ = |Hf (Sf i∗)− P (Sf i∗)| − ϵ′

≥ |Hf (Sf i∗)−Hi∗ (Sf i∗)| − |Hi∗ (Sf i∗)− P (Sf i∗)| − ϵ′

≥ ∥Hf −Hi∗∥TV − ∥Hi∗ − P∥TV − ϵ′ (By Fact C.2)

≥ ∥Hf − P∥TV − 2 ∥Hi∗ − P∥TV − ϵ′

> 3OPT+ ϵ− 2OPT− ϵ′ ≥ OPT+ 2 ϵ′ .

In addition, OPT cannot be much smaller than ℓ ϵ′. The main reason is that all the buckets before Bℓ

are empty. Hence, Hi∗ belongs to a bucket Bℓ′ where ℓ′ is at least ℓ. By our definition of bucketing:
W̃ (Hi∗) must be at least (ℓ− 1) ϵ′. Hence we have:

(ℓ− 1) ϵ′ ≤ W̃ (Hi∗) ≤ Ŵ (Hi∗) ≤W (Hi∗) ≤ OPT .

Note that we assume Hf belongs to Bℓ, so W̃f is less than ℓϵ′. Putting all these observation together,
we achieve:

W̃f + ϵ′ < ℓ ϵ′ + ϵ′ ≤ OPT+ 2ϵ′ < ŵi∗ (Hf ) .

Therefore, if we update W̃f via ŵi∗ (Hf ), then Hi∗ can significantly improve W̃f . This fact implies
that Hi∗ can removes all the bad hypothesis from Bℓ which concludes the proof of the lemma.

B Linear time algorithm with α = 4

In this section, we present our second algorithm whose sample complexity has a better dependency on
the accuracy parameter ϵ. An overview of our approach is presented in Section 3.3. The pseudocode of
our approach is presented in Algorithm 4. We prove the performance of this algorithm in Theorem 6.

Apart from improving the accuracy parameters, we also provide modifications to our algorithm that
can achieve low rounds of adaptivity (roughly speaking, it means the number of times the algorithm
needs to look at the sample set). More formally, in our access model, we define one round of adaptivity
as follows: The algorithm selects a set of t = O(n2) pairs of indices {(iℓ, jℓ)}ℓ∈[t] and query all
ŵjℓ (Hiℓ) at once. The number of adaptivity rounds represents the total count of times the algorithm
needs to repeat this process in order to produce its final output. This is particularly interesting when
considering a federated learning setting in which the rounds of interactivity are important. The
modification of our algorithm runs in time O(n1+λ) runs in O(1/λ) rounds of adaptivity.

Theorem 6. Suppose Algorithm 4 receives these parameters as input: σ ∈ [0, 1], η ∈
(0, 1/4), ϵ, δ ∈ (0, 1). Also, assume the algorithm has access to a class of n hypotheses H,
and a set of unmarked hypotheses in Q ⊆ H where initially Q = H. Suppose the algorithm can
query ŵj(Hi)’s with error at most ϵ′ ≤ ϵ/6. The algorithm has one of the two possible outcomes:
either it declares that σ < OPT; or it outputs a hypothesis Hi such that: with probability at least
1− δ we have:

∥Ĥ − P∥TV ≤ 4 max (σ,OPT) + ϵ .

The algorithm runs in O(n/η · Tq) time and O
(
log21/η(n)

)
rounds of adaptivity. Here Tq is the time

required to obtain each ŵj(Hi).
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Algorithm 4 finds a hypothesis that is 4max (σ,OPT) + ϵ close to P .
1: procedure SELECT-HYPOTHESIS(H, Q, σ, ϵ, δ, η, , and query access to ŵj(Hi)’s)
2: if |Q| = 0 then
3: return “σ < OPT”.
4: if |Q| = 1 then
5: Hi ← the only unmarked hypothesis left.
6: if Ŵ (Hi) > σ + ϵ′ then
7: return “σ < OPT”.
8: else
9: return Hi.

10: ϵ′ ← ϵ/6

11: δ′′ ← δ/
(
100 ·

(
log1/(2η)(n) · log1/(η)(n)

))
12: m← ⌊η · n⌋
13: Run FIND-SEED(H, Q, σ, ϵ′, δ′′, η)
14: if FIND-SEED declares “σ < OPT” then
15: return “σ < OPT”.
16: else if FIND-SEED returns “start over” then
17: return SELECT-HYPOTHESIS(H, Q, σ, ϵ, δ, η)
18: Hi ← the seed that FIND-SEED found.
19: while m > 1

η do
20: Run BOOST-SEED(H, Q, Hi, σ, κ = 2, κ′ = 2, ϵ′, η)
21: if BOOST-SEED finds the final answer. then
22: return Hi found by BOOST-SEED.
23: else if BOOST-SEED finds a new seed then
24: Hi ← the seed that BOOST-SEED returns
25: m← ⌊η ·m⌋
26: else if BOOST-SEED returns “start over” then
27: return SELECT-HYPOTHESIS(H, Q, s, σ, ϵ, δ)
28: Hℓ ← argminHj∈M Ŵ (Hj) ▷M denotesM2σ+ϵ′, 4σ+5 ϵ′(Hi).
29: if Ŵ (Hℓ) ≤ 2σ + ϵ′ then
30: Output Hℓ.
31: else
32: Output Hi.

Proof. For the sake of argument, assume each of the sub-routines in the algorithm works as guaranteed
with probability one (as oppose to the case where they work as expected with probability 1− δ′′).
Later on, we discuss the overall confidence of the algorithm to remove this assumption.

Accuracy of seeds: the procedure to find the initial seeds provides us with a (σ + ϵ′, 3σ + 3ϵ′,m)-
seed with high probability. Using Fact C.4, this seed is also a (2σ+ϵ′, 4σ+5ϵ′,m). In boosting seeds,
we start with (2σ + ϵ′, 4σ + 5ϵ′,m) and we get (2σ + ϵ′, 4σ + 5ϵ′,m′) where m′ = ⌊η ·m⌋. This
statement is justified by Theorem 9, setting κ = κ′ = 2, and using the same values for a = 2, σ + ϵ′

and b = 4, σ + 5ϵ′ for our seeds. It is worth noting that the only parameter that changes while we
boost is m.

Accuracy of the output Consider the case where we produce output when |Q| is zero. That implies
that our algorithm marked all the hypotheses. Throughout the course of algorithms, we never mark
a hypothesis Hi unless we have found an evidence that ∥Hi − P∥TV > σ. This was established
by observing ŵj(Hi) > σ + ϵ′, which implies ∥Hi − P∥TV must be greater than σ; Or, showing a
close-by hypotheses to Hi is far from P and apply triangle inequality. See our argument for Case 3.2
in the proof of Theorem 9 for example. Thus, if all hypotheses are marked, it must be the case that
for every Hi, ∥Hi − P∥TV is greater than σ. Hence, when the size of Q is zero we can truly assert
that “σ < OPT”.
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For the case that |Q| = 1, the algorithm focuses on Hi, the only unmarked hypothesis left. If we
found Ŵ (Hi) is greater than σ+ ϵ′, we can simply conclude that for every Hi, ∥Hi−P∥TV is greater
than σ, and “σ < OPT”. Otherwise, using Fact C.3, the Hi is a valid answer:

∥Hi − P∥TV ≤W (Hi) + 2OPT ≤ Ŵ (Hi) + ϵ′ + 2OPT ≤ 3 max (σ,OPT) + 2ϵ′ .

In addition, the accuracy of the Hi that is returned in Line 22 is guaranteed by the Theorem 9, and
setting κ = κ′ = 2. Next, lets focus on the hypotheses we output after the “if” condition in Line 29.
When Ŵ (Hℓ) is small, we have:

∥Hℓ−P∥TV ≤W (Hℓ)+2OPT ≤ Ŵ (Hℓ)+ϵ′+2OPT ≤ 2σ+2ϵ′+2OPT ≤ 4 max (σ,OPT)+2ϵ′ .

When Ŵ (Hℓ) is large, the analysis is very similar to Case 1 in the proof of Theorem 9. Again, by
setting κ = κ′ = 2, and using the facts that Ŵ (Hℓ)− ϵ′ ≥ κ′σ and Ŵ (Hi) ≤ (κ+ 2)σ + 5 ϵ′, we
obtain:

∥Hi − P∥TV ≤ 4 max (σ,OPT) + 6ϵ′ .

Number of recursions: Given Theorem 8 and Theorem 9, we only see “start over” when (1− 2η)
fraction of unmarked hypotheses in Q have been marked. Since we have n hypotheses, we do not
start over more than O(log1/η(n)) times.

Running time: In the while loop, m decreases with a factor of η every time we find a new seed.
Hence, the total number of iterations is bounded by O(log1/η(n)). Using Theorem 8 and Theorem 9,
invoking the procedures for finding a seed and boosting a seed each takes O(n log(n/δ′′)/η · Tq)
time. Thus, the total time complexity is:

O

(
n

η
·
(
log(n/δ) + log log1/η(n)

)
· log21/η(n) · Tq

)
= Õ

(
n · log(1/δ) · Tq

η

)
.

Overall confidence parameter: The total number of subroutines we call here is at most
O(log21/η(n)). Thus, by setting δ′′ to O(δ/ log21/η(n)) and using the union bound, we can show the
overall error probability is bounded by δ.

Rounds of adaptivity: Using Theorem 8 and Theorem 9, invoking the procedures for finding a
seed and boosting a seed each takes O(1) rounds of adaptivity. Hence, the overall rounds of adaptivity
is O

(
log21/η(n)

)
rounds.

Remark 7. One could argue that we have demonstrated the algorithm operates in Õ(n/η · Tq) time
with a probability of 1 − δ. However, this fact does not inherently guarantee that the algorithm
consistently maintains the desired time complexity. Fortunately, a straightforward solution exists to
address this concern.

Our algorithm may fail for two primary reasons: either too few hypotheses were marked, or the
identified seed had a larger m value than anticipated. In either scenario, the algorithm can verify the
occurrence of this undesirable, but improbable event. In these situations, we can output ⊥ to indicate
the algorithm’s failure to produce a valid answer. With this adjustment, the time complexity remains
low as desired.

Corollary B.1. SupposeH is a class of n known hypotheses and P is an unknown hypothesis. Let ϵ
and δ be two parameters in (0, 1). Assume the algorithm has access to accurate estimates of ŵj(Hi)’s
that have error at most ϵ′. If 3 ϵ′ ≤ ϵ, then for every η ∈ (1/n, 1/4) there exists an (α = 4, ϵ, δ)-
proper learner for P inH. The running time of our algorithm is Õ((n/η) · log(1/δ) · log(1/ϵ) · Tq),

and it can be implemented in O
(
log21/η(n) · log(1/ϵ)

)
rounds of adaptivity.
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Proof. This is a direct corollary of Theorem 6 combined with a binary search over values of σ ∈
{ϵ′, ϵ′} where ϵ′ := ϵ/100. Note that for every σ ≥ OPT, the algorithm has to produce a hypothesis,
since it cannot declare OPT < σ with high probability. Outputting the hypothesis associated with the
smallest σ would give us the desired guaranteed.

B.1 Finding initial seed

In this section, we describe an algorithm that receives parameter σ as input and finds a (σ + ϵ′, 3σ +

2ϵ′, ⌊η · n⌋)-seed in roughly Õ(n/η · Tq) time with high probability or declares “σ < OPT".

Algorithm 5 finds a (σ + ϵ′, 3σ + 3ϵ′, m)-seed
1: procedure FIND-SEED(H, Q, σ, ϵ′, δ, η, and query access to ŵj(Hi)’s)
2: m← ⌊η · n⌋
3: for i = 1, . . . , n do
4: repeat t := ⌈8n log (2n/δ) /m⌉ times
5: Hj ← a uniformly random sample drawn fromH
6: if ŵj(Hi) > σ + ϵ′ then
7: Mark Hi in Q.
8: Hj ← a uniformly random sample drawn from Q
9: if ŵj(Hi) > σ + ϵ′ then

10: Mark Hi in Q.
11:
12: if |Q| ≤ t then
13: for every Hj ∈ Q do
14: if ŵj(Hi) > σ + ϵ′ then
15: Mark Hi in Q.
16: if Hi is unmarked. then
17: Compute Ŵ (Hi).
18: if Ŵ (Hi) ≤ 3σ + 3 ϵ′ then
19: return Hi as a seed.
20: else
21: for Hj ∈ H do
22: if ŵi(Hj) > σ + ϵ′ or ŵj(Hi) ≤ σ + ϵ′ then
23: Mark Hj in Q.
24: return “Start over.”
25: return “σ < OPT".

Theorem 8. Suppose that we are given a class of n hypotheses,H, a rate parameter η ∈ (0, 1/4),
two parameters σ, δ ∈ (0, 1), and we have access to ŵj(Hi) with error at most ϵ′ for every i, j ∈ [n].
Algorithm 5 queries O (n log(n/δ)/η)) many ˆwi(Hj) and runs in O ((n log(n/δ)/η) · Tq) time.
Also, it can be implemented in O(1) rounds of adaptivity. This algorithm returns a hypothesis Hℓ,
declares σ < OPT, or returns “start over” for which the following guarantees hold with probability
1− δ:

• If σ ≥ OPT, then the algorithm does not declare that σ is less than OPT.

• If the algorithm returns a hypotheses Hℓ, then Hℓ is a (σ + ϵ′, 3σ + 3 ϵ′, m)-seed where
m := ⌊η · n⌋.

• If the algorithm returns “start over.” with probability 1− δ, it marks (1− 2η) fraction of
the hypotheses in Q.

Proof. Our first claim is that if σ is at least OPT, then we do not declare otherwise. This is due to
the fact that the discrepancy between Hi∗ and P on any subset of the domain, including the Scheffé
sets, will not exceed OPT. Hence, ŵj(Hi∗) is at most OPT+ ϵ′ ≤ σ+ ϵ′, and we will not mark Hi∗

in Line 7, Line 10, nor Line 15. That is, for at least one hypothesis, i.e., Hi∗ , the “if” statement in
Line 16 holds. And, we return a seed or “start over.” (And, we will never reach Line 25.)
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Next, we show that if the algorithm outputs Hi, then it is a (σ + ϵ′, 3σ + 3 ϵ′, m)-seed with high
probability. First, observe that Ŵ (Hi) must be at most 3σ+ 3 ϵ′ due to the “if” condition in Line 18,
satisfying one of the two conditions we need for our desired seed in Definition 3.1.

Now, we show the next required condition for Hi to be a good seed holds as well:
|Mσ+ϵ′,3σ+3 ϵ′(Hi)| ≤ m. This condition requires that the number of Hj’s inH for which ŵj(Hi)
is in (σ + ϵ′, 3σ + 3 ϵ′] is bounded by m. We have already established that ŵj(Hi) for every j ∈ [n]

is bounded by 3σ + 3 ϵ′ since Ŵ (Hi) is at most 3σ + 3 ϵ′. Hence, we only need to show that there
are at most m hypotheses Hj such that wj(Hi) is larger than σ + ϵ′.

Now, if there are more than m hypothesis Hj inH such that ŵj(Hi) > σ + ϵ′. Now, if we sample
t := ⌈8n log (2n/δ) /m⌉ hypotheses, we should observe at least one Hj for which ŵj(Hi) is larger
than σ + ϵ′, with probability at least 1 − δ/(2n). However, we know that such a hypothesis was
never observed because we did not mark Hi earlier. By the union bound, with a probability of at least
1−δ/2, no such Hi exists. Hence, with probability at least 1−δ/2, Hi is an (σ+ϵ′, 3σ+3ϵ′,m′)-seed
as promised in the statement of the lemma.

Next, assume we output “start over.” after finding an unmarked hypothesis Hi. In this case, we know
that Hi is not marked and Ŵ (Hi) > 2σ + 3ϵ′. Note that we have sampled t edges of Hi, and we
never see wj(Hi) > σ + ϵ′. Using a very similar argument as we have above: one can show there
cannot be more than m′ = ⌈η · |Q|⌉ for which wj(Hi) > σ + ϵ′ with probability 1− δ/2 (for every
Hi). That means, we will mark |Q| −m′ many hypothesis in Q. If |Q| > t ≥ 1/η, this implies that
(1− 2η) fraction of the hypothesis in Q are removed. If |Q| ≤ t, then we know all the hypothesis in
Q have wj(Hi) ≤ σ + ϵ′ and all of them will be marked.

Furthermore, we show that we did not wrongfully mark a hypothesis that was σ-close to P . Observe
that the condition in Line 22 holds in two cases:

Case 1: ŵi(Hj) > σ + ϵ′ŵi(Hj) > σ + ϵ′ŵi(Hj) > σ + ϵ′. It is straightforward to show that Hj is not σ-close to P since we have:

∥Hj − P∥TV ≥ wi(Hj) ≥ ŵi(Hj)− ϵ′ > σ .

Case 2: ŵi(Hj) ≤ σ + ϵ′ŵi(Hj) ≤ σ + ϵ′ŵi(Hj) ≤ σ + ϵ′ and ŵj(Hi) ≤ σ + ϵ′ŵj(Hi) ≤ σ + ϵ′ŵj(Hi) ≤ σ + ϵ′. Even though ŵℓ(Hj) is small in this case, we can
indirectly deduce that Hj is not σ-close to P . By the definition of ŵj(Hi) and ŵi(Hj), we
have:

∥Hi −Hj∥TV = |Hi (Si,j)−Hj (Si,j)| ≤ |Hi (Si,j)− P (Si,j)| − |P (Si,j)−Hj (Si,j)|
= wi(Hj) + wj(Hi) ≤ ŵi(Hj) + ŵj(Hi) + 2 ϵ′ ≤ 2σ + 2 ϵ′ .

On the other hand, by the triangle inequality, we have:

∥P −Hj∥TV ≥ ∥P −Hi∥TV − ∥Hi −Hj∥TV ≥W (Hi)− ∥Hj −Hi∥TV

≥ Ŵ (Hi)− ϵ′ − ∥Hi −Hj∥TV > 3σ + 3 ϵ′ − ϵ′ − (2σ + 2 ϵ′) = σ .

Therefore, in both of the cases above, we do not mark an σ-close distribution to P .

By the union bound over all the steps, our guarantees hold with probability 1− δ. In addition, it is not
hard to see that the running time of the algorithm is O ((n · t+ n) · Tq) = O(n · (log(n/δ)) · Tq/η)
time.

Rounds of adaptivity: It is straight forward to show that this algorithm can be implemented with a
constant round of adaptivity. LetQ0 denote the initial state of unmarked hypotheses at the algorithm’s
outset. Since hypotheses are marked in sequence, in round i, the set of unmarked hypotheses is
Qi := Q0 ∩Hi, Hi+1, . . . ,Hn. As a result, we can agree on the set of random Hj’s in Q andH and
request ŵj(Hi) within a single round. If the size of |Qi| is at most t, then we include all ŵj(Hi)
for every i ∈ n and Hj ∈ Q. Next, upon discovering an unmarked Hi, we initiate another round of
adaptivity to request all ŵj(Hi) and ŵj(Hi) for all j ∈ [n]. This enables the implementation of the
rest of the algorithm.
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B.2 Boosting a seed

In this section, we provide an algorithm that receives a (κσ + ϵ′, (κ+ 2)σ + 5 ϵ′,m)-seed and aims
to find a (κ′ σ + ϵ′, (κ′ + 2)σ + 5 ϵ′,m′)-seed with smaller m′. That means, the size ofM for this
new seed is smaller which brings us closer to have enough time to fully investigate the setM for a
future seed. Our algorithm runs in Õ(n · Tq/η) time where η ≈ m′/m is our rate parameter. This
running time is adaptive to our budget. If we are aiming for Õ(n) algorithm, we find a seed such that
m′ is only smaller than m by a constant factor (constant η); Alternatively, if we have more time, we
can decrease m′ with a faster rate (smaller η).

While our main goal is to find a better seed, our algorithm may not always be able to do so; However,
it makes progress towards the end goal of the algorithm one way or the other. There are three possible
outcomes for our algorithm:

1. The algorithm finds an accurate enough Ĥ as the final output of the algorithm.
2. The algorithm finds a better seed as we aimed for.
3. The algorithm marks (1− 2η) fraction of the unmarked hypotheses; And after that, we start

over the procedure.

Although we may have regressed in last case above, it does not happen too often. Since we have only
n unmarked hypotheses to begin with, and we marked a large fraction of them every time, we do not
start more than O(log1/2η(n)) times over the course of the algorithm. Our approach is presented in
Algorithm 6, and we prove its performance in Theorem 9.

Algorithm 6 aims to find a better seed.
1: procedure BOOST-SEED(H, Q, Hi, σ, κ, κ

′, ϵ′, δ, η, and query access to ŵj(Hi)’s)
2: m′ ← ⌊ηm⌋
3: t← ⌈8n log (2n/δ) /m′⌉
4: for Hj ∈M do ▷ We denoteM(κσ+ϵ′, (κ+2)σ+5 ϵ′(Hi) byM.
5: W̃ (Hj)← COMPUTE-W̃ (H,Q, Hi, t)

6: Hℓ ← argminHj∈M W̃ (Hj)

7: if W̃ (Hℓ) > κ′ σ + ϵ′ then
8: Return Hi as the final answer.
9: else

10: Compute Ŵ (Hℓ).
11: if Ŵ (Hℓ) ≤ (κ′ + 2)σ + 5 ϵ′ then
12: Return Hℓ as a seed.
13: else
14: for Hj ∈ H do
15: if ŵℓ(Hj) > σ + ϵ′ or ŵj(Hℓ) ≤ κ′ σ + ϵ′ then
16: Mark Hj in Q.
17: return “Start over.”

Theorem 9. Suppose Algorithm 6 receives these parameters as input: σ ∈ R≥0, κ, κ
′ ≥ 1, η ∈

(0, 1/4), ϵ′, δ ∈ (0, 1), and two non-negative integers n, m. Also, assume the algorithm has access
to a class of n hypotheses H, and a set of unmarked hypotheses in Q ⊆ H. It also receives a
hypothesis Hi ∈ H. The algorithm has one of the three possible outcomes listed below. Now, for any
setting of such input parameters, if Hi is a (κσ + ϵ′, (κ+ 2)σ + 5 ϵ′,m) seed, then the following
guarantees hold for the outcome of Algorithm 6 with a probability of at least 1− δ:

1. If the algorithm outputs a hypothesis Ĥ as the final answer, then we have for every ϵ ≥ 6 ϵ′:

∥Ĥ − P∥TV ≤ max

(
κ+ 2,

κ+ 2

κ′ + 2

)
·max (σ,OPT) + ϵ .

2. If the algorithm outputs a hypothesis Hℓ as a new seed, then Hℓ is a (κ′ σ + ϵ′, (κ′ + 2)σ +
5 ϵ′,m′)-seed where m′ := ⌊ηm⌋.
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Algorithm 7 computes W̃ (Hi).

1: procedure COMPUTE-W̃ (H,Q, Hi, t, and query access to ŵj(Hi)’s)
2: W̃ ← 0
3: repeat t times
4: Hj ← a uniformly random sample drawn fromH
5: W̃ ← max

(
W̃ , ŵj(Hi)

)
6: Hj ← a uniformly random sample drawn from Q
7: W̃ ← max

(
W̃ , ŵj(Hi)

)
8:
9: if |Q| ≤ t then

10: for all Hj ∈ Q do
11: W̃ ← max

(
W̃ , ŵj(Hi)

)
12: Return W̃ .

3. If the algorithm requires us to start over, then we have marked at least (1 − 2η) of the
unmarked hypotheses.

The algorithm runs in O(n · (log(n/δ)) · Tq/η) time and can be implemented in O(1) rounds of
adaptivity.

Proof. LetM denote the setMκσ+ϵ′,(κ+2)σ+5 ϵ′(Hi). We consider the three possible outcomes of
the algorithm, and prove the algorithm satisfied the desired guarantee in each of the three cases.

Case 1: W̃ (Hℓ) > κ′ σ + ϵ′W̃ (Hℓ) > κ′ σ + ϵ′W̃ (Hℓ) > κ′ σ + ϵ′. In this case, the algorithm will return Hi as the final answer. We
show that the total variation distance between Hi and P is as desired. There are two possibilities
depending on whether Hi∗ is inM or not.

Case 1.1: Hi∗ ∈MHi∗ ∈MHi∗ ∈M. Using that Hℓ has the minimum W̃ (Hℓ) among all the hypotheses inM, we
can bound OPT as follows:

OPT ≥W (Hi∗) ≥ Ŵ (Hi∗)− ϵ′ ≥ Ŵ (Hℓ)− ϵ′ ≥ W̃ (Hℓ)− ϵ′ ≥ κ′ σ .

We prove that Hi is not too far from P . Note that since Hi was an (κσ + ϵ′, (κ+ 2)σ +

5 ϵ′, m)-seed, we are guaranteed that Ŵ (Hi) is bounded by (κ + 2)σ + 5 ϵ′. Using the
above bound for OPT and Fact C.3, we get:

∥Hi − P∥TV ≤W (Hi) + 2OPT ≤ Ŵ (Hi) + ϵ′ + 2OPT ≤ (κ+ 2)σ + 6 ϵ′ + 2OPT

≤
(
κ+ 2

κ′ + 2

)
· OPT+ 6 ϵ′ ≤

(
κ+ 2

κ′ + 2

)
·max(σ,OPT) + ϵ .

Case 1.2: Hi∗ ̸∈ MHi∗ ̸∈ MHi∗ ̸∈ M. Since Hi is a (κσ + ϵ′, (κ + 2)σ + 5 ϵ′,m)-seed, ŵi∗(Hi) is bounded by
Ŵ (Hi) ≤ (κ + 2)σ + 5 ϵ′. Now that Hi∗ is not inM, it must be the case that ŵi∗(Hi)
is bounded by κσ + ϵ′. In this case, we have the following bound for the total variation
distance between Hi and P via Fact C.3:

∥Hi − P∥TV ≤ wi∗(Hi) + 2OPT ≤ ŵi∗(Hi) + ϵ′ + 2OPT ≤ κσ + 2 ϵ′ + 2OPT

≤ (κ+ 2)max(σ,OPT) + ϵ .

Case 2: W̃ (Hℓ) ≤ κ′ σ + ϵ′W̃ (Hℓ) ≤ κ′ σ + ϵ′W̃ (Hℓ) ≤ κ′ σ + ϵ′ and Ŵ (Hℓ) ≤ (κ′ + 2)σ + 5 ϵ′Ŵ (Hℓ) ≤ (κ′ + 2)σ + 5 ϵ′Ŵ (Hℓ) ≤ (κ′ + 2)σ + 5 ϵ′. In this case, we output Hℓ as a new
seed. Given the assumptions of this case, we show that Hℓ is a (κ′ σ + ϵ′, (κ′ + 2)σ + 5 ϵ′,m′)-
seed. First, Ŵ (Hℓ) is at most (κ′ + 2)σ + 5 ϵ′ implying the first desired property for being an
(κ′ σ + ϵ′, (κ′ + 2)σ + 5 ϵ′,m′)-seed holds for Hℓ. Next, we show the second desired property for
Hℓ: the size ofMκ′ σ+ϵ′, (κ′+2)σ+5 ϵ′(Hℓ) is bounded by m′. At a high level, we expect the size of
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this set to be small; Otherwise, we would have observed one of these large ŵℓ(Hj) when we have
sampled t hypotheses to compute W̃ (Hℓ).

Suppose Hℓ has more than m′ edges with ŵj(Hℓ) > κ′ σ + ϵ′. Now, if we sample t :=
⌈8n log (2n/δ) /m′⌉ hypotheses, we should observe at least one Hj for which ŵj(Hℓ) is larger
than κ′ σ + ϵ′, with probability at least 1− δ/(2n). However, we know that such a hypothesis was
never observed because W̃ (Hℓ), which is the maximum of ŵj(Hℓ)’s, is bounded from above by
κ′ σ + ϵ′. By the union bound, with a probability of at least 1 − δ/2, no such Hℓ exists. Hence,
with probability at least 1− δ/2, Hℓ is an (κ′ σ + ϵ′, (κ′ + 2)σ + 5ϵ′,m′)-seed as promised in the
statement of the lemma.

Case 3: W̃ (Hℓ) ≤ κ′ σ + ϵ′W̃ (Hℓ) ≤ κ′ σ + ϵ′W̃ (Hℓ) ≤ κ′ σ + ϵ′ and Ŵ (Hℓ) > (κ′ + 2)σ + 5 ϵ′Ŵ (Hℓ) > (κ′ + 2)σ + 5 ϵ′Ŵ (Hℓ) > (κ′ + 2)σ + 5 ϵ′. In this case the algorithm marks any
unmarked hypothesis Hj for which ŵℓ(Hj) > σ + ϵ′ or ŵj(Hℓ) ≤ κ′ σ + ϵ′, and we start over.
First, we show that we did not wrongfully mark a hypothesis that was σ-close to P . Observe that the
condition in Line 15 holds in two cases:

Case 3.1: ŵℓ(Hj) > σ + ϵ′ŵℓ(Hj) > σ + ϵ′ŵℓ(Hj) > σ + ϵ′. It is straightforward to show that Hj is not σ-close to P since we have:

∥Hj − P∥TV ≥ wℓ(Hj) ≥ ŵℓ(Hj)− ϵ′ > σ .

Case 3.2: ŵℓ(Hj) ≤ σ + ϵ′ŵℓ(Hj) ≤ σ + ϵ′ŵℓ(Hj) ≤ σ + ϵ′ and ŵj(Hℓ) ≤ κ′ σ + ϵ′ŵj(Hℓ) ≤ κ′ σ + ϵ′ŵj(Hℓ) ≤ κ′ σ + ϵ′. Even though ŵℓ(Hj) is small in this case, we
can indirectly deduce that Hj is not σ-close to P . By the definition of ŵj(Hℓ) and ŵℓ(Hj),
we have:

∥Hℓ −Hj∥TV = |Hℓ (Sℓ,j)−Hj (Sℓ,j)| ≤ |Hℓ (Sℓ,j)− P (Sℓ,j)| − |P (Sℓ,j)−Hj (Sℓ,j)|
= wℓ(Hj) + wj(Hℓ) ≤ ŵℓ(Hj) + ŵj(Hℓ) + 2 ϵ′ ≤ κ′σ + σ + 4 ϵ′ .

On the other hand, by the triangle inequality, we have:

∥P −Hj∥TV ≥ ∥P −Hℓ∥TV − ∥Hℓ −Hj∥TV ≥W (Hℓ)− ∥Hj −Hℓ∥TV

≥ Ŵ (Hℓ)− ϵ′ − ∥Hℓ −Hj∥TV > (κ′ + 2)σ + 4 ϵ′ − ((κ′ + 1)σ + 4 ϵ′) = σ .

Therefore, in both of the cases above, we do not mark an σ-close distribution to P .

Second, we claim that we mark at least (1− 2 η) fraction of the unmarked hypotheses in Q. Recall
that when we compute W̃ (Hℓ) we also sample t hypotheses from the set of unmarked hypotheses, and
we did not observe any edge ŵj(Hℓ) that is larger than κ′ σ+ϵ′. With a very similar argument we had
above, with probability 1− δ/(2n), we do not have more than m′′ := ⌈η · |Q| ·m/n⌉ ≤ ⌈η · |Q|⌉
hypotheses in Q such that ŵj(Hℓ) > κ′ σ + ϵ′. Otherwise, we would have seen one of these edges,
and W̃ (Hℓ) would have been larger. By the union bound, this fact holds for every Hℓ. Hence, the
“if” condition in Line 15 holds for over |Q| − ⌈η · |Q|⌉ of the unmarked hypotheses in Q, and the
algorithm mark them. If |Q| ≥ 1/η, it is easy to show that |Q| − ⌈η · |Q|⌉ is at least (1− 2 η) · |Q|.
Thus, we mark at least (1 − 2 η) fraction of the hypotheses in Q as we have claimed. Now, if
|Q| ≤ 1/η, it is easy to show that |Q| < t. Hence, the algorithm involves all the Hj’s in Q to
compute Ŵ (Hℓ). Therefore, every single ŵj(Hℓ) is at most κ′σ+ ϵ′ and we mark all the hypotheses
in Q.

By the union bound over all the steps, our guarantees hold with probability 1− δ. In addition, it is not
hard to see that the running time of the algorithm is O ((m · t+ n) · Tq) = O(n · (log(n/δ)) · Tq/η)
time.

Rounds of adaptivity: Our algorithm can be implemented in constant rounds of adaptivity. To
compute W̃ ’s, we can preselect the random Hj’s. If Q contains fewer than t + 1 hypotheses, we
include every ŵj(Hi) for each Hj ∈ Q and i ∈ [n]. Upon discovering Hℓ, another round of adaptivity
allows us to query every ŵj(Hℓ) and ŵℓ(Hj) to calculate Ŵ (Hℓ) and mark the hypotheses in Q.
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C Preliminary facts and lemmas

Fact C.1. For all distribution P and for all probability event E defined under P , we have:

∥P − P|E∥TV = 1− P (E) ,

where P|E denotes the probability distribution P when conditioned on the event E .
Fact C.2. For every pair of distributions Hi and Hj , we have:

∥Hi −Hj∥TV = |Hi (Sij)−Hj (Sij)| .

The following fact is adapted from [DL01, MS08, ABS23].
Fact C.3. Suppose Hi∗ is the closest hypothesis to P in H(i.e., ∥Hi∗ − P∥TV). For every pair of
hypotheses Hi and Hj , the following holds:

1. ∥Hi − P∥TV ≤ wj(Hi) + 2∥Hj − P∥TV ,

2. ∥Hi − P∥TV ≤ wi∗(Hi) + 2OPT ,

3. ∥Hi − P∥TV ≤W (Hi) + 2OPT .

Proof. The proof is based on triangle inequality, and the definitions of wj(Hi)’s and OPT. For every
Hj inH, we have:

∥Hi − P∥TV ≤ ∥Hi −Hj∥TV + ∥Hj − P∥TV = |Hi (Si,j)−Hj (Si,j)|+ ∥Hj − P∥TV

≤ |Hi (Si,j)− P (Si,j)|+ |P (Si,j)−Hj (Si,j)|+ ∥Hj − P∥TV

= wj(Hi) + wi(Hj) + ∥Hj − P∥TV

≤ wj(Hi) + 2∥Hj − P∥TV .

Hence, Item 1 is proved. Now, if we set Hj to be Hi∗ , then ∥Hi∗ − P∥TV is equal to OPT implying
Item 2. Item 3 is concluded from Item 2 and the fact that wi∗(Hi) is upper bounded by W (Hi).

Fact C.4. Suppose we are given six parameters a, b, a′, b′ ∈ R≥0, and m,m′ ∈ Z≥0. If a ≤ a′,
b ≤ b′, and m ≤ m′, every (a, b,m)-seed is also an (a′, b′,m′)-seed.
Fact C.5. Suppose we have a set of n hypothesesH, and a predicate, R(H) : H → {0, 1}, that maps
the hypotheses in H to zero or one. Assume H contains more than m hypotheses with R(H) = 1
for an arbitrary integer parameter 0 ≤ m < n. If we draw s ≥ 8n log(δ−1)/m hypotheses from
H uniformly at random, we will observe at least one hypothesis with R(H) = 1 with probability at
least 1− δ.

Proof. Let p denote the fraction of such hypothesis inH with R(H) = 1. Observe that p > 0 since
there are at least m+ 1 such hypothesis inH. Then, using the Chernoff bound, we have:

Pr[[[r = 0]]] ≤ Pr
[[[
r <

s p

2

]]]
= Pr

[[[
r

s
<

(
1− 1

2

)
· p
]]]

≤ exp
(
−s p

8

)
< exp

(
−sm

8n

)
≤ δ .

D Data structure for marked and unmarked hypotheses

Here, we describe a simple data structure that allows us to efficiently keep track of marked and
unmarked hypotheses. Our data structure consists of two integers, n and t, and two arrays of size n:
index[] and list[]. Here, n represents the number of hypotheses that the data structure supports.
The list array is an arbitrary ordering of integers from 1 to n. Throughout the operations of this
data structure, we preserve the following guarantee: the value of index[i] indicates where to find
element i in the list. In other words, list[index[i]] is always i. The integer t serves as a
threshold quantity. The first t numbers in the list correspond to unmarked hypotheses, while the
remaining numbers represent marked hypotheses. Initially, list is a list of integers from 1 to n in
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ascending order. And, for every hypothesis Hi, index[i] is set to i. This data structure supports
the following operations:

• Initialization ds(size): To initialize the data structure, we set n and t to size. Next, we
set list to be a list of integers from 1 to n in ascending order. To ensure consistency with
the list, each index[i] is set to i.

• mark(i): To mark hypothesis Hi, we swap the element at index i with the element at index
t in the list array, and then decrement t by 1.

• is_marked(i): Given our definition, if index[i] is less than or equal to t, then Hi is
unmarked; otherwise, it is marked.

• is_all_marked(): If t is equal to zero, then it means all the hypotheses are marked.
• random_unmarked(): To select a random unmarked hypothesis, we generate a random

integer r between 1 and t, and output the hypothesis at list[r].
• random_marked(): To select a random marked hypothesis, we follow the same process as

for an unmarked hypothesis, except that r is generated between t+1 and n.

It is easy to see that the initialization takes O(n) time, and the rest of the operations only take O(1)
time.
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proofs.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see the discussion in Section 1.2 regarding potential improvements and
future directions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We have clearly stated our model and our assumptions. All the proofs are
included in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: We do not have any experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
4.1 If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
4.2 If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
4.3 If the contribution is a new model (e.g., a large language model), then there

should either be a way to access this model for reproducing the results or a way to
reproduce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

4.4 We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: We do not have any experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: We do not have any experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We do not have any experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: We do not have any experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our results are a theoretical formulation of a fundamental problem in statistics
and learning theory. They can be viewed as a computationally efficient version of existing
results. Given the theoretical nature of our findings, we do not anticipate any harm to society.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Given the theoretical nature of our findings, we do not anticipate broader
societal impact for this paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not have any experimental results.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We did not use any existing assets, other than the publicly available articles
that we have cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The contributions of this paper are theoretical. As is standard in the field, we
will make our results publicly accessible and do not anticipate generating revenue from
them.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not have any crowdsourcing experiments nor human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not have any experiments involving crowdsourcing nor research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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