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Abstract. We present a robot-behavior description language cdl that
can express both direct imperative strategies and planning-based strate-
gies, and combine them seamlessly within the same program. Accompa-
nying this language is a general-purpose planner Crow, which interprets
the behavior description and searches as necessary to find a sound plan.
We demonstrate (1) via example programs, that cdl can be used to spec-
ify, very intuitively, different known strategies for navigation among mov-
able obstacle (NAMO) problems, (2) via empirical results, that Crow
can take advantage of the priors expressed in cdl to very quickly solve
problem instances with known simplifying structure but still generalize
to hard instances, and (3) via theory, that width, a powerful character-
ization of the worst-case complexity of planning problems, corresponds
to a natural property of cdl descriptions and that Crow operates in
time on the same order as the width-based worst-case complexity.

Keywords: task and motion planning, hierarchical planning, program-
ming language

1 Introduction

Hybrid discrete-continuous decision problems are critical in robotics. The basic
pick-and-place object manipulation is a classic example, where the robot needs to
produce a sequence of primitive actions that are parameterized by both discrete
variables (objects to manipulate), and continuous parameters (grasping poses,
trajectories, etc.). This problem formulation extends to rich problem classes
involving non-prehensile manipulation, articulated object manipulation, etc.

In this paper, we consider such hybrid decision problems with discrete-time
transitions. As algorithm developers, we must provide an algorithm for the robot
to take the current world state (or, in general, a belief state) and produce the
next action. Classically there are two main strategies. In imperative strategies
we construct a direct mapping, in the form of a computer program or neural net-
work weights with no search. Optionally, the mapping can be hierarchical, where
a sequence of functions needs to be called as nested subroutines to generate the
first action. These approaches use a roughly constant amount of computation
(independent of problem size, horizon, etc.) to determine the next action. Typical
neural network (hierarchical) policies, behavior trees, PID controllers, etc., fall



2 J. Mao et al.

(a) The “direct connect” approach. (b) Searching for waypoints. (c) Searching for waypoints and orders.

(d)An “easy” NAMO task.
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Sol: the robot can drag object A then 
object B then object C into the empty 
space to clear a path to reach goal 
point G.

Sol: the robot moves to location X
(after clearing A), then drags obstacle 
B downward to clear the path from X 
to G, then moves to G.

Sol: the robot needs to work at
beginning of the trajectory, to enable 
traversal of the end of the trajectory:  
it first pulls C out to the right, then 
drags A into free space to reach X, 
then moves B down and can reach G.

Fig. 1: (a)–(c):cdl specifications for three different NAMO solutions; (d)–(f):
example problems of different degrees of difficulty. Full programs in Appendix C.

into this category. In the second declarative strategies, we compute the next ac-
tion indirectly by first specifying a space of possible solutions, such as all possible
sequences of actions and we “search” in this space to find a sequence that satisfies
state-dynamics constraints (in terms of a transition model) and that reaches a
design goal while minimizing a cost objective. Classical AI planners, task and
motion planners, and model-predictive controllers all fall into this category.

There are important trade-offs between these approaches, such as the com-
pactness of the representation and the inference runtime, but they are not
problem-independent. For some problem classes, there are compact imperative
programs that can be directly written by humans or easily learned via imitation
or reinforcement learning. At the other extreme, for some problem classes, there
is no compact imperative representation (e.g., for PSPACE-Hard problems, see
also [20,27]). For such problems, the most effective approach may be to specify
or learn a declarative transition model and use it at performance time to search.
Some other approaches such as hierarchical task networks (HTNs [24]) and hi-
erarchical planning in the now (HPN [14]) occupy a middle ground between
completely imperative and completely declarative methods. They leverage some
heuristics to reduce runtime complexity at the cost of some loss in generality.

However, one major drawback of almost all of the existing methods for behav-
ior generation is that they take a uniform approach: they are completely imper-
ative or completely declarative or completely follow the restrictions of STRIPS.
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But, as we try to address bigger and more general problems (such as designing
a general-purpose household assistant robot that can operate over a horizon of
days), we will want to “mix and match” these approaches.

The key insight that allows us to unify and combine these approaches is
that the differences among them can be described by different types of branches
and commitments, such as commitments to the order for achieving subgoals, the
choice of plans to achieve a particular subgoal, and the possible interleavings of
subgoal achievements. A generic formulation for a behavior is to think about it as
a nondeterministic program that can generate a sequence of control commands
to achieve certain goals. Such programs may involve recursive function calls to
other behaviors to generate part of the control commands for some “subgoals.”
In the completely imperative case, we have an action generator that already has
all correctness conditions built into it, so that we can immediately commit to a
single choice at every turn. In the completely declarative case, we cannot commit
to executing any action until we have generated an entire sequence and verified
its soundness. In section 4 we detail structural assumptions in the middle ground
made by several existing behavior specification methods.
NAMO examples Consider the motivating example of a NAMO (navigation
among movable obstacles [25]) domain illustrated in Fig. 1, where the task is to
move to a target location potentially moving obstacles in order to reach it. In
Fig. 1, we describe a series of solution strategies, using our proposed behavior de-
scription language cdl. The core of a cdl program is a set of behavior rules that
specify methods for achieving some goal. These rules may provide a sequential
deterministic program for achieving the goal or may describe a decomposition
into one or more abstract or concrete steps without specifying exactly how to
do them, in what order, or with what variable bindings.

Fig. 1a describes a hierarchical policy that is almost fully imperative: find a
path that connects the current robot position s to the goal g (bind statement),
move each obstacle out of the way (via another behavior rule, specified in the
achieve statements), and then execute a controller to traverse the path (do
statement). This strategy will work for simple problem instances, such Fig. 1d,
where the obstacles can be moved individually and there is sufficient additional
storage space. Fig. 1b describes a slightly more complex strategy, inspired by
Stilman and Kuffner [25]: pick a sequence of waypoints, then traverse to the
waypoints, clearing each path segment before it is traversed. Example Fig. 1e, is
solvable with this method but not with method in Fig. 1a, because it is not pos-
sible to clear the entire path at once. Fig. 1c describes a more general method:
like the previous method, it states that we will have to reach a sequence of way-
points, and that the path segments must be cleared, but (via the promotable
section) it gives the planner the freedom to do these steps in any order, and
even to interleave the sub-plans for achieving the subgoals. It solves all problem
instances, including Fig. 1f, which cannot be solved by the previous two algo-
rithms. The important observation here is that it is easy, in cdl, to specify a
whole range of algorithms in a very clear and concise way.

In summary, our contributions in this paper are:
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1. The Crow definition language (cdl), a formalism for specifying robot be-
havior in hybrid discrete-continuous domains that encompasses imperative
and declarative specifications, as well as a highly flexible range of com-
binations. Furthermore, it enables easy specification (by humans) of do-
main knowledge that, for example, can reduce the difficulty of a worst-case
PSPACE-hard planning problem to a lower-order polynomial by constraining
how subtask solutions can be committed independently and serialized.

2. The Crow interpreter for cdl, a behavior-generation algorithm that takes
a behavior specification and implements a policy that maps domain states
into actions, with an internal computation structure ranging from direct
policy-following to complex planning with backtracking and constraint-based
variable binding, based on the behavior specification.

2 The Crow Definition Language (CDL)
cdl is a flexible language for describing goal-directed behavior for discrete-time
hybrid discrete-continuous space decision-making. At performance time, a cdl
interpreter takes a cdl behavior specification, the current state, and the goal as
its input. It translates the raw sensory input into a structured representation,
then recursively composes behavior rules to find a sequence of control commands
that can achieve the goal. Finally, it executes the generated control commands.

A hybrid decision-making problem is a tuple of ⟨S, C, T , s0, g⟩, where S is the
set of states, C is a set of primitive controllers, T : S×C → S is a (deterministic)
transition function, s0 is the initial state and g : S → {0, 1} is a goal classifier. It
is hybrid because elements in both S and C have discrete and continuous values in
different “dimensions” (e.g., a set of grasping controllers might be parameterized
by U×R6 where U is the universe of entities in the scene and R6 denotes grasping
poses). In this paper, we only consider tasks where the states are fully observable,
transitions are deterministic, and actions are of uniform costs. The task is to find
a sequence of primitive controller actions ā = {a1, · · · aT }, which are functions
that can be executed in the (physical) world. We want the sequence ā to be
sound in the sense that g(sT ) is true (goal is reached) and st = T (st−1, at)
(state transitions are satisfied) in the world.

Fundamentally, we can view cdl as specifying a generative model for sound
primitive plans, together with language constructs that can dramatically improve
the computational efficiency of finding such plans. The space of plans is generated
via non-deterministic choices of methods for achieving subgoals (described in
section 2.2), of ordering and interleaving of subgoals (described in section 2.3),
and of values for free variables (described in section 2.4). This is generally an
infinite space of possible plans, which requires intelligent search. In section 2.2
we show that, by characterizing action effects and asserting conditions that must
hold at various points in the plan, we can substantially prune the search space.
In section 2.5, we show that, by committing early to some non-deterministic
choices, we can get exponential reductions in the space. We include more details
and examples in Appendix C and Appendix D.
Interface to perception and control We begin by defining the input and
output interfaces between cdl and the robot for which it is specifying behavior.
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For planning purposes, states (S) are represented in a relational manner, in
terms of entities and relational features associated with them. Formally, a state
is represented as a tuple s = ⟨U,F ⟩, where U is the universe of entities, assumed
to be a fixed finite set. F is a set of relational features that can take discrete or
continuous values. All entities and values are typed in cdl. Each feature f ∈ F
can be viewed as a table where each entry is associated with a tuple of entities
(o1, · · · , ok). Each entry has the value of the feature in the state. For example,
in NAMO, we define the feature position(x) as a unary feature of type Pose.

1 typedef Object
2 typedef Pose: vector[float32, 2]
3 feature agent_position() -> Pose
4 feature position(x: Object) -> Pose
5 feature holding(x: Object) -> bool

We assume that an external “perception” system can segment raw sensory input
into individual objects and that, for each feature, there is a program defined in
an external language (e.g., Python) that can compute the feature value for any
tuple of objects of the appropriate arity.

Actual behavior in the world is generated through controllers, which are
primitive functions that take entities and values as inputs and execute a low-
level sensorimotor loop to effect the world, returning control when they have
completed. Examples include tracking a motion trajectory or grasping an object.

1 controller exec_traj(t: Trajectory)
2 controller attach(x: Object)
3 controller detach(x: Object)

Behavior rules The primary part of a cdl program is a set of behavior rules B.
Primitive plans are generated through a refinement process, which starts with
the top-level goal and repeatedly applies behavior rules to a partial plan until it
is refined into a completely primitive plan. In cdl, each behavior rule specifies
a strategy for achieving the condition that some state feature, applied to some
objects, has a desired value (examples might be holding(o) or position(o)
== p). Importantly, they are “lifted” in the sense that the goals they achieve are
parameterized by variables. Thus, a behavior rule for holding(o) can be used
to achieve the holding feature of any object.

Behavior rules play multiple roles in cdl, as we will show in subsequent
sections. In their simplest form, each behavior rule is a tuple of ⟨name, args, g, B⟩,
where name is the name, args is a set of parameters, g is a goal statement (a
Boolean expression over state features) that will be achieved after successfully
executing B, and B is the body, which is a non-deterministic program that,
through refinement, can generate primitive plans.

2.1 Imperative Behavior Scripting in cdl

The simplest style of behavior specification that cdl supports is deterministic
hierarchical policies. In this case, the body body(b) for each behavior rule b ∈ B
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is a deterministic program with subroutines, consisting of a sequence with three
types of statements. First,

1 let v = f(v, ...)

declares a local variable v and assigns a value to it, which is the return value
of f. f is a function defined in an external language and can take values of the
program parameters, and values in previous let statements as input. Next,

1 achieve f(...)

recursively calls another behavior rule whose goal is the feature f applied to
variables available in the current rule. Finally,

1 do c(...)

inserts into the plan being constructed a call to primitive controller c parame-
terized by some variables in the current rule.

The formal semantics of these statements will be defined later when we de-
scribe the plan refinement processes. Here, for illustration purposes, we consider
these constructs in the following simple program for clearing a movable obstacle
o out of the way of a specified trajectory t.

1 behavior move_away(o: Object, t: Trajectory)
2 goal: not blocking(o, t)
3 body:
4 # Move the agent to a position where it is close to o
5 achieve close_to(o)
6 do attach(o)
7 # Find a free location for the obstacle o away from t
8 let o_pos = free_location(o, t)
9 achieve position(o) == o_pos

10 do detach(o)

This program is fully imperative. Given the target object o to move and the
trajectory t to clear, it begins by calling another rule to achieve the subgoal
close_to(o). This will construct the first part of a primitive plan. Then it
inserts a call to a primitive controller to attach(o). Next, it has to find a place
to put the object (for instance in some designated storage place) using the let
statement. It calls another rule to generate steps to put the object into position,
and adds the final primitive controller to detach the object.

This rule is simple, but can only solve a very limited set of NAMO problems,
in which there is plenty of easily accessible storage space so that we do not need
to coordinate the placement of objects into it, and where moving each object
out of the trajectory does not require moving any other objects.

In the case where B consists of behavior rules of this type, and where there
is at most one b ∈ B with the same feature f as its goal, B deterministically
specifies a single primitive plan for an initial goal g. This is effectively the same
as a simple type of behavior tree [4]. Such rules can be executed very efficiently,
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but they put the entire burden of behavior specification on the programmer. The
interpreter cannot check the resulting primitive plan for soundness, and relies
entirely on the programmer to construct a correct plan.

2.2 Nondeterminsitic Behaviors and Soundness Checking
Fully deterministic behavior rules are hard to write in general, especially for large
and complex problems involving many different goals and subgoals spanning over
a long horizon. Therefore we transfer some of the burden to the cdl interpreter,
by letting the programmer specify a space of possible plans (via non-deterministic
behavior rules) and letting the interpreter implement a search to find one that
satisfies the goal, as well as possibly other intermediate soundness checks.

There are several types of nondeterminism available in cdl; in this section,
we begin with the simplest, in which we allow B to contain multiple behavior
rules with the same goal feature g. For example, there may be other methods for
achieving not blocking(o, t), such as sweeping it away with a broom, that
require very different action sequences and might have different additional effects
(for example, that the robot is holding a broom, or the object is toppled over),
which might affect the selection of later steps in the plan.

The programmer now has the freedom to describe many possible action se-
quences, but we must also characterize, implicitly, which ones will be successful
in achieving a desired result. To enable this, we introduce two additional lan-
guage features: assert statements and the eff (effect) section. The statement

1 assert e(...)

requires that an expression should evaluate to true at a given step in the exe-
cution of a plan. The expression e can be made up of Boolean combinations of
features or be the application of an externally defined function to variable values
or features of objects in the rule. The effect section of a behavior rule

1 behavior <name>(<args>):
2 eff:
3 f[...] = ...
4 forall x: Object: g[x, ...]= ...

is a short program that describes changes to the state that result from apply-
ing the behavior rule. It can contain two types of primitive statements: feature
assignments and for loops over all objects of a certain type. The value to be
assigned can be determined by any external function applied to variable values
or features of objects in the rule. Consider the example of a behavior rule that
moves objects. It may specify its effects on both the position of the agent and
the object. It may begin by asserting a precondition that the robot be holding
the object. Including such preconditions is not strictly necessary for correctness,
but they have a huge effect on efficiency, as we will see.

Formally, we model the semantics of a set of cdl rules B in terms of a
set of candidate plan traces that can be produced by using B to refine an ini-
tial goal g. A plan trace is a sequence of three types of statements: do state-
ments, assert statements, and eff statements. The refinement process for goal
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g begins with an initial unrefined plan trace, which consists of two statements,
{achieve(g); assert(g)}seq. This initial trace will be non-deterministically re-
fined, by using rules in B to replace achieve statements with subsequences of
other statements, such as refining an achieve close_to(o) with a sequence of
primitive movement actions, until we have a fully refined plan trace with only
do, assert and eff statements. We define the non-deterministic plan refinement
operator RefineS as:

function RefineS(P )
if there are no achieve statements in P then return P
else

Let g, i be the goal and index of the last achieve statement in P
for b ∈ {B | goal(b) = g} do

yield RefineS(P<i)⊕RefineS(body(b))⊕ {eff eff(b)} ⊕ P>i

where P<i denotes the prefix of P preceding index i while P>i denotes the
suffix, and ⊕ is the sequence concatenation operation. (Note that, in general,
we compute a substitution of variable names necessary to match g with goal(b),
and apply it to body(b) and eff(b) before adding them to the refined plan trace.)
We borrow the “yield” syntax from Python to define a generator function. Each
time when the “yield” statement is hit, it produces a plan trace that an outer
for-loop such as “for P ∈ RefineS(P0) do ...” can consume.

The refinement operation has the potential to produce a large number of
plan traces when some achieve statements have multiple possible refinements.
Through assertions and effect declarations, B provides internal soundness con-
straints on primitive plans that can be generated. First, given a plan trace
ā = {a1, a2, · · · , ak}seq, and an initial state s0, at each step t = 1, 2, · · · , k,
we define the projected state ŝt as: ŝ0 = s0,

ŝt =

{
update(ŝt−1, ϕ) if at = eff ϕ is the effect of behavior ϕ
ŝt−1 otherwise

where update(ŝ, ϕ) is the result of assigning, in ŝ, all the feature-value pairs
specified in ϕ. A plan trace {a1, a2, · · · , ak}seq is internally sound if and only if
all asserted conditions evaluate to true at their projected states; that is, for all
t <= k, if at = assert ψ then eval(ψ, ŝt), where eval(ψ, s) is true if the Boolean
statement ψ is satisfied in state s. Ultimately, we would like to find plans that
are externally sound with respect to a goal g; that is, guaranteed to drive the
world into a state satisfying g.

Proposition 1. Internal soundness implies external soundness w.r.t. g when
(1) each plan trace ends with a final assertion that g holds; and (2) the effect
statements of all behavior rules are consistent with the true world transitions.

In such cases, executing the sequence of primitive controllers in an internally
sound plan trace will achieve the intended goal in the world. Although it may
sound difficult to state the effects of all primitive actions, one simple imple-
mentation strategy, assuming access to a resettable simulator representing the
underlying transition model, is to use the simulator to compute the next state.
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2.3 Subgoal Ordering and Promotion
In this section, we enrich the flexibility of the plan generator with two more types
of non-determinism: subgoal ordering and interleaving. Consider a situation in
which a robot has to place an object in a cupboard: clearly, before it places the
object, the cupboard door should be open and the robot should be holding the
object. But in which order should it achieve those preconditions? It might depend
on how many hands the robot has, the distance between where the object has
to be picked up and the cupboard, what kind of handle the cupboard has, etc.
It is impossible to pick a good static ordering of these operations and much too
difficult for the programmer to write a conditional expression to decide which
to do first. So, we can allow the cdl generator to consider different orderings
of the subgoals and find one that yields a sound plan. Furthermore, imagine
that opening the cupboard requires retrieving a step-stool first. Now, it might
turn out that we need to actually interleave the primitive steps for opening the
cupboard with those for picking up the object.

To extend cdl to handle these cases, we add three new language features,
extend the structure of partially refined plan traces, and provide a more sophis-
ticated refinement algorithm.
Unordered statement groups We allow a behavior rule body to have multi-
ple unordered sections, containing achieve and do statements. This is simply
equivalent to having multiple fully ordered rules for the same goal, one for each
possible choice of ordering of each unordered group. A common case in which
we may wish to have unordered groups is when we wish to achieve some subgoal
with respect to all objects of some type. We add a section type foreach that
provides unordered iteration over those objects. For example,

1 unordered:
2 statement_1(); statement_2(); ...
3 foreach o: T:
4 statement_3(o); statement_4(o); ...

where ... consists of the same types of statements as in a rule body. Here, the
order for statements 1 and 2 are unordered. For each object o of type T, the
order for executing statements 3 and 4 on them, is also undetermined.
Promotable statement groups Unordered achieve statements may be re-
fined into plans in any order, but the corresponding primitive controller actions
may not be interleaved. For most planning problems, this is sufficient flexibility,
but sometimes more is necessary. To accommodate such problems, we extend
the syntax of the body of a behavior rule to allow one set of statements, called
a promotable section, (typically only achieve) to be unordered and to have
their achievements interleaved.⋆ The promotable section may be preceded and
followed by additional ordered or unordered lists of statements of any type.

For example, consider the behavior rule achieve_at_3 in figure 1(c). The
promotable section says that the robot has to get to waypoint x and ensure
that the rest of the trajectory to get from x to the goal location g is clear. These
⋆ We support statements that are ordered and interleavable, but this is less useful.
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things may need to happen in any order (in our example, it has to clear part
of the trajectory before moving to x; more generally, it might need to further
interleave steps for moving the obstacles out of the way).
Plan traces and refinement To generate all plan traces specified by this more
expressive class of behavior rules, we adopt a more general view of partially
refined plan traces and refinements. We describe this in Appendix A.

First, in general, partially refined plan traces will not be totally ordered.
Instead, they will be partially ordered, and represented using nested ordered and
unordered sequences. For example, the ordering {{p1, p2}seq, {p3, p4}seq}unordered
states that p1 will be executed before p2 and that p3 will be executed before p4.
However, the relative ordering between, for example, p1 and p3 is not specified.

Next, we observe that each rule body can be expressed as ⟨L,M,R⟩ with
three sections: left (everything before the promotable section), middle (the pro-
motable section), and right (everything after the promotable section). Any of
these sections may be empty. In general, the L and R sections may be partially
ordered and the M section is unordered. We will adopt this same structure
for partially refined plan traces, with the initial plan trace having the form
⟨∅, ∅, {achieve(g), assert(g)}seq⟩.

L1

M1 M2

M3

R1

L2

M4 M5

R2

Refinement

L1

M1 M2

R1

R2

L2

M4 M5

Fig. 2: Illustration of how the refine-
ment operator works. Each node cor-
responds to a statement (or a sequen-
tial program). We first nondeterministi-
cally select a node in the “middle” sec-
tion that is the last statement of one of
the sequential chains, and then nonde-
terministically select a behavior to re-
fine it. Finally, we construct a new plan
by “inserting” the refined sub-plan to the
graph following the rules.

The generalized plan refinement
operator R∗ : P3 → P0 takes as input
a partially refined plan trace and non-
deterministically refines it into a plan
trace ā. R∗(P ) recursively replaces
one of the achieve statements in P
with the body of a behavior b whose
goal matches the achieve statement.
To handle possible orders of achiev-
ing subgoals, it non-deterministically
selects a statement β that could be
the last statement in L, M , or R
(see Appendix A). If β is not an
achieve statement, it is directly in-
serted into the plan. Otherwise, we
non-deterministically select a behav-
ior b whose goal matches β to handle
multiple behavior rules for goal β.

To handle interleaved execution,
we consider two cases: when β is from
M and when β is not. Let ⟨L′,M ′, R′⟩
be the three sections of body(b). When
β is not from M , we simply refine
⟨L′,M ′, R′⟩ recursively and concatenate the resulting plans. When β is from
M , statements in L′ will be appended to L, those in R′ will be prepended to R,
and M will be unioned with the rest of M (i.e., M \ {β}, where the \ operator
(set difference) returns a partially ordered plan just as M but with β removed).
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Figure 2 illustrates the operation on the partially ordered graph. The key insight
here is that if q is a subgoal in a partially ordered plan β, we do not assume
knowledge of how M ′ and the rest of the subgoals in M \ {β} can be ordered.

This new rule for promotable sections is inspired by concepts from hierarchi-
cal planning and subgoal serialization. In conventional hierarchical task and goal
networks [22,1], the “bodies” from two different behaviors are always unordered.
This is equivalent to marking all statements as promotable. In contrast, planning
can be exponentially more efficient when subgoals can be serialized [20], which
is the behavior of the “left” and the “right” sections. cdl unifies these two types
of behavior rules allowing the programmer fine-grained control to obtain just
enough generality while retaining as much efficiency as possible.

2.4 Variable Binding
In the examples we have seen so far, we have had variables that are determin-
istically bound using let statements. In most robotics domains, however, we
need to choose values from large or infinite sets (of configurations, grasps, poses,
trajectories, etc.) and a crucial part of the planning process is selecting these
values to construct a sound plan.

Some task and motion planning systems view the problem of variable binding
as one of constraint satsifaction [10]. We adopt this view, allowing a behavior
rule to indicate that the value of a variable can be chosen non-deterministically,
possibly subject to a constraint that relates its value to the values of other
variables. We introduce a new statement type:

1 bind v: T = f(v, ...)

which requires that v have a value v of type T that satisfies a condition f,
expressed as a function (defined in an external language) of the value v, values
of the program parameters, and values in previous bind statements. We have
an example in the behavior rule achieve_at_3 in figure 1(c): The first of bind
statement for x only constrains the variable by its type. The second one for
trajectories can be reduced to two statements:

1 bind t: Trajectory; assert connect(x, g, t)

However, for the purposes of solving the embedded constraint-satisfaction prob-
lem, it is useful to keep the variable-value constraints separate. It is also im-
portant to note that in general, constraint functions should be accompanied by
conditional generators that can produce satisfying values of the variable being
bound given values for other arguments. In our example, a motion planner could
be used to generate possible trajectories between a given pair of x and g.

When we have bind statements, applying the refinement operator on an
initial unrefined plan trace will give a set of variable-augmented plan traces.
Let the ⟨ā, V ⟩ be a tuple of the plan trace ā with a set of associated variables
V . ⟨ā, V ⟩ is sound if and only if there exists an assignment A (mapping from
variables in V to their domains) where āV \A is a sound plan. Here, the āV \A
operation replaces all variables in ā with their assignments in V .
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The ordering of bind statements in the final plan suggests a variable ordering
for solving the CSP at plan-generation time, although any sound (and ideally
complete) CSP-solving method can be used. We include details in Appendix B.

2.5 Commitment

In some cases, there may be many alternative solutions for a subpart of a prob-
lem, any of which will work fine with any solution for the next part. In such
cases, it may be very expensive at planning time to maintain all of those alter-
natives. To allow a programmer to communicate this situation to the interpreter
algorithm, we add a commit statement, inspired by Prolog’s cut, to cdl. It does
not increase the space of possible plans or change the soundness conditions. If
used incorrectly, however, it can endanger completeness by prematurely ruling
out a potentially good alternative. To gain intuition, consider a modification to
part of the behavior rule achieve_at_1 in figure 1(a) for moving obstacles:

1 forall o: Object:
2 achieve not blocking(o, t)
3 commit # newly added!

Here, we have added a commit statement, so that after finding a path for clear-
ing some object o1 from the trajectory t the interpreter will commit to the first
part of the plan trace as well as the continuous variables associated with it (e.g.,
the new location for the object o1). Adding this explicit commit forbids trying
different placements for this object, but does not forbid placing the objects in
a different order. When there is enough space for reorganizing objects, this be-
havior can succeed with high probability while significantly improving runtime.

A commit statement can appear in the left or right section of a behavior pro-
gram. Take the left section as an example. When we refine ⟨{...; commit}seq,M,R⟩,
instead of considering all possible refinements to the rest of the left program
refine(⟨L \ {β}, ∅, ∅⟩), we instead consider an arbitrary one of them. In prac-
tice, this may be implemented by considering only the first plan trace generated
from the recursive refinement to possibly prune out a large number of branches
— we will see this in action in our Crow interpreter in Section 3.

3 The Crow Interpreter

Next, we describe a practical implementation of an interpreter for cdl, called
Crow (Compositional Regression and Optimization Wayfinder). It is a non-
deterministic algorithm, with a structure similar to the refinement operator, but
crucially with pruning based on assertions and commitment.

It keeps track of a program tuple ⟨L,M,R⟩, and a set of variables and con-
straints ⟨V,C⟩. It uses the following implementations to handle behavior branch-
ing and continuous constraint satisfaction — it is a depth-first search algorithm
given a set of behaviors B. Its basic structure is to take the program tuple as
input and recursively compute an output tuple consisting of a resulting state s′,
action sequence s̄, variable set V , and constraint set C.
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1. If L is not empty, it recursively solves ⟨∅, ∅, L⟩ first, and then solves ⟨∅,M,R⟩.
2. Else, if M is not empty, it recursively solves M and then R. When it is

solving M , it will consider merging promotable sections of the new behavior
and the current M following the definition of the refinement operators.

3. Else, it solves statements in R one by one and concatenates the plan traces.

It defers the constraint satisfaction solving after checking all purely discrete
constraints by tracking variable ordering throughout the expansion.

function Plan(state, g, B) ▷ Top-level entry
let P0 ← ⟨∅, ∅, {achieve(g); assert(g)}seq, ∅, ∅⟩
for ⟨s, ā, V, C⟩ ∈ Crow(state, P0,B) do

if Solve-CSP(V,C) returns an assignment A then
return āV \A ▷ We have found a sound plan

function Crow(s, ⟨L,M,R, V,C⟩, B)
if L ̸= ∅ then

for ⟨s′, ā, V ′, C ′⟩ ∈ Crow(s, ⟨∅, ∅, L, V, C⟩,B) do
for ⟨s′′, ā′, V ′′, C ′′⟩ ∈ Crow(s′, ⟨∅,M,R, V,C⟩,B) do

yield ⟨s′′, ā⊕ ā′, V ′′, C ′′⟩
else if M ̸= ∅ then

for β ∈ tail(M) do
if β is achieve then

for b ∈ {⟨L′,M ′, R′⟩ ∈ B | goal(b) = β} do
let P ′ = ⟨{L,L′}seq, {M \ {β},M ′}unordered, {R′, R}seq, V, C⟩
yield from Crow(s, P ′,B)

else yield from Crow(s, ⟨L,M \ {β}, {β,R}seq, V, C⟩,B)
else if R ̸= ∅ then

for β ∈ tail(R) do
for ⟨s′, ā, V ′, C ′⟩ ∈ Crow(s, ⟨L,M,R \ {β}, V, C⟩,B) do

if β is assert then
if β evaluates deterministically then

if β(s′′) then yield ⟨s′, ā, V ′, C ′⟩ ▷ Yield only if β(s′′) is true
else yield ⟨s′, ā, V ′, C ′ ∪ {β}⟩ ▷ Defer β check to CSP

else if β is commit then
if Solve-CSP(V ′, C ′) returns an assignment A then

yield ⟨s′V \A, āV \A, ∅, ∅⟩; break ▷ Yield only the first plan trace

else if β is achieve then
for b = ⟨L′,M ′, R′⟩ ∈ B | goal(b) = β do

yield from Crow(s′, ⟨L′,M ′, R′, V ′, C ′⟩,B)
else if β is do then yield ⟨s′, ā⊕ {β}, V ′, C ′⟩
else if β is bind then return ⟨s′, ā, V ′ ∪ {var(β)}, C ′ ∪ {body(β)}⟩
else if β is effect then return ⟨update(s′, β), ā, V ′, C ′⟩
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The function Crow defined above is not a good control structure, as it effec-
tively does a left-branching depth-first traversal of the space of plans. To make
it practical, we wrap it in an iterative-deepening depth-first search (IDDFS),
which searches with an increasing depth limit until a sound plan is found.

Theorem 1. Suppose there exists a sound plan that can be generated by the
behavior specification B at a finite depth of nested achieve statements. Then
the IDDFS Crow will always terminate and return a sound plan.

(Proof in appendix A.1). While the IDDFS Crow algorithm is easy to implement
and comprehend, other implementations such as breadth-first search or A-Star
search with heuristics, would also be possible.

3.1 Problem Hardness and Crow Runtime
In discrete-space planning without bind statements, based on languages like
PDDL, it is typical to be completely general and put all achieve statements into
the promotable section, which can result in poor worst-case runtimes. However,
if we know that there are some subgoals whose achievement is independent of
others, then we can put all and only the achieve statements that could depend
on each other into the promotable section, and for the other, independent sub-
goals, commit after achieving each one. In such cases, an upper bound on the
problem complexity is related to the size of the largest ⟨L,M,R⟩ tuple during the
refinement process. Here, we restate the problem hardness results from STRIPS
planning [2] in the language of cdl.

Theorem 2 (Mao et al. [20]). Consider the refinement process applied to an
initial program P0 and an initial state s0, given a set of behaviors B. If there is
a sound plan that can be refined by allowing maximally K achieve statements
in M+R of any partially refined plan traces ⟨L,M,R⟩, the complexity of finding
a sound plan is upper-bounded by NO(K) where N is the number of entities in
the environment, and K is called the “width” of the planning problem.

Proof sketch. For all possible programs p, let subgoals(p) be the set of achieve
statements inside p. No matter the order of elements in p, all we care about is
finding a feasible plan that simultaneously achieves all subgoals in subgoals(p),
and there are NO(K) possible subsets. Thus, it can be solved in at most NO(K).

This result gives us a fine-grained insight into a useful class of planning prob-
lems in terms of their hardness, which essentially depends on the total number of
subgoals that accumulate in the program, usually in the “middle” section. Mao et
al. [20] also proved that, for many practical problems, K is a small constant usu-
ally independent of the number of entities in the environment. For practitioners,
this suggests an alternative search algorithm for implementing a cdl interpreter,
which is an iterative-widening algorithm [18], where, instead of iterating over the
depth of the refinement process, we iterate over the maximal number of achieve
statements allowed to accumulate during the refinement process. In this case,
the iterative-widening (Crow-IW) algorithm will be able to solve the problem
in time bounded by NO(K). This property of width also helps us gain insights
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Fig. 3: Percentage of successful executions as a function of wall-clock seconds;
each plot corresponds to a NAMO problem instance, and each line-color corre-
sponds to a behavior program.

into the CSP solving hardness in Crow. Essentially, if we hypothesize that the
amount of time needed for solving continuous CSPs is exponential in the number
of variables, we would obtain a complexity of Crow on generic hybrid decision-
making problems which is a polynomial whose exponent is linear in the program
width and the number of variables accumulated in CSPs (due to non-commit).
This hypothesis could be difficult to satisfy in problems where generating values
that satisfy the constraints (e.g. by sampling) is hard.

3.2 Experiments in NAMO

In the introduction, we used the NAMO problem to illustrate the flexibility
of cdl for expressing different spaces of possible plans, and argued that this
flexibility is useful because a general-purpose planning algorithm can take ad-
vantage of reduced plan spaces without requiring special-purpose algorithms to
be implemented. Here, we explore the effectiveness of the cdl and our inter-
preter on those three cdl behavior specifications: the direct-connect approach
which first plans the path from the initial position to the goal and then clears
all obstacles it hits; the waypoint-connect approach which searches for a set of
intermediate waypoints, and plans for the whole path by clearing all obstacles
between each consecutive waypoint in a stagewise manner; and the interleaved-
waypoint-connect approach which considers all possible orders for the movements
and obstacle-clearing. Intuitively, these three algorithms are ordered in a way
that the later algorithms can solve a large set of problems than previous ones.

We consider the three example NAMO problems presented in Fig. 1 and
apply the three behavior programs to these problems, and show the results in
Figure 3. Since there is substantial nondeterminism in the algorithm, we run
Crow on each behavior program 10 times for each problem. The results match
our intuition of the benefits of providing a behavior specification appropriate
to the problem class. Overall, if we apply a more advanced strategy for solving
“simpler” problems (e.g., using the waypoint-connect algorithm for the easy-level
NAMO tasks), due to the additional branching factors it considers (for example,
the direct-connect approach does not consider waypoints while the waypoint-
connect algorithm will try sampling different waypoints), the overall runtime is
longer than for the methods specifically tailored towards the scenario, although
given a sufficient amount of time, they are capable of solving the problem.
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Importantly, we did not have to write any new code to get these results: the
general Crow algorithm running on the simple alternative strategies in Fig. 1
is all that was necessary, and it would be easy to further explore a large the
trade-off space of behavior specifications, generality, and efficiency.

4 Related Work and Discussion
cdl builds on a series of insights from hierarchical planning [1], subgoal se-
rialization [18,20], and constraint satisfaction-based hybrid discrete-continuous
planning [10,9]. Its semantics allow for the specification of a large body of be-
havior types. For example, behavior trees [4] can be described by cdl behaviors
without effect sections. Preconditions of rules can be written as assert statements
at the top of the body. A classical STRIPS operator definition [8] is equivalent to
a cdl behavior with all preconditions written in its promotable section (but note
that the original STRIPS implementation had all preconditions unordrered but
not promotable, making it incomplete). Furthermore, any atomic STRIPS effect
statements [17] can also be written as assignment statements in cdl. Therefore,
it is one of the behavior types with the weakest commitments. In this case, with-
out any further control structure, the interpreter Crow is sound and complete
but very inefficient. This could be improved by adding heuristics [13,12]. The
most important benefit of cdl is that when programmers know what can be
serialized, they can use cdl to declare those commits to make search efficient.

The most closely-related planning frameworks are the hierarchical task and
goal networks [7,1], where an operator is equivalent to a cdl behavior with
an ordered promotable action body containing preconditions: they are always
ordered but interleavable. However, being a uniform approach that semantically
always allows for interleaved execution of subgoal routines, they support neither
serialization nor commits. All these behavior specifications can be implemented
in cdl, as well as combined flexibly to address non-homogenous problems.

The idea of explicitly separating problem-solving into generators and tests
dates back Newell and Simon [23], and was more recently applied to robot
programming and planning starting with GOLOG [16], its variants [5,6], and
Planning with Loops [15]. However, their generators are specified in a generic
programming language where interleaved behaviors, commits, and constraints
need to be programmed manually. cdl has the same spirit as these algorithms
but is built on insights from hierarchical planning, subgoal serialization, and
constraint-based hybrid planning to define a set of language supports.
Future work We have discussed at length the strengths of cdl and Crow as
a framework for planning; but it also exposes a set of opportunities for learning.
There is existing work for learning both transition models and policies [3,19] for
hybrid domains: cdl offers a formalism for integrating learned partial models
and policies as compositional behavior rules. In addition, we have demonstrated
the critical role of ordering, assertions, and commitment in making planning
efficient. A completely new learning opportunity is to discover and incorporate
this structure. In addition, although there is a growing body of work in learning
individual samplers for TAMP systems [21,28,11], cdl exposes the opportunity
to also learn variable ordering and commitment strategies.
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A Refinements and The Crow Interpreter

In this section, we formally define the refinement rules for cdl behavior rules.
We start with a definition of types of statement orders.
Statement orders For a set of statements, we define two basic orders.

1. Sequential program, represented as an ordered set {p1, p2, · · · , pk}seq. Intu-
itively, all statements will be executed in this order.

2. Unordered program, represented as an unordered set {p1, p2, · · · , pk}unordered.
Intuitively, all statements can be executed in arbitrary orders (there are in
total k! possible serialization of the program).

These two types of primitive ordering can be nested, to represent partial orders.
For example, the ordering {{p1, p2}seq, {p3, p4}seq}unordered states that p1 will be
executed before p2 and that p3 will be executed before p4. However, the relative
ordering between, for example, p1 and p3 is not specified. In general, we will
call these programs partially ordered programs. The set of all possible partially
ordered plans (including sequential ones and unordered ones) is denoted as P.

As an example, consider the following foreach statement.

1 foreach o: T:
2 statement_1(o); statement_2(o); ...

In a domain with two objects, it would be effectively equivalent to

1 unordered:
2 sequential:
3 statement_1(o1); statement_2(o1); ...
4 sequential:
5 statement_1(o2); statement_2(o2); ...

Next, we define the tail operator that takes a partially ordered program p
and returns a set of statements in p that might be the “last” statement in one of
the serializations of p. It can be defined recursively:

tail(p) =


{p} if p is a single subgoal or a controller call
tail(pk) if p = {p1, · · · , pk}seq is a totally ordered plan⋃

pi∈p tail(pi) if p is an unordered plan
.

One can iteratively select an element from tail(p) nondeterministically to con-
struct all possible serializations of p. In cdl, there are two keywords sequential
and unordered for specifying a particular section of the program being sequen-
tial or unordered. In cdl, a behavior body can contain unordered sections of
achieve statements, indicating a scenario where the order for achieving those
subgoals is unspecified by the programmer, but rather, should be determined
using search.
The generalized refinement operator Each behavior body is a program P =
⟨L,M,R⟩ with three sections: left (everything before the promotable section),
middle (the promotable section), and right (everything after the promotable
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section). The generalized plan refinement operator R∗ : P3 → P0 takes as input
a program tuple P = ⟨L,M,R⟩ and nondeterministically refines it into a plan
trace ā. R∗(P ) iteratively replaces one of the achieve statements in P with the
body of a behavior b whose goal matches the achieve statement.

Next, to handle possible orders of achieving subgoals, it non-deterministically
selects a statement β from tail(L), tail(M), or tail(R). If β is a non-achieve state-
ment, it is directly appended to the plan. Otherwise, we non-deterministically
select a behavior b that matches β to handle multiple behavior rules for achieving
the goal β.

Finally, to handle interleaved execution, we consider two cases: when β is
from M and when β is not. Let ⟨L′,M ′, R′⟩ be the three sections of body(b).
When β is not from M , we simply refine ⟨L′,M ′, R′⟩ recursively and stitches
together the outputs. When β is from M . Informally, statements in L′ will be
appended to L, R′ will be prepended to R, and M will be mixed with the rest
part of M (i.e., M \{β}, where the \ operator (set difference) returns a partially
ordered plan just as M but with β removed). The following program shows the
program that defines Refine operator algorithmicly.

function Refine(P = ⟨L,M,R⟩)
for β nondeterministically from tail(L) ∪ tail(M) ∪ tail(R) do

if β ∈ tail(L) then
for ā1 ∈ Refine(L \ {β}, ∅, ∅), ā2 ∈ Refine(∅,M,R) do

if β is achieve then
for b ∈ B | goal(b) = β do yield ā1 ⊕Refine(b)⊕ ā2

else yield ā1 ⊕ {β}seq ⊕ ā2
else if β ∈ tail(R) then ▷ Similarly to the case of β ∈ tail(L)

for ā1 ∈ Refine(L,M, ∅), ā2 ∈ Refine(∅, ∅R \ {β}) do
if β is achieve then

for b ∈ B | goal(b) = β do yield ā1 ⊕Refine(b)⊕ ā2
else yield ā1 ⊕ {β}seq ⊕ ā2

else if β ∈ tail(M) then
if β is achieve then

for b = ⟨L′,M ′, R′⟩ ∈ B | goal(b) = β do
yield Refine({L,L′}seq, {M \ {β},M ′}unordered, {R′, R}seq)

else
for ā1 ∈ Refine(L,M \ {β}, ∅), ā2 ∈ Refine(∅, ∅, R) do

yield ā1 ⊕ {β}seq ⊕ ā2
It is important to observe that cdl separates the definition of the generative

model for plan traces in the behavior rule bodies from the definition of precon-
ditions and effects of taking actions in the world in the assertions and effects
clauses of behavior rules. This allows the behavior specification to be separated
into two models: G, a possible plan generator, and T , a plan soundness tester.
The task of a cdl interpreter is to find a plan P ∈ G such that T (P ). The most
naïve implementation would be to enumerate P ∈ G in some order and return
the first plan P where T (P ) is true. This method would generally be very inef-
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ficient, or even incomplete in some continuous domains. In section 3 we provide
an algorithm that leverages soundness checks on partially refined plan traces, as
well as other mechanisms to dramatically improve efficiency. A more advanced
algorithm may leverage partially refined plans from G (recall that the plan is
generated hierarchically), and run tests on part of the plan, to be more efficient.
Other methods such as leveraging heuristics or optimizing expansion ordering
are also compatible.

A.1 The Completeness and Soundness of Crow

Based on the algorithmic definition of refinement operators, we can now prove
the soundness of the Crow interpreter, as stated in Theorem 1.

Proof. The high-level idea is to prove that, under a given depth, Crow will
enumerate all possible plan traces that can be generated by the Refine operator.
Then, since we are iteratively increasing the allowed depth for the algorithm it
is guaranteed that a sound plan will be generated.

We now prove the completeness of the enumerate strategy that Crow em-
ploys. Given a particular program ⟨L,M,R⟩, we show that Refine(⟨L,M,R⟩)
can be decomposed into the refinement of three programs L, M , and R indepen-
dently. Formally:

Refine(⟨L,M,R⟩) = {ā1 ⊕ ā2 ⊕ ā3 |ā1 ∈ Refine(⟨L, ∅, ∅⟩),
ā2 ∈ Refine(⟨∅,M, ∅⟩), ā3 ∈ Refine(⟨∅, ∅, R⟩)}

For convenience, we define

Refine(P )×Refine(Q) = {ā1 ⊕ ā2 | ā1 ∈ Refine(P ), ā2 ∈ Refine(Q)}

This can be proved by induction. First, when L =M = R = ∅ this is correct.
Now consider for any β ∈ tail(L) ∪ tail(M) ∪ tail(R):

1. If β ∈ tail(L), the refinement is already explicitly decomposed into the re-
finement of Refine(⟨L, ∅, ∅⟩) × Refine(⟨∅,M,R⟩), which, by induction is
equal to Refine(⟨L, ∅, ∅⟩)×Refine(⟨∅,M, ∅⟩)×Refine(⟨∅, ∅, R⟩).

2. If β ∈ tail(R), the refinement is symmetric to the L case.
3. If β ∈ tail(M), we are recursively refining the following program: ⟨{L,L′}seq, {M\
{β},M ′}unordered, {R′, R}seq⟩. For a sequential program {L,L′}seq, its refine-
ment has the property that Refine({L,L′}seq) = Refine(L)×Refine(L′)
by the definition of tail. Therefore, this refinement is equivalent to: Refine(L)×
Refine(L′)×Refine({M \{β},M ′}unordered)×Refine(R′)×Refine(R) =
Refine(⟨L, ∅, ∅⟩)×Refine(⟨∅,M, ∅⟩)×Refine(⟨∅, ∅, R⟩)

Therefore, the Crow left-most refinement strategy is complete. And it is
sound because it all assertions have been explicitly tested either during the
refinement process, or during the CSP solving.
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B Formulations and Algorithms for Constraint
Satisfaction Problems

A constraint satisfaction problem is a tuple of ⟨V,C⟨, where V is the set of
variables and C is a set of constraints. CSP solving focuses on finding a satisficing
solution to all variables in V that satisfies all constraints in C. Each constraint
c ∈ C is a function that takes variables in V as inputs and returns a Boolean
value.

The caveat of using the CSP formulation in decision-making is that the con-
straints are defined alongside the plan refinement processes. Therefore, depend-
ing on the particular time t when specific constraints are evaluated and added
to the constraint set, they will have the state st implicitly as inputs to those
constraints functions. In this case, these functions are no-longer pure functions
in the sense that they depend on additional information other than its input.

There are multiple ways to handle this. In our implementation, we handle this
using situation calculus. In particular, each feature f(...) should now be consid-
ered as a fluent ft(...). For example, consider we have the following assignment
statement at step t of a feature f(o1, o2).

1 f[o_1, o_2] = g(arg1, arg2)

In this case, if arg1 or arg2 are free variables, the evaluation result of the func-
tion g will also be a free variable (e.g., f_t_o1_o2) which satisfies the following
constraint:

1 assert f_t_o1_o2 = g(arg1, arg2)

We describe such translations in detail in Appendix D.5.
Using this translation, all we have is a set collection of constraints that are

pure, which can be solved by a CSP solver.

B.1 Sampling-based Continuous Constraint Satisfaction Problem
Solver

In Crow, we implemented a solver based on sampling from generators following
Garrett et al. [10]. It is a depth-first-search-based solver using the DPLL heuristic
for acceleration. At a high level, at each step, it first searches for variables whose
values can be fully determined based on the current set of assignments A. This
includes three cases:

1. The constraint is Boolean constraint, such as a and b and c and .... Then
we immediately know that all variables a, b, c, ... must be true. If it is
a or b or c or ... and all variables except for a has been assigned to
false, then we know a must be true.

2. The constraint is an equality constraint of type f(...) = rv and all the
arguments to the function f have been determined. In this case, we can
deterministically evaluate f to get the assignment to rv.
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3. There is an equality constraint f(...) = rv but the return value rv is never
appeared in other constraints except for this equality constraint. We can
ignore this constraint (and rv).

If none of these cases are true, we consider performing a search over the
free variables. We prioritize the search for discrete variables (e.g., Boolean val-
ues). We essentially nondeterministically choose an assignment to the variable
and continue the search for other variables, and backtrack if we can not find
assignments to other variables.

When there is no remaining discrete variables, we consider sampling for con-
tinuous variables (e.g., grasps, poses, and trajectories). In this case, we will
iterate over all constraints and find constraints that matches a user-provided
generator. We will describe the detailed syntax for generators in Appendix D
but in short, a generator is defined using the following syntax.

1 generator gen_f(x: T, y: T, ...):
2 goal: f(x, ...)= y
3 in: y, ...
4 out: x

Here we have defined a generator associated with the function f. Given the value
of y and other arguments to the function f, this generator will generate a set of
values for the variable x such that f(x, ...) = y evaluates to true. If we locate
a constraint that matches the input-output specification of the generator, we
will try to apply this generator to find the value for the variable x. In practice,
since there may be an infinite number of values satisfying a certain constraint,
we will always put an upper bound on the number of values that we consider for
each generator.

C Implementation Details for NAMO

Our most advanced strategy (interleaved-waypoint-connect) is implemented us-
ing the following cdl programs:

1 behavior NAMO(g: Pose):
2 goal: at(g)
3 body:
4 bind x: Pose:
5 valid_waypoint(x)
6 bind t: Trajectory where:
7 connect(x, g, t)
8 promotable:
9 achieve at(x)

10 forall o: Object:
11 achieve not blocking(o, t)
12 do exec_traj(t)
13 eff:
14 agent_position = g
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15
16 # The base case of NAMO for the first waypoint.
17 behavior NAMO_base(g: Pose):
18 goal: at(g)
19 body:
20 bind t: Trajectory where:
21 connect(agent_position, g, t)
22 promotable:
23 forall o: Object:
24 achieve not blocking(o, t)
25 do exec_traj(t)
26 eff:
27 agent_position = g
28
29 behavior move_away(o: Object, t: Trajectory)
30 goal: not blocking(o, t)
31 body:
32 let original_pos = agent_position
33 # Move the agent to a position where it is close to o
34 achieve close_to(o)
35 do attach(o)
36 # Find a free location for the obstacle o away from t
37 bind o_pos = free_location(o, t, o_pos)
38 achieve position(o) == o_pos
39 do detach(o)
40 # Move back to the previous position
41 bind t: collision_free_connect(agent_position, original_pos, t)
42 do exec_traj(t)
43
44 behavior approach(o: Object):
45 goal: close_to(o)
46 body:
47 # Find a position for the agent that is close to the object
48 bind x: Pose where:
49 close_to_object(o, x)
50 # Find a trajectory from the agent's current position
51 # to the target position
52 bind t: Trajectory where:
53 collision_free_connect(agent_position, x, t)
54 do exec_traj(t)
55 eff:
56 agent_position = x
57
58 behavior move_object_to(o: Object, p: Pose):
59 goal: position(o) == p
60 body:
61 # Find a trajectory for moving the object to the target position
62 bind t: Trajectory where:
63 collision_free_connect_with_object(position(o), p, t)
64 do exec_traj(t)
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We implement the following basic generators for our NAMO domain.

1. valid_waypoint: we randomly sample a point that is not directly reachable
from the initial state of the agent. Otherwise, it should be handled by the
base case.

2. connect: we randomly sample a path (using A* search on the grid) that
is not colliding with walls (i.e., non-movable obstacles). However, the path
may collide with movable obstacles.

3. free_location: this is done by randomly sampling a position such that there
is a collision-free path from the obstacle’s current position to the sampled
position, without considering the reachability of the robot. It is implemented
by an A* search assuming the object itself can move freely.

4. close_to_object: this is done by randomly sampling a position that is
within the reach of the robot but also being close to the target object.

5. collision_free_connect: this is implemented again, by using A* search
on the grid for the robot moving from one location to another. It considers
collisions with both movable and non-movable obstacles.

6. collision_free_connect_with_object: this function generates a trajec-
tory of the object assuming that the object o has been attached to the
object (so they will move jointly).

There are two features of these samplers that are worth noting. First, these
generators all depend on the state of the world (i.e., the position of the agent and
the position of all other objects). Second, we do not explicitly assert the existence
of certain values. For example, when we are trying to move an obstacle to a new
position, we do not assume that there is a path connecting the current robot
position and the obstacle position. Such “assertions” happen implicitly during
the CSP-solving process. Essentially, if we can not find a valid assignment to a
variable (a pose x that is close to the object), the plan trace refinement fails.

Since all these generators execute non-deterministically, for a fair comparison
between all different methods, we set the maximum number of intermediate
waypoints that can be selected by all algorithms to 1.

D Manual of CDL

D.1 Key Concepts

Before we delve into the details of the programming language, we would like to
start with a few key concepts in our design choices.

Object-centricness. In our language cdl, the state and the behavior represen-
tations are lifted. That is, we consider an environment composed of a set of
entities. The state will be represented as features associated with entities or tu-
ples of entities. Similarly, the behavior rules will optionally take entities as their
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parameters and achieve certain entity properties. This would allow us to define
a state and behavior representation that is compact and can encode a family of
decision-making problems of indefinite numbers of objects, which is crucial for
decision-making in physical environments.

As an example, in cdl, a state feature position_2d can be defined as

1 typedef Object
2 feature position_1d(x: Object) -> float32

In this case, the feature is unary, representing a single floating-point number
associated with each entity in the environment. A behavior rule move_to can be
defined as:

1 behavior move_to(x: Object, target: float32):
2 body:
3 do control_move(x, target)
4 eff:
5 position_1d[x] = target

The effect of the behavior rule is defined as updating the position_1d property
of the entity x.

Data-oblivious computation graphs. The second important concept in cdl is
data oblivious computation. In a nutshell, a data-obvilious program is a program
whose:

1. data accesses do not depend on the input values;
2. all functions that combine data values are encapsulated into black-box op-

erations;
3. furthermore, the control flow depends only on the input size (optionally

random values to enable stochastic computation).

A signature example of non-oblivious computation is recursion. If our termi-
nation condition depends on the value of the input and does not have a simple
upper bound of recursion depths, then we can not a priori construct the computa-
tion graph and apply it to any inputs. Actually, the decidability of the planning
problem will also be undecidable (recall the halting problem, or Gödel’s in-
completeness theorem). Data-oblivious computation supports if-else conditions
(which can be implemented by constructing both the if and the else branches),
for-loops with constant bounds, or for-loops whose bounds only depends on the
input size (the number of objects in the environment). It is a bit complex in con-
struction but looping over all entities based on the value of a feature (smallest to
biggest) can be implemented as a data-oblivious computation. But the compila-
tion is inefficient, where the naïve implementation requires O(N2) circuit size.
In practice, one may want to use other language features to realize this types of
computation.

Data obliviousness will give us advantages in reasoning about policies or tran-
sition models written in the programming language. For example, if we consider
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the policy as a program that generates a sequence of primitive controller com-
mands, representing it as a data-oblivious program would allow us to derive the
sequence of behavior commands without binding the parameters. For example,
the following program is data-oblivious:

1 behavior move_five_steps(x: Object): # oblivious
2 body:
3 for i in range(5):
4 do move_to(x, pose[x] -1)

In essence, this program outputs a fixed sequence of 5 move_to primitive
controller calls. By contrast, the following program is not data-oblivious:

1 behavior move_until_less_than_0(x: Object): # non-oblivious
2 body:
3 while pose[x] > 0: # CDL does not support while
4 do move_to(x, pose[x] -1)

Because we can’t decide how many primitive controllers will be generated by
this program without knowing the actual value of the initial pose[x]. Further-
more, from a program verification perspective, data-oblivious programs enable a
simple way to reason about the precondition and the postcondition of a program,
which we will explore in detail in later sections.

D.2 State Representation: Types and Features

For each decision-making problem, cdl assumes that there is a fixed and finite
set of entities. This is not a very strong limitation. For entity creation, one can
create additional “hypothetical” entities in the initial state whose properties will
be filled after the entity is instantiated (although this assumes that we know
an upper bound for the number of objects to be created). Similarly, for entity
deletion, one can introduce a new unary feature deleted to record if an object
has been deleted from the current state. Therefore, a world state, for any given
problem, can be completely described in terms of values of a fixed set of basic
features (of arity 0, 1, 2, . . .) of the given entities; the feature values may be
continuous or discrete and may be high-dimensional.

In cdl, we make a distinction between objects (referring to entities in the
physical world) and values (which are features or the return values of functions
over these features). Both of them can be associated with types. An object type
can be defined as:

1 typedef T: BaseT

where T is the type name and BaseT is the name of the base type it inherits.
When BaseT is omitted, it refines to the basic entity type in cdl. This can also
be explicitly declared by inheriting the builtin type object. For example:

1 typedef box
2 typedef robot
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These statements are equivalent to:

1 typedef box: object
2 typedef robot: object

And, a value type can be defined as:

1 typedef pose_1d: float32
2 typedef pose_2d: vector[float32; 2]
3 typedef pose_nd: vector[float32]
4 typedef python_class1: pyobject

Here, we are demonstrating a few different primitive types that a value type
can inherit from, including a vector type of a fixed dimension, a vector type
of an unknown dimension (whose dimension will be determined during program
execution), and value types that correspond to Python types in the host program.
As we will see in the next section, the key difference between objects and values
lies in whether we can quantify over them. For example, we can say, for all objects
x of a certain object type in the state, f(x) is true. However, we can not state
that, for all possible values v of a value type, f(v) is true, because the set of all
possible v’s will be an infinite set in general.

Based on types, we have the feature definition:

1 feature f(v: T, ...)-> RT,

where f is the name of the feature, v: T declares an argument of name v and of
type T. All features have a finite number of arguments. RT is the value type of
the feature.

D.3 Functions

There are two types of functions in cdl: primitive functions and “derived” func-
tions. Primitive functions are functions without a body. Their actual implemen-
tation resides in the external program (e.g., Python):

1 def f(v: T, ...)-> RT

This definition defines a function of name f and have an argument v of type T.
It returns a value of type RT.

On the contrary, derived functions have a body and can compose the results
of features and the return value of other functions (primitive or derived).

1 def f(v: T, ...)-> RT:
2 return ...

The function bodies must be data-oblivious. In particular, we support the
following features:

1. Read of features.
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1 feature_1[arg_1, arg_2] # or
2 feature_1(arg_1, arg_2)

2. Logic operators, including finite-universe quantification operations.

1 f(arg_1) and f(arg_2)
2 f(arg_1) or f(arg_2)
3 not f(arg_1)
4 f(arg_1) ^ f(arg_2) # XOR
5 forall o: T: f(o) # returns True if all entities of type T satisfies f
6 exists o: T: f(o) # returns True if at least one entity
7 # of type T satisfies f

3. Basic arithmetic operations such as +, -, *, /, ** (power).

1 f(arg_1) +f(arg_2)
2 f(arg_1) -f(arg_2)
3 f(arg_1) * f(arg_2)
4 f(arg_1) / f(arg_2)
5 f(arg_1) ** f(arg_2)

4. Assignments to local variables (let).
5. If-else conditions.

1 if c(...):
2 statement_1
3 else:
4 statement_2

6. “Parallel” for-loops over all entities that apply the same function over all
entities. Assignments to local variables outside the scope of the for-loop is
not allowed (foreach).

To ensure data-obliviousness, no self-recursion is supported. That is, it is not
allowed to call a function f at any point of the execution of f. For example, the
following definition of functions are invalid.

1 def f(x: float32) -> float32:
2 return g(x)
3
4 def g(x: float32) -> float32:
5 return f(x) # not allowed!

In this definition, even if we are not explicitly calling f itself inside f, we are
implicitly creating self-recursion by calling f in a subroutine g that f invokes.

D.4 Non-Data-Oblivious Functions and Generators

In cdl, data-oblivious and non-oblivious functions can be mixed. Any data-
oblivious computation can be illustrated as such a forward diagram, and in
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cdl, such diagrams will always have a finite depth (but maybe “wide” at each
depth due to quantifiers). cdl does not impose any constraints on the primitive
functions (f , g, and h) in this case, therefore they can be generally non-data-
oblivious and they will be implemented in external Python scripts. Another
important reason to use such external primitive functions is that they allow us to
write sophisticated programs to reason about numeric features and parameters,
which are crucial for physical decision-making problems.

If our goal is to have the feature c be a particular value (e.g., at a particular
location), we need to find “good” values for features a, b, c and d at the previous
timestep. In cdl, since the computation graph is independent of the feature
values, this problem can be modeled as a general constraint satisfaction problem.

If we only have a “forward” model of f , g, and h, there will be little we can do
with this optimization process. A general technique to tackle such optimization
problems would be to define additional inversion functions. Such functions are
called “generators” in cdl. An example definition of a generator function is the
following:

1 def f(x: float32, y: float32) -> float32
2
3 generator invert_f(x, y, z):
4 goal: f(x, y) == z
5 in: z
6 out: x, y

It declares an external function (e.g., invert_f) which takes as input the value
of z and output two values x and y and it is guaranteed that f(x, y) == z.

D.5 Behavior Effects

Combining all these features, an effect section can use all operations supported
in cdl, call to primitive and derived functions, to assign values to features.
Since we have constrained the programs to be data-oblivious, an advantage (in
addition to being able to formulate the constraint satisfaction problem) is that
we can now translate such imperative transition models into a descriptive model,
to possibly support other types of reasoning.

To be precise, there are two conventional paradigms for modeling Ta, the tran-
sition function associated with behavior a: imperative models (e.g., Python pro-
grams) and descriptive models (e.g., PDDL programs). In an imperative model,
the effect of a is modeled as a function Ta(s) that takes in the current state and
generates a new state s′.

On the contrary, in a descriptive model, we write down a Hoare logic sentence
with preconditions and effects. It has two formulas prea and effa and asserts:

∀s. {prea(s)} =⇒ {∀ (s′ ∼ Ta(s)) .effa(s
′)} .

That is, both the prea and effa are descriptors of the current state and the
next state. From a perspective of formal verification, the precondition and ef-
fects characterize the execution of the program Ta, and therefore transform the
planning problem into a mathematical proving problem.
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Both approaches have their pros and cons. The straightforward advantage
of the imperative approach is that writing Ta by hand is usually very easy.
In particular, if we allow the forward program Ta to be as flexible as Turing-
computable functions, then writing the descriptive model of Ta by hand can be
very challenging: intuitively, this would require the program writer to reason
carefully about all effects related to the generation of a sound plan, very much
like defining a semantic type system. The important advantage of the Hoare logic
model is that now the solver can go both forward and backward. In particular,
if our goal is to achieve a certain goal g, we can check the “effect” model of all
actions to find relevant actions that can potentially achieve this goal.

The first empirical observation that we have about practical transition mod-
els (especially in physical decision-making problems) is that usually, we can
constrain the forward model written in the imperative language (sacrificing the
Turing completeness) but make it possible to derive Hoare logic statements from
the forward model. The practice that cdl takes is that it restricts all effect sec-
tions to be data-oblivious. Furthermore, the corresponding circuit will always
have a finite depth. cdl comes with a built-in compilation tool that can trans-
form any function body into a holistic Haore logic description of their effects,
which, subsequently, can be translated into a corresponding PDDL definition.
For example, the following cdl program:

1 behavior do_something(x):
2 eff:
3 for i in range(3):
4 if f[x] > 0:
5 f[x] -= 1
6 else:
7 break

can be translated into a precondition-effect modeling (in a PDDL-style lan-
guage):

1 (:action
2 :parameters (?x)
3 :effect (and
4 (= (f ?x)
5 (condition (> (f ?x) 0)
6 (condition (> (- (f ?x) 1) 0)
7 (condition (> (- (- (f ?x) 1) 1) 0)
8 (- (- (- (f ?x) 1) 1) 1)
9 (- (- (f ?x) 1) 1)

10 )
11 (- (f ?x) 1)
12 )
13 (f ?x)
14 )
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15 )
16 )
17 )

D.6 Examples

The example below illustrates the ability to express a fine-grained ordering prior
on subgoal achievement.

1 body:
2 unordered:
3 achieve open(cupboard)
4 achieve holding(big_obj)
5 let big_o_loc = loc_in(big_obj, cupboard)
6 achieve loc[big_obj] == big_o_loc
7 for each c: Cup:
8 achieve contained_in(c, cupboard)
9 achieve closed(cupboard)

The example below illustrates a cdl program for handling the classical
STRIPS planning task of blocks world.

1 typedef block: object
2
3 # Features without return type annotations are assumed to be returning boolean values.
4
5 feature clear(x: block)
6 feature on(x: block, y: block)
7 feature on_table(x: block)
8 feature holding(x:block)
9 feature handempty()

10
11 controller pickup_table(x: block)
12 controller place_table(x: block)
13 controller stack(x: block, y: block)
14 controller unstack(x: block, y: block)
15
16 action r_holding_from_table(x: block):
17 goal: holding(x)
18 body:
19 assert on_table(x)
20 promotable sequential:
21 achieve on_table(x)
22 achieve clear(x)
23 achieve handempty()
24 pickup_table(x)
25 eff:
26 clear[x] = False
27 handempty[...] = False
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28 on_table[x] = False
29 holding[x] = True
30
31 action r_holding_from_stack(x: block):
32 goal: holding(x)
33 body:
34 bind y: block where:
35 on(x, y)
36 promotable sequential:
37 achieve on(x, y)
38 achieve clear(x)
39 achieve handempty()
40 unstack(x, y)
41 eff:
42 clear[x] = False
43 handempty[...] = False
44 on[x, y] = False
45 holding[y] = True
46 clear[y] = True
47
48 action r_clear(x: block):
49 goal: clear(x)
50 body:
51 bind y: block where:
52 on(y, x)
53 promotable sequential:
54 achieve on(y, x)
55 achieve clear(y)
56 achieve handempty()
57 unstack(y, x)
58 eff:
59 clear[y] = False
60 handempty[...] = False
61 on[y, x] = False
62 holding[y] = True
63 clear[x] = True
64
65 action r_clear_from_holding(x: block):
66 goal: clear(x)
67 body:
68 assert holding(x)
69 place_table(x)
70 eff:
71 holding[x] = False
72 clear[x] = True
73 handempty[...] = True
74 on_table[x] = True
75
76 action r_handempty():
77 goal: handempty()
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78 body:
79 bind x: block where:
80 holding(x)
81 place_table(x)
82 eff:
83 holding[x] = False
84 handempty[...] = True
85 clear[x] = True
86 on_table[x] = True
87
88 action r_on(x: block, y: block):
89 goal: on(x, y)
90 body:
91 promotable sequential:
92 achieve clear(y)
93 achieve holding(x)
94 stack(x, y)
95 eff:
96 clear[y] = False
97 holding[x] = False
98 on[x, y] = True
99 clear[x] = True

100 handempty[...] = True
101
102 action r_on_table(x: block):
103 goal: on_table(x)
104 body:
105 promotable sequential:
106 achieve holding(x)
107 place_table(x)
108 eff:
109 holding[x] = False
110 on_table[x] = True
111 clear[x] = True
112 handempty[...] = True

This definition would allow us to generate primitive plan solutions to plan-
ning problems such as the Sussman anomaly. Fig. 4 shows the refinement process
from the high-level goal into a sound plan trace. If we need to describe the be-
havior using only sequential programs (but not partial orders), it would require
a dedicated rule for the tuple of three objects. This figure also illustrates the
refinement operator R∗ in action. We will see in the next section that this will
allow us to construct a full spectrum between purely imperative behavior pro-
gramming and purely declarative planning-based behavior generation.
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Goal:
on(A, B) and on(B, C)

Initial State on(B, C)

on(B, C)
clear(B) stack(A, B)

Goal: on(A, B)
M = {clear(B), holding(A)}
R = {stack(A, B)}

on(B, C)
clear(B)
on-table(A) clear(A) stack(A, B)pick(A)

Goal: holding(A)
M = {on-table(A), clear(A)}
R = {hand-empty(),

pick-from-table(A)}

on(A, B)

holding(A)

clear(C)
clear(B)
on-table(A)

holding(B)

clear(A) stack(A, B)pick(A)

Goal: on(B, C)
M = {clear(C), holding(B)}
R = {stack(B, C)}

stack(B, C)

clear(C)
clear(B)
on-table(A)
on-table(B)

clear(A)
clear(B)

Goal: holding(B)
M = {on-table(B), clear(B)}
R = {hand-empty(),

pick-from-table(B)}

stack(A, B)pick(A)stack(B, C)pick(B)Goal: clear(A)
M = {on(C, A), clear(C)}
R = {move-to-table(C)}

clear(C)
clear(B)
on-table(A)
on-table(B)
on(C, A)

clear(B)
clear(C) stack(A, B)pick(A)stack(B, C)pick(B)move-t(C)

Features:
on(x, y)
clear(x): nothing atop x
holding(x)
on-table(x)
he(): hand is empty

The “middle” section

The “right” section

<empty>

he()

he()

he()

he()

he()

he()

stack(A, B)pick(A)stack(B, C)pick(B)move-t(C)∅ (already achieved)Final Plan:

Fig. 4: Leveraging the promotable “middle” section of programs, we can plan
for primitive plans where some of the preconditions have to be achieved in
parallel with other preconditions or subgoals. The figure shows a plausible re-
finement trace for a primitive plan for the Sussman anomaly [26]. The refine-
ment process starts with two subgoals on(B,C) and on(A,B), in this order.
In the first step, it refines the subgoal on(A,B) using the associated behavior
rule. This gives us a new M = {on(A,B)), {clear(B), holding(A)}seq}unordered
and a new R = {stack(A,B)}seq. In the second step, it nondetermin-
istically selected holding(A) for refinement, and produces a new M ′ =
{on(A,B)), clear(B), {on-table(A), clear(A)}seq}unordered and a new R′ =
{hand-empty(), pick-from-table(A), stack(A,B)}seq. This refinement process con-
tinues until we have a fully refined and sound plan.
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