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MIT CSAIL

{xiaolinf,lpk,tlp}@csail.mit.edu

Promptable 
Segmenter

UncOS

BottomUp & TopDown 
Querying

Hypotheses 

Action 
Planner

Belief State 
Estimator 

Observation Action

Factored Hypotheses Distribution Embodied InteractionInitial Observation

Confident Set

Belief

Uncertain 
Region u1

Uncertain 
Region u2

Fig. 1: Embodied segmentation with uncertainty-aware object segmentation model (UNCOS) as a basis. EOS architecture:
an initial RGB-D image is repeatedly prompted by UNCOS to obtain a region-based factored segmentation hypotheses
distribution. Unambiguous regions are put into the confident set (outlined in green). Alternative hypotheses are proposed
for each uncertain region. A distribution over segmentation hypotheses for the whole image is constructed by taking the
Cartesian product of hypothesis distributions in each region. Such factored hypothesis distribution is used to initialize a 3D
belief state that forms the basis for information-gathering action planning in embodied object segmentation.

Abstract— We introduce uncertainty-aware object instance
segmentation (UNCOS) and demonstrate its usefulness for
embodied interactive segmentation. To deal with uncertainty
in robot perception, we propose a method for generating a
hypothesis distribution of object segmentation. We obtain a
set of region-factored segmentation hypotheses together with
confidence estimates by making multiple queries of large
pre-trained models. This process can produce segmentation
results that achieve state-of-the-art performance on unseen
object segmentation problems. The output can also serve as
input to a belief-driven process for selecting robot actions to
perturb the scene to reduce ambiguity. We demonstrate the
effectiveness of this method in real-robot experiments. Website:
https://sites.google.com/view/embodied-uncertain-seg.

I. INTRODUCTION

Our goal is to build long-horizon manipulation systems
that can operate in environments that contain previously
unknown objects. A key step in such systems is segmenting
images, either RGB or RGB-D, into candidate objects to
be manipulated. This step is often called “unknown object
instance segmentation” (UOIS) and a number of existing
deep-learning models have been developed for this task [1],
[2], [3]. However, the output from these models is inevitably
imperfect, due to limitations in the model, for example,
limited data or limited capacity, or to challenges in the
images, for example, occlusion or lighting, or to fundamental
ambiguity, for example, in a stack of toy blocks. In the
“embodied” manipulation setting, where we have a robot

available, we can interact with the scene so as to obtain
additional information, such as pushing some of the objects
and tracking how they move. Furthermore, with the advent of
“promptable” segmentation models [4], we can also interact
with the model to obtain additional information, such as
obtaining multiple segmentations from different prompts.
In this paper, we explore both of these methodologies for
improving segmentation results: multiple prompting of the
segmentation model and active robot interaction with the
objects. In particular, we construct (by multiple prompting)
a characterization of the uncertainty in the segmentation and
use that representation to guide the physical interaction.

Image segmentation, in its most general form, is funda-
mentally underconstrained. Is the bottle cap part of the bottle
or a separate object? Is the shirt part of the person? In this
paper, we limit ourselves to considering the segmentation of
discrete rigid objects, where the answer to these questions
is: if chunks of matter always move together rigidly, then
they form a single object, and not otherwise. It will typically
be impossible to find this ground-truth segmentation from
an image of a cluttered scene and, in general, it may not
be necessary to find it so as to achieve a particular robotic
manipulation goal.

We define our task as that of uncertainty-aware object
instance segmentation. Given an image, a solution to the
problem partitions a scene into disjoint regions and pro-
vides a single interpretation for each region of the scene
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that has sufficiently low uncertainty and provides multiple
interpretations for each region with high uncertainty. This is
different from the classic instance segmentation task, where
the objective is to deliver a single set of masks for the scene.
By explicitly characterizing this region-factored uncertainty,
we hope to enable improved performance on downstream
tasks, for example, improving the choice of actions to gather
additional information to disambiguate the segmentation.

A crucial question in this approach is how to characterize
the uncertainty in a proposed segmentation. We develop an
uncertainty estimation and hypotheses generation method
based on multiple queries to large pre-trained, “promptable”
models [4], [5]. Within a region of the image, we issue
random point prompts and use consistency of the returned
masks as an indication of uncertainty.

Having obtained object hypotheses, with multiple candi-
date segmentation of uncertain regions, we use the robot to
do targeted exploration aimed at reducing the uncertainty. We
use a maximal-uncertainty-reduction-driven action selection
heuristic to lightly push a candidate object. We build a state
estimator to track and update the object hypotheses. The most
likely segmentation hypothesis can be computed from the
resulting belief state and we show that the state estimation
leads to better action choices which ultimately leads to better
maximum-likelihood segmentation hypotheses.

The key contributions of this work are:
• UNCOS: An active prompting strategy for combining

promptable top-down and bottom-up pre-trained object
instance segmentation methods to obtain a distribution
over image-segmentation hypotheses;

• EOS: A method for converting this segmentation distribu-
tion into a distribution over world models and using that
for selecting robot perturbation actions to disambiguate
the segmentation.

We demonstrate the effectiveness of the UNCOS image-
segmentation strategy first as a stand-alone method, show-
ing that taking its maximum-likelihood hypothesis performs
better than state-of-the-art UOIS methods. Furthermore, we
show that the hypothesis distribution produced by UNCOS
can be used by EOS to generate targeted physical inter-
actions with the scene that gather information much more
efficiently than less-informed alternatives.

II. RELATED WORK

This paper is related to previous work on unseen object
instance segmentation (UOIS), the use of large pre-trained
models in image segmentation, estimating uncertainty in
segmentation, and on embodied image segmentation.

Unseen object instance segmentation (UOIS) UOIS for
robotics aims to find an instance segmentation of objects
in the foreground, typically for a tabletop scene. Recent
work leverages datasets generated in simulation using a large
set of objects [1], [2], [3], [6]. A difference from common
panoptic, semantic, and instance segmentation scenarios is
that a depth image is assumed to be available. These methods
make predictions based on both intensity cues and geometric

cues. Although our goal is ultimately to obtain an object seg-
mentation, the crucial difference is that our method estimates
a factored distribution over segmentations, which is then
improved by interacting with the scene, before committing
to a particular segmentation hypothesis.

Segment Anything Model (SAM) Recent large vision
models have shown impressive results for various tasks.
SAM [4] is an image segmentation model that has been
pre-trained on a large dataset of 11 million images. It can
produce segmentation masks through point queries or box
queries. Due to the flexible prompt interface and strong
performance, it has been used to improve different tasks such
as 3D scene segmentation [7], [8] and tracking [9], [10]. It
has also been combined with other large pre-trained models
such as GroundingDINO [11] to segment objects with text-
prompts [12]. In our work we exploit the prompting interface
for uncertainty estimation.

Uncertainty Estimation in Segmentation Many ap-
proaches to uncertainty estimation in segmentation have
produced a heat map of uncertainty over pixels [3], [13],
[14]. However, the uncertainty we care about is object
level uncertainty, rather than pixel-wise uncertainty. Some
previous approaches have produced probability distributions
over relatively small image patches [15], [16]. The com-
mon failure modes in modern UOIS are over- and under-
segmentation of objects, therefore representing uncertainty
via distributions over grouping of individual segmentation
masks is more appropriate for our setting.

Embodied Segmentation Using robot actions to com-
plement and enhance visual perception has a long history
in robotics and is variously known as active perception,
interactive perception or embodied perception; the survey by
Bohg et al. [17] reviews this body of work, which includes
work on interactive/embodied segmentation.

A common strategy for interactive segmentation has
been to take a bottom-up approach, starting from an over-
segmentation of the scene, and identifying groupings by
consistency in motion [15], [18], [19]. An action is chosen
greedily to induce motion. There have been a number of
strategies for choosing actions. In some cases, the explicit
goal is to “singulate” (isolate) the objects [20]. Pajarinen et
al. [16], on the other hand, formulate the action selection
problem as a POMDP and try to pick actions that maximize
long-term reward. Very recent work from Qian et al. [21] also
seeks to improve segmentation based on a small number of
robot interactions. The action is selected heuristically based
on the pixel-wise uncertainty map from MSMFormer [3].
It differs from our focus on exploiting a representation
of uncertainty obtained from prompting large pre-trained
models. Another line of work aims to use robot interaction
to gather data for self-supervised training of segmentation
models [22], [23], [24]. This objective is in contrast with
our objective of disambiguating only the current scene.

III. PROBLEM SETTING

Our ultimate objective is to obtain an accurate interpre-
tation of potentially highly cluttered table-top scenes, in



the form of a set of partial point clouds corresponding to
individual objects in the scene. We assume that all objects
in the scene are rigid and do not address the problem of
revealing completely occluded objects.

Scene segmentation is a fundamentally ambiguous prob-
lem: it may be both difficult and unnecessary to obtain
a single, exactly correct interpretation. For these reasons,
we focus on constructing a distribution over segmentation
hypotheses, and updating that distribution over time given
new observations in which some objects have moved.

The robot embodiment consists of a camera that can ob-
serve the entire scene and capture registered RGB and depth
images, and a robot arm that can reach the observed objects
and make small perturbations by “poking” the objects. Our
goal is to produce good interpretations of the scene with a
minimal amount of disturbance to the objects.

The robot is assumed to be able to make precise, local
contact with objects in the scene. The pushing action is de-
termined by selecting an initial end-effector position, orien-
tation, and motion distance. After executing each motion, the
robot retracts to a position that leaves the scene unoccluded.

Although our objective is to maintain a distributional
estimate of the segmentation state, in order to compare most
directly with existing segmentation methods, we will evaluate
our segmentation results in terms of instance segmentation
metrics on 2D image masks [6]. Given a hypothesized seg-
mentation {s1, . . . , sNs} where si is a set of pixels assigned
to object i, and a ground-truth segmentation {g1, . . . , gNg},
we find an assignment ϕ mapping each hypothesized segment
into a ground-truth segment (or none) that maximizes the
sum of the individual F-scores, and report an overall object-
size normalized (OSN) precision, recall, and F-score,

Pn =

∑
i Pi

Ns
, Rn =

∑
i Ri

Ng
, Fn =

∑
i Fi

max(Ns, Ng)

where Fi = 2PiRi/(Pi + Ri), Pi = |si ∩ ϕ(si)|/|si|,
Ri = |si∩ϕ(si)|/|ϕ(si)|. The object-size normalized metric
differs from the standard P/R/F measures [1] in that they
explicitly average the scores over segments rather than pixels.
This ensures that simply getting a few large objects correct
does not overwhelm the scores of badly segmented smaller
objects, which is important for manipulation problems. We
additionally wish to achieve a good segmentation result with
as little disturbance to the scene as possible. We do not
explicitly measure the amount of motion among the objects,
but do measure the improvement in segmentation quality as
a function of the number of actions performed.

IV. EMBODIED UNCERTAINTY-AWARE SEGMENTATION

We propose embodied uncertainty-aware object segmen-
tation (EOS), as illustrated in Fig. 1. EOS consists of three
main components, including an uncertainty-aware object
segmentation model (UNCOS), a belief state estimator, and
an action planner, operating in closed-loop interaction with
the scene. The initial RGB-D image is processed using
UNCOS, which builds on a promptable image-segmentation
model to construct a segmentation hypothesis set. This

segmentation hypothesis set is used to initialize a belief state,
representing a set of hypotheses about the structure of the
3D scene. Given a belief state, an action is selected and
executed, and a new RGB-D observation is captured and used
to update the belief. Finally, we generate a set of image
masks corresponding to the most likely hypothesis.

A. Uncertainty-aware Object Segmentation Model
Our method, uncertainty-aware object segmentation model

(UNCOS), provides a novel strategy for combining multiple
queries to pre-trained 2D RGB image-segmentation methods
with some operations on the 3D point-cloud generated from
a depth image, to produce a set of possible segmentation
hypotheses, together with confidence estimates.

UNCOS approaches solving the problem from two aspects:
• A “bottom-up” method, that when queried, can return

masks that cover a region of interest in an image. This
ensures that every region in the image can be accounted
for. It is essential that this method have high recall so that
multiple queries to this method is likely to return most of
the correct instance masks. We refer to this method as
BUHIGHRECSEG. We assume it can take densely issued
query points, to form an initial set of high recall masks
of the whole image. We refer to this as BUSEED.

• A “top-down” method that returns a set of image masks
with high precision. These masks are very likely to
correspond to correct segments, but they may not contain
all the correct segments. We refer to this method as
TDHIGHPRECSEG.
The general strategy could use any method meeting these

requirements. In our implementation, we use the Segment
Anything Model (SAM) [4]. Given an image, it can be queried
either with a pixel location or a bounding box.

We use the pixel-prompted segmentation as our BUHIGH-
RECSEG module and its densely issued version (automatic
mask generation) as our BUSEED module. Our experiments
confirm that these two do indeed have very high recall.

We use GROUNDEDSAM [11], [12], which utilizes box-
prompted segmentation with a natural language prompt,
as our TDHIGHPRECSEG module. GROUNDEDSAM takes
text as input, uses GROUNDINGDINO [11] to generate
detection bounding boxes for the text, and then prompts
SAM to generate a binary mask for each detection box. We
query GROUNDEDSAM with a fixed prompt “A rigid
object.”. Our experiments confirm that this method does
indeed have very high precision.

Algorithm 1 UNCOS
Require: RGB image I , depth image D, camera params θ,

text prompt ▷, overlap threshold γ
1: P := PointCloud(D, θ)
2: C,U := PartitionRegions(I, P )
3: M := TDHighPrecSeg(I, ▷)
4: for u ∈ U do:
5: Mu = {m ∈M | m ∩ u > γ}
6: Hu = GenerateRegionHypotheses(u,Mu)
7: return C, {Hu | u ∈ U}



The overall operation of UNCOS is described in Alg. 1.
The driving insight is that segmentation uncertainty is
strongly region-based. In some regions of the image, the
interpretation is unambiguous and there will be a single rea-
sonable hypothesis. However, for other regions, for example,
one containing a stack of objects on the table, it is likely that
the queried model will return a variety of under- and over-
segmentations. However, such ambiguity is usually restricted
to the local region and generally does not interact with the
interpretation of a different pile of objects.

This insight leads us to factor the segmentation distribu-
tion by partitioning the image into regions and generating a
distribution over hypotheses for each region. A distribution
over segmentation hypotheses for the whole image can then
be constructed by taking the Cartesian product of hypothesis
distributions in each region (Fig. 1). If the scene is con-
structed in a way that no such locality can be leveraged,
UNCOS will simply treat the whole scene as one region.

The algorithm begins by using bottom-up methods to
partition the image into non-overlapping regions C,U . The
elements of set C of regions are confidently considered to
contain a single object. The elements of set U are regions
in which the segmentation is deemed to be uncertain. Alg. 2
describes this process in detail. The initial call to BUSEED
generates a large number of overlapping regions. We filter
out table and background using depth information, by doing
plane-estimation with RANSAC. We then construct a graph
with the remaining regions as nodes, with an edge between
any pair of regions with a substantial overlap. Regions with
a single hypothesis are verified by calling BUHIGHRECSEG
seeded at multiple randomly chosen points within the region:
if this process generates substantially different segmentation
results then the region will not be included in the confident
set C. All remaining regions are returned in the uncertain
set U .

After partitioning the image into disjoint confident and
uncertain regions, we start to construct segmentation hy-
potheses for each uncertain region. To aid in interpreting the

Algorithm 2 PartitionRegions
Require: RGB image I , point cloud P , Intersection-over-

min (IoM) threshold σm, IoU threshold σu, num
verify tests n

1: M := BUSEED(I)
2: M := RemoveBackgroundRegions(M,P )
3: E := {(i, j) : |mi ∩mj |/min(|mi|, |mj)|) > σm}
4: C := DisconnectedNodes(M,E)
5: U := ConnectedComponents(M − C,E)
6: for c ∈ C do
7: for i ∈ {1, . . . , n} do
8: mi = BUHighRecSeg(I,RandomPoint(c))
9: if |mi ∩ c|/|mi ∪ c| < σu then

10: C := C − {c}
11: U := U ∪ {{c}}
12: break
13: return C,U

Algorithm 3 GenerateRegionHypotheses
Require: Uncertain region u, seed masks v1, . . . , vk, point

cloud P , number of hypotheses to produce Nh,
thresholds α, β

1: H := { }
2: for i ∈ {1, . . . , Nh} do
3: r := Copy(u)
4: if i ≤ k then
5: h := {vi}; r := r − vi
6: else
7: h := { }
8: while |r| > α do
9: m := BUHighRecSeg(I,RandomPoint(r))

10: if |m ∩ r|/|m ∪ r| > β
and not IsDegenerate(m,P ) then

11: h := h ∪ {m} ; r := r −m
12: H := H ∪ {h}
13: EC := EquivalenceClasses(H)
14: H∗ := {(ec[0], |ec|/Nh) | ec ∈ EC}
15: return H∗

uncertain regions, we query TDHIGHPRECSEG to generate
a set of candidate object masks for the whole image. We take
those masks v1, . . . , vk that overlap with the uncertain region
u, to be the seed masks for constructing candidate hypothe-
ses. Our goal in this process is to generate a set of possible
partitions Hu of the region u, seeded by these candidates.
Alg. 3 illustrates this process: starting with each seed mask
vi (and then continuing beyond that number without seeding
mask if we require more hypotheses), we subtract the seed
mask out of the whole region u, and then randomly select
a point in the remaining area to query BUHIGHRECSEG.
If BUHIGHRECSEG returns a new mask that has a high
intersection-over-union (IoU) with the unaccounted-for area,
r, we accept it into hypothesis h = {vi, ...}, remove its
area from r, and continue until we have a set h of masks
that nearly constitutes a partition of our target region u.
Importantly, we also use the point cloud P to determine
whether the 3D volume corresponding to a suggested mask
is degenerate. Suggested masks that are flat (such as labels)
will be rejected.

Once we have generated Nh complete segmentation hy-
potheses for this region, we check for near duplicates. Two
hypotheses hi and hj are considered to be duplicates if 1)
hi and hj have the same number of segments, and 2) the
best matching between segments in hi and those in hj has
an average IoU greater than a threshold. Using this test, we
find equivalence classes of hypotheses, and return a single
representative of each class; in addition, we compute and
return a “bootstrap” confidence measure for each hypothesis
class, equal to the number of elements in its class divided by
the total number of samples. We use this score to determine
the most likely image-segmentation hypothesis when no
physical interaction evidence is available.

Finally, in Alg. 1, we return the confident regions C,
and the factored hypothesis space, with a distribution over
segmentation hypotheses for each uncertain region U .



B. 3D Belief representation

Our embodied segmentation process starts with a belief
state initialized with the results of UNCOS. This belief
could be integrated into a general goal-directed manipulation
planning process, which decides whether or not to invoke
information-gathering actions, depending on its given task.
The planner can select actions based on the residual uncer-
tainty, picking actions that leads to plan success under any
hypothesis (e.g., deciding to push something that might be
a stack of objects from the bottom, rather than picking it up
from the top, for the task of cleaning up the table).

For the purposes of testing the uncertain segmentation and
belief-update process, we embed it in a loop in which the
robot takes actions with the goal of reducing uncertainty in
the segmentation. It selects an action based on the hypotheses
in the initial belief, executes the action on the robot, and
obtains a new RGB-D image of the scene after the interac-
tion. We update the belief to both track the motion of the
hypothesized objects and to get a new confidence score for
each hypothesis. The process repeats for several steps. At any
point in this process, we can retrieve the hypothesis with the
highest confidence for evaluation against other strategies.

Our 3D belief representation B = (C+, U+) retains the
factored structure of the 2D segmentation output, but is lifted
to 3D and aggregated over time. The set C+ now consists of
a set of 3D objects c+1, . . . , c

+
n, represented as point clouds in

a global frame. Each region u+(r) ∈ U+ consists of a set of
region hypotheses: u+(r) = (h+(r)1, . . . , h

+
(r)nr

), each of which
is an interpretation of the region. For simplicity of notation,
we will drop the (r) from now on. It should be ranging
from one to |U+|. Each region hypothesis h+j consists of a
set of 3D objects (oj1, . . . , ojnj

). Each object ojk consists
of a point cloud ηjk and a confidence score sjk indicating
the likelihood that ojk is either a single object or part of a
large whole, that is not under-segmented.

As we get additional observations, we will adjust the
confidence values sjk. We define a score for each region
hypothesis h+j as

S(h+j) =
1

|h+j |
∑
k

sjk − λ
[
|h+j | −min

m
|h+m|

]
(1)

which combines the average “wholeness” confidence of the
objects in the hypothesis with a penalty for having extra
objects, thus preferring the simplest hypothesis that holds
the rigidity assumption.

Since the structure of the 3D belief is the same as the 2D
output of UNCOS, we construct the initial belief by simply
using the 2D masks to extract segments from the original
point cloud P . We initialize all sjk to some fixed initial value
p0. Since the hypotheses in each region are independent of
those in other ones, we take the most likely hypothesis for
the whole scene to be the union of C+ and the most likely
hypothesis from each uncertain region.

C. Action selection

To demonstrate the utility of the belief representation,
we use a robot to selectively poke objects in the scene

using a simple greedy strategy that attempts to select a
small perturbation that will maximize information gain. We
take advantage of the factored uncertainty representation to
select a region of the scene that has the highest degree of
uncertainty and then select the action that, when applied
to that region, induces an observation distribution that is
maximally discriminating among its hypotheses.

We measure the uncertainty of a region in terms of the
number of high-scoring hypotheses it has:

κ(u+) = |{h+j | S(h+j > δ)}| (2)

After selecting the targeted region, we need to select an
informative action. For example, if the two hypotheses for a
region are about whether two horizontally aligned parts are
rigidly attached, then pushing along the line connecting the
part centers won’t be as helpful as pushing perpendicular
to that. We use the physical simulation result of motions
with reconstructed world hypotheses as a heuristic for the
potential information gain.

To evaluate the informativeness of an action, we construct
simulated world models corresponding to all high-likelihood
complete hypotheses. The worlds are constructed by taking
the Cartesian product of the likely hypothesis sets for each
region: W = C+ ×

⊗
(r) u

+
(r).

Each world w ∈W consists of a set of objects defined by
partial point clouds. In order to carry out a simulation, we
need to generate completions of these objects, represented as
meshes. We follow the same object reconstruction pipeline
as Curtis et al. [25]: we complete the partial point cloud
using a shape completion network and vertical projection,
filter out any inconsistency with the current depth image,
and reconstruct a concave mesh.

Next, we sample k actions, a, as follows: within the se-
lected target region, we randomly sample an object among all
hypotheses for the target region. We then randomly sample
a pushing direction across the centroid of that hypothesized
object. Next, we simulate the effect of each action in each
world, obtaining new depth images Dw,a. We select the
action that induces most differences between the hypotheses:

a∗ = argmax
a

1

|W |
∑
w

|Dw,a −D∗,a| (3)

where D∗,a is the averaged depth for all w under a. Given
a∗, we do motion planning and execute in the real world.

D. Belief update

After executing an action, we update the belief based on
the robot’s observation. We cannot take advantage of dense
observations during the action execution because the object
is typically occluded by the robot arm. Instead, we capture
a new RGB-D image after the execution has terminated.

To track each hypothesis mask, we use XMem [26] as a
multi-object tracker for two neighboring frames. Specifically,
at each time step t, for each hypothesized object ojk, we
initialize XMem with It−1 and the 2D mask of ojk at
t − 1. We query XMem with the new image It and get
the updated mask. Compared to optical-flow-based methods



such as RAFT [27], XMem is more robust to occlusion and
can handle larger movements.

With the tracked mask, we update the object point cloud
and confidence based on our rigidity assumption. We register
the point cloud ηt−1

jk to that of tracked masked area ηt↓jk using
RANSAC. This gives us a rigid transformation T t

jk. We use
the percentage of inlier points in registered point cloud as
a measure of how well the point cloud motion follows the
rigid assumption. This is our current time step score stjk. We
assume that the point clouds are sufficiently well registered
so that we can just take their union as an update: ηtjk ← (T t

jk ·
ηt−1
jk ) ∪ ηt↓jk. The final confidence score sjk is the weighted

average of {sljk}l=1,...,t where the weights are determined
by the displacement from T l at each step.

V. EVALUATION

We are interested in answering two main questions:
• Does performing uncertainty-aware object segmentation

model on a single input RGB-D image and generating its
most likely hypothesis as output result in image segmenta-
tion results that are comparable to other SOTA methods?

• Does the belief state initialized via uncertainty-aware
object segmentation model and then updated via embodied
uncertainty-aware object segmentation provide a good
basis for selecting actions for interacting with the world?

We address these two questions in the following sections.

A. Segmentation from single images

We compare UNCOS with several methods. The first
two are state-of-the-art UOIS methods that predict a single
set of object segmentation masks directly from an RGB-D
image: (1) UOIS-Net-3D [1] (2) UCN [2]. The next group
of methods use SAM in some way, but do not carry out the
repeated queries as in UNCOS.
3) SAM: returns output of the automatic mask generation

query to SAM without further processing.
4) SAM-cluster: based on the observation that SAM tends to

over-segment objects, we construct the connectivity graph
as described in Alg. 2, and treat every connected cluster
as a segmented object.

5) SAM-per-pixel-ML: assigns the highest SAM-conf. mask
to the pixel if multiple masks contain it [7]. SAM-conf.
refers to the predicted confidence from the scoring head
of SAM that it outputs with every predicted mask.

6) GROUNDEDSAM: GROUNDEDSAM queried with a fixed
prompt “a rigid object”.

We consider our method, UNCOS, and several ablations:
7) UNCOS – BootstrapScore: returns the hypothesis from

UNCOS that has the highest average SAM-conf. value,
instead of the bootstrap confidence score.

8) UNCOS – TDHIGHPRECSEG: uses UNCOS without the
TDHIGHPRECSEG masks from GROUNDEDSAM.

9) UNCOS – TDHIGHPRECSEG – D: an ablation that fur-
ther removes the depth filter for degenerate regions.

10) UNCOS + UCN: add masks from UCN [2] as additional
TDHIGHPRECSEG masks.

Method Unc-Aware Pn Rn Fn ↑
UOIS-Net-3D [1] % 86.3 89.1 83.6

UCN [2] % 86.7 90.3 84.1
SAM % 29.0 91.2 28.4

SAM-cluster % 86.3 82.1 78.7
SAM-per-pixel-ML % 80.3 86.4 76.1
GROUNDEDSAM % 92.7 73.2 72.6

UNCOS – BootstrapScore " 87.5 88.0 83.2
UNCOS – TDHIGHPRECSEG " 88.5 88.3 84.4

UNCOS – TDHIGHPRECSEG – D " 85.6 88.5 81.8
UNCOS + UCN " 86.7 90.1 84.3
UNCOS (Ours) " 89.2 88.9 85.3

Oracle UNCOS – TDHIGHPRECSEG " 90.6 89.8 87.1
Oracle UNCOS " 91.6 90.5 88.4

TABLE I: Comparison of all methods on object-size-
normalized (OSN) precision, recall, and F-score. Unc-Aware
indicates whether the method is uncertainty-aware. UNCOS
produces segmentations with highest Fn.

11) UNCOS: our method as described in Alg. 1, returns the
most likely hypothesis based on the bootstrap confidence
score.

These last two methods are included to illustrate the
quality of the oracle best hypothesis among all hypotheses
generated by UNCOS, rather than the one UNCOS estimated
to be best. It gives an indication of the potential performance
improvements we can achieve through physical interaction.

12) Oracle UNCOS – TDHIGHPRECSEG: The oracle best hy-
pothesis from UNCOS without TDHIGHPRECSEG masks.

13) Oracle UNCOS: The oracle best hypothesis from UNCOS.

Benchmark We compare the performance of these methods
on the OCID dataset [28], which is a standard benchmark
for unseen object instance segmentation. It consists of 2390
images of tabletop scenes. Each scene contains an average of
7.5, and up to 20 objects. We report object-size normalized
scores Pn/Rn/Fn. We quote the results for UOIS-Net-
3D [6] and run methods 3 to 13 on the whole dataset. We
rerun UCN [2] using the released model from the author and
compute the object-size-normalized scores.
Results The results are shown in Table I. Focusing on object-
size-normalized F-score (Fn), we observe that UNCOS has
the highest performance of the non-oracle methods, outper-
forming (statistically significantly) the state-of-the-art UOIS-
Net-3D and UCN methods. Methods based directly on SAM,
without reprompting, generally perform worse. It confirms
that our iterative uncertainty-aware query process helps to
distill better segmentations, from the same underlying model.
Comparison between UNCOS and – BootstrapScore shows
the advantage of using the bootstrap confidence measure in
UNCOS to select the best hypothesis. Removing the masks
from GROUNDEDSAM degrades the performance, which
confirms the advantage of having both BUHIGHRECSEG
and TDHIGHPRECSEG methods. Removing degenerate (flat)
regions based on point-cloud information helps significantly,
showing the advantage of leveraging depth information in our
robotics domain. Results from GROUNDEDSAM have the
highest precision among all methods, while those from SAM



Method 0 1 2 3 ∆M ∆SE
FINALFRAME 90.9 91.9 89.9 90.8 -0.1 0.8

F RANDOM 87.5 89.7 90.5 90.2 2.6 1.5
EOS (Ours) 87.1 89.0 92.8 92.9 5.7 1.7

FINALFRAME 79.5 80.6 78.9 79.1 -0.4 1.7
Fn RANDOM 78.5 81.8 82.0 82.0 3.5 2.4

EOS (Ours) 78.2 82.7 86.5 86.5 8.3 2.4

TABLE II: Real world segmentation results: segmentation
quality initially and after each action step; final columns
report the mean (M) and standard error (SE) of the changes
(∆) in segmentation quality from step 0 to 3.

have the highest recall (underlined). These results confirm
their suitability for use as TDHIGHPRECSEG and BUHIGH-
RECSEG methods. Additionally, we find that adding masks
from UCN to the hypothesis generation process reduces
performance slightly, probably because masks from UCN
have lower precision than those from GROUNDEDSAM.

There is a gap between the score of the actually best
hypothesis and what UNCOS believes is the best. The gap
between these values and those of UNCOS illustrates that
there are, in at least some cases, good hypotheses that have
not yet been recognized as correct, due to image ambiguity.

B. Improving segmentation through interaction

Once UNCOS has produced a distribution over possible
segmentations, we use it to select physical interactions with
the scene in order to reduce any remaining uncertainty. We
evaluate our embodied uncertainty-aware object segmenta-
tion (EOS) system in the real world with a Franka Emika
robot arm. To push the object precisely, the Franka grips
a stick, as shown in Fig. 1. We use a bidirectional RRT
for motion planning and check collisions between the arm
and objects using the observed point cloud. The RGB and
depth images are captured by a RealSense D435i camera
mounted on the gripper. The two questions we want to
answer through real-world experiments are: 1) Does UNCOS
improve the efficiency of embodied segmentation; 2) Does
building local memory and doing belief updates help with
image segmentation.

Our primary method, EOS, uses the action-selection
method from Sec. IV-C based on a belief initialized from
the UNCOS results, and updates using the methods from
Sec. IV-D. For evaluation, at each time step, we compare
the highest scoring hypothesis from the 3D belief state to
human-labeled ground-truth masks. We compare EOS with
two ablations:
• RANDOM: We retain the belief state initialization and up-

date methods from EOS, but instead of selecting actions
to disambiguate the most uncertain region, we randomly
select a hypothesized object to interact with and randomly
select a pushing direction. Differences in performance
between this method and EOS can be attributed to the
use of the uncertainty in the belief representation to focus
action selection.

• FINALFRAME: We use random actions, as above, but
rather than maintaining a belief state and updating it
after each action, we simply take the single image of

the object configuration after per interaction step, apply
UNCOS to it, and return the most likely hypothesis in
UNCOS result. Differences in performance between this
method and RANDOM can be attributed to the aggregation
of observation information over time in the belief-update
mechanism. If this method reveals improved segmentation
quality from the first to last frames, it can be attributed to
the random motions causing physical separation between
the objects, thus makes the segmentation problem easier.
We set up 20 scenes with a collection of 74 diverse objects,

shown in Fig. 2. We ran both the EOS and RANDOM methods
on each scene (the FINALFRAME method uses the same
images as RANDOM, but a different method for generating
a predicted segmentation). Although the replication of the
scenes for the two runs was not perfect, we set them up as
similarly as possible (comparing initial images as we did so).
The robot carries out 3 actions in each scene.

Fig. 2: Objects used for real-world evaluation.

Results The average pixel-wise F-score (F ) and object-size-
normalized F-score (Fn), after K steps of robot interaction
are listed in Table II. Both our action selection strategy
and the random strategy perform consistently better than the
FINALFRAME baseline. With the number of interaction steps
increasing, the methods with memory get an increasing seg-
mentation quality, and are higher than that of FINALFRAME.
It shows that the embodied segmentation procedure with
belief update can help the robot to figure out the ambiguity in
the scene and improve the segmentation quality. We include
the qualitative results of EOS in Fig. 3.

Comparing our method to the random poking baseline,
there is a larger increase in segmentation quality (for both
metrics) with the same number of interaction steps. This
shows the benefit of having UNCOS and belief update, which
provide strong guidance for action selection in embodied
segmentation. It is also interesting to note that the FINAL-
FRAME method does not improve as a result of moving
the objects, which means that the belief tracking is play-
ing an important role in the performance of the overall
system, and it is not just improving due to the physical
singulation between objects. For more results, please visit
https://sites.google.com/view/embodied-uncertain-seg.

VI. DISCUSSION

Limitations and Future Work. First, our method does not
utilize multi-view images to reduce the uncertainty. We are
looking to incorporate active perception strategies to reduce

https://sites.google.com/view/embodied-uncertain-seg


Fn : 72.8 85.8(+13.0) 99.0(+13.2) 99.1(+0.1)

Fn : 70.1 83.6(+13.5) 97.9(+14.3) 97.7(-0.2)

Fig. 3: Qualitative results from embodied segmentation. From left to right are the most likely segmentation results after 0 to
3 steps of interaction using EOS. Incorrect and corrected segmentations are highlighted using red and green dashed circles.
Fn and change in Fn to the previous frame are shown in the corner.

the uncertainty caused by occlusion. Second, the current
setup seeks to reduce ambiguity in the whole scene. We
plan to explore a task-specific information-gathering strategy
where only task-relevant regions are explored.

Conclusion. We formulate an uncertainty-aware object
instance segmentation problem as the basis for embodied
segmentation. Our method UNCOS produces a distribution
over possible segmentation hypotheses. The most likely
hypothesis from UNCOS has achieved state-of-the-art perfor-
mance on the UOIS task. Through real-world experiments,
we have demonstrated that UNCOS can guide the embodied
interaction for efficient targeted disambiguation.
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