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ABSTRACT

Large Language Models (LLMs) rely on the contextual information embedded
in examples/demonstrations to perform in-context learning (ICL). To mitigate the
risk of LLMs potentially leaking private information contained in examples in the
prompt, we introduce a novel data-adaptive differentially private algorithm called
AdaDPSyn to generate synthetic examples from the private dataset and then use
these synthetic examples to perform ICL. The objective of AdaDPSyn is to adap-
tively adjust the noise level in the data synthesis mechanism according to the inher-
ent statistical properties of the data, thereby preserving high ICL accuracy while
maintaining formal differential privacy guarantees. A key innovation in AdaDP-
Syn is the Precision-Focused Iterative Radius Reduction technique, which dynam-
ically refines the aggregation radius - the scope of data grouping for noise addition
- based on patterns observed in data clustering, thereby minimizing the amount of
additive noise. We conduct extensive experiments on standard benchmarks and
compare AdaDPSyn with DP few-shot generation algorithm (Tang et al., 2023).
The experiments demonstrate that AdaDPSyn not only outperforms DP few-shot
generation, but also maintains high accuracy levels close to those of non-private
baselines, providing an effective solution for ICL with privacy protection.

1 INTRODUCTION

In-context learning (ICL) (Brown et al., 2020; Min et al., 2022) enables large language models
(LLMs) (OpenAI, 2023) to adapt to domain-specific information without modifying the pre-trained
model. This adaptation is achieved by conditioning the model on a prompt, which contains an
instruction and a series of task-specific question-answer pairs (called demonstrations or examples).
Using this prompt, LLMs can then generate responses that are tailored to the corresponding task. The
ease of usage and cost-benefit of ICL have motivated the adoption of LLMs in several applications,
such as machine translation (Sia and Duh, 2023), code generation (Pourreza and Rafiei, 2023) and
customer service (Lee et al., 2022).

However, privacy is a significant concern when incorporating users’ data into prompts, especially in
areas like healthcare and finance (Wang et al., 2023; Priyanshu et al., 2023; Duan et al., 2023), as this
introduces risks of exposing sensitive personal information. To address this concern, existing works
(Wu et al., 2023; Tang et al., 2023; Duan et al., 2023; Carey et al., 2024; Hong et al., 2023) have
explored approaches to mitigate these risks using the rigorous privacy safeguards provided by differ-
ential privacy (DP) (Dwork et al., 2006b). Notably, Tang et al. (2023) proposed to generate synthetic
few-shot demonstrations from the private dataset for use in ICL inference and guarantee DP with
respect to examples in the private dataset. This method uses the classic DP sample-and-aggregate
framework (Nissim et al., 2007; Papernot et al., 2016; 2018), partitioning subsampled private data
into disjoint subsets, each of which is used in a prompt for an LLM to generate tokens. These tokens
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Figure 1: Two-Stage framework for privacy-preserving ICL. In Stage 1, DP-protected demonstrations are
generated with AdaDPSyn, where we illustrate the process of generating the next token “City” following “New
York”. AdaDPSyn uses a novel clustering approach to dynamically aggregate next-token probabilities. The
process iterates until nshot demonstrations are generated. In Stage 2, the generated DP-protected demonstrations
are combined with a user query to construct the prompt. The constructed prompt is then sent to an LLM and
the answer is returned to the user.

are then privately aggregated, adhering to DP guarantees, to create synthetic demonstrations. This
framework allows the synthetic demonstrations to be used for an infinite number of queries without
incurring any additional privacy costs.

The main design challenge in Tang et al. (2023) is aggregating the responses from an LLM privately.
Tang et al. (2023) used a data-independent way of adding the same amount of Gaussian noise during
private aggregation. However, since each token generated by the LLM can contain varying levels
of private information, applying noise homogeneously across an entire sentence or document may
not achieve the optimal privacy-utility tradeoff in the ICL framework. Therefore, it is more strategic
to design DP mechanisms that adapt the noise level in a data-adaptive manner. Intuitively, by
adaptively adjusting the additive noise level based on the properties of responses for individual
tokens, we avoid adding unnecessarily large noise to tokens with high agreement or predictability,
which indicates low risk, thereby achieving improved utility for ICL. The main question we aim to
answer is:

Can we design a data-adaptive differentially private prompt synthesis algorithm to protect the

private information contained in the prompt data and effectively perform ICL?

In this work, we provide an affirmative answer to this question. Our main contributions are summa-
rized as follows:
• We introduce a new algorithm AdaDPSyn in Algorithm 1 to generate synthetic few-shot examples

for use in ICL prompts (Figure 1). Similar to Tang et al. (2023), AdaDPSyn begins by obtaining
next-token generation probability vectors from an LLM using multiple subsets of private dataset,
which will then be aggregated to generate the next token differentially privately. The essential
novelty of AdaDPSyn lies in our proposed Precision-Focused Iterative Radius Reduction tech-
nique, which adaptively adds noise level during aggregation by exploiting the cluster structure of
the predicted distributions of the next token. Besides, we believe that our data-adaptive technique
may be applicable in various problems beyond prompt synthesis, thus is of independent interest.

• We conduct a rigorous privacy analysis of AdaDPSyn and confirm it follows (ω, ε)-DP. In our
analysis, we use the Rényi Differential Privacy (RDP) (Mironov, 2017) framework to track and
tightly quantify privacy costs from the composition of AdaDPSyn’s components across multi-
ple iterations. By applying RDP composition rules and subsampling amplification, we establish
theoretical privacy guarantees for AdaDPSyn.

• We empirically evaluate the performance of AdaDPSyn against the DP few-shot generation algo-
rithm proposed by Tang et al. (2023) on standard benchmarks. We demonstrate that our method
outperforms this baseline across a plethora of privacy settings. For example, in the AGNews
classification task under a strict privacy level of ω = 1, our method achieves an accuracy of
65.42%, higher than 60.74% by DP few-shot generation. In the information extraction task MIT-
G at ω = 1, our method reaches 37.59% accuracy, compared to 31.15% by DP few-shot genera-
tion. Additionally, we show that our AdaDPSyn algorithm can closely match the performance of
non-private baselines even in stringent privacy settings. For instance, at a strict privacy level of
ω = 1, our algorithm attains an accuracy of 65.42% on the AGNews task, nearly reaching the non-
private baseline’s accuracy of 65.92%. Similarly, in the DBPedia task, our method shows minimal
performance drop-off compared to the non-private scenarios. These results not only underscore
the effectiveness of our AdaDPSyn algorithm compared with data-independent methods, but also
demonstrate its competitiveness with non-private solutions.
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2 RELATED WORK

Differentially Private In-Context Learning and Fine-tuning of LLMs. Duan et al. (2023) first
study privacy leakage through membership inference attacks (MIAs) and suggest mitigating MIA
risks using DP ensembling (Papernot et al., 2018) on various model versions. Recent studies (Wu
et al., 2023; Tang et al., 2023; Duan et al., 2023; Carey et al., 2024) have developed methods based
on DP ensembling (Papernot et al., 2018) to preserve privacy of the underlying prompt data. No-
tably, Tang et al. (2023) develop an algorithm that generates differentially private synthetic few-shot
demonstrations from a private dataset for ICL inference, which serves as the baseline of this work
and will be discussed in greater detail in subsequent sections. Hong et al. (2023) propose the DP-
OPT algorithm that generates private and transferable instructions within prompts on the client side
to be used with cloud-hosted LLMs. Carey et al. (2024) focus on protecting tabular data used for
ICL. We note that all of those works (Tang et al., 2023; Carey et al., 2024; Hong et al., 2023) de-
sign private aggregation methods in a data-independent way, i.e., adding the same amount of noise
during private aggregation.

Recently, Wu et al. (2023) and Duan et al. (2023) study differentially private ICL with data-

dependent privacy analysis. Wu et al. (2023) propose DP inference by privately aggregating results
from multiple queries using disjoint sampled demonstrations. They use the classic propose-test-
release (PTR) paradigm (Zhu and Wang, 2022) to select the top-K tokens from LLM outputs. If the
vote count difference between the K-th and (K + 1)-th highest tokens exceeds two, the tokens can
be released without further privatization. However, ICL tasks can involve an unlimited number of
queries, and Wu et al. (2023) consume the privacy budget per query, limiting the number of queries

that can be answered within a given budget.

Duan et al. (2023) assume the existence of an unlabeled public dataset, which contrasts with our
approach that requires no public data. In their method, an ensemble of teacher models uses private
majority voting to label this public dataset. The labeled data then helps construct private prompts.
Following Papernot et al. (2018), they focus on scenarios where a high agreement among teachers
can reduce privacy costs below data-independent bounds. When teacher agreement is low, they
discard the public data. In contrast, our method is better suited for scenarios where assuming the
availability of unlabeled public data with a distribution similar to private data is unrealistic, such as in
healthcare or industrial applications. Moreover, Duan et al. (2023) mainly focus on text classification
tasks with a restricted label space, while our method applies to a broader range of tasks.

On the other hand, several studies have focused on private fine-tuning of LLMs (Yu et al., 2021;
Li et al., 2021; Chen et al., 2024; Tang et al., 2024; Zhang et al., 2023; He et al., 2022). Besides,
Majmudar et al. (2022) introduce DP at the decoding stage of a pre-trained LLM.

Adaptive Differential Privacy. Adaptive differential privacy primarily focuses on privately cal-
ibrating noise to the local sensitivity, which is a dataset-dependent function and is much smaller
than the global sensitivity. Two representative solutions include the smooth sensitivity framework
(Nissim et al., 2007) and the propose-test-release (PTR) framework (Dwork and Lei, 2009). The
main idea of the smooth sensitivity framework is to add noise calibrated to the smooth sensitivity, an
upper bound on the local sensitivity which changes slowly between neighboring datasets (Bun and
Steinke, 2019; Gonem and Gilad-Bachrach, 2018; Fletcher and Islam, 2017; Zafarani and Clifton,
2020; Hamman et al., 2023; Sun et al., 2020). The PTR framework involves proposing bounds of
the local sensitivity and testing its validity. If the test is passed, the noise is calibrated according to
the proposed bound (Thakurta and Smith, 2013; Liu et al., 2022; Redberg et al., 2023; Wang et al.,
2022; Liu et al., 2022).

In this work, we release a confidence bound of the local sensitivity in a differentially private man-
ner, and calibrate noise accordingly, similar to the idea in prior studies (Blocki et al., 2012; Ka-
siviswanathan et al., 2013; Wang, 2018; Decarolis et al., 2020). In this body of research, Blocki
et al. (2012) and Kasiviswanathan et al. (2013) focus on network data. Wang (2018) revisits the
DP linear regression problem. Decarolis et al. (2020) study the Latent Dirichlet Allocation (LDA)
model. Our focus is on the ICL domain, where we develop a novel clustering method and Precision-
Focused Iterative Radius Reduction technique to address domain-specific challenges.

Differentially Private Synthetic Text Generation. Our work falls within the broader scope of
DP synthetic text generation, which typically requires generating large volumes of synthetic data.
There is a line of work on DP synthetic text generation through private fine-tuning (Yue et al.,
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2022; Mattern et al., 2022; Mireshghallah et al., 2022; Carranza et al., 2023; Yu et al., 2024; Wu
et al., 2024). SeqPATE (Tian et al., 2022) and Submix (Ginart et al., 2022) are methods based
on PATE (Papernot et al., 2016; 2018) for text generation, which utilizes an ensemble of teacher
models trained on private data subsets to fine-tune a student model. Another direction (Feyisetan
et al., 2020; Xu et al., 2020; Du et al., 2023; Utpala et al., 2023) focuses on sanitizing user texts
locally before server submission based on local differential privacy (Chatzikokolakis et al., 2013).
While this approach typically reduces text utility, recent studies (Chen et al., 2022; Arnold et al.,
2023b;a; Mireshghallah et al., 2022) propose to enhance utility by incorporating inherent properties
of language such as semantic similarity (Chen et al., 2022), context (Arnold et al., 2023b) and syntax
(Arnold et al., 2023a; Mireshghallah et al., 2022).

3 PROBLEM DEFINITION, THREAT MODEL, AND NOTATIONS

In-context learning. Given a query x, a candidate answer set (label set) Y and a pre-trained
large language model LLM such as GPT (Radford et al., 2018; OpenAI, 2023), ICL aims to
predict a label y → Y of query x, using LLM conditioned on nshot demonstrations C ={
(x↑

1, y
↑
1) , (x

↑
2, y

↑
2) , . . . ,

(
x↑
nshot

, y↑nshot

)}
, where (x↑

i, y
↑
i) is an input-label pair.

In this paper, we consider both classification and information extraction tasks. For classification
tasks with a restricted label space Y = {y1, . . . , ym}, we first compute the probability of each label
yi → Y using LLM as PLLM(yi | C, x). Then we predict the final label y by selecting the label with
the highest probability from the label set Y , i.e., y = argmaxyi↓Y PLLM(yi | C, x). For information
extraction tasks, the label space Y is unrestricted, and can include any sequence of tokens from the
LLM’s vocabulary. In these tasks, we predict y by having LLM generate a sequence of tokens until
it produces a special end-of-sequence (EOS) token, marking the completion of the output.

Differentially private ICL. Our objective is to protect the privacy of demonstrations C ↑ Dpriv in
the prompt against an adversary that aims to access or infer private information about the demonstra-
tions. Since ICL tasks may encounter an unlimited number of queries, to protect the privacy of the
dataset Dpriv, we adopt a differentially private data synthesis approach to generate synthetic few-shot
examples C = {z̃1, · · · , z̃nshots}, where z̃i = (x̃i, ỹi), from the underlying distribution of Dpriv while
satisfying (ω, ε)-differential privacy on the private dataset Dpriv. For each ICL task, we generate
task-specific synthetic examples C with the help of an LLM and a private dataset Dpriv. Then ICL
can be performed using demonstrations from C in a prompt tailored to each task. By default, we
incorporate all demonstrations from C in a prompt for each task.

We formally define (ω, ε)-differential privacy ((ω, ε)-DP) as follows.

Definition 1 ((ω, ε)-Differential Privacy (Dwork et al., 2006a)). A randomized algorithm A is (ω, ε)-
differentially private if for any two neighboring inputs D and D↑ that differ by a single entry and any
set S of possible outputs: P[A(D) → S] ↓ eωP[A(D↑) → S] + ε.

4 PROPOSED METHOD

We use a two-stage framework to perform differentially private ICL, as illustrated in Figure 1. Gen-
erally speaking, in Stage 1, we generate DP synthetic few-shot demonstrations C = {z̃1, · · · , z̃nshots}
based on the private dataset Dpriv; and in Stage 2, we use these synthetic demonstrations for ICL.

The main challenge of this framework lies in the DP synthetic data generation (Stage 1). To maintain
DP, a PATE-like framework is utilized, similar to Tang et al. (2023). Take the generation of a
synthetic demonstration z̃ = (x̃, ỹ) → C as an example. First, label ỹ → Y is randomly selected
independently of private dataset Dpriv, and its corresponding demonstration x̃ is generated token
by token, starting from an empty string x̃ =‘’. The next token for x̃ is generated by aggregating
probability vectors p1priv, . . . , p

M
priv, each of which is calculated by an LLM taking some prompt as

input. Each prompt is a concatenation of a subset of examples (in a reverse order (yi, xi)) from the
private dataset Dpriv = {(xi, yi)}, the synthetic label ỹ and the currently generated string x̃. Due to
the dependence of the probability vectors on private dataset Dpriv, DP aggregation is required, and a
classic way to achieve this is by adding noise (e.g., Gaussian mechanism) as in Tang et al. (2023).
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Our approach is motivated by a hypothesis that the next-token predictions by different examples
approximately reach a consensus. Once this hypothesis holds, the key innovation of our approach
is to leverage this feature and reduce noise levels during aggregation in a data-adaptive manner.
We verify the hypothesis quantitatively and tackle the key challenge in the following two sections,
respectively.

4.1 CONSENSUS BEHAVIOR MEASURED BY CLUSTERING

We quantitatively measure the degree of consensus among the next-token generation probability
vectors p1priv, . . . , p

M
priv. Specifically, we approach this by visualizing consensus through the geomet-

ric concept of enclosing these vectors within a minimal enclosing ball, defined as an (r, c, ϑ)-ball,
where r is the radius, c is the center and ϑ → (0, 1] represents the required portion of vectors covered
in the ball. For a given coverage requirement ϑ, a smaller r indicates a tighter grouping, reflect-
ing a high consensus among the model outputs. We hypothesize that these next-token generation

probability vectors are typically highly clustered in a ball with a small radius r.

Table 1: The mean and standard
deviation of r over 5 runs with
different random seeds.

Task radius r
AGNews 0.060.02
DBPedia 0.050.01

TREC 0.120.01
MIT-G 0.150.01
MIT-D 0.140.01

To verify the hypothesis, we conduct experiments using the DP few-
shot generation algorithm (Tang et al., 2023), and report the radius
r of the minimal ball that encloses at least 80% (ϑ = 0.8) of the
next-token probability vectors generated by using different private
examples in Table 1. For determining a small radius r that contains
at least 80% of the input points, we adopt the GoodRadius algorithm
in Nissim et al. (2016). We conduct experiments on three classifi-
cation tasks: AGNews (Zhang et al., 2015), DBPedia (Zhang et al.,
2015) and TREC (Voorhees and Tice, 2000), as well as two infor-
mation extraction tasks, MIT-G and MIT-D (Liu et al., 2012), using
the Llama-2-7b-hf model (Touvron et al., 2023)1. Details of the DP few-shot generation algorithm
parameters can be found in Table 12.

As shown in Table 1, the measured radius r, ranging from 0.05 to 0.15, is much smaller than
↔
2/2,

the radius of the minimal ball that contains the probability simplex. These results confirm a high
degree of clustering among the model outputs. Intuitively, if we can access such a ball of small radius
r differentially privately, we can perform a differentially private projected mean aggregation that
projects the probability vectors to the ball and calculates the projected mean with additive Gaussian
noise. The noise level is determined by the sensitivity 2r. Note that in Tang et al. (2023), without
leveraging the clustering behavior of the data, a much higher noise level corresponding to sensitivity↔
2 is employed. Comparing these two cases, the sensitivity 2r is approximately 5↗ to 14↗ smaller

than
↔
2, thus leading to more accurate aggregation due to lower noises. The key challenge is then

how to differentially privately access a small ball that contains a majority number of probability
vectors and perform the differentially private aggregation correspondingly. To tackle this challenge,
we propose a novel Precision-Focused Iterative Radius Reduction technique.

4.2 PRECISION-FOCUSED ITERATIVE RADIUS REDUCTION

Building on the observation that next-token generation probability vectors from the LLM are highly
clustered, we utilize an intuitive approach to adaptively adjust the noise level during aggregation: we
first locate the minimal ball covering most vectors under DP and then project all points to this ball
in ϖ2-norm to bound the influence of each point, thereby minimizing noise addition. This method,
which adaptively leverages the inherent structure of the probability vectors, is essential to the success
of our proposed method.

The task of finding a minimal enclosing ball under DP is known as the DP 1-clustering problem
in the literature (Nissim et al., 2016). However, existing methods (Nissim et al., 2016; Nissim and
Stemmer, 2018; Ghazi et al., 2020) are hard to implement and computationally expensive.

To this end, we propose a novel technique called Precision-Focused Iterative Radius Reduction.
We start with a large radius R and judiciously reduce it towards a small target radius r through
iterative refinement. The target radius r is obtained under DP constraints using a tractable subroutine

1https://huggingface.co/meta-llama/Llama-2-7b-hf.
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GoodRadius from DP 1-clustering (Nissim et al., 2016), which provides a threshold such that the
designed radius should never go below. The reduction of radius R is carefully monitored by coverage
checks, which ensure the majority of the probability vectors are covered by a ball with that radius.
The center of the ball is efficiently obtained by private projected mean estimation. This dynamic
adjustment of the ball ensures it is minimized effectively according to the distribution of the points
along the adjustments. The amount of noise required for private projected mean estimation can be
reduced, thus improving the quality of the synthetic demonstrations and the performance of ICL.
We elaborate this Precision-Focused Iterative Radius Reduction technique in Section 4.3.

4.3 ADADPSYN ALGORITHM

We now introduce the proposed AdaDPSyn algorithm (Algorithm 1), which generates DP synthetic
few-shot examples from the private dataset Dpriv. For a given label ỹ randomly selected from the
label set without replacement, AdaDPSyn sequentially generates one token at a time, starting from
an empty list. Each token generation begins with the Next Token Generation subroutine (Line 4).
Roughly speaking, the Next Token Generation process (Tang et al., 2023) involves sampling MN
examples with label ỹ from the private dataset Dpriv, dividing them into M disjoint subsets, and
then using these subsets as demonstrations to predict the next token’s distribution p1priv, . . . , p

M
priv

using an LLM. The vocabulary is restricted to S containing the top-K most probable tokens, which
are determined from next-token probabilities generated only from instructions without using any
private data. Details of Next Token Generation can be found in Appendix A.1. Then we privately
aggregate p1priv, . . . , p

M
priv using our Precision-Focused Iterative Radius Reduction technique (Lines 5-

21), which consists of four critical steps:

Step 1: Establish Target Radius Differentially Privately. The process begins by setting a target
radius r using the GoodRadius subroutine (Nissim et al., 2016) in Line 5. GoodRadius is a sub-
routine used in DP 1-clustering methods (Nissim et al., 2016; Nissim and Stemmer, 2018), which
identifies a radius that can encompass at least a fraction ϑ of the data points under (ϱ, ς0)-RDP
constraints. In this work, we set ϑ = 80%. Details are provided in Appendix A.2.

Step 2: Projected Mean Estimation Using Gaussian DP Mechanism. For a probability simplex
in Rd, its radius2 is

↔
2
2 . Thus, we set R ↘

↔
2/2 (Line 6) initially. We initialize projected points

p̃ipriv ↘ pipriv, i = 1, . . . ,M (Line 7), and estimate mean of {p̃1priv, . . . , p̃
M
priv} using Gaussian DP

mechanism (Line 8), i.e., p̃priv ↘ 1
M

(∑M
i=1 p̃

i
priv +N (0, 4R2φ2

1I)
)

, where φ1 is the noise multi-

plier. Then we map p̃priv back onto the probability simplex, i.e., p̃priv ↘ max(p̃priv,0)
↗max(p̃priv,0)↗1

(Line 9).

Next, we reduce R towards the target radius r iteratively, ensuring that it covers a sufficient amount
of probability vectors while satisfying DP (Lines 11-21). During the iterative process, which takes at
most T̂ iterations, each step starts with a radius coverage check detailed in the following paragraph.

Step 3: Radius Coverage Check Using Gaussian DP Mechanism. We use Gaussian DP mecha-
nism to check whether a sufficient number of the original probability vectors p1priv, . . . , p

M
priv remain

within a small radius from p̃priv (Line 12). Specifically, the check evaluates whether the ϖ2-ball with
center p̃priv and radius r + 2εRϑ1

↔
K

M can cover at least µM of the points p1priv, . . . , p
M
priv, where ↼

is a hyperparameter, φ1 scales the Gaussian noise introduced to p̃priv in Line 8 or Line 20, K is the
dimensionality of the probability vectors, and µ → (0, 1]. We set µ = 0.55 in this work. The term
2εRϑ1

↔
K

M represents an additional margin on the radius to accommodate the spread introduced by
Gaussian noise added to p̃priv in Line 8 or Line 20, ensuring data coverage despite the distortion
caused by the noise.

Step 4: Update Radius towards Target Radius. If the radius coverage check in Line 12 reveals
that fewer than µM vectors are within the defined radius, the algorithm will stop reducing the cur-
rent radius R. Otherwise, the algorithm proceeds to adjust R downward (Line 15-18), i.e., R ↘ r+

2For a bounded region R → Rd, we define its diameter as diam(R) = supx,y↑R ↑x ↓ y↑, and its radius
as half of the diameter, i.e., Rad(R) = 1

2diam(R). The definition of diameter coincides with the definition of
sensitivity for the aggregation (summation) of a utility function, thus the radius can be interpreted as half of the
sensitivity factor.
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2εRϑ1

↔
K

M . Then we project next-token probability vectors {p1priv, . . . , p
M
priv} to a ϖ2-ball defined by ra-

dius R and centered at p̃priv (Line 19), i.e., p̃ipriv = p̃priv+(pipriv ≃ p̃priv)
/
max

(
1,

↗pi
priv↘p̃priv↗2

R

)
, i =

1, . . . ,M. This operation ensures that the ϖ2-sensitivity of the term
∑M

i=1 p̃
i
priv is at most 2R. Fi-

nally, we estimate the mean of the projected points {p̃1priv, . . . , p̃
M
priv} using Gaussian DP mechanism

(Line 20), i.e., p̃priv ↘ 1
M

(∑M
i=1 p̃

i
priv +N (0, 4R2φ2

1I)
)
. As R decreases, the amount of noise

added to p̃priv is reduced accordingly. We then map p̃priv back onto the probability simplex, i.e.,
p̃priv ↘ max(p̃priv,0)

↗max(p̃priv,0)↗1
(Line 21).

The process of radius refinement concludes under any of the following conditions: (1) the maximum
allowed number of iterations, T̂ , is reached; (2) further reduction in radius fails to cover the mini-
mum required proportion of vectors (Line 12); (3) the current radius R is smaller than r+ 2ε1Rϑ1

↔
K

M
(Line 15). Once the radius refinement process concludes, we select the next token for the synthetic
sequence as argmaxj↓S p̃priv[j] where S is the vocabulary of size K, and this token is appended to
what is generated so far. This continues until the sequence reaches the predefined maximum limit,
Tmax, of tokens we would like to generate.
Remark 1 (Comparison with Tang et al. (2023)). The main difference between our method and
that of Tang et al. (2023) lies in the innovative approach we take toward the private aggregation
of the next-token generation probabilities p1priv, . . . , p

M
priv. Instead of directly using the Gaussian

DP mechanism for aggregation as in Tang et al. (2023), our approach introduces an advancement
through the Precision-Focused Iterative Radius Reduction technique (Lines 5-21). This technique
allows noise to be added in a data-adaptive manner, effectively adapting the noise level to the degree
of agreement among the models. Empirically, we evaluate the performance of our algorithm against
Tang et al. (2023) in Section 5.1 to demonstrate the effectiveness of our method.

4.4 PRIVACY ANALYSIS

Theorem 1. Algorithm 1 is (ω, ε)-differentially private.

Proof Overview. We adopt the commonly used Rényi differential privacy (RDP) (Mironov, 2017)
to track the privacy cost in our algorithm, as it allows us to tightly quantify the privacy guarantees
from the composition of multiple mechanisms. Our proof mainly consists of three steps. First, we
show that each iteration of the algorithm is (ϱ, ς)-RDP. In each iteration, our algorithm consists of 3
components: one instance of (ϱ, ς0)-RDP algorithm GoodRadius (Line 5), at most (T̂+1) instances
of (ϱ, ς1)-RDP projected mean estimation using Gaussian DP Mechanism (Line 8 and Line 20) and
at most T̂ instances of (ϱ, ς2)-RDP radius coverage check using Gaussian DP Mechanism (Line 12).
We apply the composition property of RDP to ensure the privacy guarantee in each iteration, that
is, we ensure that ς = ς0 + (T̂ + 1)ς1 + T̂ ς2. Next, since the Next Token Generation subroutine
(Line 4) involves drawing MN samples from the dataset Dpriv, there is a privacy amplification by
subsampling at each iteration. Finally, we compose privacy loss across all the Tmax iterations of
our algorithm using composition theorems. We rely on the conversion lemma (Balle et al., 2020) to
convert the RDP guarantee back to DP notions. We provide a full proof in Appendix B.

5 EXPERIMENTS

Datasets. We study text classification on three datasets: 4-way news classification AGNews (Zhang
et al., 2015), 6-way question classification TREC (Voorhees and Tice, 2000), and 14-way topic
classification DBPedia (Zhang et al., 2015). For information extraction, we study the MIT Movies
trivia10k13 slot-filling dataset (Liu et al., 2012), which includes movie genre (MIT-G) and director
name (MIT-D) as slots. Additional dataset details are available in Appendix C.2.

Setups. We use the synthetic few-shot demonstrations {z̃1, · · · , z̃nshots} from Algorithm 1 as in-
put demonstrations in ICL for the aforementioned downstream tasks. We fix nshots = 4 by de-
fault, generating 4-shot demonstrations (randomly without replacement from the label set) for ICL.
We use Llama-2-7b-hf model (Touvron et al., 2023) as our pre-trained LLM to generate synthetic

7
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Algorithm 1 AdaDPSyn

1: Input: Private dataset: Dpriv, label: ỹ, maximum token count: Tmax, an LLM: LLM(·), noise
multiplier: φ0, φ1, φ2, number of disjoint subsets: M , samples per subset: N , reduced vocabu-
lary size: K, hyperparameters: ↼ and T̂ .

2: Initialize: Set x̃ ↘ [].
3: for t = 1 to Tmax do
4: p1priv, . . . , p

M
priv ↘ NextTokenGeneration (Dpriv, ỹ,LLM(·),M,N,K, x̃)

5: r ↘ GoodRadius({p1priv, . . . , p
M
priv}, ϑM,φ0) ↽ Establish Target Radius

6: R ↘
↔
2/2

7: p̃ipriv ↘ pipriv, i = 1, . . . ,M

8: p̃priv ↘ 1
M

(∑M
i=1 p̃

i
priv +N (0, 4R2φ2

1I)
)

9: p̃priv ↘ max(p̃priv,0)
↗max(p̃priv,0)↗1

10: for j = 1 to T̂ do
11: t ↘ the count of p1priv, . . . , p

M
priv within a ϖ2-ball centered at p̃priv with radius r + 2εRϑ1

↔
K

M

12: if t+N (0,φ2
2) < µM then

13: break ↽ DP Radius Coverage Check
14: end if
15: if R < r + 2εRϑ1

↔
K

M then
16: break
17: end if
18: R ↘ r + 2εRϑ1

↔
K

M ↽ Update Radius towards Target Radius

19: p̃ipriv ↘ p̃priv + (pipriv ≃ p̃priv)
/
max

(
1,

↗pi
priv↘p̃priv↗2

R

)
, i = 1, . . . ,M

20: p̃priv ↘ 1
M

(∑M
i=1 p̃

i
priv +N (0, 4R2φ2

1I)
)

↽ DP Projected Mean Estimation

21: p̃priv ↘ max(p̃priv,0)
↗max(p̃priv,0)↗1

22: end for
23: w ↘ argmaxj↓S p̃priv[j]
24: x̃ ↘ x̃+ [w]
25: end for
26: return x̃.

demonstrations3. We use the same prompt format during ICL following Tang et al. (2023) (see Ap-
pendix C.11). For ICL downstream tasks, we use Llama-2-7b-hf for AGNews, DBPedia, MIT-G,
and MIT-D, and GPT-4o mini for TREC4. For DP algorithms, we follow the common practice to set
the privacy budget ε = 1/ |Dpriv| (Tang et al., 2023; Hong et al., 2023).

Baselines. We compare our AdaDPSyn algorithm with DP few-shot generation in Tang et al. (2023),
which uses a data-independent approach of adding the same level of Gaussian noise during aggre-
gation. Hypermarameters in DP few-shot generation are detailed in Table 12, including the number
of subsets M , the number of data samples per subset N , the number of tokens Tmax, and the reduced
vocabulary size K. To ensure a fair comparison, we select these parameters for DP few-shot genera-
tion based on the guidance in Tang et al. (2023), as detailed in Appendix C.5. We then use the same
values of M , N , Tmax and K for our AdaDPSyn without any additional hyperparameter tuning.

As a fully private baseline ω = 0, we follow Tang et al. (2023) to generate synthetic 4-shot demon-
strations using purely instructions without any private data5. We consider two non-private baselines

3Next Token Generation (Tang et al., 2023) uses OpenAI’s API logprobs parameters with a value of 100,
which currently supports a maximum value of 5. To overcome this, we use the Llama-2-7b-hf model via vLLM
platform (https://github.com/vllm-project/vllm), which offers a compatible API, as suggested
in Tang et al. (2023).

4When using Llama-2-7b-hf for TREC, we observe high standard deviation in the results (around 10), likely
due to the complexity of the task. GPT-4o mini reduces the standard deviation to around 5.

5Tang et al. (2023) demonstrate that in some applications, LLMs can generate relevant few-shot demonstra-
tions using only instructions and perform competitively with DP few-shot generation algorithm.
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Table 2: 4-shot ICL performance on the test set of downstream tasks with baselines. Results show the mean
and standard deviation of accuracy over 5 runs. Our private solution with various privacy levels ω = 1, 2, 4, 8
uses AdaDPSyn to generate DP synthetic few-shot demonstrations for ICL, in comparison with the DP few-
shot generation algorithm (Tang et al., 2023). ω = 0 represents a fully private solution. ω = ↔ serves as the
non-private baseline.

Dataset Method ω = 0 ω = 1 ω = 2 ω = 4 ω = 8 ω = ⇐

AGNews DP few-shot generation
61.387.10

60.743.09 62.641.82 62.701.30 63.181.26 65.921.13AdaDPSyn 65.421.08 65.520.81 65.841.03 65.921.02

DBPedia DP few-shot generation
63.923.07

64.681.42 64.781.29 64.921.99 65.262.12 69.061.40AdaDPSyn 66.761.45 67.481.54 67.121.09 67.701.68

TREC DP few-shot generation
59.402.62

62.489.38 65.285.67 66.125.46 66.525.57 72.322.76AdaDPSyn 69.327.19 69.804.57 71.482.93 72.082.24

MIT-G DP few-shot generation
13.626.51

31.154.04 34.005.13 35.853.63 36.105.52 43.237.00AdaDPSyn 37.595.40 37.414.36 37.854.25 38.315.03

MIT-D DP few-shot generation
52.299.43

72.873.48 73.111.86 74.602.29 75.183.74 79.331.48AdaDPSyn 73.352.13 74.412.55 75.081.30 75.281.93

for ω = ⇐: (i) DP few-shot generation algorithm operates without any added noise; (ii) 4-shot
demonstrations randomly selected from the private dataset. We present the best of two accuracies
between the two baselines. Specifically, (i) performs better for AGNews, TREC, and MIT-G, while
(ii) performs better for DBPedia and MIT-D, as detailed in Table 5.

It is noteworthy that, on the AGNews task, the fully private baseline ω = 0 outperforms baseline DP
few-shot generation with higher ω values. This aligns with findings from Tang et al. (2023) (Table
1 in Tang et al. (2023)6), which highlights that LLMs are capable of generating meaningful demon-
strations purely from instructions in some applications, performing well even without private data.
Meanwhile, AdaDPSyn outperforms the ω = 0 baseline at ω = 1, 2, 4, 8, showing the advantage of
our data-adaptive design.

5.1 MAIN RESULTS

We present our main results in Table 2. We provide the mean and standard deviation of the accuracy
on the test data with ICL over 5 runs with different random seeds. In general, our results demon-
strate that AdaDPSyn outperforms DP few-shot generation (Tang et al., 2023) across various privacy
settings, while also closely approximating the performance of the non-private baseline.

We observe that, compared with DP few-shot generation, AdaDPSyn provides gains at privacy levels
ω = 1, 2, 4, 8. For instance, in the AGNews news classification task at ω = 1, our method achieves
an accuracy of 65.42% compared to 60.74% under DP few-shot generation. In the DBPedia topic
classification, we reach 66.76%, surpassing the previous 64.68%. Moreover, in the information
extraction tasks, our performance improvements are also evident with MIT-G achieving 37.59%
over 31.15% at ω = 1. This highlights our method’s efficiency in adapting noise addition to the
degree of consensus among model outputs, improving accuracy for ICL.

Additionally, our method closely approaches the performance of the non-private baseline ω = ⇐
on several tasks. Specifically, for news classification AGNews with a strict privacy level as small as
ω = 1, our method achieves an accuracy of 65.42%, just slightly below the non-private baseline’s
accuracy of 65.92%. For topic classification DBPedia at ω = 1, we record an accuracy of 66.76%,
near the baseline’s 69.06%. In the question classification task TREC at ω = 1, our approach reaches
69.32%, closely following the baseline’s 72.32%.

We conduct a hyperparameter search for AdaDPSyn on ↼ and T̂ in Appendix C.4. We observe that
ICL accuracy remains stable across different ↼ and T̂ settings. For example, on AGNews, AdaDP-
Syn achieves accuracy between 64.28% and 65.92% for T̂ → {1, 2} and ↼ → {0.15, 0.2, 0.25},
compared to 63.18% for DP few-shot generation when ω = 8. This highlights the stability of Algo-
rithm 1. We provide the parameters used for our main results in Appendix C.5.

6In Tang et al. (2023), Table 1 shows that for AGNews using GPT-3 Babbage, the ω = 0 result outperforms
DP few-shot generation at ω = 1, 2.
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5.2 ABLATION STUDIES

Varying number of shots. Using the DBPedia dataset and setting ω = 4, we test the number of
shots for ICL with nshots = 1, 2, 4, 8. The results are presented in Table 3. ω = 4 (AdaDPSyn)
presents the performance of our private solution and ω = 4 (DP few-shot generation) is based on the
solution in Tang et al. (2023). We present two non-private performances: (i) DP few-shot generation
algorithm operates without any added noise; (ii) few-shot demonstrations randomly selected from
the private dataset.

We observe that AdaDPSyn consistently outperforms DP few-shot generation across all n-shot set-
tings. Additionally, increasing the number of shots can improve the performance of AdaDPSyn.
This suggests that AdaDPSyn can benefit from larger n-shot scenarios.
Table 3: ICL performance on the test set of the DBPedia dataset with various number of shots. ω = 4
(AdaDPSyn) uses AdaDPSyn to generate DP synthetic few-shot demonstrations for ICL. ω = 4 (DP few-shot
generation) is based on the solution in (Tang et al., 2023). ω = ↔ (Algorithm 2 with ε = 0) represents DP few-
shot generation algorithm operating without any added noise. ω = ↔ (rand) represents using demonstrations
randomly selected from private dataset. Results show the mean and standard deviation of accuracy over 5 runs.

nshots = 1 nshots = 2 nshots = 4 nshots = 8

ω = 4 (AdaDPSyn) 65.940.27 67.001.00 67.121.09 67.551.27
ω = 4 (DP few-shot generation) 64.441.55 65.061.98 64.921.99 66.321.57
ω = ⇐ (Algorithm 2 with φ = 0) 67.580.77 67.820.34 67.881.75 68.161.61
ω = ⇐ (rand) 69.022.21 69.382.66 69.061.40 69.681.29

Varying LLMs. We evaluate ICL performance across different LLMs and present the results in
Table 4. Specifically, we use the generated examples from Section 5.1 as demonstrations with GPT-
3.5 Turbo and GPT-4o mini, available through OpenAI’s service, for downstream ICL tasks. The
experiments are conducted on the DBPedia dataset.

We observe that AdaDPSyn consistently outperforms DP few-shot generation and performs compa-
rably to non-private baselines. Performance improves with both GPT-4o mini and GPT-3.5 Turbo
for all models, with GPT-4o mini showing the highest overall results. Our method remains open to
further improvements with more advanced LLMs.
Table 4: ICL performance on test set of DBPedia dataset with various LLMs. ω = 4 (AdaDPSyn) uses
AdaDPSyn to generate DP synthetic few-shot demonstrations for ICL. ω = 4 (DP few-shot generation) is based
on the solution in (Tang et al., 2023). ω = ↔ (Alg 2, ε = 0) represents DP few-shot generation algorithm
operating without any added noise. ω = ↔ (rand) represents using demonstrations randomly selected from
private dataset.

Model ω = 4 (DP few-shot generation) ω = 4 (AdaDPSyn) ω = ⇐ (Alg 2, φ = 0) ω = ⇐ (rand)
LLama-2-7B-hf 64.921.99 67.121.09 67.881.75 69.061.40
GPT-3.5 Turbo 89.940.85 91.921.46 92.161.19 93.260.45
GPT-4o mini 91.401.09 93.081.09 93.281.24 94.320.35

Performance against membership inference attacks (MIAs). Additionally, we conduct an empir-
ical privacy evaluation in Appendix C.6 using membership inference attacks (MIA) (Shokri et al.,
2017; Duan et al., 2023). Our results show that, in contrast to non-private ICL, which suffers from
significant membership privacy leakage, our AdaDPSyn algorithm effectively reduces the MIA suc-
cess rate to the level of random guessing.

6 CONCLUSION

In this work, we introduced the AdaDPSyn algorithm, a novel approach to ICL that incorporates
DP to safeguard sensitive data used in LLM prompts. By leveraging a data-adaptive noise addition
strategy through our Precision-Focused Iterative Radius Reduction technique, we effectively reduced
noise levels without compromising DP guarantees, thus maintaining higher accuracy for ICL. Our
empirical results demonstrate the superior performance of AdaDPSyn, which nearly matches the
non-private baseline’s performance on several benchmarks. One limitation of this work is the lack
of theoretical guarantees for utility, as it is difficult to find an appropriate closed-form expression of
ICL accuracy. We leave this exploration to future work.
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A DP ALGORITHMS

In this section, we list all the differentially private mechanisms that are used in Algorithm 1 and
provide their guarantees.

A.1 DP FEW-SHOT GENERATION

The DP few-shot generation algorithm (Tang et al., 2023) is detailed in Algorithm 2. The Next
Token Generation subroutine (Tang et al., 2023) is presented in Algorithm 3.

Algorithm 2 DP few-shot generation (Tang et al., 2023)
1: Input: Private dataset: Dpriv, label: ỹ, max number of tokens to generate: Tmax, a pre-trained

LLM: LLM(·), number of disjoint subsets of private data: M , number of data samples in each
subset: N , reduce vocab publicly with top-K, noise multiplier: φ.

2: Algorithm used: Algorithm 3 for generating next token probilities from LLM.
3: Initialize: Set x̃ ↘ [].
4: for t = 1 to Tmax do
5: p1priv, . . . , p

M
priv ↘ NextTokenGeneration (Dpriv, ỹ,LLM(·),M,N,K, x̃)

6: ppriv ↘ 1
M

(∑M
i=1 p

i
priv +N (0, 2φ2I)

)

7: w ↘ argmaxj↓S ppriv[j]
8: x̃ ↘ x̃+ [w]
9: end for

10: return x̃

Algorithm 3 Next Token Generation (Tang et al., 2023)

1: Input: Private dataset: Dpriv, label: ỹ, a pre-trained LLM: LLM(·), number of disjoint subsets
of private data: M , number of data samples in each subset: N , reduce vocab publicly with
top-K, generated tokens x̃.

2: D↑
priv ↘ randomly draw MN samples from Dpriv with label ỹ

3: p ↘ LLM(·|PB(instruction, ỹ, x̃)) where PB(·) is defined in Appendix C.11
4: for i = 1 to M do
5: D(i)

priv ↘ D↑
priv[(i≃ 1)N : iN ]

6: pipriv ↘ LLM(·|PB(instruction,D(i)
priv, ỹ, x̃))

7: S ↘ top-K indices of p
8: pipriv[V \ S] ↘ 0 and re-scale pipriv s.t.

∑
pipriv[S] = 1

9: end for
10: return p1priv, . . . , p

M
priv

A.2 GOODRADIUS

Nissim et al. (2016) propose the GoodRadius algorithm (Algorithm 4) and provide its DP analysis.
We adapt this with some modifications to provide an RDP guarantee. For readability, we include the
RDP analysis here.
Theorem 2 (Nissim et al. (2016)). GoodRadius (Algorithm 4) is (ϱ, ς0)-RDP.

Proof. From Nissim et al. (2016), the sensitivity of L defined in Line 3 of Algorithm 4 is 2. Then
in Line 4, we search for an r such that L(r) ⇒ t and L(r/2) < t while maintaining differential
privacy. This is achieved by using binary search with noisy estimates of L for the comparisons.
Specifically, we introduce a tolerance parameter ⇀, which determines the precision of the binary
search. The number of iterations for the binary search is at most ⇑log2

(↔
2

2ϖ

)
⇓. In each iteration,

we apply Gaussian mechanism to estimate L(r) and L(r/2), i.e., L̃(rmid) ↘ L(rmid) +N (0, 4φ2
0)

and L̃(rmid/2) ↘ L(rmid/2) + N (0, 4φ2
0). By setting φ0 ↘

√
ϱ⇑log2

(↔
2

2ϖ

)
⇓/ς0, we guarantee
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that each estimation satisfies (ϱ, ς0/2⇑log2
(↔

2
2ϖ

)
⇓)-RDP. By composition, the output r satisfies

(ϱ, ς0)-RDP.

Algorithm 4 GoodRadius (Nissim et al., 2016)

1: Input: Database P → (X d)n, desired ball volume t, noise multiplier φ0, tolerance ⇀. (We set
⇀ = 0.1 in our experiments.)

2: Notation: For a radius r ⇒ 0 and a point p → X d, let Br(p) denote the number of input points
contained in a ϖ2-ball of radius r around p. That is, Br(p) = {i : ⇔xi ≃ p⇔2 ↓ r}. Denote
B̄r(p) = min{Br(p), t}.

3: For r ⇒ 0, define L as L(r) = 1
t maxdistinct i1,...,it↓[n]

{
B̄r(xi1) + . . .+ B̄r(xit)

}

4: r ↘ DPBinarySearch(L, t,φ0, ⇀)
↽ Search for an r s.t. (i) L(r) ⇒ t, (ii) L(r/2) < t, (iii) satisfies (ϱ, ς0)-RDP

5: return r

Algorithm 5 DP Binary Search
1: Input: Function L, desired ball volume t, noise multiplier φ0, tolerance ⇀.
2: Initialize: rlow ↘ 0 and rhigh ↘

↔
2/2.

3: φ0 ↘
√

ϱ⇑log2
(↔

2
2ϖ

)
⇓/ς0

4: while rhigh ≃ rlow > ⇀ do
5: rmid ↘ (rlow + rhigh)/2
6: L̃(rmid) ↘ L(rmid) +N (0, 4φ2

0)
7: L̃(rmid/2) ↘ L(rmid/2) +N (0, 4φ2

0)
8: if L̃(rmid/2) ⇒ t then
9: rhigh ↘ rmid

10: else if L̃(rmid) ⇒ t then
11: rhigh ↘ rmid
12: else
13: rlow ↘ rmid
14: end if
15: end while
16: return (rlow + rhigh)/2

B PRIVACY ANALYSIS

In this section, we provide the privacy analysis for Algorithm 1.
Theorem 3 (Restatement of Theorem 1). Algorithm 1 is (ω, ε)-differentially private.

We introduce some concepts and relevant theorems from the literature required for our analysis
first. While (ω, ε)-DP is a useful definition of privacy, it does not allow us to tightly quantify the
privacy guarantees from the composition of multiple mechanisms. Instead, the notion of Rényi
Differential Privacy (RDP) (Mironov, 2017) provides a succinct way to monitor the privacy costs
from the composition of multiple mechanisms.
Definition 2 (Rényi Divergence (Mironov, 2017)). For two probability distributions P and Q de-
fined over R, the Rényi divergence of order ϱ > 1 is

Dϱ(P⇔Q) =
1

ϱ≃ 1
logEx≃Q

(
P (x)

Q(x)

)ϱ

.

Definition 3 (Rényi Differential Privacy (Mironov, 2017)). A randomized algorithm A is ς -Rényi
differentially private of order ϱ ((ϱ, ς)-RDP) if for any two neighboring inputs X and X ↑, which
differ in only a single record, we have

Dϱ(A (X ) ⇔A (X ↑)) ↓ ς.
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Theorem 4 (RDP Sequential Composition (Mironov, 2017)). If A1 and A2 are (ϱ, ς1)-RDP and

(ϱ, ς2)-RDP respectively then the mechanism combining the two g(A1(X ),A2(X )) is (ϱ, ς1 + ς2)-
RDP.

Theorem 5 (RDP to DP conversion (Balle et al., 2020)). If a mechanism M is (ϱ, ς)-RDP then it

is (ς + log((ϱ≃ 1)/ϱ)≃ (log ε + logϱ)/(ϱ≃ 1), ε)-DP for any 0 < ε < 1.

One of the most widely used mechanisms to guarantee RDP is the Gaussian mechanism.
Theorem 6 (Gaussian Mechanism). The Gaussian mechanism M : X ↖ Rm

of the form

M(x) = q(x) +N
(
0,

!2(q)2ϱIm
2ς

)

satisfies (ϱ, ς)-RDP, where !2(q) = maxx,x→⇔q(x)≃ q(x↑)⇔2 is the ϖ2-sensitivity of the query q.

We also need the following privacy amplification theorem by subsampling.
Theorem 7 (Amplification by subsampling (Wang et al., 2019)). Given a dataset of n points drawn

from a domain X and a mechanism M that takes an input from Xm
for m ↓ n, let the randomized

algorithm M ↙ subsample be defined as: i) subsample without replacement m datapoints of the

dataset (sampling parameter ⇁ = m/n ), and ii) apply M to the subsampled dataset. For all

integers ϱ ⇒ 2, if M obeys (ϱ, ς(ϱ))-RDP, then the subsampled mechanism M ↙ subsample obeys

(ϱ, ς ↑(ϱ)) RDP where,

ς ↑(ϱ) ↓ 1

ϱ≃ 1
log

(
1 + ⇁2

(
ϱ

2

)
min

{
4
(
eς(2) ≃ 1

)
,

eς(2) min

{
2,
(
eς(⇐) ≃ 1

)2
}}

+
ϱ

j=3

⇁j

(
ϱ

j

)
e(j↘1)ς(j) min

{
2,
(
eς(⇐) ≃ 1

)j
}

 .

We are ready to do the privacy analysis of our algorithm (Theorem 1).

Proof. Fix one iteration of the algorithm and let us bound the privacy loss. Our algorithm consists of
3 components: a DP algorithm GoodRadius (Line 5), DP projected mean estimation using Gaussian
DP Mechanism (Line 20) and DP radius coverage check using Gaussian DP Mechanism (Line 12).
The output of GoodRadius algorithm r on Line 5 satisfies (ϱ, ς0)-RDP by Theorem 2. Consider
projected mean estimation using Gaussian Mechanism. The projection operation in Line 19 ensures
that the ϖ2-sensitivity of the term

∑M
i=1 p̃

i
priv in Line 20 is at most 2R. As we are adding Gaussian

noise sampled from N (0, 4R2φ2
1I), we can ensure p̃priv in Line 20 satisfies (ϱ, ς1)-RDP by setting

φ1 =

ϱ/2ς1 (Theorem 6). For the radius coverage check using Gaussian Mechanism, in Line 11,

t counts the number of points of p1priv, . . . , p
M
priv covered in a ball with center p̃priv and radius r +

2εRϑ1

↔
K

M . The sensitivity of the term t is 1. Then in Line12 we add Gaussian noise sampled from
N (0,φ2

2I) to t. By setting φ2 =


ϱ/2ς2, we can show the radius coverage check satisfies (ϱ, ς2)-
RDP (Theorem 6). Our algorithm consists of one instance of (ϱ, ς0)-RDP algorithm GoodRadius
(Line 5), at most (T̂ + 1) instances of (ϱ, ς1)-RDP projected mean estimation using Gaussian DP
Mechanism (Line 8 and Line 20) and at most T̂ instances of (ϱ, ς2)-RDP radius coverage check
using Gaussian DP Mechanism (Line 12). We apply the composition property of RDP (Theorem 4)
to ensure each iteration of the algorithm is (ϱ, ς)-RDP, that is, we ensure that ς = ς0+(T̂ +1)ς1+
T̂ ς2.

Further, note that in each iteration, the Next Token Generation subroutine (Tang et al., 2023) involves
drawing MN samples from the dataset Dpriv, there is a privacy amplification by subsampling at each
iteration. We apply Theorem 7 to show that the effective privacy loss per iteration of our algorithm
is (ϱ, ς ↑)-RDP for the full dataset.

Finally, we compose privacy loss across all the Tmax iterations of our algorithm using composition
theorems (Theorem 4). We conclude that Algorithm 1 satisfies (ϱ, Tmaxς ↑)-RDP and convert the
privacy guarantee back into the standard DP definition (Theorem 5).
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We then provide intuition on how the privacy budget is allocated below.

The GoodRadius step initializes a reference radius for the projected ball. Since it is not the final
radius, this step can tolerate higher noise levels. Therefore, we typically set φ0 to a large value (e.g.,
10) to save privacy budget for the more sensitive projected mean estimation step.

The radius coverage check verifies whether a sufficient number of the original probability vectors
p1priv, . . . , p

M
priv lie within a small radius from p̃priv. This involves counting the number of covered

vectors, adding Gaussian noise with standard deviation φ2, and comparing the noisy count to the
total number of vectors M . When M is large, the relative impact of the noise added to the count
diminishes because the noise becomes negligible compared to M . Therefore, as M increases, we
can set φ2 to a larger value. For example, when M = 40, φ2 can be set to around 5 without
significant loss of accuracy.

In conclusion, our privacy budget allocation prioritizes the projected mean estimation step for high
accuracy, while allowing other steps to tolerate higher noise.

C EXPERIMENTAL SUPPLEMENTARY

C.1 EXPERIMENTS COMPUTE RESOURCES

The experiments use 4 NVIDIA RTX A5000 GPUs, each equipped with 24,564 MiB of memory.
Approximately 24 hours are required to reproduce the main results in Section 5.1.

C.2 DATASETS

In this section, we describe the datasets used in our experiments.

• AGNews. The AG News (AG’s News Corpus) dataset (Zhang et al., 2015) comprises news articles
categorized into four labels: World, Sports, Business, and Sci/Tech. It includes 30,000 training
samples and 1,900 test samples per class. For our experiments, we randomly select 1,000 samples
from the test set.

• DBPedia. The DBPedia ontology classification dataset (Zhang et al., 2015) includes contents
categorized into one of 14 topics: Company, School, Artist, Athlete, Politician, Transportation,
Building, Nature, Village, Animal, Plant, Album, Film, and Book. This dataset includes 40,000
training samples and 5,000 test samples for each class. For our experiments, we randomly select
49,999 samples from the training set and 1,000 samples from the test set.

• TREC. The Text REtrieval Conference (TREC) question classification dataset (Voorhees and Tice,
2000) contains questions categorized into one of 6 answer types: Number, Location, Person,
Description, Entity, and Abbreviation. The dataset includes 5,452 training samples and 500 test
samples, distributed non-uniformly across the categories.

• MIT Movies. MIT Movies trivia10k13 dataset (Liu et al., 2012) comprises movie reviews de-
signed for information extraction tasks, with specific slots for movie genre (MIT-G) and director
name (MIT-D). For training and testing, MIT-G includes 2,953 and 780 samples respectively,
while MIT-D contains 1,561 training samples and 415 test samples.

C.3 NON-PRIVATE BASELINES

In this section, we present the performance of non-private baselines for ω = ⇐ in Table 5: (i)
DP few-shot generation algorithm operates without any added noise; (ii) 4-shot demonstrations
randomly selected from the private dataset.

C.4 HYPERPARAMETER SEARCH

In this section, we conduct ablation studies on key hyperparameters in Algorithm 1. We present
results for datasets with varying ↼ and T̂ values in Table 6-Table 10. Specifically, we consider
T̂ → {1, 2} and ↼ → {0.15, 0.2, 0.25} and present ICL accuracy for all these hyperparameter choices.
We observe that ICL accuracy remains stable across the different hyperparameter settings. For

18



Published as a conference paper at ICLR 2025

Table 5: Performance of non-private baselines on test datasets. We report mean and standard de-
viation of accuracy over 5 runs with different random seeds. ω = ⇐ (Algorithm 2 with φ = 0)
column represents DP few-shot generation algorithm operating without any added noise. ω = ⇐
(rand) column represents using 4-shot demonstrations randomly selected from the private dataset.

Task ω = ⇐ (Algorithm 2 with φ = 0) ω = ⇐ (rand)
AGNews 65.921.13 65.282.65
DBPedia 67.881.75 69.061.40

TREC 72.322.76 53.123.72
MIT-G 43.237.00 42.086.35
MIT-D 78.363.33 79.331.48

example, on the AGNews dataset, AdaDPSyn achieves accuracy in the range of 64.28%–65.92%
for T̂ → {1, 2} and ↼ → {0.15, 0.2, 0.25}, compared to 63.18% for DP few-shot generation when
ω = 8. This is good in terms of the stability of Algorithm 1.

Table 6: ICL performance on the test dataset of AGNews across varying ↼ and T̂ values, showing
mean and standard deviation of accuracy over 5 runs with different random seeds. We set ω = 8,
φ0 = 10, φ2 = 3. For specific T̂ values, we set φ1 = 0.58 when T̂ = 1, and 0.72 when T̂ = 2.

↼ = 0.15 ↼ = 0.2 ↼ = 0.25

T̂ = 1 64.281.48 65.921.02 64.900.97
T̂ = 2 64.383.16 65.761.13 65.181.76

Table 7: ICL performance on the test dataset of DBPedia across varying ↼ and T̂ values, showing
mean and standard deviation of accuracy over 5 runs with different random seeds. We set ω = 8,
φ0 = 10, φ2 = 3. For specific T̂ values, we set φ1 = 0.73 when T̂ = 1, and 0.90 when T̂ = 2.

↼ = 0.15 ↼ = 0.2 ↼ = 0.25

T̂ = 1 66.142.91 67.701.68 66.901.25
T̂ = 2 66.023.22 66.302.09 65.283.13

Table 8: ICL performance on the test dataset of TREC across varying ↼ and T̂ values, showing mean
and standard deviation of accuracy over 5 runs with different random seeds. We set ω = 8, φ2 = 5.
For specific T̂ values, we set φ0 = 10 and φ1 = 0.89 when T̂ = 1, and φ0 = 15 and φ1 = 1.09
when T̂ = 2.

↼ = 0.15 ↼ = 0.2 ↼ = 0.25

T̂ = 1 70.082.53 70.282.63 70.523.62
T̂ = 2 71.242.96 72.082.24 71.084.31

Table 9: ICL performance on the test dataset of MIT-G across varying ↼ and T̂ values, showing
mean and standard deviation of accuracy over 5 runs with different random seeds. We set ω = 8,
φ0 = 10, φ2 = 5. For specific T̂ values, we set φ1 = 0.73 when T̂ = 1, and 0.90 when T̂ = 2.

↼ = 0.15 ↼ = 0.2 ↼ = 0.25

T̂ = 1 37.103.48 36.337.28 36.515.03
T̂ = 2 36.953.90 38.315.03 37.565.47

We also perform ablation studies on φ0 and φ2. To evaluate their impact, we conduct experiments
on the MIT-G dataset with ω = 8, varying φ0 → {10, 15, 20} and φ2 → {3, 4, 5}. The results are
presented in Table 11.
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Table 10: ICL performance on the test dataset of MIT-D across varying ↼ and T̂ values, showing
mean and standard deviation of accuracy over 5 runs with different random seeds. We set ω = 8,
φ0 = 15, φ2 = 5. For specific T̂ values, we set φ1 = 0.83 when T̂ = 1, and 1.03 when T̂ = 2.

↼ = 0.15 ↼ = 0.2 ↼ = 0.25

T̂ = 1 75.281.93 74.942.88 73.302.47
T̂ = 2 74.312.32 74.171.47 73.112.04

We observe that ICL accuracy remains stable across different φ0 and φ2, ranging from 37.08%
to 38.41%, showing an improvement over the 36.10% achieved by DP few-shot generation. This
stability arises because, despite varying φ0 and φ2, the resulting change in φ1 (noise multiplier of
projected mean estimation) is very small (0.90–0.92).

Table 11: ICL performance on the test dataset of MIT-G across varying φ0 and φ2 values, showing
mean and standard deviation of accuracy over 5 runs with different random seeds. We set ω = 8,
T̂ = 2, ↼ = 0.2.

φ0 = 10 φ0 = 15 φ0 = 20
φ2 = 3 37.083.92 37.874.92 38.264.55
φ2 = 4 37.153.85 38.284.30 38.414.71
φ2 = 5 38.315.03 37.564.62 38.184.72

C.5 HYPERPARAMETERS

To ensure a fair comparison, we follow the guidance from Tang et al. (2023) to select parameters for
the DP few-shot generation algorithm. Specifically, K is held constant at 100, and a grid search is
performed to determine the optimal values for M and N (N → {1, 2, 4}, MN → {20, 40, 80}). We
also use the same values of Tmax as in Tang et al. (2023) for each task. Hyperparameters for the DP
few-shot generation algorithm presented in Table 1 are provided in Table 12. We then use the same
values of M , N , Tmax and K for our AdaDPSyn without any additional hyperparameter tuning.

Hyperparameters and privacy parameters for the results presented in Table 2 are provided in Ta-
ble 13-Table 17.

Table 12: Hyperparameters for DP few-shot generation (Tang et al., 2023) presented in Table 1 and
Table 2. We choose nshot = 4 and K = 100 for all tasks.

Task M N Tmax DP
AGNews 10 2 100 Gaussian
DBPedia 10 2 100 Gaussian

TREC 20 2 15 Gaussian
MIT-G 40 1 20 Gaussian
MIT-D 40 1 20 Gaussian

Table 13: Hyperparameters and privacy parameters for the main results of AGNews task presented
in Table 2. We choose M = 10, N = 2, Tmax = 100, nshot = 4 and K = 100.

T̂ ↼ φ0 φ2 φ1

ω = 1 1 0.1 10 3 1.23
ω = 2 1 0.15 10 3 0.92
ω = 4 1 0.2 10 3 0.71
ω = 8 1 0.2 10 3 0.58
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Table 14: Hyperparameters and privacy parameters for the main results of DBPedia task presented
in Table 2. We choose M = 10, N = 2, Tmax = 100, nshot = 4 and K = 100.

T̂ ↼ φ0 φ2 φ1

ω = 1 1 0.1 10 3 1.54
ω = 2 1 0.1 10 3 1.14
ω = 4 1 0.2 10 3 0.89
ω = 8 1 0.2 10 3 0.73

Table 15: Hyperparameters and privacy parameters for the main results of TREC task presented in
Table 2. We choose M = 20, N = 2, Tmax = 15, nshot = 4 and K = 100.

T̂ ↼ φ0 φ2 φ1

ω = 1 1 0.1 17.5 6 2.52
ω = 2 1 0.2 15 5 1.95
ω = 4 1 0.15 10 5 1.15
ω = 8 2 0.25 15 5 1.09

Table 16: Hyperparameters and privacy parameters for the main results of MIT-G task presented in
Table 2. We choose M = 40, N = 1, Tmax = 20, nshot = 4 and K = 100.

T̂ ↼ φ0 φ2 φ1

ω = 1 1 0.3 15 6 1.59
ω = 2 1 0.35 10 6 1.17
ω = 4 2 0.25 10 6 1.12
ω = 8 2 0.2 10 5 0.90

Table 17: Hyperparameters and privacy parameters for the main results of MIT-D task presented in
Table 2. We choose M = 40, N = 1, Tmax = 20, nshot = 4 and K = 100.

T̂ ↼ φ0 φ2 φ1

ω = 1 1 0.15 17.5 6 2.57
ω = 2 1 0.15 17.5 6 1.49
ω = 4 1 0.3 15 6 1.07
ω = 8 1 0.15 15 5 0.83

C.6 EMPIRICAL PRIVACY EVALUATION BY MEMBERSHIP INFERENCE ATTACK

While DP guarantee inherently provides a theoretical guarantee against privacy leakage, it is also
important to assess empirical privacy risks. In this section, we evaluate the empirical privacy of
AdaDPSyn against membership inference attack (MIA) (Shokri et al., 2017).

We follow the prior work (Duan et al., 2023), where the authors instantiate a membership inference
attack (MIA) in the ICL framework. The goal is to determine whether a given private example
was used within the prompt. Following Duan et al. (2023), we consider 1-shot ICL. We use the
DBPedia dataset and apply the MIA for our AdaDPSyn algorithm. Specifically, we split the dataset
into two parts for member and non-member samples. We use member samples to generate 1-shot
synthetic demonstration with AdaDPSyn, repeated over 5 trials. Then we attempt MIA for the
samples from members and non-members during ICL. For each synthetic demonstration, we run 20
trials for MIA and average across the 100 trials to calculate the AUC. Following Duan et al. (2023),
we also consider a non-private baseline ω = ⇐ of using actual samples from the private dataset in
the prompt. For this baseline, we also average across 100 trials for AUC. The results are presented
in Table 18.

We observe that using actual samples from the private dataset leads to successful MIA results (77.37
in the ω = ⇐ case). AdaDPSyn reduces MIA AUC to almost random guesses, showing the effec-
tiveness of our method against MIAs.
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Table 18: Empirical privacy evaluation for 1-shot ICL by MIA on DBPedia dataset.

ω ω = 1 ω = 2 ω = 4 ω = 8 ω = ⇐
MIA AUC 50.52 51.58 51.05 52.63 77.37

C.7 INSTRUCTION-TUNED LLAMA-2-7B RESULTS

In this section, we perform experiments on the instruction fine-tuned Llama-2-7b model. We present
the results on DBPedia with ω = 4 using the Llama-2-7b-chat model in Table 19.

We observe that AdaDPSyn outperforms DP few-shot generation and performs close to non-private
baselines on the instruction fine-tuned Llama-2-7B-chat model. Additionally, Llama-2-7B-chat
achieves better overall performance compared to Llama-2-7B, showing the benefits of instruction
fine-tuning.

Table 19: ICL performance on DBPedia with ω = 4 using Llama-2-7b-chat and Llama-2-7b.

Model ω = 4 (DP few-shot generation) ω = 4 (AdaDPSyn) ω = ⇐ (Alg 2, φ = 0) ω = ⇐ (rand)
LLama-2-7B 64.92 67.12 67.88 69.06

LLama-2-7B-chat 74.22 75.14 75.70 76.90

C.8 VARYING LLMS OF SIMILAR SCALE

We perform experiments to compare Llama-2-7b and Gemma-7b on DBPedia with ω = 4. The
results are presented in Table 20.

We observe that AdaDPSyn outperforms DP few-shot generation and performs close to non-private
baselines on both models. Additionally, Gemma-7B achieves better overall performance compared
to Llama-2-7B.

Table 20: ICL performance on DBPedia with ω = 4 using Llama-2-7b and Gemma-7b.

Model ω = 4 (DP few-shot generation) ω = 4 (AdaDPSyn) ω = ⇐ (Alg 2, φ = 0) ω = ⇐ (rand)
LLama-2-7B 64.92 67.12 67.88 69.06
Gemma-7B 73.54 77.14 77.36 80.64

C.9 VARYING MODEL SIZE

We conduct experiments comparing Llama-2-7b and Llama-2-13b on DBPedia with ω = 4. The
results are presented in Table 21. We observe that Llama-2-13B shows better overall performance
compared to Llama-2-7B, reflecting the advantages of increased model size.

Table 21: ICL performance on DBPedia with ω = 4 using Llama-2-7b and Llama-2-13b.

Model ω = 4 (DP few-shot generation) ω = 4 (AdaDPSyn) ω = ⇐ (Alg 2, φ = 0) ω = ⇐ (rand)
LLama-2-7B 64.92 67.12 67.88 69.06
Llama-2-13B 68.24 69.78 70.46 70.60

C.10 TIME COST ANALYSIS

In this section, we present the time cost for generating one DP synthetic ICL sample with ω = 4 in
Table 22.

We observe that the time cost of AdaDPSyn is very close to that of DP few-shot generation. Al-
though AdaDPSyn includes additional steps that contribute to improved ICL accuracy, they do not
introduce significant computational overhead.
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Table 22: Time cost evaluation for generating one DP synthetic ICL sample with ω = 4.

Method (seconds) AGNews DBPedia TREC MIT-G MIT-D
AdaDPSyn 173.2608 182.9686 43.9833 116.7168 117.1299

DP few-shot generation 173.2583 182.9660 43.9735 116.6792 117.0923

C.11 PROMPT FORMATS

In this section, we present prompt formats during ICL and the prompt construction functions PB(·)
for Next Token Generation (Algorithm 3). While we use the same prompt format during ICL fol-
lowing Tang et al. (2023), we present them here in Table 23 and Table 24 for the convenience of the
reader. We also present the prompt construction functions PB(·) used in Next Token Generation
(Algorithm 3) in Table 25 and Table 26.

Table 23: The prompts used during ICL for text classification tasks, taken from Table 7 of Tang et al.
(2023).

Task Prompt Labels

AGNews

Classify the news articles into the categories of World, Sports, Busi-
ness, and Technology.

Article: USATODAY.com - Retail sales bounced back a bit in
July, and new claims for jobless benefits fell last week, the government
said Thursday, indicating the economy is improving from a midsummer
slump.
Answer: Business

Article: New hard-drive based devices feature color screens, sup-
port for WMP 10.
Answer:

World, Sports, Business, Technol-
ogy

DBPedia

Classify the documents based on whether they are about a Company,
School, Artist, Athlete, Politician, Transportation, Building, Nature,
Village, Animal, Plant, Album, Film, or Book.

Article: Geoffrey D. Falksen (born July 31 1982) is an American
steampunk writer.
Answer: Artist

Article: The Perrin River is a 1.3-mile-long (2.1 km) tidal river
in the U.S. state of Virginia. It is a small inlet on the north shore of the
York River near that river’s mouth at Chesapeake Bay.
Answer:

Company, School, Artist, Athlete,
Politician, Transportation, Build-
ing, Nature, Village, Animal, Plant,
Album, Film, Book

TREC

Classify the questions based on whether their answer type is a Number,
Location, Person, Description, Entity, or Abbreviation.

Question: How did serfdom develop in and then leave Russia?
Answer Type: Description

Question: When was Ozzy Osbourne born?
Answer Type:

Number, Location, Person, De-
scription, Entity, Abbreviation

C.12 DEMONSTRATIONS

In this section, we present generated samples using AdaDPSyn at ω = 4 for the DBPedia dataset,
as shown in Table 27. These results are compared to those obtained using DP few-shot generation,
displayed in Table 28. Both methods use the LLama-2-7B-hf model.

We observe that samples generated by AdaDPSyn show good coherence and clarity. For example,
the first sample in Table 27, which describes ”John P. Haley,” offers a well-structured biography that
provides relevant details about his political background. Although there are some factual inaccura-
cies, these errors do not affect the sample’s ability to perform well in the classification task. The
generated text includes sufficient context and key information to ensure correct classification while
maintaining the required privacy guarantees. In contrast, DP few-shot generation shows a clear drop
in fluency and coherence. For example, the second sample in Table 28 contains fragmented sen-
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Table 24: The prompts used during ICL for information extraction tasks, taken from Table 8 of Tang
et al. (2023).

Task Prompt

MIT-G

Sentence: last to a famous series of animated movies about a big green ogre and his donkey and cat friends
Genre: animated

Sentence: what is a great comedy featuring the talents of steve carell as a loser looking for a friend
Genre:

MIT-D

Sentence: in 2005 director christopher nolan rebooted a legendary dc comics superhero with a darker
grittier edge in which movie
Director: christopher nolan

Sentence: what 1967 mike nichols film features dustin hoffman in romantic interludes with anne
bancroft as mrs robinson
Director:

Table 25: Prompt construction function PB(instruction,D, y) used in Algorithm 3 for text classifi-
cation tasks, taken from Table 5 of Tang et al. (2023).

Task Prompt construction function PB(instruction,D, y) Labels

AGNews

Given a label of news type, generate the chosen type of news accord-
ingly.

News Type: World
Text: Australia boosts anti-terror measures at small airports SYDNEY:
The Australian government announced a major security upgrade for
nearly ...

News Type: World
Text:

World, Sports, Business, Technol-
ogy

DBPedia

Given a label of document type, generate the chosen type of document
accordingly.

Document Type: Company
Text: Cherry Lane Music was founded in 1960 by Milton Okun in the
apartment above the Cherry Lane Theater in Greenwich Village of New
York City...

Document Type: Company
Text:

Company, School, Artist, Athlete,
Politician, Transportation, Build-
ing, Nature, Village, Animal, Plant,
Album, Film, Book

TREC

Given a label of answer type, generate a question based on the given
answer type accordingly.

Answer Type: Number
Text: How many people in the world speak French?

Answer Type: Number
Text:

Number, Location, Person, De-
scription, Entity, Abbreviation

tences and disjointed phrases, making it difficult to follow. These results show the effectiveness of
our adaptive method, which maintains strong privacy guarantees while producing more coherent and
usable text compared to DP few-shot generation.

C.13 COMPARISON OF DP AND REAL SAMPLES

In this section, we compare the DP samples generated by AdaDPSyn with the real private samples.
We use the MIT-G dataset for this analysis because this task shows a relatively large performance
gap between private and non-private methods. We present the private samples in Table 29, and the
DP samples generated using AdaDPSyn with ω = 1, 2, 4, 8 in Table 30.

In the original private samples, the labels (movie genres) are explicitly included in the text, as the
task is to extract the genre from the text. Similarly, in the DP samples generated by AdaDPSyn (ω =
1, 2, 4, 8), the labels are included most of the time, highlighted in blue in Table 30. Occasionally,
the generated samples use related words instead of the exact label (e.g., “boxer” instead of “boxing”
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Table 26: Prompt construction function PB(instruction,D, y) used in Algorithm 3 for information
extraction tasks, taken from Table 6 of Tang et al. (2023).

Task Prompt construction function PB(instruction,D, y)

MIT-G

Given a genre for the film, generate a description accordingly and make sure to include the given genre in
the description.

Genre: holiday
Sentence: what is the name of this perennial holiday favorite featuring an elderly miser learning the error
of his ways thanks to three ghostly visitations

Genre: action
Sentence:

MIT-D

Given a director for the film, generate a description accordingly and make sure to include the given director
in the description.

Director: pixar
Sentence: what pixar animated film features a talking dog named dug

Director: disney
Sentence:

or “basketball” instead of “sports”), highlighted in red in Table 30. Despite these substitutions, the
DP samples maintain semantic relevance to the task. However, compared to the private samples, the
DP samples are more general and less detailed, sometimes introducing noise or repetition. These
differences reflect the trade-offs for ensuring DP. With different ω values (ω = 1, 2, 4, 8), we do not
observe significant differences in the quality of the DP samples. This aligns with our experimental
results, where the ICL accuracy shows only small differences across ω = 1, 2, 4, 8 (between 37.41%
and 38.31%).

We also conduct experiments with smaller ω (0.2, 0.3, 0.5) on the MIT-G dataset. The DP sam-
ples generated using AdaDPSyn with these ω values are included in Table 30, and we present the
performance results in Table 31.

For ω = 1, 2, 4, 8, the ICL performance shows only small differences (between 37.41% and 38.31%).
However, when ω decreases to 0.5, ICL accuracy drops to 30.56%, and further decreases to 23.75%
for ω = 0.3. At ω = 0.2, the ICL accuracy is 13.77%, which is nearly identical to the fully private
baseline (ω = 0).

In Table 30, we observe that, for ω = 1, 2, 4, 8, the DP samples maintain similar quality, with labels
(movie genres) included in the text most of the time. At ω = 0.5, quality decreases with occasional
noise, and labels are included less frequently. At ω = 0.3, labels are only occasionally included, and
at ω = 0.2, labels are entirely absent, with the samples containing more noise.
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Table 27: Examples of generated samples using AdaDPSyn at ω = 4 for DBPedia.

Demonstration Label
John P. Haley (born July 23, 1946) is an American politician and attorney who served as a Democratic
member of the U.S. House of Representatives from 1997 to 2003 representing the 4th District of Virginia.
He was a candidate for Governor of Virginia in 2005. He was a candidate for the Democratic nomination
for the U.S. Senate in 2006.

Politician

The 1899-1900 YMCA Building is a historic building located at 121 South Main Street in downtown
Louisville Kentucky. It was built in 1899-1900 and is a three-story brick building with a mansard roof.
It is an example of the Richardsonian Romanesque style. It was designed by Louisville architect Henry
Whitestone. The building was added to the National Register of Historic

Building

The genus Echium includes about 60 species of flowering plants in the family Boraginaceae. The genus is
native to the Mediterranean region, Macaronesia, and Africa. Echium species are annual or perennial herbs
or shrubs, some of which are cultivated as ornamental plants. They are characterized by showy flowers with
a prominent, tubular corolla and two-lipped labellum. The fruit is a dry caps

Plant

Lena Malkus (born 1985) is a Finnish female professional golfer. She plays on the Ladies European Tour.
She was the Finnish national champion in 2007. She won the 2009 Finnish Ladies Masters. She won the
2010 Finnish Ladies Masters. She won the 2011 Finnish Ladies Masters. She won the 2012 Finnish Ladies
Masters

Athlete

John Adams (October 30, 1735 – July 4, 1826) was an American statesman and Founding Father who
served as the first Vice President (1789–1797) and second President of the United States (1797–1801). He
was a leader of American independence in 1776, and served as the first American minister to the new nation
of France from 1

Politician

The house was designed by architect Frank Lloyd Wright and built in 1952 for Edgar J. and Liliane Kauf-
mann in the community of Mill Run Pennsylvania. The home, which sits on the side of a hill overlooking
Bear Run in the Laurel Highlands region of southwestern Pennsylvania, is made of reinforced concrete and
features a 150-foot (46 m) long cantilevered section, which was the longest cantilever of

Building

Vegetable oils are triglycerides extracted from plants. a broad term for fats and oils, including sesame oil,
coconut oil, palm oil, and soybean oil. They are liquid at room temperature, and, unlike animal fats, they
do not solidify in the refrigerator. Vegetable oils are liquids at room temperature, and, unlike animal fats,
they do not solidify in the refrigerator

Plant

John McVeigh (born 3 March 1990) is an Australian cricketer. A right-handed batsman and occasional
right-arm medium fast bowler, he plays for New South Wales in the Sheffield Shield. He made his debut in
first-class cricket for New South Wales against South Australia at the Sydney Cricket Ground on 3 January
2012. McVeigh was part of the New South

Athlete

John Adam Smith (born 1952) is a Canadian politician who was the 17th Premier of Prince Edward Island
from 1993 to 1996. He was a member of the Legislative Assembly of Prince Edward Island from 1986 to
1996. He was a member of the Liberal Party of Prince Edward Island. He was a member of the Legislative
Assembly of Prince Edward Island from 1986 to

Politician

The home of the modern... city the fastest growing city in the United States It is the single largest cultural
and entertainment center in the Chicago metropolitan area. While the city has few topographic features
like hills or rivers some of its outlying communities do have local landmarks. The city is laid out in a grid
pattern with wide Chicago Avenue as the geographic center. The Chicago River runs through the city past
the Chicago Merchandise Mart and the Chicago Board of Trade This river is

Building

6 plants with blue flowers bloom from June to October. Flowers are<br>small.<br>Some other species
are in a flower market on <time>today< /time>.<br>I can take any bus. I don’t think a tour. My sister
goes to the tour of the flower market by bike. She’s back soon. She bought three plants to my family. I hope
her tour is going well. They were beautiful. The blue petals

Plant

[[ ”David Whitten” | David Whitten]] (born 2 months ago) is a record-breaking South African sportsperson.
He is the three-time Formula One World Champion, and the first European to win the European Tour. He is
also the first motorcycle racer to win the Suzuki Australian Superbike Championship. He is the sportsperson
with the most Grand Slam titles, and the first to win the Race of Champions. He is

Athlete
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Table 28: Examples of generated samples using DP few-shot generation at ω = 4 for DBPedia.

Demonstration Label
’Nic’l Kozloff, born March 12, 1975 in San Francisco, California, holds political views generally in ac-
cordance with his political ideological affiliatin with the Democratic Party.. Kozloff attended high school
at San Francisco University High School. After attending University of California, Berkeley he earned a
bachelor’s degree in history from Stanford with a concentration in political science. The 28yr -old is the
current

Politician

The foundation [imgref tag2 doc], pausing through these great lengths of limestone led more men to gather
still! Upon the structure like leakers floord celephaiden stepped between four. Many words it means i d
been taken not and some a place inside when only is was something strange within she kept there or only
into many time his would fall would reach those upon at you what as him back will help your at their no
how may with just did upon which where out these

Building

[Name of a plant] is tall with a trunk diameter of up to 30 inches, a canopy diameter of up to 50 feet. The
plant grows up to 20 m (66 ft) and is a perennial, deciduous plant. It grows well in a range of climates from
the temperate zones in eastern and western North America. It can tolerate drought. The tree can live 300
years. It grows

Plant

Olympic compettessor are : Milt Stahmetze the topmost score were was - DUHSHA the Olympics score on
him , i and even all , other men for was + is me score will like one at each he my other as two have no do
can what it ACT on have ever, two time been him when first last with has what three year no how then you
, this they I i this . were + but she - their other can how time a

Athlete

6 politcian found (6. The text for your candidate(economiser and conserv) could 4) in that. So vote and
economical! If this article. But i <0xE2> like them as good in parliament too so do what yi have (you
could get better one(and then he. Is so many candidates you might also try other type, which are as politica
in <span: The only two candidate with name politci <8, <x6C

Politician

Buildings make up the most amount of energy use in buildings and account for more than 40% of energy
used for commercial, public and institutional uses, and nearly 12% are used to power the homes in which
we live. Buildings also contribute 30 to 40% of greenhouse gas emissions and consume a lot of materials
such as concrete, steel, plastic, aluminum, wood, and copper. Buildings use energy and materials,

Building

Lumo, Lumo is an adherent plant with thin stems, oval leaves and yellow flowers. As the leaves turn red
they are eaten by squirrels, and this stimulates the plant to produce flowers. Lumo is an endemic of South
and North-Eastern Kenya. Lumo is used to treat stomach ulcers in Kenya. The flowers are eaten to reduce
blood pressure. It is also used to so

Plant

7. The Olympics take up one entire page for one individual (and maybe several people together.) For that
event we get more people from our audience’. They don&r’ts; come. This would lead more visitors coming
over time which makes money (proft for a magazine.). But what will also work with your document and
you could see what I wrote on the next section to learn to see and feel like they could help people, to find
your information for that one particular subject of

Athlete

Internal (Ind vsOuti . . . .. and evopt): For public speaker whose presentation need it by [<fruit flavid =
indemonde..r1 <foontime aet4 tusal ] then try .. dts are useful things especially things were fntions gop on
at its location bocre than (co/ceofonon rtrttirit...’teefft’) by public oers can know <info


2

Politician

House [the ] Linden Farm Maitree in Vicks Fakauala Kibila Township; where land records keep register
or give documentation cert with witness according at Police’2[...snidifoo bend](-Kotwela): Mr Prilminary
officer by OD at ISA G1& TPS Mr Sauman Saulu APC : Deputial Suphanahanepoa from his P1 or original
I can witness(this man with p

Building

One has given ten the key whereinto these caster [chaps may eat any three food any nine parts must hold].
Also be noted down into nin or for eleven will return not twenty may turn fifteen when 8 not go more any
any into turn go twelve this up some back many so thrite if I said more as into but or< a in which have at
you must eat 0 I shall it with seven from down with at be < i eat [have into

Plant

C-sharp expert Tuan Lee brings professional perspective to Azure architecture. Mr. Lee had originally
only viewed using PaaS as a place to rent/ buy Windows , server administration ... read more or manage
Linux Web developers prefer web to have, server expert may instead for having something (if don’t server
available; do or as their for data are managing some files more use databases will them they think not all
documents server more... For can access control manage only then should people these

Athlete
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Table 29: Real private samples from MIT-G.

Real Private Sample: Text (Label)
what 2011 dennis dugan romantic comedy starred adam sandler jennifer aniston nicole kidman and brooklyn decker (romantic
comedy)
name the 1993 epic movie starring liam neeson as a german businessman that saved over a thousand polish jewish refugees
during the holocost (epic)
what is the classic boxing film that starred and was written by superstar sylvester stallone (boxing)
what 2001 fantasy film based on a novel by j r r tolkien tells the story frodo baggins (fantasy film)
name the disney live action film based upon a classic mickey cartoon where mickey becomes a magician (live action)
in 2011 what raunchy comedy was released with four friends attempting to have a bachelor party in thailand where nothing seems
to go right i m thinking of a movie where star character stu ed helms wakes up with a tattoo on his face made popular by mike
tyson (raunchy comedy)
what 1998 steven spielberg war film starred tom hanks matt damon edward burns and tom sizemore (war)
what is the animated family movie about a man who has to look after three orphaned girls (animated family)
name the sports movie about a high school basketball team that starred gene hackman as the coach (sports)
in which animated movie did steve carell play a thief who is trying to steal the moon (animated)
what 1956 science fiction film concerns aliens in a small california town who inhabit citizens bodies (science fiction)
what 2007 biopic is about the story of jean dominique bauby and his trouble with locked in syndrome (biopic)
in a decrepit south american village men are hired to transport an urgent nitroglycerine shipment without the equipment that
would make it safe is the plot of this 1953 action thriller (action thriller)
young traveler allan gray discovers evidence of the supernatural in this black and white 1932 horror film (horror)
this computer animated film stars johnny depp as a timid chameleon who finds courage in the desert (computer animated)
what was the name of the cg movie with johnny depp as a lizard in the desert (cg)
name the 1990 american romantic fantasy film starring patrick swayze demi moore tony goldwyn and whoopi goldberg (american
romantic fantasy)
what 2002 brazilian movie had a television show spin off called city of men in 2003 (brazilian)
do you know the name of the comedy film starring an actor named michael that s based off of a video game (comedy)
what is the 1989 comedy drama crime film starring tom hanks and beasley the dog (comedy drama crime)
a classic childrens tale of a bear who enjoys his honey and his animal friends (childrens)
superhero movie where team of superheros get together to defeat threats too big for just one hero (superhero movie)
what is the superhero movie about a powerful but arrogant warrior who is cast out of asgard (superhero)
tim burton used stop motion animation to tell the story of jack skellington in what 1993 disney movie (stop motion animation)
what s the animated film made up of several stories which are set to classical music (animated)
this movie musical features two rival gangs the sharks and the jets and lots of prancing and snapping and wailing for maria
(musical)
what is the 1992 american horror film starring tony todd as the titular character who has a hook for a hand (american horror)
this one of the first classic horror movies thats been remade multiple times about zombies (classic horror)
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Table 30: Generated DP samples using AdaDPSyn on MIT-G.

ω DP Sample: Text (Label)

ω = 0.2

For Mary Baratani—smart, snay beautiful Miamity born who lost six sizes (romantic comedy)
Sentence after my changes.”Here some time...more >,”</bold)>in London ”before (epic)
Vancouver Wow<0xE5>feild! For long now Tito Tararanilla may give (boxing)
<0xED>He picked up rocks (but failed [intonation key! R8)) &1 (live action)
When Harry becomes Dr. Audi McAr’s room guest but isn’t expected again (raunchy comedy)
With bombs clancing wildly an man a a few fell foming . man cming together (war)
(for that in its purpose from something makes necessary have such ability will like must (an inter, (alien film)
<0xEB> Anything where she wins ... has better movie written . One fine episode & everyone clapend (animated family)
(Example above replaced bengaleafcricket match nether on hrs: match win/ (sports)
... he started exploring areas forbidden throughout each human group except there ended up being definitely less area (animated)

ω = 0.3

For Mary, the path to true love romantic comedy took a weird turn when she unw (romantic comedy)
199BCE, the Persian Empire attack the Greek city-states. Epic cinemat (epic)
1976 sports drama film boxing, directed by Tariq Nashe (boxing)
199... movies called Rocky because rocky is a boxer and uh they (live action)
90s raunchy comedy remake of the 1980s classic comedic (raunchy comedy)
1917 is a war film film filled with action and also intrigue. WW1 (war)
1996 teen disaster film is about a group of teenagers who are dealing (alien film)
<0xEB>is a 201 in the direction of Lanipekun, according to the (animated family)
(Example) in the 1990s, the man who trained the wrestler ” (sports)
... he started to find its way into the pivotal role of the bromantic comedy. (animated)

ω = 0.5

2006 romantic comedy about a single boy meeting a girl while they are both visiting (romantic comedy)
2006 epic movie about a legendary samurai’s fight against Lord K (epic)
2010 is a biographical drama film about the life of boxer james j. (boxing)
200<strong>0</strong> and 2001 a space odys (fantasy film)
201 Action and Adventure Films Sentence 4 (live action)
2011s Crazy, Stupid, Love is a raunchy comedy which (raunchy comedy)
1998 war film Trenchcoat 22037 is not your average (war)
201 mins. 201x201x201x2 (animated family)
2014 sports movie with shia labeouf and an old-school baseball style (sports)
2014 animated film about a cute girl trying to escape a mysterious castle while the (animated)

ω = 1

2004 romantic comedy about a woman who loses her job and goes to a resort (romantic comedy)
1959 epic film about the battle of waterloo starring charlton h (epic)
2006 boxing film starring 2006 boxing film starring (boxing)
2017 fantasy film about a young boy who discovers a magical world in his (fantasy film)
1990s live action film about a young boy who wants to be a firefigh (live action)
2011 raunchy comedy about a man who wakes up with a hangover and (raunchy comedy)
1998 war film directed by and starring Clint Eastwood. The film is based (war)
1998 animated family film about a young boy who finds a magical board game that trans (animated family)
1994 sports movie about a football player who loses his eye in a car accident and (sports)
1998 animated film about a boy who dreams of becoming a rock star and the road (animated)

ω = 2

2004 romantic comedy starring jennifer aniston and adam sandler (romantic comedy)
1959 epic film about the battle of waterloo starring charlton h (epic)
2005 film about a boxer who is the son of a boxer who was killed (boxing)
2017 fantasy film about a young boy who is transported to a magical world (fantasy film)
1990s live action film about a young boy who is taken to a magical land (live action)
2011 raunchy comedy about a man who wakes up in a hotel room with (raunchy comedy)
1998 war film directed by and starring Clint Eastwood. The film is based (war)
2016 animated family film about a young boy who wants to be a hero and his journey (animated family)
2014 film about a high school basketball team in the 1950s that (sports)
2010 animated film about a boy who gets a magic crayon that can draw anything (animated)

ω = 4

2005 romantic comedy starring jennifer aniston and vince vaug (romantic comedy)
1999 epic film about a young boy who is the son of a king and is (epic)
1976 film about a boxer who is trying to make it to the top of the (boxing)
2017 fantasy film directed by 2017 fantasy film directed by (fantasy film)
1999 live action film about a young boy who is transported to a magical world (live action)
2011 raunchy comedy about a man who is trying to get his life back on (raunchy comedy)
1942 war film directed by howard hawks and starring humphrey bog (war)
2010 animated family film about a young boy who befriends a dragon and helps (animated family)
2010 was a great year for sports movies, with the release of the 2 (sports)
2016 animated film about a boy who is a wizard and his pet dragon. (animated)

ω = 8

2009 romantic comedy starring jennifer aniston and jason bateman (romantic comedy)
1999 epic film about a young man who goes on a journey to find his father (epic)
1976 film about a boxer who is trying to make it to the top of the (boxing)
2017 fantasy film about a young boy who is transported to a magical world (fantasy film)
1999 live action film about a young boy who is transported to a magical world (live action)
2011 raunchy comedy about a man who is trying to get his life back on (raunchy comedy)
1917 is a war film about two soldiers who are sent on a mission to deliver a (war)
2010 animated family film about a young boy who is transported to a magical world (animated family)
2010 was a great year for sports movies, with the release of the 2 (sports)
2016 animated film about a boy who is transported to a magical world of g (animated)

Table 31: ICL performance on MIT-G using AdaDPSyn.

ω = 0 ω = 0.2 ω = 0.3 ω = 0.5 ω = 1 ω = 2 ω = 4 ω = 8
13.62 13.77 23.75 30.56 37.59 37.41 37.85 38.31
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