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Abstract—Number theoretic transform (NTT) is a critical
operation in several post-quantum cryptography (PQC) schemes,
which enables fast polynomial multiplication. However, it consti-
tutes a significant portion of the total computational time in
PQC schemes, requiring custom hardware accelerators. Manual
register-transfer level (RTL) coding often requires re-designing
memory structures and control units when configurations change.
In contrast, the high-level synthesis (HLS) approach offers higher
design abstraction, reducing development and verification time.
This paper provides a comprehensive review of recent HLS-
based NTT implementations, presenting their design strategies
and comparing hardware resource utilization and performance
on field-programmable gate array platforms. Finally, the paper
discusses potential future research directions to narrow the
performance gap between RTL coding and HLS approaches.

I. INTRODUCTION

Security has become an increasingly critical concern.

Specifically, the rapid growth of connected devices over

public networks has expanded the potential entry points for

cyberattacks. In addition, as real-world applications increas-

ingly integrate artificial intelligence and untrusted third-party

servers, which often handles sensitive client data, security

risks increase. To strengthen security across these domains,

cryptographic techniques have become an essential tool.

Several post-quantum cryptographic (PQC) schemes that

involve polynomial multiplications leverage the number the-

oretic transform (NTT), which is a generalization of the

discrete Fourier transform (DFT) to finite fields. NTT enables

efficient computation of convolutions on integer sequences,

avoiding round-off errors [1]. For example, direct polyno-

mial multiplication, which has a computational complexity of

O(n2), is converted into a process that involves NTT, point-

wise multiplication, and inverse NTT (INTT). This approach

achieves a computational complexity of O(nlog2n), which is

asymptotically faster than the well-known Karatsuba algorithm

with O(nlog
2
3) and the generalized Toom-Cook algorithm with

O(nlog
k
(2k−1)), where a polynomial is divided into 2 and k

parts, respectively [2].

Despite the improved efficiency, performing NTT on a CPU

in real time becomes progressively challenging as the length of

an integer sequence n increases. For example, fully homomor-

phic encryption (FHE) that performs operations on encrypted

data without decryption [3] often uses large n values, such

as 217, for NTT in contemporary real-world applications [4].

However, these applications become impractically slow on a

CPU, with NTT and INTT processes accounting for more than

50% of the total execution time [5]. To address the slow pro-

cessing speed issue, numerous studies have proposed custom

NTT hardware architectures targeting field-programmable gate

array (FPGA) platforms [4], [6]–[14].

FPGA-based hardware designs are generally described using

two methods: Manual register-transfer level (RTL) coding and

high-level synthesis (HLS). Typically, the former is highly

effective for creating optimized hardware. However, it is time-

consuming and labor-intensive in both development and verifi-

cation. In contrast, the HLS approach addresses this challenge

by automatically converting high-level programming language

code, such as C/C++ code, into hardware description language

(HDL) code. This method not only boosts productivity but also

supports efficient exploration of design options in the early

stage by organizing Pareto points by latency and selecting the

optimal point that meets design constraints.

Recently, several survey papers on the development of

NTT have been published [2], [15]–[18]. However, there is a

lack of comprehensive reviews focusing on HLS-based NTT

implementations. This review paper consolidates recent HLS-

based NTT designs, including their FPGA benchmark results,

and offers a thorough comparative evaluation. It serves as a

valuable guide for researchers seeking to quickly implement

NTT hardware accelerators in PQC schemes.

II. NUMBER THEORETIC TRANSFORM

A generalized version of DFT over finite fields, specifically

integers modulo a prime number q, is called as NTT. Let a be

a vector of polynomial coefficients ai ∈ Zq (i ∈ [0, ..., n− 1])
and the degree of a polynomial is n− 1. NTT is then defined

as â = NTT(a), where:

âj =

n−1∑

i=0

aiω
ij
n (mod q) (1)

for j ∈ [0, ..., n−1]. ωn is the primitive n-th root of unity (also

known as a twiddle factor), which satisfies ωn
n ≡ 1 (mod q)

and ωk
n ̸≡ 1 (mod q) for k < n. The inverse transform that

converts from the NTT form back to the regular coefficient

form is defined as a = INTT(â), where:

aj = n−1
n−1∑

i=0

âiω
−ij
n (mod q). (2)
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Fig. 1. Radix-2 butterfly configurations for fast NTT/INTT. (a) CT butterfly
(b) GS butterfly.

Using NTT and INTT, the (positive-wrapped) convolution of

vectors a and b is performed as follow:

c = INTT(NTT(a) ◦ NTT(b)), (3)

where ◦ denotes an element-wise multiplication in Zq .

Equations (1) and (2) still require a computational complex-

ity of O(n2), which limits the reduction in the computational

complexity of polynomial multiplications. To address this,

the divide-and-conquer approach, where the n-point NTT is

recursively divided into k n/k-point NTTs, is commonly used.

The value of k determines the radix of a butterfly unit (BU),

which is a basic building block of NTT. Using this approach,

the overall computational complexity is reduced to O(nlog2n).
Two well-known configurations for this approach are Cooley-

Tukey (CT) and Gentleman-Sande (GS) algorithms. For a

detailed derivation of these algorithms from (1) and (2), refer

to [2], [19]. Visual representations of butterfly operations based

on the CT and GS algorithms are shown in Fig. 1. Each radix-

2 BU contains a modular adder, a modular subtractor, and a

modular multiplier to generate two outputs from two inputs.

When performing polynomial multiplication on the poly-

nomial ring Zq[x]/ïφ(x)ð, a reduction operation by φ(x) is

required [18]. However, if φ(x) is of the form xn+1, which is

a common setting in PQC schemes [2], the negative-wrapped

convolution technique can be used to eliminate the need for

polynomial reduction. This method requires multiplications

between polynomials and powers of the 2n-th root of unity,

denoted as ψ2n, which satisfies ψ2n
2n ≡ 1 (mod q) and

ψi
2n ̸≡ 1 (mod q) for i < 2n. To apply this modification, the

modulus q must satisfy q ≡ 1 (mod 2n). With the negative-

wrapped convolution technique, (3) is modified as follows:

c = INTT(NTT(a ◦ψ) ◦ NTT(b ◦ψ)) ◦ψ−1, (4)

where ψ = [ψ0
2n, ..., ψ

n−1
2n ] and ψ−1 = [ψ0

2n, ..., ψ
−(n−1)
2n ].

ψi
2n and ωij

n are combined into a single entity. In computation-

intensive hardware designs, they are precomputed and stored

in memory, whereas in memory-intensive designs, they are

calculated on the fly [4].

III. COMPREHENSIVE REVIEW AND COMPARISON

This section presents a comprehensive comparison of NTT

designs based on FPGA and HLS. Table I summarizes the

key features of these designs, including their open-source

availability. Note that unrevealed data or data that is difficult

to infer is represented by a hyphen.

1) HLS Tools: AMD-Xilinx Vitis HLS (formerly Vivado

HLS) is the most commonly used tool for the HLS-based

NTT designs. The design flow in this tool is shown in Fig.

2. The Vitis HLS-based NTT designs use HLS pragmas,

such as ARRAY_PARTITION, PIPELINE, and UNROLL in

their C/C++ source code. While Vitis HLS has been the

dominant tool for HLS-based NTT designs, other HLS tools

are also used. Specifically, Mentor/Siemens Catapult HLS is

used for NTTSuite [24], and Intel’s oneAPI Data Parallel C++

compiler, which provides HLS capabilities through SYCL for

Intel/Altera FPGA devices, is used in Intel’s HEXL-FPGA

project [26].

2) Butterfly Radix: Among the HLS-based NTT designs,

the majority use radix-2 BUs. This is because radix-2 BUs

can handle input sequences of various lengths and simplify

the design of datapath, memory allocation, and control logic.

Exceptionally, Nguyen et al. use a radix-4 BU, specifically

employing a 2×2 butterfly structure aimed at reducing memory

usage [6], [21]. To improve efficiency, they implement special-

ized techniques, such as a serial-in-parallel-out configuration

to facilitate grouping of input data.

3) NTT/INTT Algorithm: Most of the works in Table I

use the CT and GS algorithms or their variants. In contrast,

NTTSuite uses specialized dataflow algorithms, such as the

Pease algorithm [24]. While the CT and GS algorithms typ-

ically require in-place processing, where the butterfly input

pattern changes stage by stage, the Pease algorithm supports

out-of-place processing. Specifically, data are stored in an aux-

iliary array during butterfly computation and later transferred

back. It effectively avoids complex array partition conflicts and

allows for more efficient pipelining opportunities but requires

additional internal memory.

Sample reordering methods are closely tied to the

NTT/INTT algorithm. In polynomial multiplication that in-

volves CT butterfly, element-wise multiplication, and GS but-

terfly in order, the output of CT butterfly and the input of GS

butterfly are usually in bit-reversed order [2].

4) Target Applications: The target applications for the

HLS-based NTT designs are mainly PQC schemes, aimed at

securing communications and data against the future threats

posed by quantum computers. Specifically, NewHope is a

key-exchange protocol, and CRYSTALS-Kyber is a public-key

encryption and key-exchange scheme. CRYSTALS-Dilithium,

Falcon, and qTESLA are digital signature schemes. FHE is an

encryption form that allows computations on encrypted data

without needing to decrypt it. All of these target applications

are based on lattice-based cryptography. The number of NTT

samples (n) and the sample size (+log2q, bits) are determined

based on the specific requirements of the target application.

Specifically, FHE demands a larger number of samples, reach-

ing up to 216.

5) Modular Reduction: Two traditional modular reduction

algorithms, Barrett reduction [28] and Montgomery reduction

[29], are widely used to replace the expensive division in

modular reduction with several integer multiplications [30]. In

addition to these algorithms, the modular reduction algorithm



TABLE I
REVIEW OF FPGA- AND HLS-BASED NTT IMPLEMENTATIONS IN LITERATURE AND OPEN-SOURCE PROJECTS

Tool Algorithm
Target No. Samples Sample size Reduction Open-source

Application (n) (+log
2
q, bits) Algorithm Availability

ISQED’18 [20] Vivado HLS GS FHE [210, 216] 10† - ;

FPT’19 [21] Vivado HLS CT
NewHope, Falcon,

[28, 210] [14, 24] Longa–Naehrig ;
qTESLA, Dilithium

ESL’20 [16] Vivado HLS CT PQC algorithms, FHE 2
10 14 Longa–Naehrig ;

ARC’20 [6] Vivado HLS CT NewHope, Kyber [28, 210] [12, 14]
Longa-Naehrig,

;
Montgomery

ISVLSI’21 [22] Vivado HLS CT Dilithium, Kyber 2
8 [12, 23]

Barrett,
;

Montgomery

TC’22 [17] Vivado HLS GS
Kyber, NewHope, Dilithium,

[28, 212] [13, 60] Montgomery ;
Falcon, qTESLA, FHE

VLSI-SoC’22 [1] Vivado HLS CT/GS Dilithium 2
8 23 Montgomery ;

PAINE’23 [23] Intel HLS CT/GS Kyber 2
8 12 - ;

NTTSuite [24] Catapult HLS Pease FHE [210, 216] 32 Shoup 7

Vitis Tutorial [25] Vitis HLS CT Kyber 2
7 12 Montgomery 7

HEXL-FPGA [26] oneAPI CT/GS‡ FHE [25, 215] [20, 62] Barrett‡ 7

†This value is obtained from [17].
‡These data are obtained from Intel’s HEXL library [27].

Fig. 2. FPGA design flow using Vitis HLS.

proposed by Longa and Naehrig [31] is used in [6], [16], [21].

This algorithm introduces a bitwise add-shift modular reduc-

tion, designed for a special prime of the form q = k · 2m +1,

where k is odd and smaller than 2m. It offers an advantage in

terms of logic size, as it requires fewer multiplications. How-

ever, in scenarios involving multiple smaller moduli, which is

common in residue number system-based FHE schemes [32],

[33], where each modulus may not follow the specific form,

the Longa-Naehrig reduction algorithm is not applicable.

6) Twiddle Factor Generation: Although not shown in

Table I, all works in this table precompute twiddle factors

and pre-load them in internal memory, rather than calculating

them on the fly, with a few exceptions that do not explicitly

mention how their twiddle factors are handled. However, some

manual RTL coding-based studies generate twiddle factors

on the fly, particularly in the context of FHE, where various

moduli require different twiddle factors and excessive memory

space [4], [34]. Specifically, in [34], optimal parameter settings

balance pre-calculated storage and on-the-fly generation, either

sequentially or in parallel.

IV. FPGA PERFORMANCE BENCHMARKING

1) Comparisons between Different Works: Table II com-

pares the FPGA implementation results of the Vivado/Vitis

HLS-based NTT designs. Direct comparisons are challenging

due to variations in FPGA devices, sample counts, and sample

sizes. However, we focus on comparing designs with the most

similar configurations possible here. When comparing designs

on the Virtex-7 device with 210-point sample input, ESL’20

[16] and TC’22 [17] employ 8 BUs and support a 14-bit

modulus. Although the frequencies differ, the latency in cycles

is roughly identical. In contrast, ISQED’18 [20] achieves a

significant reduction in latency, which is approximately one-

third of that of TC’22. This is accomplished by using 2.25×
BUs, although the reduction algorithm is not specified in

this previous work. However, the extensive loop unrolling of

the NTT in ISQED’18 fails to achieve an optimal trade-off

between latency and resource usage, leaving significant room

for optimization.

For n = 210, NTTSuite (Pease nc version) using four BUs

[24], which reduces overhead copying, achieves a low latency

of approximately 1,400 cycles at 196 MHz. This results in an

11× improvement in cycle count over TC’22 using eight BUs

while consuming fewer digital signal processing (DSP) slices

and look-up tables (LUTs). However, NTTSuite significantly

increases on-chip block RAM (BRAM) usage, surpassing

those of other NTT designs with similar configurations. There-

fore, the approach used in NTTSuite may be beneficial for

FPGA devices with abundant internal memory.

2) Comparisons in Same Works: ISQED’18, TC’22, and

NTTSuite present implementation results across different con-

figurations. Specifically, in ISQED’18, the number of BUs and

the number of samples change together. Note that ISQED’18

does not explicitly specify the number of BUs deployed in

their designs. Therefore, the values are inferred by multiplying

the total number of iterations in the outer loop by the number

of BUs operating in parallel in the inner loop. Although not

clearly detailed in the previous work, the reported number of

DSP slices implies that the number of parallel BUs in the inner

loop doubles when n reaches 213. In contrast to the trends

observed in DSP, flip-flop (FF), and LUT resources, BRAM

consumption and latency increase exponentially as the value

of n changes. This indicates that BRAM is likely the primary

performance bottleneck.



TABLE II
BENCHMARKING HLS-BASED NTT HARDWARE DESIGNS ON AMD-XILINX FPGAS

Device No. BUs
No. Samples Sample size Freq. BRAM

DSP FF LUT
Latency

(n) (+log
2
q, bits) (MHz) (36K) (µs)

ISQED’18 [20] Virtex 7

18 2
10

10 100

21.5 19 30,498 38,984 53

20 2
11 24.5 21 38,224 46,738 107

22 2
12 41.5 22 44,767 58,082 221

44 2
13 75.5 44 52,552 65,143 457

48 2
14 188.5 48 60,592 76,667 949

52 2
15 402.0 53 69,476 87,477 1,974

56 2
16 885.0 56 80,275 102,584 4,105

FPT’19 [21] Zynq US+ 4†
2
8 23 434 2.0 8 2,329 1,977 1

2
10 14 455 5.0 4 822 865 3

2
10 24 455 8.0 8 3,423 1,939 3

ESL’20 [16] Virtex 7 8 2
10 14 200 2.0 8 3,243 4,737 83

ISVLSI’21 [22] Artix 7 - 2
8 23 58 0.0 248 2,827 7,849 10

TC’22 [17] Virtex 7

1 2
10 14

100

4.0 3

0

1,045 307

8 2
10 14 16.0 24 11,305 154

8 2
11 30 64.0 96 13,886 338

8 2
12 60 128.0 360 17,768 737

VLSI-SoC’22 [1] Zynq US+ 2 2
8 23 150-400 5.0 12 1,371 2,015 5‡

NTTSuite [24]∗ Virtex 7

4 2
10

32 196

40.0 4 8,592 6,005 7

4 2
12 40.0 4 6,198 6,079 32

4 2
14 40.0 4 5,334 6,073 147

4 2
16 40.0 64 5,409 6,145 669

16 2
10 160.0 16 32,866 23,474 2

16 2
12 160.0 16 32,976 23,696 9

16 2
14 160.0 16 27,902 23,737 38

Vitis Tutorial [25]§ Versal Premium 7 2
7 12 100 19.0 21 13,720 17,940 999

†This value is derived based on the use of radix-2 butterfly units. ∗The results are for the Pease nc designs.
‡The frequency is assumed to be 300 MHz. §Among the four implementations, version 3 is the one selected for use.

In TC’22, increasing the number of BUs leads to a decrease

in latency, but this reduction is not proportional. Specifically,

when the number of BUs increases eightfold, the latency is

reduced by approximately half. The authors of this previous

work attribute this observation to inefficiencies in the HLS

tool. When the number of BUs is fixed at 8, increasing

the number of samples results in a latency growing roughly

proportionally. However, the number of DSPs increases at a

much higher rate, primarily driven by the sample size. DSP

slices are used for multipliers in each BU and a Montgomery

modular reduction operator. The multiplier block in a DSP

slice has a limited bit width. For example, in the FPGA device

used in TC’22, the multiplier of the DSP slice (DSP48E1)

supports operand bit widths of 25 and 18 (signed), respectively.

When the bit width exceeds these limits, additional DSP slices

are required.

Compared to TC’22, NTTSuite shows a more ideal rela-

tionship between latency and the number of samples (when

the number of BUs is fixed). For example, when four BUs

are used and the value of n increases from 214 to 216,

the approximate increase ratio in latency is calculated as

( 2
16

2 · log22
16)/( 2

14

2 · log22
14) = 4.57, and the actual observed

ratio is 4.55. This indicates that NTTSuite minimizes the ex-

ecution time outside of the BU operations by using additional

BRAMs.

V. CONCLUSIONS AND FUTURE DIRECTIONS

This paper offers a comprehensive review and comparison

of HLS-based NTT designs. The FPGA implementation results

serve as benchmarks for assessing the feasibility and efficiency

of these designs. This paper could be a useful resource for the

development of future NTT-based PQC hardware accelerators.

HLS-based NTT implementation provides a convincing

trade-off between development/verification time and final per-

formance. According to [17], [23], manual RTL coding for

NTT designs requires approximately 450 man-hours, while

HLS-based design reduces this to around 60 man-hours.

However, HLS does come with performance limitations. For

example, the hardware utilization results for NTT-based PQC

accelerators in [6] show that the HLS-to-RTL ratio ranges from

1.00 to 1.53. This gap may widen further when dealing with a

large number of BUs or samples, potentially requiring manual

adjustments [17].

To reduce this gap, the following research directions can

be explored: Although HLS enables efficient design space

exploration to identify the optimal parameter combination,

its adoption has been limited. Developing specific design

space exploration frameworks for NTT-based PQC hardware

accelerators could be a promising area for further research.

In addition, the final NTT hardware designs are heavily

influenced by the HLS pragmas and directives applied. To

address this challenge, supplementary compiler-level tools that

refine C/C++ code to be more friendly to HLS tools, such as

ScaleHLS [35], could be used.
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