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Abstract—Number theoretic transform (NTT) is a critical
operation in several post-quantum cryptography (PQC) schemes,
which enables fast polynomial multiplication. However, it consti-
tutes a significant portion of the total computational time in
PQC schemes, requiring custom hardware accelerators. Manual
register-transfer level (RTL) coding often requires re-designing
memory structures and control units when configurations change.
In contrast, the high-level synthesis (HLS) approach offers higher
design abstraction, reducing development and verification time.
This paper provides a comprehensive review of recent HLS-
based NTT implementations, presenting their design strategies
and comparing hardware resource utilization and performance
on field-programmable gate array platforms. Finally, the paper
discusses potential future research directions to narrow the
performance gap between RTL coding and HLS approaches.

I. INTRODUCTION

Security has become an increasingly critical concern.
Specifically, the rapid growth of connected devices over
public networks has expanded the potential entry points for
cyberattacks. In addition, as real-world applications increas-
ingly integrate artificial intelligence and untrusted third-party
servers, which often handles sensitive client data, security
risks increase. To strengthen security across these domains,
cryptographic techniques have become an essential tool.

Several post-quantum cryptographic (PQC) schemes that
involve polynomial multiplications leverage the number the-
oretic transform (NTT), which is a generalization of the
discrete Fourier transform (DFT) to finite fields. NTT enables
efficient computation of convolutions on integer sequences,
avoiding round-off errors [1]. For example, direct polyno-
mial multiplication, which has a computational complexity of
O(n?), is converted into a process that involves NTT, point-
wise multiplication, and inverse NTT (INTT). This approach
achieves a computational complexity of O(nlog,n), which is
asymptotically faster than the well-known Karatsuba algorithm
with O(n'°¢23) and the generalized Toom-Cook algorithm with
O(n'°8x(2k=1)) " \where a polynomial is divided into 2 and k
parts, respectively [2].

Despite the improved efficiency, performing NTT on a CPU
in real time becomes progressively challenging as the length of
an integer sequence n increases. For example, fully homomor-
phic encryption (FHE) that performs operations on encrypted
data without decryption [3] often uses large n values, such
as 2'7, for NTT in contemporary real-world applications [4].
However, these applications become impractically slow on a

CPU, with NTT and INTT processes accounting for more than
50% of the total execution time [5]. To address the slow pro-
cessing speed issue, numerous studies have proposed custom
NTT hardware architectures targeting field-programmable gate
array (FPGA) platforms [4], [6]-[14].

FPGA-based hardware designs are generally described using
two methods: Manual register-transfer level (RTL) coding and
high-level synthesis (HLS). Typically, the former is highly
effective for creating optimized hardware. However, it is time-
consuming and labor-intensive in both development and verifi-
cation. In contrast, the HLS approach addresses this challenge
by automatically converting high-level programming language
code, such as C/C++ code, into hardware description language
(HDL) code. This method not only boosts productivity but also
supports efficient exploration of design options in the early
stage by organizing Pareto points by latency and selecting the
optimal point that meets design constraints.

Recently, several survey papers on the development of
NTT have been published [2], [15]-[18]. However, there is a
lack of comprehensive reviews focusing on HLS-based NTT
implementations. This review paper consolidates recent HLS-
based NTT designs, including their FPGA benchmark results,
and offers a thorough comparative evaluation. It serves as a
valuable guide for researchers seeking to quickly implement
NTT hardware accelerators in PQC schemes.

II. NUMBER THEORETIC TRANSFORM

A generalized version of DFT over finite fields, specifically
integers modulo a prime number g, is called as NTT. Let a be
a vector of polynomial coefficients a; € Zg (i € [0,...,n—1])
and the degree of a polynomial is n — 1. NTT is then defined
as a = NTT(a), where:

n—1
a; = Z a;w?  (mod q) (D)
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for j € [0, ...,n—1]. wy, is the primitive n-th root of unity (also
known as a twiddle factor), which satisfies w?? = 1 (mod q)
and wk # 1 (mod ¢) for k& < n. The inverse transform that
converts from the NTT form back to the regular coefficient
form is defined as a = INTT(a), where:
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Fig. 1. Radix-2 butterfly configurations for fast NTT/INTT. (a) CT butterfly
(b) GS butterfly.

Using NTT and INTT, the (positive-wrapped) convolution of
vectors a and b is performed as follow:

¢ = INTT(NTT(a) o NTT (b)), 3)

where o denotes an element-wise multiplication in Z,.
Equations (1) and (2) still require a computational complex-
ity of O(n?), which limits the reduction in the computational
complexity of polynomial multiplications. To address this,
the divide-and-conquer approach, where the n-point NTT is
recursively divided into k n/k-point NTTs, is commonly used.
The value of k determines the radix of a butterfly unit (BU),
which is a basic building block of NTT. Using this approach,
the overall computational complexity is reduced to O(nlogyn).
Two well-known configurations for this approach are Cooley-
Tukey (CT) and Gentleman-Sande (GS) algorithms. For a
detailed derivation of these algorithms from (1) and (2), refer
to [2], [19]. Visual representations of butterfly operations based
on the CT and GS algorithms are shown in Fig. 1. Each radix-
2 BU contains a modular adder, a modular subtractor, and a
modular multiplier to generate two outputs from two inputs.
When performing polynomial multiplication on the poly-
nomial ring Z,[x]/(¢(z)), a reduction operation by ¢(x) is
required [18]. However, if ¢(z) is of the form 2™+ 1, which is
a common setting in PQC schemes [2], the negative-wrapped
convolution technique can be used to eliminate the need for
polynomial reduction. This method requires multiplications
between polynomials and powers of the 2n-th root of unity,
denoted as 1),, which satisfies 3" = 1 (mod ¢) and
i, # 1 (mod q) for i < 2n. To apply this modification, the
modulus ¢ must satisfy ¢ = 1 (mod 2n). With the negative-
wrapped convolution technique, (3) is modified as follows:

¢ =INTT(NTT(ao ) oNTT(bo)) o™,  (4)
Where P = ["/)gna e ;ln_l] and 1/’_1 = W)gn’ e ;n(nfl)].
s, and wl) are combined into a single entity. In computation-
intensive hardware designs, they are precomputed and stored
in memory, whereas in memory-intensive designs, they are
calculated on the fly [4].

III. COMPREHENSIVE REVIEW AND COMPARISON

This section presents a comprehensive comparison of NTT
designs based on FPGA and HLS. Table I summarizes the
key features of these designs, including their open-source
availability. Note that unrevealed data or data that is difficult
to infer is represented by a hyphen.

1) HLS Tools: AMD-Xilinx Vitis HLS (formerly Vivado
HLS) is the most commonly used tool for the HLS-based
NTT designs. The design flow in this tool is shown in Fig.
2. The Vitis HLS-based NTT designs use HLS pragmas,
such as ARRAY_PARTITION, PIPELINE, and UNROLL in
their C/C++ source code. While Vitis HLS has been the
dominant tool for HLS-based NTT designs, other HLS tools
are also used. Specifically, Mentor/Siemens Catapult HLS is
used for NTTSuite [24], and Intel’s one API Data Parallel C++
compiler, which provides HLS capabilities through SYCL for
Intel/Altera FPGA devices, is used in Intel’s HEXL-FPGA
project [26].

2) Butterfly Radix: Among the HLS-based NTT designs,
the majority use radix-2 BUs. This is because radix-2 BUs
can handle input sequences of various lengths and simplify
the design of datapath, memory allocation, and control logic.
Exceptionally, Nguyen et al. use a radix-4 BU, specifically
employing a 2 x2 butterfly structure aimed at reducing memory
usage [6], [21]. To improve efficiency, they implement special-
ized techniques, such as a serial-in-parallel-out configuration
to facilitate grouping of input data.

3) NTT/INTT Algorithm: Most of the works in Table I
use the CT and GS algorithms or their variants. In contrast,
NTTSuite uses specialized dataflow algorithms, such as the
Pease algorithm [24]. While the CT and GS algorithms typ-
ically require in-place processing, where the butterfly input
pattern changes stage by stage, the Pease algorithm supports
out-of-place processing. Specifically, data are stored in an aux-
iliary array during butterfly computation and later transferred
back. It effectively avoids complex array partition conflicts and
allows for more efficient pipelining opportunities but requires
additional internal memory.

Sample reordering methods are closely tied to the
NTT/INTT algorithm. In polynomial multiplication that in-
volves CT butterfly, element-wise multiplication, and GS but-
terfly in order, the output of CT butterfly and the input of GS
butterfly are usually in bit-reversed order [2].

4) Target Applications: The target applications for the
HLS-based NTT designs are mainly PQC schemes, aimed at
securing communications and data against the future threats
posed by quantum computers. Specifically, NewHope is a
key-exchange protocol, and CRYSTALS-Kyber is a public-key
encryption and key-exchange scheme. CRYSTALS-Dilithium,
Falcon, and qTESLA are digital signature schemes. FHE is an
encryption form that allows computations on encrypted data
without needing to decrypt it. All of these target applications
are based on lattice-based cryptography. The number of NTT
samples (n) and the sample size ([log,q] bits) are determined
based on the specific requirements of the target application.
Specifically, FHE demands a larger number of samples, reach-
ing up to 216.

5) Modular Reduction: Two traditional modular reduction
algorithms, Barrett reduction [28] and Montgomery reduction
[29], are widely used to replace the expensive division in
modular reduction with several integer multiplications [30]. In
addition to these algorithms, the modular reduction algorithm



TABLE I
REVIEW OF FPGA- AND HLS-BASED NTT IMPLEMENTATIONS IN LITERATURE AND OPEN-SOURCE PROJECTS

. Target No. Samples Sample size Reduction Open-source
Tool Algorithm Application (n) ([logyq] bits) Algorithm Availability
ISQED’18 [20] Vivado HLS GS FHE 210, 216) 107 - 3
s . NewHope, Falcon, 8 610 .
FPT’19 [21] Vivado HLS CT qTESLA, Dilithium [2°, 219 [14, 24] Longa—Naehrig X
ESL’20 [16] Vivado HLS CT PQC algorithms, FHE 210 14 Longa—Naehrig X
ARC’20 [6] Vivado HLS cT NewHope, Kyber [28, 210 [12, 14] Lﬁlga'Na‘:h“g’ X
ontgomery
ISVLSI'21 [22] Vivado HLS CT Dilithium, Kyber 28 (12, 23] Barrett, X
Montgomery
s . Kyber, NewHope, Dilithium, 8 612
TC22 [17] Vivado HLS GS Falcon, qTESLA, FHE [2°, 2+4] [13, 60] Montgomery X
VLSI-SoC’22 [1] Vivado HLS CT/GS Dilithium 28 23 Montgomery X
PAINE’23 [23] Intel HLS CT/GS Kyber 28 12 - X
NTTSuite [24] Catapult HLS Pease FHE [210, 216] 32 Shoup
Vitis Tutorial [25] Vitis HLS CT Kyber 27 12 Montgomery
HEXL-FPGA [26] oneAPI CT/GST FHE [25, 219] [20, 62] Barrett?

TThis value is obtained from [17].
fThese data are obtained from Intel’s HEXL library [27].
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Fig. 2. FPGA design flow using Vitis HLS.

proposed by Longa and Naehrig [31] is used in [6], [16], [21].
This algorithm introduces a bitwise add-shift modular reduc-
tion, designed for a special prime of the form ¢ = k- 2™ + 1,
where k is odd and smaller than 2. It offers an advantage in
terms of logic size, as it requires fewer multiplications. How-
ever, in scenarios involving multiple smaller moduli, which is
common in residue number system-based FHE schemes [32],
[33], where each modulus may not follow the specific form,
the Longa-Naehrig reduction algorithm is not applicable.

6) Twiddle Factor Generation: Although not shown in
Table I, all works in this table precompute twiddle factors
and pre-load them in internal memory, rather than calculating
them on the fly, with a few exceptions that do not explicitly
mention how their twiddle factors are handled. However, some
manual RTL coding-based studies generate twiddle factors
on the fly, particularly in the context of FHE, where various
moduli require different twiddle factors and excessive memory
space [4], [34]. Specifically, in [34], optimal parameter settings
balance pre-calculated storage and on-the-fly generation, either
sequentially or in parallel.

IV. FPGA PERFORMANCE BENCHMARKING

1) Comparisons between Different Works: Table II com-
pares the FPGA implementation results of the Vivado/Vitis
HLS-based NTT designs. Direct comparisons are challenging
due to variations in FPGA devices, sample counts, and sample
sizes. However, we focus on comparing designs with the most

similar configurations possible here. When comparing designs
on the Virtex-7 device with 2'%-point sample input, ESL’20
[16] and TC’22 [17] employ 8 BUs and support a 14-bit
modulus. Although the frequencies differ, the latency in cycles
is roughly identical. In contrast, ISQED’18 [20] achieves a
significant reduction in latency, which is approximately one-
third of that of TC’22. This is accomplished by using 2.25x
BUs, although the reduction algorithm is not specified in
this previous work. However, the extensive loop unrolling of
the NTT in ISQED’18 fails to achieve an optimal trade-off
between latency and resource usage, leaving significant room
for optimization.

For n = 2'% NTTSuite (Pease_nc version) using four BUs
[24], which reduces overhead copying, achieves a low latency
of approximately 1,400 cycles at 196 MHz. This results in an
11 x improvement in cycle count over TC’22 using eight BUs
while consuming fewer digital signal processing (DSP) slices
and look-up tables (LUTs). However, NTTSuite significantly
increases on-chip block RAM (BRAM) usage, surpassing
those of other NTT designs with similar configurations. There-
fore, the approach used in NTTSuite may be beneficial for
FPGA devices with abundant internal memory.

2) Comparisons in Same Works: ISQED’18, TC’22, and
NTTSuite present implementation results across different con-
figurations. Specifically, in ISQED’ 18, the number of BUs and
the number of samples change together. Note that ISQED’18
does not explicitly specify the number of BUs deployed in
their designs. Therefore, the values are inferred by multiplying
the total number of iterations in the outer loop by the number
of BUs operating in parallel in the inner loop. Although not
clearly detailed in the previous work, the reported number of
DSP slices implies that the number of parallel BUs in the inner
loop doubles when n reaches 2'3. In contrast to the trends
observed in DSP, flip-flop (FF), and LUT resources, BRAM
consumption and latency increase exponentially as the value
of n changes. This indicates that BRAM is likely the primary
performance bottleneck.



TABLE II
BENCHMARKING HLS-BASED NTT HARDWARE DESIGNS ON AMD-XILINX FPGAS

. No. Samples Sample size Freq. BRAM Latency
Device No. BUs n) ([log,q] bits) (MH?) (36K) DSP FF LUT (115)
18 210 21.5 19 | 30,498 | 38,984 53
20 211 24.5 21 38,224 | 46,738 107
22 212 415 22 | 44,767 | 58,082 221
ISQED’18 [20] Virtex 7 44 213 10 100 75.5 44 | 52,552 | 65,143 457
48 214 188.5 48 | 60,592 | 76,667 949
52 215 402.0 53 | 69,476 | 87477 1,974
56 216 885.0 56 | 80,275 | 102,584 | 4,105
28 23 434 2.0 8 2,329 1,977 1
FPT’19 [21] Zynq US+ 4t 210 14 455 5.0 4 822 865 3
210 24 455 8.0 8 3,423 1,939 3
ESL’20 [16] Virtex 7 8 210 14 200 2.0 8 3,243 4,737 83
ISVLSI'21 [22] Artix 7 - 28 23 58 0.0 248 | 2,827 7,849 10
1 210 14 4.0 3 1,045 307
, . 8 210 14 16.0 24 11,305 154
TC22 [17] Virtex 7 3 11 30 100 64.0 %6 0 13.886 138
8 212 60 128.0 360 17,768 737
VLSI-SoC’22 [1] Zynq US+ 2 28 23 150-400 5.0 12 1,371 2,015 5%
4 210 40.0 4 8,592 6,005 7
4 212 40.0 4 6,198 6,079 32
4 214 40.0 4 5,334 6,073 147
NTTSuite [24]* Virtex 7 4 216 32 196 40.0 64 5,409 6,145 669
16 210 160.0 16 | 32,866 | 23,474 2
16 212 160.0 16 | 32,976 | 23,696 9
16 214 160.0 16 | 27,902 | 23,737 38
Vitis Tutorial [25]% | Versal Premium 7 27 12 100 19.0 21 13,720 | 17,940 999

TThis value is derived based on the use of radix-2 butterfly units.
*The frequency is assumed to be 300 MHz.

In TC’22, increasing the number of BUs leads to a decrease
in latency, but this reduction is not proportional. Specifically,
when the number of BUs increases eightfold, the latency is
reduced by approximately half. The authors of this previous
work attribute this observation to inefficiencies in the HLS
tool. When the number of BUs is fixed at 8, increasing
the number of samples results in a latency growing roughly
proportionally. However, the number of DSPs increases at a
much higher rate, primarily driven by the sample size. DSP
slices are used for multipliers in each BU and a Montgomery
modular reduction operator. The multiplier block in a DSP
slice has a limited bit width. For example, in the FPGA device
used in TC’22, the multiplier of the DSP slice (DSP48El)
supports operand bit widths of 25 and 18 (signed), respectively.
‘When the bit width exceeds these limits, additional DSP slices
are required.

Compared to TC’22, NTTSuite shows a more ideal rela-
tionship between latency and the number of samples (when
the number of BUs is fixed). For example, when four BUs
are used and the value of n increases from 24 to 216,
the approximate increase ratio in latency is calculated as
(% ~10g2216)/(% -log,2*) = 4.57, and the actual observed
ratio is 4.55. This indicates that NTTSuite minimizes the ex-
ecution time outside of the BU operations by using additional
BRAMSs.

V. CONCLUSIONS AND FUTURE DIRECTIONS

This paper offers a comprehensive review and comparison
of HLS-based NTT designs. The FPGA implementation results

*The results are for the Pease_nc designs.
8 Among the four implementations, version 3 is the one selected for use.

serve as benchmarks for assessing the feasibility and efficiency
of these designs. This paper could be a useful resource for the
development of future NTT-based PQC hardware accelerators.

HLS-based NTT implementation provides a convincing
trade-off between development/verification time and final per-
formance. According to [17], [23], manual RTL coding for
NTT designs requires approximately 450 man-hours, while
HLS-based design reduces this to around 60 man-hours.
However, HLS does come with performance limitations. For
example, the hardware utilization results for NTT-based PQC
accelerators in [6] show that the HLS-to-RTL ratio ranges from
1.00 to 1.53. This gap may widen further when dealing with a
large number of BUs or samples, potentially requiring manual
adjustments [17].

To reduce this gap, the following research directions can
be explored: Although HLS enables efficient design space
exploration to identify the optimal parameter combination,
its adoption has been limited. Developing specific design
space exploration frameworks for NTT-based PQC hardware
accelerators could be a promising area for further research.
In addition, the final NTT hardware designs are heavily
influenced by the HLS pragmas and directives applied. To
address this challenge, supplementary compiler-level tools that
refine C/C++ code to be more friendly to HLS tools, such as
ScaleHLS [35], could be used.
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