Published as a conference paper at ICLR 2025

FROM PSEUDO-CODE TO SOURCE CODE: A SELF-
SUPERVISED SEARCH APPROACH

Adithya Kulkarni*, Mohna Chakraborty®, Yonas Sium* Sai Charishma Valluri
Iowa State University Iowa State University
Ames, Iowa, USA Ames, Iowa, USA
{aditkulk, mohnac, yas}@iastate.edu svalluri@iastate.edu
Wei Le Qi Li
Iowa State University Iowa State University
Ames, Iowa, USA Ames, Iowa, USA
welile@iastate.edu Qli@iastate.edu
ABSTRACT

Identifying algorithm implementations in source code is crucial for code compre-
hension, reference retrieval, and program synthesis. This paper presents PC2SC, a
novel framework for mapping pseudo-code to source code without manual anno-
tations. We introduce p-language, a structured representation that encodes control
flow, mathematical expressions, and natural language descriptions of algorithms.
A static analyzer extracts these features, converting pseudo-code into p-code, then
embedded into a shared vector space with source code using self-supervised learn-
ing for retrieval. Given pseudo-code as input, PC2SC returns a ranked list of
matching code snippets. Evaluations on the Stony Brook Algorithm Repository
and GitHub projects demonstrate that PC2SC outperforms state-of-the-art code
search tools in both C and Java. It successfully retrieves correct implementa-
tions within the top 25, 10, and 1 ranked results for 98.5%, 93.8%, and 66.2%
of queries, respectively. In GitHub projects, it identified 74 algorithm implemen-
tations out of 87 queries. PC2SC bridges the gap between algorithmic descrip-
tions and executable implementations, offering a scalable, language-independent
solution for algorithm retrieval and paving the way for future advancements in
cross-language code search and automated synthesis.

1 INTRODUCTION

Understanding and retrieving algorithm implementations from source code is a fundamental prob-
lem in software engineering, with applications in code comprehension, debugging, program syn-
thesis, and software verification. Establishing explicit mappings between algorithms and their im-
plementations aids in understanding unfamiliar code, detecting semantic clones, and identifying
bugs. Reference implementations from real-world codebases provide insights into data structures,
optimizations, and corner cases, aspects often missing in pseudo-code. Incorrect algorithm im-
plementations have been identified as a leading cause of failures in safety-critical systems such as
self-driving cars Garcia et al. (2020). Beyond debugging, algorithm-code mappings are crucial for
automated testing Carzaniga et al. (2014); Elyasov et al. (2015), program repair Sidiroglou-Douskos
et al. (2015), API design Ding et al. (2015), and evaluating deep learning models for code analy-
sis Zhao & Huang (2018); Sui et al. (2020); Wang & Su (2019); Wang (2019); Guo et al. (2021).
Additionally, linking pseudo-code to source code facilitates program synthesis, where pseudo-code
serves as an intermediate representation Kulal et al. (2019a).

Existing approaches to code search primarily rely on natural language queries, while clone de-
tection identifies syntactic or semantic similarities in code. Deep Code Search (DCS) Gu et al.
(2018) and OCoR Zhu et al. (2020) leverage deep learning on code-comment pairs to retrieve im-
plementations, while tools such as SLACC Mathew et al. (2020) and GraphCodeBERT Guo et al.

*The first three authors contributed equally to this research.

Published as a conference paper at ICLR 2025

(2021) detect semantic clones. However, these methods do not explicitly link algorithmic descrip-
tions to their implementations. Recent work on pseudo-code retrievals, such as PseudoSeer Toksoz
et al. (2024), demonstrates the growing importance of structured pseudo-code representations. Ad-
ditionally, cross-language clone detection using large language models (LLMs) Moumoula et al.
(2024) has shown that embedding models can effectively detect semantically equivalent code snip-
pets across languages. A comprehensive discussion of related works is presented in Appendix A.1.

This paper presents PC2SC, a framework for searching and mapping pseudo-code to source code,
enabling language-independent retrieval across Java and C. Unlike natural language-based search,
pseudo-code provides a structured representation of algorithms, making it a more reliable input for
automated code retrieval. Our approach bridges the gap between abstract algorithm descriptions
and real-world implementations by leveraging control flow, mathematical expressions, and natural
language semantics.

PC2SC consists of three key components: algorithm analysis, representation learning, and vector-
based code retrieval. We extract control flow, mathematical expressions, and natural language fea-
tures from pseudo-code and source code, encoding them into a shared vector space via graph-based
representation learning. Interprocedural Control Flow Graphs (ICFGs) capture structural relation-
ships within code, while a scalable vector-based search algorithm identifies and clusters matching
source code nodes to form precise code fragments. While implementations may introduce opti-
mizations, we hypothesize that core control flow structures remain preserved, and mathematical
expressions and function/variable names serve as distinguishing features.

We introduce p-language, a structured representation that encodes an algorithm’s control flow and
mathematical and natural language components to facilitate automatic algorithm analysis. We de-
velop a learning-based method to convert pseudo-code into p-code, which is analyzed to extract
ICFGs, mathematical operators, and textual descriptors. We enable fully automated pseudo-code
analysis, bridging the gap between high-level algorithm descriptions and executable source code.
We encode both pseudo-code and source code into a multi-modal feature space consisting of con-
trol flow, natural language semantics, and mathematical expressions. Control flow is captured via a
Graph Autoencoder (GAE) with a Graph Convolutional Network (GCN) encoder, trained via self-
supervised learning on ICFGs. Natural language semantics are extracted using CodeBERT Feng
etal. (2020), which aligns code tokens with natural language descriptions. Mathematical expressions
are separately categorized and concatenated with the existing embeddings to differentiate algorithm
implementations.

Code retrieval is performed by considering both semantic similarities and structural connectivity
within the ICFG. The retrieval process consists of (1) candidate selection, where node-level em-
beddings from pseudo-code and source code are compared, and (2) fragment construction, where
matched nodes are grouped based on proximity within the ICFG. Finally, retrieved code fragments
are ranked based on structural coherence and query alignment. To evaluate the effectiveness of our
proposed tool PC2SC, we collected 103 algorithm pseudo-code descriptions from Introduction to
Algorithms Cormen et al. (2009) and The Algorithm Design Manual Skiena (1998). We curated
two large-scale code repositories: (1) the Stony Brook Algorithm Repository, containing 67 Java
and 27 C projects, and (2) a GitHub-based code database comprising 10 Java and 10 C projects.
Across three real-world search scenarios, we executed 65 queries on the Stony Brook database and
87 queries on the GitHub database. PC2SC successfully retrieved correct implementations within
the top 25, 10, and 1 ranked results for 98.5%, 93.84%, and 66.15% of queries, respectively, across
major open-source projects such as Guava, AlgoDS, kdtree, and Concorde. Additionally, PC2SC
discovered 74 previously unknown algorithm implementations in GitHub projects, demonstrating
its practical utility. PC2SC outperformed state-of-the-art tools such as DCS Gu et al. (2018) and
OCoR Zhu et al. (2020), highlighting its effectiveness in cross-language algorithm retrieval.

The key contributions of this paper include: (1) p-language: A structured representation for auto-
mated algorithm analysis, (2) Representation learning framework: Integrating control flow, mathe-
matical expressions, and natural language semantics for algorithm-code matching, (3) Vector-based
search algorithm: Efficient retrieval and ranking using ICFG-based structural matching, (4) PC2SC:
A multi-language tool for algorithm retrieval across Java and C, and (5) Dataset contribution: A
publicly available dataset of pseudo-code, p-code, and corresponding algorithm implementations.

Published as a conference paper at ICLR 2025

Source Code Analysis Representation Learning Code Retrieval

C/iava ICFG Math Encoder Source code rep i
(Math + GAE + Code) Cod
Trained GAE Search s -oce
" nippets
Algorithm Analysis Model \ Pseudo code rep! pp
Pseudo (Math + GAE + Natural
- ICFG CodeBERT L
code
/ Algorithm Analysis Self-Supervised GAE Code Retrieval
CodeBERT Model Training Node group
Pseudo code block
P Pcode ﬂ Q (e
— | Natural !
language Analyzer < ! i
Pt | | s tanguage P Search for k similar '
) L "' Encoding Decoder source code blocks
X Encoder @ ®)
() Source code block 1

=

J Math
Pseudo cod Pcod $
seudo code Expression

ICFG

Source code block 2

Source code block n

Source code ICFG

Figure 1: Workflow of PC2SC

.

2 OVERVIEW

This section presents the overall workflow of PC2SC, detailing its core components and how it
retrieves algorithm implementations from source code. A detailed example illustrating the mapping
between pseudo-code and source code is provided in Appendix A.5.

Figure 1 illustrates the workflow of PC2SC. Given an algorithm’s pseudo-code as input and a code-
base as the search database, PC2SC retrieves fine-grained code snippets corresponding to the al-
gorithm’s implementation. The retrieved snippets may consist of a function, selected code blocks
within a function, or multiple interconnected functions across files.

PC2SC consists of three core components: (1) Algorithm Analysis: Converts pseudo-code into p-
code, a structured representation in p-language, which explicitly encodes control flow, mathematical
expressions, and natural language descriptors. A static parser extracts ICFGs, mathematical opera-
tors, and textual descriptions, (2) Representation Learning: Applies self-supervised graph learning
using a GAE with a GCN to generate vector representations for p-code and source code. Each node
embedding captures mathematical, structural, and natural language features for similarity detection
and (3) Search and Retrieval: Computes semantic similarities between pseudo-code and source code
nodes, clustering matched code snippets based on ICFG connectivity. A ranking function scores
fragments based on structural coherence and query coverage, ensuring highly relevant results.

By integrating graph-based representation learning with semantic search, PC2SC achieves accurate
and language-independent retrieval of algorithm implementations across Java and C.

3 AUTOMATIC ALGORITHM ANALYSIS

Algorithms are commonly described using pseudo-code, which conveys computational logic in a
structured yet human-readable format. This section presents our automated approach for extracting
three key features—control flow, mathematical expressions, and natural language descriptions—to
enable precise algorithm-to-code mapping.

3.1 THREE KEY FEATURES IN ALGORITHM DESCRIPTIONS

Algorithms inherently contain three fundamental types of information: (1) Control flow: The se-
quence and structure of computational steps, (2) Mathematical expressions: Computation-specific
formulas and operators, and (3) Natural language descriptions: Informal explanations of computa-
tional intent. The control flow of an algorithm typically falls into one of three categories Cormen
et al. (2009); Xu (2017): Sequential execution, Conditional branching (i f-else), and Iteration
(while, for, repeat—until). Pseudo-code frequently combines control flow with mathemati-
cal operations and natural language explanations, making it a semi-structured representation.

To enable automated analysis, we introduce p-language, a structured representation that explicitly
annotates control flow, mathematical expressions, and natural language elements within pseudo-
code. A static analyzer extracts these features and converts pseudo-code into p-code, which serves

Published as a conference paper at ICLR 2025

as an intermediate representation for further analysis. The full p-language grammar and parsing
rules are detailed in Appendix A.6.

3.2 P-LANGUAGE AND ITS STATIC ANALYZER

To facilitate automated pseudo-code analysis, we designed p-language, which explicitly introduces
keywords to mark control flow structures. The p-language grammar defines key components, includ-
ing, Mathematical expressions, denoted using ‘$$’ markers, Natural language descriptions enclosed
within ‘@ @’ markers, and Control structures, explicitly represented using standard keywords such
as ‘if’, ‘while’, ‘for’, and ‘return’. A static analyzer parses p-code and constructs ICFGs, where
nodes correspond to control flow statements, mathematical operations, and natural language descrip-
tions. Unlike traditional source code ICFGs, p-code ICFGs do not contain implementation-specific
syntax but instead retain algorithmic structure. Extended details on ICFG construction and node
representation can be found in Appendix A.7.

3.3 AUTOMATICALLY CONVERTING PSEUDO-CODE TO P-CODE

We developed a learning-based approach to convert pseudo-code into p-code by classifying state-
ments into mathematical expressions or natural language descriptions. To train this classifier we
use code comments as labeled natural language descriptions and source code statements as labeled
mathematical expressions, and we employ a semi-supervised label propagation algorithm Zhou et al.
(2003), which refines predictions by jointly considering labeled and unlabeled data distributions.
Using this method, we automatically annotate pseudo-code and generate its p-code representation
without requiring manual intervention. The classifier training process and label propagation method
are detailed in Appendix A.8.

4 REPRESENTATION OF CODE AND ALGORITHMS

We construct a unified representation for both p-code and source code to enable effective algorithm-
to-code search. We convert both representations into ICFGs and extract each node’s mathematical
and natural language features. We then apply a GNN framework, namely the GAE Kipf & Welling
(2016), to learn a shared embedding space, ensuring meaningful comparisons between p-code and
source code representations.

4.1 COMPARING P-CODE AND SOURCE CODE

P-code facilitates the automated extraction of three key features essential for algorithm retrieval.
First, it captures control flow, which defines the logical execution order, including loops and branch-
ing structures. Second, it extracts mathematical expressions, representing the operators and compu-
tations that characterize the algorithm’s numerical properties. Third, it incorporates natural language
descriptions, providing human-readable explanations of the computational steps. Since different al-
gorithms may exhibit similar ICFG structures, additional node features are integrated to enhance
differentiation. These include natural language semantics, encoded using CodeBERT Feng et al.
(2020), and explicit representations of mathematical operations to preserve numerical computations.

CodeBERT encodes both source code and natural language descriptions into a shared vector space,
enabling cross-modal similarity detection. We apply different encoding strategies for p-code and
source code. Further details on ICFG construction and mathematical feature encoding are provided
in Appendix A.9.

4.2 TRAINING A MODEL FOR ICFGS VIA SELF-SUPERVISED LEARNING

We utilize a Graph Autoencoder (GAE) framework to encode the control flow structure of both
p-code and source code. This self-supervised learning approach eliminates the need for human an-
notations and follows an encoder-decoder architecture. The framework consists of a Graph Encoder,
which employs a Graph Convolutional Network (GCN) to generate embeddings from input graphs,
and a Graph Decoder, which reconstructs the graph structure using the learned embeddings.

The training process leverages link prediction, where the model learns to predict whether an edge
should exist between nodes. To ensure balanced learning, we randomly sample non-existing edges
as negative samples. Further details on the GCN encoder, training objective, and loss function are
provided in Appendix A.10.

Published as a conference paper at ICLR 2025

5 CODE RETRIEVAL

PC2SC retrieves algorithm implementations by searching for semantically similar code fragments
based on pseudo-code queries. This process consists of two main steps: (1) Matching nodes between
p-code and source code, and (2) Grouping nodes into meaningful code fragments.

5.1 MATCHING NODES

Given a pseudo-code query, we first convert it into p-code and generate its corresponding ICFG
(Section 3.2). The source code database is also represented as ICFGs (Section 4). To identify
relevant source code, we compute cosine similarity (S¢) between each p-code node (elP) and source
code node (ef):

. P oS
Sc(ef ef) = ——2—. 1
ot) = P Ties W

Cosine similarity measures the semantic closeness of vector embeddings in the shared representation
space. For efficient large-scale retrieval, we use FAISS !, an approximate nearest neighbor search
tool, to index the source code embeddings. The top & most similar source code nodes are selected
as candidate matches. Further details on FAISS indexing and vector-based retrieval are provided in
Appendix A.11.

5.2 NODE GROUPING

Once relevant source code nodes are matched, we group them into coherent code fragments. We em-
ploy agglomerative hierarchical clustering Han et al. (2011) to merge nodes based on their proximity
in the source code ICFG. The distance metric for merging clusters is defined as:

distance = max{sp(z,y) : x € C1,y € Ca},)
where sp(x,y) is the shortest path distance between nodes = and y. If no path exists, the distance
is set to oo, and clusters remain separate. We rank candidate clusters using a scoring function that
prioritizes high query coverage and structural coherence:

1stance

where QC is the number of p-code nodes covered, and distance’ is the largest shortest path within
the cluster. This ensures that closely connected, semantically relevant code fragments are ranked
higher. Additional details on clustering, distance metrics, and ranking functions are included in
Appendix A.12.

6 EVALUATION

To assess the effectiveness of PC2SC, we designed a comprehensive evaluation addressing four key
research questions: RQ1: Can PC2SC effectively retrieve algorithm implementations from source
code? RQ2: How does PC2SC compare to state-of-the-art code search models? RQ3: Does PC2SC
generalize across different programming languages? RQ4: What is the contribution of individual
features (control flow, mathematical expressions, and natural language) to retrieval accuracy?

6.1 EXPERIMENTAL SETUP AND IMPLEMENTATION

To evaluate PC2SC, we curated a dataset consisting of pseudo-code descriptions of algorithms and
their real-world implementations in Java and C. The dataset includes 103 algorithm descriptions
from Introduction to Algorithms Cormen et al. (2009) and The Algorithm Design Manual Skiena
(1998). The source code implementations were collected from two major repositories: (1) The
Stony Brook Algorithm Repository, which provides real-world algorithm implementations across 67
C projects and 27 Java projects, and (2) A set of 20 additional GitHub projects comprising 10 Java
and 10 C repositories. These GitHub repositories were selected based on several criteria, including
originality (not forks), project size exceeding SMB, active maintenance, at least 1000 GitHub stars,
and compatibility with Atlas for ICFG generation. The full dataset selection criteria and project
filtering process are detailed in Appendix A.19.

We first converted the pseudo-code descriptions into p-code to process the dataset using a trained
classifier. The classifier was trained using a labeled dataset consisting of source code comments (as

"https://github.com/facebookresearch/faiss

https://github.com/facebookresearch/faiss

Published as a conference paper at ICLR 2025

natural language labels) and executable code statements (as mathematical expressions). We then
applied the Label Propagation Algorithm from the Scikit-learn library to automatically annotate the
pseudo-code. The labeled pseudo-code was then parsed into ICFGs using PC2SC’s static analyzer,
which was implemented in C and adheres to the structured grammar of p-language (Section 3.2).
The same process was applied to Java and C source code implementations to extract their corre-
sponding ICFGs.

To train the Graph Autoencoder (GAE) for representation learning, we used PyTorch Geometric with
a two-layer Graph Convolutional Network (GCN) encoder. Each layer generated 512-dimensional
embeddings, and training was performed using the Adam optimizer (n = 0.01) with a batch size of
2048. The dataset was split into 80% training and 20% validation, and early stopping was applied
when validation performance plateaued. We trained three models: one exclusively on C code, one
on Java code, and a mixed-language model trained on both.

We integrated FAISS, an approximate nearest neighbor search framework, for efficient search and
retrieval to index and retrieve relevant source code fragments. We computed cosine similarity (Sec-
tion 5.1) between the p-code embeddings and the indexed source code embeddings, selecting the top
100 candidates per query. Further details on model training, hardware configurations, and hyperpa-
rameter settings are provided in Appendix A.15.

6.1.1 EXPERIMENTAL DESIGN

To systematically evaluate PC2SC’s retrieval accuracy and generalization capabilities, we designed
three experimental settings:

1. Single Project Search (Exp 1): This experiment measured PC2SC’s ability to retrieve an algorithm
implementation within a single project. This scenario reflects a typical use case where a developer
investigates a specific library or legacy codebase to locate an algorithm implementation. The Stony
Brook dataset was used for the experiment, as it provides a ground truth for which algorithms are
implemented in each project, allowing for precise evaluation.

2. Multi-Project Search (Exp 2): This experiment assessed PC2SC’s effectiveness in retrieving an
algorithm across multiple projects. This scenario simulates a practical use case where a developer
searches for an algorithm implementation across multiple repositories, such as in a company’s in-
ternal codebase. The experiment was conducted on the Stony Brook dataset, testing how effectively
PC2SC can locate algorithm implementations when multiple projects are available.

3. GitHub Search (Exp 3): To evaluate PC2SC’s generalization ability in real-world open-source
projects, we tested its performance on GitHub repositories. The experiment simulated a situation
where a developer searches for an algorithm implementation in large, publicly available repositories.
We used the GitHub dataset and queried the same 29 algorithms from the Stony Brook dataset to
measure retrieval effectiveness in a more diverse and unstructured environment.

These three experiments were designed to evaluate PC2SC’s retrieval accuracy, scalability, and abil-
ity to generalize across different languages and codebases. The experimental workflow is illustrated
in Appendix A.16.

6.1.2 BASELINE COMPARISONS

To benchmark PC2SC’s performance, we compared it against three baselines: (1) Naive Name-
Based Search: This approach searches for function names that match algorithm names across source
code files. If a match is found, the corresponding method is retrieved. This represents a simple
keyword-based search strategy but does not account for semantic or structural differences, (2) Deep
Code Search (DCS) Gu et al. (2018): A deep learning-based model retrieves code snippets using
a neural embedding model trained on code-comment pairs, and (3) OCoR Zhu et al. (2020): A
deep learning model that matches question-code similarity based on StackOverflow question-answer
pairs. We retrained both DCS and OCoR on our dataset for a fair comparison using their official
implementations. DCS was trained using extracted method names, API sequences, and tokens from
method bodies, while OCoR was trained using comment-code pairs converted from pseudo-code
descriptions. Details on baseline implementation, training configuration, and performance metrics
are provided in Appendix A.20.

Published as a conference paper at ICLR 2025

6.1.3 SEARCH RESULTS VERIFICATION AND EVALUATION METRICS

The output of PC2SC consists of ranked code snippets, while the baselines return ranked method-
level results. To validate correctness, two independent annotators manually reviewed the top 100
retrieved results per query. A code snippet was confirmed as an implementation if (1) its control
flow (e.g., loops and conditions) aligned with the pseudo-code, and (2) its variables and mathemat-
ical operators corresponded to those in the pseudo-code. Since real-world implementations often
introduce optimizations or structural variations, annotators also examined the broader logic to deter-
mine functional equivalence. Disagreements were discussed, and ambiguous cases were marked as
“unknown”.

To quantify the retrieval effectiveness of PC2SC, we employed two key evaluation metrics: First-
Rank (F-rank) and Mean Reciprocal Rank (MRR). The F-rank metric measures the position of the
first correctly retrieved result, where lower values indicate better performance. If no match is found
within the top 100 results, it is denoted as “>100". In contrast, MRR is computed as the mean of
the inverse F-rank across all queries, providing a measure of overall ranking effectiveness. Higher
MRR values indicate stronger performance in prioritizing relevant results at the top of the ranked list.
In Experiment 1 (Single Project Search), algorithm implementations were retrieved from multiple
projects, and we reported the mean F-rank across relevant projects. Full evaluation metrics and
tabulated results for all settings are presented in the Appendix (Tables 2, 3, 4, 5, and 6).

6.1.4 ABLATION STUDY: FEATURE CONTRIBUTION ANALYSIS

To evaluate the impact of individual components in PC2SC, we conducted an ablation study by
comparing three model configurations. The CB (CodeBERT only) variant relies solely on source
code and natural language embeddings for retrieval, omitting structural information. The CB+G
(CodeBERT + GAE) configuration extends this by incorporating control flow graph (ICFG) encod-
ing, capturing the execution structure of programs. Finally, the Full Model (PC2SC) integrates all
three key features, including control flow, mathematical expressions, and natural language represen-
tations, providing a comprehensive embedding for improved retrieval accuracy.

The results demonstrate that control flow encoding significantly improves retrieval accuracy for C
code, where textual representations alone are insufficient. Mathematical encoding enhances retrieval
for numerical algorithms, which rely on distinct computational patterns. Overall, the full model
consistently outperformed CB and CB+G, highlighting the importance of integrating all three feature
types for robust algorithm retrieval. The detailed ablation study results are provided in the Appendix
(Tables 2, 3, 4, 5, and 6).

6.1.5 SYSTEMS THAT CONDUCTED EXPERIMENTS

To convert pseudo code to p-code and to generate the ICFGs for source code and p-code, we used a
MacBook Pro with 4GB AMD GPU, 16 GB RAM, and 6 CPU Cores. We used Google Colab with
V100 GPU, 53 GB RAM, and 8 CPU Cores for GAE training and code retrieval.

Table 1: Summary of MRR Scores for Different Experimental Settings

Experimental Setting Language | PC2SC | DCS | OCoR | CB+G | CB
Java 0.819 | 0.307 | 0.346 | 0.650 | 0.517

Single Project Search (Exp 1) C 0.522 | 0.357 | 0.281 0472 | 0.34
Mixed 0498 | 0.304 | 0.289 | 0.349 | 0.243
Java 0.606 | 0.232 | 0.263 | 0.432 | 0.256
Multi-Project Search (Exp 2) C 0.316 | 0.192 | 0.149 | 0.265 | 0.184
Mixed 0.313 | 0.146 | 0.203 | 0.189 | 0.122
Java 0.580 | 0.113 | 0.132 | 0.427 | 0.217

GitHub Search (Exp 3) C 0.321 | 0.113 | 0.133 | 0.249 | 0.08
Mixed 0.345 | 0.081 | 0.098 | 0.229 | 0.087

6.2 RESULTS

To evaluate PC2SC’s effectiveness, we conducted a series of experiments comparing it with state-
of-the-art code search models across different datasets. The results demonstrate that PC2SC consis-

Published as a conference paper at ICLR 2025

tently outperforms existing methods by integrating control flow, mathematical features, and natural
language representations. We present key findings and discuss the broader implications of our ap-
proach in the main paper. Full numerical results, including ranking performance, are provided and
discussed in Appendix A.17.

6.2.1 PERFORMANCE ON STONY BROOK CODEBASE

The first set of experiments focused on retrieving known algorithm implementations from the Stony
Brook Algorithm Repository, a structured dataset with documented implementations of classical
algorithms. This setting allows us to measure how well PC2SC retrieves algorithms whose presence
in the codebase is already known, providing a controlled evaluation of retrieval effectiveness.

Our results indicate that PC2SC successfully retrieved correct implementations for 98.5% of queries
within the top 25 ranked results across Java, C, and mixed-language settings. Java implementations
achieved the highest retrieval accuracy, likely due to CodeBERTs pretraining on Java, enhancing its
ability to model source code features effectively. In contrast, C implementations exhibited slightly
lower performance, suggesting that real-world C implementations often introduce structural opti-
mizations that deviate from textbook-style pseudo-code.

In the single project search experiment, where retrieval is limited to a single repository, PC2SC
correctly identified the target algorithm in the top-ranked position for 86.2% of Java queries and 50%
of C queries. The slightly lower performance in C projects suggests that algorithm implementations
in C often span multiple functions or involve low-level optimizations, making direct matching more
challenging. However, in the multi-project search experiment, where retrieval was extended across
multiple repositories, PC2SC maintained high retrieval accuracy, retrieving correct implementations
for 96.9% of Java queries and 66.7% of C queries within the top 25 results. This suggests that
control flow and mathematical similarity remain strong indicators of algorithm presence even when
code is scattered across multiple projects.

A key observation is that PC2SC consistently outperforms deep learning-based baselines (DCS and
OCoR) across all settings. Compared to DCS, which relies on neural models trained on code-
comment pairs, and OCoR, which uses question-code similarity from StackOverflow, PC2SC ’s
incorporation of graph-based control flow learning and mathematical encoding provides a more
effective way to capture algorithmic semantics. Quantitatively, PC2SC outperformed DCS by 167%
and OCoR by 137% in Mean Reciprocal Rank (MRR) for Java code and achieved 46% and 86%
improvements in C, respectively. The mixed-language setting, where models were trained on a
combination of Java and C projects, further confirmed PC2SC ’s robustness, with performance gains
of 64% over DCS and 72% over OCoR.

6.2.2 PERFORMANCE ON GITHUB CODEBASE

To assess PC2SC’s applicability in real-world open-source projects, we conducted additional exper-
iments on a set of popular GitHub repositories. Unlike the structured Stony Brook dataset, GitHub
repositories contain diverse implementations, making retrieval more challenging due to differences
in coding style, documentation quality, and naming conventions.

Despite these challenges, PC2SC demonstrated strong generalization capabilities. It retrieved cor-
rect implementations for 82.7% of Java queries and 82.7% of C queries within the top 25 ranked
results. These results suggest that PC2SC remains effective even when dealing with unstructured,
real-world codebases where function names and documentation are less standardized.

One of the most striking findings is the performance gap between PC2SC and deep learning-based
baselines. On the GitHub dataset, PC2SC outperformed DCS by 413% and OCoR by 339% (Java
MRR) and achieved 184% and 141% improvements in C, respectively. This highlights the limita-
tions of text-based retrieval models, which struggle when function names and documentation vary
significantly from textbook pseudo-code. In contrast, PC2SC’s control flow graph representation
and mathematical encoding enable it to retrieve semantically similar implementations despite nam-
ing differences and optimizations.

However, we also observed cases where retrieval was more difficult. Some algorithms, particularly
those that rely heavily on external libraries or inline optimizations, proved challenging for PC2SC.
In these instances, pseudo-code descriptions failed to capture the full complexity of real-world im-

Published as a conference paper at ICLR 2025

plementations, leading to mismatches. Nonetheless, even in these cases, PC2SC’s top-ranked results
often contained partially correct implementations, which could still assist developers in locating rel-
evant code fragments.

6.2.3 FEATURE CONTRIBUTION ANALYSIS

To better understand the contributions of PC2SC’s core components, we conducted an ablation study
that isolates the effects of control flow, mathematical encoding, and natural language representations.
We compared three different configurations of our model to evaluate the impact of each feature. The
CB (CodeBERT only) configuration relies solely on source code and natural language features,
excluding structural information. The CB+G (CodeBERT + GAE) configuration enhances retrieval
by incorporating control flow graph encoding, capturing the program’s execution structure. The Full
Model (PC2SC) integrates all three features: control flow, mathematical expressions, and natural
language semantics, ensuring the most comprehensive representation for retrieval.

The results confirm that each feature plays a crucial role in improving retrieval accuracy. Control
flow encoding significantly improves retrieval for C code, where textual representations alone are
insufficient. Mathematical encoding enhances retrieval accuracy for numerical algorithms, where
distinct computational operations must be matched precisely. Across all settings, the full PC2SC
model consistently outperformed both CB and CB+G, indicating that combining all three feature
types is necessary for robust algorithm retrieval.

6.3 QUALITATIVE EXAMPLES OF RETRIEVED CODE

To illustrate how PC2SC retrieves algorithm implementations, Figures 5, 6, and 7 in the Appendix
provide examples of correctly retrieved code snippets from both structured repositories and unstruc-
tured GitHub datasets. These examples highlight key aspects of PC2SC’s retrieval mechanism.

First, pseudo-code and actual implementations often exhibit structural variations due to optimiza-
tions and coding conventions. However, despite these differences, control flow alignment remains
a dominant factor in retrieval, ensuring that algorithmic logic is preserved even when syntax varies.
Second, mathematical expressions and function mappings significantly enhance retrieval accuracy,
particularly in cases where source code variables differ in naming conventions from those in pseudo-
code. By encoding math operations explicitly, PC2SC ensures semantic consistency across different
representations of the same computation. Third, semantic alignment between pseudo-code descrip-
tions and source code comments plays a crucial role in refining search results. The joint encoding of
natural language descriptions and control flow structures allows PC2SC to bridge the gap between
high-level algorithmic descriptions and implementation details.

A more detailed discussion of these retrieval examples, including failure cases and challenges en-
countered in mapping pseudo-code to source code, is provided in Appendix A.18.

7 CONCLUSIONS

We presented PC2SC, a framework for mapping pseudo-code to source code and retrieving algo-
rithm implementations from real-world open-source projects. PC2SC integrates automatic algo-
rithm analysis, representation learning, and vector-based retrieval to encode and match control flow,
mathematical expressions, and natural language semantics. Our evaluation shows that PC2SC ef-
fectively retrieves algorithm implementations in both C and Java, identifying 74 implementations
from 87 queries in GitHub and 64 out of 65 in the Stony Brook dataset, with over 90% ranked in the
top 10. These results highlight its accuracy, scalability, and robustness in bridging the gap between
algorithmic descriptions and real-world code. Future work includes expanding PC2SC to support
additional languages (e.g., Python, C++, Rust), integrating execution traces for context-aware re-
trieval, and exploring pseudo-code generation to create a bidirectional mapping between algorithm
descriptions and implementations.

8 ACKNOWLEDGEMENT

The work is supported by the US National Science Foundation under grant 2313054.

Published as a conference paper at ICLR 2025

REFERENCES

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences from struc-
tured representations of code. In International Conference on Learning Representations, 2018.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning distributed repre-
sentations of code. Proceedings of the ACM on Programming Languages, 3(POPL):1-29, 2019.

Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. Infercode: Self-supervised learning of code represen-
tations by predicting subtrees. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), pp. 1186-1197. IEEE, 2021.

Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra. When deep learning
met code search. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 964—
974, 2019.

Antonio Carzaniga, Alberto Goffi, Alessandra Gorla, Andrea Mattavelli, and Mauro Pezze. Cross-
checking oracles from intrinsic software redundancy. Proceedings of the 36th International Con-
ference on Software Engineering - ICSE 2014, pp. 931-942, 2014. ISSN 02705257. doi: 10.
1145/2568225.2568287. URL http://dl.acm.org/citation.cfm?doid=2568225.
2568287.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Al-
gorithms, Third Edition. The MIT Press, 3rd edition, 2009. ISBN 0262033844, 9780262033848.

Yufei Ding, Xipeng Shen, Madanlal Musuvathi, and Todd Mytkowicz. TOP : A Framework
for Enabling Algorithmic Optimizations for Distance-Related Problems. Proceedings of the
VLDB Endowment, 8(10):1046-1057, 2015. ISSN 21508097. URL http://dl.acm.org/
citation.cfm?id=2794367.2794374.

Alexander Elyasov, W. Prasetya, Jurriaan Hage, Urko Rueda, Tanja E J Vos, and Nelly Condori-
Ferndndez. AB=A: execution equivalence as a new type of testing oracle. Sac, pp. 1559-
1566, 2015. doi: 10.1145/2695664.2695877. URL http://dl.acm.org/citation.
cfm?doid=2695664.2695877.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou,
Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and
natural languages. In Findings of the Association for Computational Linguistics: EMNLP 2020,
pp. 1536-1547, 2020.

Joshua Garcia, Yang Feng, Junjie Shen, Sumaya Almanee, Yuan Xia, and Qi Alfred Chen. A com-
prehensive study of autonomous vehicle bugs. In Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering, ICSE *20, pp. 385-396, New York, NY, USA, 2020.
Association for Computing Machinery. ISBN 9781450371216. doi: 10.1145/3377811.3380397.
URL https://doi.org/10.1145/3377811.3380397.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Deep code search. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), pp. 933-944. 1EEE, 2018.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
Jian Yin, Daxin Jiang, and M. Zhou. Graphcodebert: Pre-training code representations with data
flow. ArXiv, abs/2009.08366, 2021.

Rajarshi Haldar, Lingfei Wu, JinJun Xiong, and Julia Hockenmaier. A multi-perspective architecture
for semantic code search. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 8563-8568, 2020.

Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques. Elsevier,
2011.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
Codesearchnet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

10

http://dl.acm.org/citation.cfm?doid=2568225.2568287
http://dl.acm.org/citation.cfm?doid=2568225.2568287
http://dl.acm.org/citation.cfm?id=2794367.2794374
http://dl.acm.org/citation.cfm?id=2794367.2794374
http://dl.acm.org/citation.cfm?doid=2695664.2695877
http://dl.acm.org/citation.cfm?doid=2695664.2695877
https://doi.org/10.1145/3377811.3380397

Published as a conference paper at ICLR 2025

Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, Joseph Gonzalez, and Ion Stoica. Contrastive
code representation learning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and
Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 5954-5971, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.482. URL
https://aclanthology.org/2021.emnlp-main.482/.

Kisub Kim, Dongsun Kim, Tegawendé F Bissyandé, Eunjong Choi, Li Li, Jacques Klein, and
Yves Le Traon. Facoy: a code-to-code search engine. In Proceedings of the 40th International
Conference on Software Engineering, pp. 946-957, 2018.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy S
Liang. Spoc: Search-based pseudocode to code. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc., 2019a. URL https://proceedings.neurips.
cc/paper/2019/£file/7298332f04ac004a0caddcc69ecfofb6b-—Paper.pdf.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy S
Liang. Spoc: Search-based pseudocode to code. Advances in Neural Information Processing
Systems, 32, 2019b.

Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. Cclearner: A deep learning-
based clone detection approach. In 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 249-260. IEEE, 2017.

Xiang Ling, Lingfei Wu, Saizhuo Wang, Gaoning Pan, Tengfei Ma, Fangli Xu, Alex X Liu, Chun-
ming Wu, and Shouling Ji. Deep graph matching and searching for semantic code retrieval. ACM
Transactions on Knowledge Discovery from Data (TKDD), 15(5):1-21, 2021.

F Lv, H. Zhang, J. Lou, S. Wang, D. Zhang, and J. Zhao. Codehow: Effective code search based
on api understanding and extended boolean model (e). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 260-270, Nov 2015. doi: 10.1109/
ASE.2015.42.

George Mathew, Chris Parnin, and Kathryn T Stolee. Slacc: Simion-based language agnos-
tic code clones. In Proceedings of the ACM/IEEE 42nd International Conference on Soft-
ware Engineering, ICSE 20, pp. 210-221, New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450371216. doi: 10.1145/3377811.3380407. URL https:
//doi.org/10.1145/3377811.3380407.

Collin Mcmillan, Denys Poshyvanyk, Mark Grechanik, Qing Xie, and Chen Fu. Portfolio: Searching
for relevant functions and their usages in millions of lines of code. ACM Trans. Softw. Eng.
Methodol., 22(4):37:1-37:30, October 2013. ISSN 1049-331X. doi: 10.1145/2522920.2522930.
URL http://doi.acm.org/10.1145/2522920.2522930.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Micheline Bénédicte Moumoula, Abdoul Kader Kabore, Jacques Klein, and Tegawendé Bis-
syande. Large language models for cross-language code clone detection. arXiv preprint
arXiv:2408.04430, 2024.

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti, Tomoki Toda, and
Satoshi Nakamura. Learning to generate pseudo-code from source code using statistical ma-
chine translation. In Proceedings of the 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE 15, pp. 574-584. IEEE Press, 2015. ISBN 978150900024 1. doi:
10.1109/ASE.2015.36. URL https://doi.org/10.1109/ASE.2015.36.

11

https://aclanthology.org/2021.emnlp-main.482/
https://proceedings.neurips.cc/paper/2019/file/7298332f04ac004a0ca44cc69ecf6f6b-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7298332f04ac004a0ca44cc69ecf6f6b-Paper.pdf
https://doi.org/10.1145/3377811.3380407
https://doi.org/10.1145/3377811.3380407
http://doi.acm.org/10.1145/2522920.2522930
https://doi.org/10.1109/ASE.2015.36

Published as a conference paper at ICLR 2025

Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, and Martin Rinard. Automatic error elim-
ination by horizontal code transfer across multiple applications. Pldi, pp. 43-54, 2015. ISSN
03621340. doi: 10.1145/2737924.2737988. URL http://dl.acm.org/citation.cfm?
1d=2737924.2737988.

Steven S Skiena. The algorithm design manual, volume 2. Springer, 1998.

Yulei Sui, Xiao Cheng, Guanqgin Zhang, and Haoyu Wang. Flow2vec: Value-flow-based precise
code embedding. Proc. ACM Program. Lang., 4(OOPSLA), nov 2020. doi: 10.1145/3428301.
URL https://doi.org/10.1145/3428301.

Levent Toksoz, Mukund Srinath, Gang Tan, and C Lee Giles. Pseudoseer: a search engine for
pseudocode. arXiv preprint arXiv:2411.12649, 2024.

Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou Zhao, Jian Wu, and Philip Yu. Multi-
modal attention network learning for semantic source code retrieval. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 13-25. IEEE Computer
Society, 2019.

Ke Wang. Learning scalable and precise representation of program semantics. CoRR,
abs/1905.05251, 2019. URL http://arxiv.org/abs/1905.05251.

Ke Wang and Zhendong Su. Learning blended, precise semantic program embeddings. CoRR,
abs/1907.02136, 2019. URL http://arxiv.org/abs/1907.02136.

Xin Wang, Yasheng Wang, Yao Wan, Jiawei Wang, Pingyi Zhou, Li Li, Hao Wu, and Jin Liu. Code-
mvp: Learning to represent source code from multiple views with contrastive pre-training, 2022.
URL https://arxiv.org/abs/2205.02029.

Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. Deep learning code
fragments for code clone detection. In 2016 31st IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pp. 87-98. IEEE, 2016.

Yutao Xie, Jiayi Lin, Hande Dong, Lei Zhang, and Zhonghai Wu. Survey of code search based on
deep learning. ACM Trans. Softw. Eng. Methodol., 33(2), December 2023. ISSN 1049-331X. doi:
10.1145/3628161. URL https://doi.org/10.1145/3628161.

Zhiliang Xu. Pseudo Code Tutorial. https://www3.nd.edu/~zxu2/acms40390F11/
Pseudo_Code_Summary.pdf, 2017.

Jiachen Yang, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, and Shinji Kusumoto. Classification
model for code clones based on machine learning. Empirical Software Engineering, 20(4):1095—
1125, 2015.

Dejiao Zhang, Wasi Ahmad, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei Ma,
and Bing Xiang. Code representation learning at scale, 2024a. URL https://arxiv.org/
abs/2402.01935.

Shaojie Zhang, Yiwei Ding, Enrui Hu, Yue Yu, and Yu Zhang. Enhancing code representation
learning for code search with abstract code semantics. In 2024 International Joint Conference on
Neural Networks (IJCNN), pp. 1-8, 2024b. doi: 10.1109/IJCNN60899.2024.10650119.

Gang Zhao and Jeff Huang. Deepsim: Deep learning code functional similarity. In Proceed-
ings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE 2018, pp. 141-151, New
York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450355735. doi:
10.1145/3236024.3236068. URL https://doi.org/10.1145/3236024.3236068.

Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Scholkopf. Learning
with local and global consistency. Advances in neural information processing systems, 16, 2003.

Qihao Zhu, Zeyu Sun, Xiran Liang, Yingfei Xiong, and Lu Zhang. Ocor: An overlapping-aware
code retriever. In 2020 35th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pp. 883-894. IEEE, 2020.

12

http://dl.acm.org/citation.cfm?id=2737924.2737988
http://dl.acm.org/citation.cfm?id=2737924.2737988
https://doi.org/10.1145/3428301
http://arxiv.org/abs/1905.05251
http://arxiv.org/abs/1907.02136
https://arxiv.org/abs/2205.02029
https://doi.org/10.1145/3628161
https://www3.nd.edu/~zxu2/acms40390F11/Pseudo_Code_Summary.pdf
https://www3.nd.edu/~zxu2/acms40390F11/Pseudo_Code_Summary.pdf
https://arxiv.org/abs/2402.01935
https://arxiv.org/abs/2402.01935
https://doi.org/10.1145/3236024.3236068

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 RELATED WORK

With recent advancements in deep learning, extensive research has been conducted in the area of
code search, commonly called neural search. We categorize the related work into three sections:
(1) code search using natural language queries, (2) code search using code snippets, and (3) code
representation learning.

A.2 CODE SEARCH USING NATURAL LANGUAGE QUERIES

Natural language-based code search enables users to retrieve code snippets that match a given query
written in natural language. Early approaches designed ranking functions based on handcrafted fea-
tures Lv et al. (2015); Mcmillan et al. (2013). More recent research has formulated the problem as
a cross-modality search task, where the goal is to map both the natural language query and source
code into a shared semantic space Haldar et al. (2020); Ling et al. (2021); Gu et al. (2018); Zhu et al.
(2020); Bui et al. (2021). One of the first neural approaches, Deep Code Search (DCS) Gu et al.
(2018), employed LSTMs and Multi-Layer Perceptrons to encode both modalities, treating code
snippets and natural language descriptions as sequential data. Later works explored improved en-
coding models, including Transformer-based pre-trained models Cambronero et al. (2019); Husain
et al. (2019); Feng et al. (2020).

Recent advancements further incorporate structured code representations to enhance retrieval ac-
curacy. For instance, some works have leveraged Abstract Syntax Trees (ASTs) and AST-based
graphs Haldar et al. (2020); Ling et al. (2021); Guo et al. (2021), while others have used Control
Flow Graphs (CFGs) Wan et al. (2019). A recent survey on deep learning-based code search Xie
et al. (2023) provides a comprehensive overview of the field, categorizing models into three main
components: query semantics modeling, code semantics modeling, and similarity computation. The
study highlights how pre-trained models such as CodeBERT and GraphCodeBERT have improved
retrieval performance by leveraging large-scale pretraining on code datasets.

A.3 CODE SEARCH USING CODE SNIPPETS

Code search using code snippets as queries focuses on retrieving semantically similar code frag-
ments or detecting code clones. Traditional approaches rely on lexical and syntactic similarity met-
rics White et al. (2016); Yang et al. (2015); Li et al. (2017). FaCoy Kim et al. (2018) enhances
retrieval by using query alternation, while DeepSim Zhao & Huang (2018) extracts data flow and
control flow features to detect code similarities. SLACC Mathew et al. (2020) employs dynamic
analysis to find semantically equivalent implementations across different languages, such as Python
and Java.

Our work focuses on pseudo-code-based code search, which differs from natural language and code
snippet-based searches. Pseudo-code provides a structured representation of algorithms, describ-
ing their control flow and computations while remaining language-independent. Unlike raw code
snippets, pseudo-code abstracts away implementation details, making it a suitable input for cross-
language code retrieval. Prior works have explored pseudo-code generation from source code Oda
et al. (2015) and vice versa Kulal et al. (2019b), but to the best of our knowledge, ours is the first
approach to analyze and search for algorithm implementations using pseudo-code automatically.

A.4 CODE REPRESENTATION LEARNING

Advances in code representation learning have played a crucial role in improving code search tech-
niques. Inspired by word embedding techniques such as Word2Vec Mikolov et al. (2013), early
works like Code2Vec Alon et al. (2019) and Code2Seq Alon et al. (2018) encode code sequences
based on AST traversal paths. More recently, Transformer-based pre-trained models have demon-
strated superior performance. CodeBERT Feng et al. (2020) and GraphCodeBERT Guo et al. (2021)
apply masked language modeling and contrastive learning to learn contextual code representations.

A notable recent contribution, CodeSage Zhang et al. (2024a), introduced a two-stage pretraining
framework for code representation learning, significantly improving downstream tasks like code
summarization and retrieval. Similarly, CODE-MVP Wang et al. (2022) employs contrastive learn-
ing on multiple code representations, including ASTs, CFGs, and raw code, to improve semantic

13

Published as a conference paper at ICLR 2025

similarity detection. Another work, ContraCode Jain et al. (2021), improves code embeddings by
generating functionally equivalent variants of programs as adversarial examples, making models
more robust to syntactic changes.

Recent research has also focused on enhancing representation learning for code search. A study
presented at IJCNN 2024 Zhang et al. (2024b) proposes leveraging abstract code semantics to im-
prove code retrieval models, demonstrating how self-distillation techniques can refine representa-
tions. Additionally, research in contrastive pretraining has improved identifying functionally similar
code snippets across different programming languages Xie et al. (2023).

Our approach integrates these advancements by employing Graph Autoencoder (GAE)-based em-
beddings for p-code and source code, leveraging control flow, mathematical expressions, and natural
language descriptions. Unlike prior methods focusing solely on natural language queries or raw code
snippets, our method introduces a structured pseudo-code representation to bridge the gap between
algorithmic descriptions and real-world implementations.

A.5 EXAMPLE: MAPPING PSEUDO-CODE TO SOURCE CODE

To illustrate how PC2SC retrieves algorithm implementations, we consider a matrix multiplication
example. The pseudo-code for matrix multiplication, shown in Figure 2a, serves as a query, while
the retrieved implementation from an open-source Java project is displayed in Figure 2b. Despite
differences in structure and optimizations, PC2SC successfully identifies the relevant implementa-
tion by analyzing control flow, mathematical operations, and variable dependencies.

A key retrieval aspect is control flow alignment between pseudo-code and source code. The loop
structures at lines 4, 5, and 7 in the pseudo-code correspond to lines 1, 4, and 9 in the implementa-
tion, preserving the iterative computation logic. Additionally, the summation operation at line 8 in
the pseudo-code maps to line 13 in the implementation, confirming functional equivalence. How-
ever, real-world implementations often incorporate optimizations, such as loop unrolling at lines
12-20, which reduces iteration overhead and improves performance. Further, cache efficiency is
enhanced by storing matrix elements in a contiguous array (block at line 5), optimizing memory
access patterns.

This example demonstrates PC2SC’s robustness in handling structural variations, enabling it to re-
trieve functionally equivalent implementations even when optimizations are applied. By leveraging
graph-based control flow analysis, mathematical expression matching, and semantic feature extrac-
tion, PC2SC bridges the gap between abstract algorithm descriptions and real-world code imple-
mentations.

A.6 P-LANGUAGE GRAMMAR AND PARSING RULES

The p-language is designed to encode algorithmic structures explicitly, ensuring consistent repre-
sentation of control flow, mathematical expressions, and natural language descriptions. The formal
grammar of p-language, depicted in Figure 3, defines how algorithms are parsed into structured
representations. Each algorithm is expressed as a function containing a sequence of statements.
Statements are categorized into simple statements, such as function calls, return statements, and ex-
pressions, and compound statements, such as loops and conditionals. The grammar also includes
explicit markers for mathematical expressions enclosed in ‘$’ symbols and natural language descrip-
tions enclosed in ‘@’ symbols, allowing structured extraction of algorithm semantics.

By formalizing pseudo-code in this manner, PC2SC ensures that key algorithmic components, in-
cluding control flow constructs, mathematical operations, and textual descriptions, are preserved and
comparable to source code during retrieval.

A.7 ICFG CONSTRUCTION AND NODE REPRESENTATION

Interprocedural Control Flow Graphs (ICFGs) serve as the core representation for both p-code and
source code, enabling structured comparison during retrieval; unlike traditional CFGs, which rep-
resent low-level program execution paths, p-code ICFGs abstract algorithmic control flow while
omitting language-specific implementation details. Each node in the ICFG corresponds to a specific
computational step, including branching conditions, loop structures, function calls, and mathemat-
ical expressions. Edges represent execution flow between these components, ensuring an accurate
algorithm logic model.

14

Nelie BEN o I R N O S

NelieBEN e Y R A O R S

Published as a conference paper at ICLR 2025

MATRIX-MULTIPLY (A,B)
n = A.rows
let C be a new nXn matrix

i =1 ton
for j =1 ton
Cij = 0

for k = 1 to n
Cij = Cij + Qik - brj

return C

for

(a) Input: pseudo-code as a query

(int iBlock = 0; iBlock < blockRows; ++iBlock){

final int pStart = iBlock % BLOCK._SIZE;
final int pEnd = FastMath.min(pStart + BLOCK_SIZE, rows) ;
for (int jBlock = 0; jBlock < blockColumns; ++jBlock) {

final double[] block = blocks[iBlock * blockColumns+. . .;

final int gStart = jBlock % BLOCK.SIZE;
final int gqEnd = FastMath.min(qStart+BLOCK.SIZE, .. .);
int k = 0;
for (int p = pStart; p < pEnd; ++p) {
double sum = 0;
int q = qStart;
while (q < qEnd - 3) {
sum += block[k] = v[q] +
block[k + 1] = v[q + 1] +
block [k + 2] = v[q + 2] +
block[k + 3] = v[q + 3];
k += 4;
q += 4;}
while (q < qEnd) sum += block [k++] = v[q++];
out[p] += sum;}}

return out;}

(b) Output: code fragment that implements the algorithm
Figure 2: Example: Matrix Multiplication

15

Published as a conference paper at ICLR 2025

/I function
func: NAME parameters suite
. o0 %0y /I branch, loop and call
parameters: ’(’ para (, para)*)
para: NAME | expr

suite: ’{’ stmt+ "}’

s

if_stmt: ’if’ test suite ("elseif’ test suite)* [’else
suite]

while_stmt: ’while’ test suite
/] statement

b}

for_stmt: ’for’'—’for each’ expr ['to’|’downto
stmt: simple_stmt | compound_stmt expr] suite

compound_stmt: if stmt | whilestmt | re- repeat_stmt: ’repeat’ suite "until’ test

peat-stmt | for_stmt test: and_test | not_test | or_test

simple_stmt: expr | call_stmt | return_stmt return_stmt: “return’ [expr | call_stmt]

expr: natural_language | math
math: '$” MATH EXPRESSION °§’

natural_language: '@’ DESCRIPTION ’ @’
Figure 3: The grammar of the p-language

call_stmt: NAME parameters

Key differences between p-code and source code ICFGs include algorithm-centric representation,
where p-code ICFGs focus on algorithmic control flow rather than implementation details; mathe-
matical expression nodes, where instead of raw operations, mathematical expressions form explicit
graph nodes, facilitating direct comparison with source code computations, and interprocedural anal-
ysis, where function calls in p-code are resolved to their corresponding algorithm steps, creating a
structured call hierarchy.

By encoding algorithms in ICFGs, PC2SC establishes a graph-based retrieval approach, enabling
structural matching beyond simple textual or token-based similarity.

A.8 LABEL PROPAGATION FOR PSEUDO-CODE CLASSIFICATION

We employ a semi-supervised label propagation approach to accurately distinguish between math-
ematical expressions and natural language descriptions in pseudo-code. The classification process
begins with a small set of labeled examples, where code comments are treated as natural language
descriptions and executable statements are labeled as mathematical expressions. The remaining
unlabeled pseudo-code statements are then classified using a graph-based propagation algorithm.

A semantic similarity graph is constructed, where each node represents a pseudo-code statement,
and edges capture closeness between statements based on syntax and word embeddings. Labels
are iteratively propagated through this graph, ensuring that similar statements receive consistent
classifications. This method allows us to automatically infer correct labels for unlabeled pseudo-
code, preserving algorithmic semantics while reducing manual annotation effort.

A.9 ICFG CONSTRUCTION AND MATHEMATICAL FEATURE ENCODING

We incorporate mathematical feature encoding to differentiate algorithms effectively, categorizing
operations into semantically meaningful groups. Operators are classified into seven categories, treat-
ing equivalent operations as functionally identical.

Addition and subtraction include ‘+’ and ‘-’. Multiplication and division include ‘*’ and */’. Memory
access operators include de-referencing using ‘[and ‘]’. Modular arithmetic is represented by the
modulus operator ‘%’. Bitwise operators include ‘j;” and °;;’ shift operations. Logical operators

[P B Y) ’

include ‘&&’, “!’, and ‘| | . Relational operators include ‘;=", ‘j=’, ‘i’, ‘;’, ‘=", and ‘==".

By normalizing mathematical representations, PC2SC ensures that semantically equivalent com-
putations are recognized as similar, even if they differ in notation or implementation style. To
differentiate algorithms, we categorize mathematical expressions based on operator types, grouping
equivalent operations:

¢ Addition/Subtraction (+, —)
¢ Multiplication/Division (*, /)
* Dereference Operators ([,])

16

Published as a conference paper at ICLR 2025

¢ Modular Arithmetic (%)
* Bitwise Operators (<<, >>)
* Logical Operators (&&, !, | |)

* Relational Operators (>=, <=, <, >, ! =, ==)

A.10 GRAPH AUTOENCODER (GAE) TRAINING AND L0OSS FUNCTION

To learn robust embeddings for ICFGs, we train a Graph Autoencoder (GAE) using a Graph Convo-
lutional Network (GCN) encoder. The GCN propagates structural and feature information through
graph layers, producing embeddings that capture both local and global control flow relationships.
The encoder update rule is defined as:

ZUHD = ReLU (D—%AD—%X(@W“)) , @)
where A is the adjacency matrix, D is the degree matrix, X (®) is the node feature matrix, and W (©)
is the trainable weight matrix.

The decoder reconstructs the graph structure using a dot-product similarity function to predict node
relationships:

P(Ai,j‘zivzj) =o(2] %), o)

where o (-) is the sigmoid function, and z; and z; are node embeddings. The model is trained using
a binary cross-entropy loss function, optimizing reconstruction accuracy.

L=) (Aijlogd;;—(1—A;;)log(1—4,;)). (6)
i€V,jeV

Training Setup and Hyperparameters. The Graph Autoencoder (GAE) model used for embedding
generation is trained using an 80%-20% train-validation split. The model employs a two-layer Graph
Convolutional Network (GCN) encoder, each producing 512-dimensional embeddings. Training is
optimized using the Adam optimizer with a learning rate of = 0.01 and a batch size of 2048. To
prevent overfitting, early stopping is applied based on the validation loss.

A.11 VECTOR-BASED RETRIEVAL WITH FAISS

To efficiently match p-code nodes to source code, we use FAISS for approximate nearest neighbor
retrieval. FAISS enables scalable similarity search through the hierarchical navigable small world
(HNSW) graphs for efficient indexing, product quantization techniques for fast high-dimensional
vector comparisons and inverted file indexing to accelerate nearest-neighbor searches.

Given a query embedding, FAISS retrieves the top-k most similar source code nodes, ensuring fast
and scalable search over large repositories.

A.12 HIERARCHICAL CLUSTERING FOR CODE FRAGMENT CONSTRUCTION

After retrieving candidate nodes, we group them into coherent code fragments using agglomerative
hierarchical clustering. Initially, each retrieved node is treated as an individual cluster. Clusters are
then iteratively merged based on the shortest path proximity in the ICFG:

distance(Cy,Cs) = max{sp(z,y) | v € C1,y € Ca}. (7)

Clusters remain separate if their shortest path distance exceeds a predefined threshold, ensuring only
functionally related nodes are grouped.

A.13 RANKING CODE FRAGMENTS

Retrieved code fragments are ranked using a confidence score:

17

Published as a conference paper at ICLR 2025

1

S
distance’

v =QC + 8)

where QC represents the number of matched query nodes, and distance’ is the maximum short-
est path distance within the cluster. Fragments with higher query coverage and stronger structural
cohesion receive higher scores, prioritizing the most relevant implementations.

A.14 DATASET SELECTION AND PROCESSING

The dataset used in this study consists of 103 pseudo-code descriptions sourced from algorithm
textbooks. The corresponding source code is drawn from two primary repositories: the Stony Brook
Algorithm Repository, containing 67 C and 27 Java projects, and a curated set of 20 GitHub repos-
itories, comprising 10 Java and 10 C projects. GitHub repositories were selected based on multiple
criteria to ensure high-quality code representation. Only original repositories (not forks) were con-
sidered to maintain authenticity. Active maintenance was a key factor, with preference given to
repositories with recent commits. Additionally, projects with at least 1000 GitHub stars were in-
cluded to ensure relevance. Finally, all selected repositories were required to be compatible with
Atlas for Interprocedural Control Flow Graph (ICFG) extraction.

A.15 IMPLEMENTATION DETAILS

The GAE model was configured with two GCN layers, each producing 512-dimensional embed-
dings. The training was conducted using the Adam optimizer with a learning rate of = 0.01 and a
batch size of 2048. The dataset was split into 80% training and 20% validation, with early stopping
applied based on validation loss to prevent overfitting.

For search and retrieval, the FAISS (Facebook Al Similarity Search) library was used to perform
approximate nearest-neighbor searches efficiently. The retrieval process was based on cosine simi-
larity, ensuring robust matching between pseudo-code and source-code representations. The system
retrieved the top 100 most relevant results per query, allowing for high recall while maintaining
computational efficiency.

A.15.1 BASELINE IMPLEMENTATIONS AND TRAINING

To compare the effectiveness of PC2SC, we implemented and trained two state-of-the-art code
search baselines: Deep Code Search (DCS) and OCoR. The DCS model was configured to extract
method names, API sequences, and comments from source code to improve retrieval performance.
OCOoR, on the other hand, converted pseudo-code descriptions into comment-code pairs, enabling
retrieval based on textual and semantic similarity.

All methods were evaluated using two primary metrics: Mean Reciprocal Rank (MRR), which
measures how well the ranking system prioritizes correct results, and First Rank (F-Rank), which
indicates the position of the first correct result in the ranked output. These metrics provide a com-
prehensive assessment of retrieval effectiveness and ranking accuracy.

A.16 EXPERIMENTAL WORKFLOW

The experimental setup follows a structured workflow to evaluate PC2SC across different datasets
and programming languages. Figure 4 illustrates the organization of evaluations, detailing the num-
ber of queried algorithms and the corresponding dataset partitions. The workflow includes data
preprocessing, pseudo-code transformation into p-code, ICFG generation, model training, retrieval
evaluation, and performance comparison against baseline methods. Following this structured ap-
proach ensures a rigorous and reproducible evaluation of PC2SC ’s effectiveness in retrieving algo-
rithm implementations from real-world codebases.

A.17 DETAILED EXPERIMENTAL RESULTS

This section compares PC2SC with the baselines discussing the full numerical results, including
ranking performance.

18

Published as a conference paper at ICLR 2025

Experimental
Settings

Stony Brook code database GitHub code database
Experiment 1: Experiment 2: Experiment 3:
(one project) (multiple projects) (GitHub projects)

P D

. q Setting 3: . . Setting 3: . . Setting 3:
Setting 1: Setting 2: . Setting 1: Setting 2: . Setting 1: Setting 2:)
Mixed (Java+ C|
Java (29) c(18) M"‘e"(&"’)"a* 9 Java@e) cus) M"‘ed(ig"a" 9 ava(29) c(29) (;9) :

Figure 4: Experiment Workflow: Organization of evaluations. Numbers indicate the number of
queried algorithms.

A.17.1 STONY BROOK CODE DATABASE

Tables 2, 3 and 4 display our results for the settings of Java, C, and mixed languages, respectively,
on the Stony Brook code database. Each table lists the results for single project and multiple projects
(described in Section 6.1.1). Under Query in the tables, we listed the algorithms with known im-
plementations in the Stony Brook Algorithm Repository. Specifically, 29 and 18 algorithms are
implemented in the Stony Brook code database for Java and C language, respectively. There are 18
algorithms that have both C and Java implementations (Table 4). Columns DCS and OCoR reported
our baseline results, and Columns CB+G and CB provided results for our ablation studies (details in
Section 6.1.4).

Table 2: The F-rank results for experiments on Stony Brook code database for the setting of Java
language. For single project, the results show the mean over all the ground truth projects imple-
menting the algorithm. The best-performing MRR result is shown in bold.

single project multiple projects
No. Query PC2SC | DCS | OCoR | CB+G | CB | PC2SC | DCS | OCoR | CB+G | CB
1 any-segments-intersect 1 3.5 4.5 1.5 1.5 1 4 4 1 2
2 approx-vertex-cover 5 5 7 6 9 11 7 14 12 13
3 breadth-first-search 2.25 6 3 5 11.5 9 13 10 9 21
4 compute-transition-function 1 9 5 1 2 1 11 9 1 1
5 extend-shortest-paths 1.33 3.33 2.33 1.33 1.33 1 3 2 1 1
6 finite-automaton-matcher 2 12 6 2 2 5 9 6 12
7 floyd-warshall 1 12.33 4 1.33 3 1 21 14 2 4
8 graham-scan 1.5 15 2.5 2 35 1 2 3 3 5
9 hopcroft-karp 1.5 4 8.5 2.5 4 7 7 10 9 15
10 insertionsort 1 3 5 1 1 8 4 7 8 16
11 johnson 1.33 1033 | 1.33 1.33 1.33 1 12 2 3 5
12 kruskal 1 17.75 | 14.75 1.25 1.5 1 23 18 2 9
13 Ics-length 1 3 1 2 10 1 5 1 1 2
14 lu-decomposition 1 1 2 1 2 16 2 6 16 18
15 maybe-mst 1.2 11.4 10.2 1.2 1.4 1 17 15 3 17
16 || modular-linear-equation-solver 1 3 3 1 1 1 5 6 2 13
17 mst 1 1.2 1.2 1.2 1.4 1 1 1 1 1
18 mst-reduce 1.2 6 2.2 1.2 1.4 1 14 4 1 1
19 naive-string-matcher 1 4 3 1 1 12 6 4 12 12
20 optimal-bst 1.25 9.25 12 4 18.5 5 14 17 5 28
21 pivot 1 2 3 1 1 1 3 7 2 10
22 prim 1 2.25 3.25 2.25 35 1 3 3 1 5
23 print_all_pair_shortest_paths 1.5 4 9.5 3.5 6 2 7 10 3 6
24 quicksort 1 5 4 8 49 51 55 51 63
25 rabin-karp-matcher 1 5 3 1 1 4 8 5 5 6
26 radixsort 1 3 2 2 6 3 5 3 4 14
27 recursive-activity-selector 1.5 1.5 1.5 1.5 1.5 1 1 1 2 8
28 slow_all_pair_shortest_pair 4.5 7.25 9 4.5 7.25 8 11 13 8 11
29 matrix_multiplication 1.33 2.33 2 1.33 1.33 3 5 8 6 13
MRR 0.819 | 0.307 | 0.346 0.65 | 0.517 || 0.606 | 0.232 | 0.263 | 0.432 | 0.256

Experiment 1 (single project): In Tables 2 and 3, under single project, we observe that PC2SC
found the implementation for 29 out of 29 queries from Java projects and 17 out of 18 queries from
C projects in Stony Brook code database. Among these, we found implementation for 25 out of 29
queries from Java projects and 9 out of 18 queries from C projects as the first hit. Table 4 shows
that PC2SC can have the GAE models trained based on the mixed languages of Java and C language

19

Published as a conference paper at ICLR 2025

Table 3: The F-rank results for experiments on Stony Brook code database for the setting of C lan-
guage. For single project, the results show the mean over all the ground truth projects implementing
the algorithm. The best-performing MRR result is shown in bold.

single project multiple projects
No. Query PC2SC | DCS | OCoR | CB+G | CB | PC2SC | DCS | OCoR | CB+G | CB
1 any-segments-intersect 1 3 2 1 1 16 18 29 16 16
2 approx-vertex-cover 1 1 3 5 32 1 1 3 6 41
3 breadth-first-search 14 6 15 17 32 23 8 19 28 >100
4 extend-shortest-paths 1.33 3 2.33 1.33 1.33 1 4 2 1 3
5 graham-scan 19 15.5 10.5 19.5 50 >100 15 15 >100 | >100
6 hopcroft-karp 3 1 10 7 11 31 10 41 33 >100
7 insertionsort 1.5 1.5 1.5 1.5 1.5 1 19 24 1 1
8 kruskal 6.33 7 7.33 6.33 6.33 40 39 >100 40 >100
9 Ics-length 1 1 1 1 1 1 1 1 1 1
10 maybe-mst 72 14.4 16.2 8.2 8.6 17 21 26 19 >100
11 mst 1.4 72 8 1.4 22 7 10 14 9 9
12 mst-reduce 11.6 4.4 22 12 18.8 16 12 9 18 20
13 optimal-bst 1 4 6 2 2 11 14 14 12 13
14 prim 2 2.8 22 22 2.4 49 48 41 49 >100
15 quicksort >100 | >100 | >100 | >100 | >100 || >100 | >100 | >100 | >100 | >100
16 radixsort 1.5 2.5 4 1.5 1.5 1 3 5 1 2
17 || recursive-activity-selector 1 11 13.5 20 21.5 3] 43 47 35 >100
18 matrix_multiplication 4 6 7 4 9 10 12 15 12 14
MRR 0.522 | 0357 | 0.281 | 0472 | 0.34 0.316 | 0.192 | 0.149 | 0.265 | 0.184

Table 4: The F-rank results for experiments on Stony Brook code database for the setting of mixed
language. For single project, the results show the mean over all the ground truth projects imple-
menting the algorithm. The best-performing MRR result is shown in bold.

single project multiple projects

No. Query PC2SC | DCS | OCoR | CB+G | CB | PC2SC | DCS | OCoR | CB+G | CB
1 any-segments-intersect 10 12.33 16 10.33 | 12.33 12 16 19 14 18
2 approx-vertex-cover 1.5 1.5 3 1.5 2.5 1 3 4 2 5
3 breadth-first-search 6 6.2 42 6.2 9.4 12 13 6 13 16
4 extend-shortest-paths 1.33 4.33 2.16 3.16 5.33 1 5 2 3 5
5 graham-scan 9 7.25 9.25 9.25 10.25 14 12 16 14 16
6 hopcroft-karp 3.33 1.33 17 3.33 3.33 15 5 29 15 19
7 insertionsort 1.33 2 3.33 3 4.33 2 4 3 3 7
8 kruskal 1.28 6.42 7.14 2.14 3 2 13 12 2 3
9 Ics-length 1.5 35 1.5 3.5 5 1 3 1 3 4
10 maybe-mst 1.3 12.5 14.4 1.4 2.3 10 15 17 11 13
11 mst 1.4 2.3 1.4 1.4 32 3 3 2 4 7
12 mst-reduce 8.1 9.2 9.3 8.4 11.2 9 9 9 9 13
13 optimal-bst 22 6.4 8.2 3.4 4.2 6 12 14 6 7
14 prim 2.22 3 222 3.22 3.33 14 21 19 14 14
15 quicksort 10.33 | 13.33 12 12.33 15 56 59 57 57 71
16 radixsort 1.33 1.33 1.33 2.33 5 9 7 5 9 9
17 || recursive-activity-selector 1.25 9.25 11 2.25 2.5 4 13 17 6 9
18 matrix_multiplication 2 2.25 2.25 2.25 2.5 6 8 10 8 11

MRR 0.498 | 0.304 | 0.289 | 0.349 | 0.243 || 0.313 | 0.146 | 0.203 | 0.189 | 0.122

and retrieve the implementations from both Java and C projects. In this setting, PC2SC found the
implementations for 9 out of 18 queries as the first hit. Overall, across all the settings in Tables 2,
3, and 4, except for one query, PC2SC found all the implementations of known queries in the top
25 code snippets. In terms of MRR, PC2SC performed the best on Java, followed by the mixed
language model, followed by C. This is likely caused by the fact that CodeBERT is pre-trained on
Java, so it can model Java features better.

PC2SC outperforms the baselines DCS and OCoR for all the queries in Table 2, for most queries in
Table 3 except for queries No.3, No.5, No.6, and No.12, and for most queries in Table 4 except for
queries No.5 and No.6. Among these queries, DCS performed the best for queries No.3 and No.6
in Table 3 and No.5 and No.6 queries in Table 4 while OCoR performed the best on the remaining.
In these cases, the value of the F-rank is lower for PC2SC because PC2SC has more candidate code
fragments to rank—-the baselines report methods and PC2SC reports code fragments; in PC2SC,
one method can have several code fragments in the ranking. In return, PC2SC can more accurately
locate the algorithm implementations within a function or across multiple functions.

PC2SC achieved significantly higher MRR than both baselines. Specifically, PC2SC outperformed
DCS by a margin of 167% and OCoR by a margin of 137% for the setting of Java language. For
the setting of C language, PC2SC outperformed DCS by a margin of 46% and OCoR by a margin of
86%. For the setting of mixed language, PC2SC outperformed DCS by a margin of 64% and OCoR
by a margin of 72%.

20

Published as a conference paper at ICLR 2025

Table 5: The F-rank results for experiments on GitHub code database for the setting of Java lan-
guage. The best performing MRR result is shown in bold.

GitHub projects (Java)
No. Query PC2SC | DCS | OCoR | CB+G | CB
1 any-segments-intersect >100 | >100 | >100 | >100 | >100
2 approx-vertex-cover 1 5 3 2 4
3 breadth-first-search 1 7 5 1 2
4 compute-transition-function 2 4 5 4 13
5 extend-shortest-paths 4 21 12 5 10
6 finite-automaton-matcher 1 9 13 2 73
7 floyd-warshall 8 10 9 8 12
8 graham-scan 1 9 5 1 4
9 hopcroft-karp 1 7 5 3 8
10 insertionsort 1 2 3 1 2
11 johnson >100 | >100 | >100 | >100 | >100
12 kruskal 9 15 12 10 11
13 Ics-length 1 16 7 1 2
14 lu-decomposition 10 9 7 12 >100
15 maybe-mst 1 8 7 1 2
16 || modular-linear-equation-solver 13 18 21 13 >100
17 mst 1 16 12 2 4
18 mst-reduce >100 | >100 | >100 | >100 | >100
19 naive-string-matcher 1 11 21 2 3
20 optimal-bst >100 | >100 | >100 | >100 | >100
21 pivot >100 | >100 | >100 | >100 | >100
22 prim 1 6 6 4 9
23 print_all_pair_shortest_paths 1 6 11 1 1
24 quicksort 1 11 16 2 4
25 rabin-karp-matcher 1 3 2 1 2
26 radixsort 16 21 17 20 60
27 recursive-activity-selector 3 12 5 5 11
28 slow_all_pair_shortest_pair 1 14 9 1 2
29 matrix_multiplication 5 10 6 6 6
MRR 058 | 0.113 | 0.132 | 0427 | 0.217

Table 6: The F-rank results for experiments on GitHub code database for the setting of C and mixed
languages. The best performing MRR result is shown in bold.

GitHub projects (C) GitHub projects (mixed)
No. Query PC2SC | DCS | OCoR | CB+G | CB | PC2SC | DCS | OCoR | CB+G | CB
1 any-segments-intersect >100 | >100 | >100 | >100 | >100 || >100 | >100 | >100 | >100 | >100
2 approx-vertex-cover 10 13 13 12 18 3 8 5 9 12
3 breadth-first-search 3 >100 2 5 16 2 34 47 3 15
4 compute-transition-function 10 18 21 10 19 4 24 25 6 15
5 extend-shortest-paths 1 4 4 1 2 2 19 9 2 3
6 finite-automaton-matcher 2 12 8 3 6 2 10 11 4 16
7 floyd-warshall 4 14 12 6 13 6 22 20 10 18
8 graham-scan 5 13 7 8 28 4 10 6 6 26
9 hopcroft-karp 1 13 12 1 3 1 15 18 4 8
10 insertionsort 6 1 2 8 20 4 4 5 5 16
11 johnson 18 >100 | >100 24 32 26 >100 | >100 42 72
12 kruskal 41 12 16 42 48 12 14 13 15 18
13 Ics-length >100 | >100 4 >100 | >100 2 62 8 2 4
14 lu-decomposition 8 9 8 9 13 9 9 8 13 18
15 maybe-mst 3 14 10 4 20 2 16 12 4 15
16 || modular-linear-equation-solver >100 | >100 | >100 | >100 | >100 15 21 23 18 >100
17 mst 3 12 9 4 21 2 12 14 3 12
18 mst-reduce >100 | >100 | >100 | >100 | >100 || >100 | >100 | >100 | >100 | >100
19 naive-string-matcher 2 9 6 2 4 2 11 12 4 5
20 optimal-bst >100 | >100 | >100 | >100 | >100 || >100 | >100 | >100 | >100 | >100
21 pivot 23 38 42 26 >100 36 54 65 43 >100
22 prim 1 7 16 2 36 1 6 9 3 34
23 print_all_pair_shortest_paths 13 10 12 17 21 4 19 11 4 5
24 quicksort 1 11 9 1 18 1 12 12 1 14
25 rabin-karp-matcher 2 3 2 3 5 2 3 2 2 4
26 radixsort 15 24 26 18 45 18 21 19 21 52
27 recursive-activity-selector 2 9 13 2 16 3 9 7 4 14
28 slow_all_pair_shortest_pair 27 24 21 31 >100 4 16 12 4 6
29 matrix_multiplication 1 6 4 3 28 2 8 6 3 26
MRR 0.321 | 0.113 | 0.133 | 0.249 | 0.08 0.345 | 0.081 | 0.098 | 0.229 | 0.087

Experiment 2 (multiple projects): In Tables 2, 3, and 4, under multiple projects, we can observe
that within the top 25 of the ranked lists, PC2SC found the implementation for 28 out of 29 queries
from Java projects, 12 out of 18 queries from C projects, and 17 out of 18 queries from mixed
language projects in Stony Brook code database. PC2SC outperformed the baselines DCS and OCoR
for 40 queries out of the 65 queries. OCoR won for query No.10 in Table 2 and No.11 and No.16
in Table 4, and DCS performed the best for the remaining. In terms of MRR, PC2SC outperformed

21

Published as a conference paper at ICLR 2025

DCS by a margin of 161% and OCoR by a margin of 130% for the setting of Java language. For
the setting of C language, PC2SC outperformed DCS by a margin of 65% and OCoR by a margin
of 112%. For the setting of mixed language, PC2SC outperformed DCS by a margin of 114% and
OCOoR by a margin of 54%.

A.17.2 GITHUB CODE DATABASE

In Tables 5 and 6, under GitHub projects, we show that within the top 25 of the ranked lists, PC2SC
found the implementation for 24 out of 29 queries from Java projects, for 24 out of 29 queries from
C projects, and for 26 out of 29 queries from mixed language projects. Excluding the 3 queries
that none of the methods retrieved implementations in top 100 results, PC2SC outperformed the
baselines DCS and OCoR for 62 of the 84 queries. OCoR performed the best for 3 out of 84 queries,
while DCS performed the best for 1 out of 84 queries. We observed that the library calls and
complex data structure initialization could lead to the mismatch of pseudo code and source code in
our approach. In terms of MRR, PC2SC outperformed DCS by a margin of 413% and OCoR by a
margin of 339% for the setting of Java language. For the setting of C language, PC2SC outperformed
DCS by a margin of 184% and OCoR by a margin of 141%. For the setting of mixed language,
PC2SC outperformed DCS by a margin of 326% and OCoR by a margin of 252%.

Overall, we observe that the baselines perform well when the queries and code are more similar in
natural languages because the baselines are trained considering the queries to be natural language.
However, PC2SC considers the control flow, maths, and natural language features; thus, it is more
robust and general for all types of pseudo code queries.

A.17.3 ABLATION RESULTS

Tables 2, 3, 4, 5, and 6 show that PC2SC performs better than CB+G and CB. For example, under
single project, for 36 out of 65 queries, PC2SC outperformed CB+G, and for 45 out of 65 queries,
CB+G is better than CB. The results demonstrated that control flow and math information are useful.
We also found that for the setting of the Java language, CB can find algorithm implementations
better than our baselines. For the setting of the C language, CB performed poorly compared to the
baselines, as CB uses encoding from CodeBERT, and CodeBERT is not trained in the C language.
We observed that CB+G is significantly better than CB on the setting of C language, indicating that
the control flow is very useful for search.

A.18 EXAMPLES

In Figures 5, 6, and 7, we show a few examples of algorithm implementations found from the Stony
Brook code database and GitHub code database. The implementations of the floyd-warshall, Ics-
length, and insertion sort algorithms are the first ranked in PC2SC output list. The figures show
that pseudo-code and implementations are comparable but not exactly the same. For example, in
Figure 5b, lines 25 initialize the matrix sums (D at line 3 in Figure 5a), and lines 7—11 implement
lines 4-7 in Figure 5a. When manually confirming these code fragments, we found that the control
flow and math operators are important here. The figures also show that mapping the code and natural
language to the same vector space is important and helpful for search. For example, pseudo code
in Figure 6a initializes matrices using natural language at line 4, and in Figure 6b, source code at
lines 3—4 implement line 4 in Figure 6a. Pseudo code in Figure 7a uses “<” at line 5, and source
code in Figure 7b uses the function “less” at line 4. Since we map both code and natural language
to the same vector space using CodeBERT, PC2SC is able to retrieve such relevant code.

A.19 DATASET LIMITATIONS AND GENERALIZABILITY

While our dataset includes a variety of algorithms, it remains biased toward well-documented, classi-
cal algorithms from textbooks. Many real-world applications use highly domain-specific algorithms
(e.g., in cryptography, computational biology, or machine learning), which are not covered in our
dataset. Expanding the dataset to include more diverse algorithm descriptions from research papers,
software documentation, and technical blogs could improve generalizability.

Additionally, the open-source repositories we used primarily consist of educational and general-
purpose projects. Industry codebases, especially in large-scale commercial software, often contain
proprietary optimizations, unconventional naming conventions, and non-standard coding styles that

22

0NN B W~

Published as a conference paper at ICLR 2025

FLOYD-WARSHALL (W) | I
n = W.rows 2 final int[][] sums = new int[vertices.
D=W size ()][vertices .size ()];
for k =1 ton 3 for (int 1 = 0; i < sums.length; i++) {
for i = 1 to n 4 for (int j = 0; j < sums[i].length;
for j =1 to n j++) |
d_ij = min(d_ij ,d_ik+d3kj) sums[i1][j] = Integer MAXVALUE;
return D 1}
6 ...
(a) Pseudo code 7 for (in{t k = 0; k < vertices.size(); k+
+)
8 for (int i = 0; 1 < vertices.size ()
;o oi++) {
9 for (int j = 0; j < vertices.
size (); j++) {
10
11 final int summed = (ikCost !=
Integer MAXVALUE && kjCost !=
Integer MAXVALUE) ? (ikCost +
kjCost) : Integer MAXVALUE;
12
13 ...
14 return allShortestPaths;
15

(b) Real-World Implementation, a segment from a function

Figure 5: Floyd Warshall in Stony Brook code database

may affect retrieval performance. Future work could include evaluating PC2SC on closed-source
codebases through collaborations with software companies.

A.20 BASELINE SELECTION AND ALTERNATIVE APPROACHES

We selected DCS and OCoR as baselines due to their state-of-the-art performance in neural code
search and the availability of reproducible implementations. However, alternative approaches could
provide additional insights:

1.

A21

Code Clone Detection Tools (e.g., DECKARD, NiCad, AST-based matching): Traditional
clone detection methods might be effective at retrieving syntactically or structurally similar
functions but would struggle with conceptual algorithm matching when implementations
differ significantly in structure.

. Large Language Models (e.g., GPT-4, Codex, StarCoder): Modern LLMs trained on code

might offer zero-shot retrieval capabilities, but their reliance on pre-trained datasets means
they may not generalize well to less common or mathematically dense algorithms.

. Graph-Based Search Models: Future work could explore hybrid models that explicitly learn

interprocedural control flow patterns using more advanced graph neural networks (GNNs).

EVALUATION METRICS AND POTENTIAL BIASES

While we used F-rank and MRR as primary evaluation metrics, it is important to note potential
biases:

1.

Method-Level vs. Fragment-Level Ranking: Baseline methods return entire functions,
whereas PC2SC retrieves fine-grained code fragments. This means that if an algorithm is
spread across multiple functions, baselines may have an unfair advantage in F-rank scores.

. Ranking-Based Metrics vs. Precision-Based Metrics: Alternative ranking metrics like Nor-

malized Discounted Cumulative Gain (NDCG) could be useful to weigh the relevance of
multiple retrieved results rather than just the first correct result.

. Error Analysis on False Positives and Negatives: A deeper breakdown of misclassified or

partially correct results could help understand where retrieval errors occur. For example,

23

O 001U Wi —

NN R W =

Published as a conference paper at ICLR 2025

LCS-LENGTH(X,Y) 1 int n = a.length();
m = X.length 2 int m = b.length();
n = Y.length 3 int S[][] = new int[n+l][m+1];
let b[l..m,1..n] and c[0..m,0..n] 4 int R[][] = new int[n+]][m+1];
be new tables S int ii, jj;
for i = 1 to m 6 for(ii = 0; ii <= n; ++ii) {
cli,0] =0 7 S[ii][0] = 0;
for j = 0 to n 8 R[ii][0] = UP;}
c[0,j] =0 9 for(jj =05 jj <=m; ++jj) {
for i = 1 tom 10 S[OILjj1 = 0;
for j =1 to n 11 R[O][jj] = LEFT;}
if x_.i == y_j 12 for(ii = 1; ii <= n; ++ii) {
cli,j] = cl[i-1,j-1] + 113 for(jj = 1; jj <=m; ++jj) {
b[i,j] = ”\nwarrow” 14 if(a.charAt(ii—1) == b.
else if c[i-1,j] \geq c[i,j-1] charAt(jj-1)) {
cli.j] = cli-1.j] 15 SLii10jj1 = S[ii-11[jj-11
bl[i,j] = "\uparrow” + 1;
else if cl[i,j] = c[i,j-1]1 16 R[ii][jj] = UP_.AND_LEFT;}
b[i,j] = "\leftarrow” 17 else
return ¢ and b 18 S[ii]ljj1 = S[ii—-1]1[jj-1]
+ 0;
(a) Pseudo code 19 R[ii][jj] = NEITHER;}
20 if()S[{ii—I][jj] >= S[ii][jj]
21 S[ii10jj1 = S[ii-110jjl;
2 R[ii][jj] = UP;
23 if()S[ii][jj—1]>= S[iillij]
24 SLit10jj1 = S[iilljj-11:
25 R[ii][jj] = LEFT;}}}
26

27 return new String(lcs);

(b) Real-World Implementation, a segment from a
function

Figure 6: LCS length in Stony Brook Algorithm Repository

InsertionSort (A) 1 for (int 1 = 1; 1 < array.length; i++) {
A[0] = —\infinity 2 T insertValue = array[i];
for 1 = 2 to n 3 int j;
jo=i 4 for (j =1 —1; j >= 0 && less(
while A[j] < A[j - 1] insertValue , array[j]); j—) {
swap (A[j],A[j-11) 5 array[j + 1] = array[j];
j=13 -1 6
7 if (j =1 -1){
(a) Pseudo code 8 array[j + 1] = insertValue;
9
10 }
11 return array;

(b) Real-World Implementation, an entire function

Figure 7: Insertion sort in GitHub code database

24

Published as a conference paper at ICLR 2025

functionally equivalent but structurally different implementations might be unfairly penal-
ized in the ranking evaluation.

A.22 FUTURE WORK AND MITIGATION STRATEGIES

To further improve robustness and mitigate threats to validity, we suggest the following future di-
rections:

1. Expanding the dataset to include more diverse sources, such as research papers, competitive
programming datasets, and industry codebases.

2. Exploring hybrid retrieval methods that combine traditional program analysis techniques
with deep learning models.

3. Developing better ranking models that account for partial correctness and multiple function
implementations, beyond simple first-hit ranking.

4. Comparing PC2SC against large-scale code embedding models (e.g., CodeT5, GraphCode-
BERT) to assess the effectiveness of learned graph-based representations vs. transformer-
based embeddings.

These steps would provide a more comprehensive evaluation framework and further validate the
practical utility of PC2SC for real-world algorithm retrieval.

25

	INTRODUCTION
	OVERVIEW
	Automatic Algorithm Analysis
	Three Key Features in Algorithm Descriptions
	P-Language and Its Static Analyzer
	Automatically Converting Pseudo-Code to P-Code

	Representation of Code and Algorithms
	Comparing P-Code and Source Code
	Training a Model for ICFGs via Self-Supervised Learning

	Code Retrieval
	Matching Nodes
	Node Grouping

	Evaluation
	Experimental Setup and Implementation
	Experimental Design
	Baseline Comparisons
	Search Results Verification and Evaluation Metrics
	Ablation Study: Feature Contribution Analysis
	Systems that conducted experiments

	Results
	Performance on Stony Brook Codebase
	Performance on GitHub Codebase
	Feature Contribution Analysis

	Qualitative Examples of Retrieved Code

	Conclusions
	Acknowledgement
	Appendix
	RELATED WORK
	Code Search Using Natural Language Queries
	Code Search Using Code Snippets
	Code Representation Learning
	Example: Mapping Pseudo-Code to Source Code
	P-Language Grammar and Parsing Rules
	ICFG Construction and Node Representation
	Label Propagation for Pseudo-Code Classification
	ICFG Construction and Mathematical Feature Encoding
	Graph Autoencoder (GAE) Training and Loss Function
	Vector-Based Retrieval with FAISS
	Hierarchical Clustering for Code Fragment Construction
	Ranking Code Fragments
	Dataset Selection and Processing
	Implementation Details
	Baseline Implementations and Training

	Experimental Workflow
	Detailed Experimental Results
	Stony Brook code database
	GitHub code database
	Ablation results

	Examples
	Dataset Limitations and Generalizability
	Baseline Selection and Alternative Approaches
	Evaluation Metrics and Potential Biases
	Future Work and Mitigation Strategies

