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Yoshimura origami is a classical folding pattern that
has inspired many deployable structure designs. Its
applications span from space exploration, kinetic
architectures and soft robots to even everyday
household items. However, despite its wide usage,
Yoshimura has been fixated on a set of design
constraints to ensure its flat foldability. Through
extensive kinematic analysis and prototype tests, this
study presents a new Yoshimura that intentionally
defies these constraints. Remarkably, one can impart
a unique meta-stability by using the Golden Ratio

angle (cot'1.618~31.72°) to define the triangular
facets of a generalized Yoshimura (with n =3,
where n is the number of rhombi shapes along
its cylindrical circumference). As a result, when
its facets are strategically popped out, a ‘Golden
Ratio Yoshimura’” boom with m modules can be

theoretically reconfigured into 8™ geometrically
unique and load-bearing shapes. This result not only
challenges the existing design norms but also opens
up a new avenue to create deployable and versatile
structural systems.

This article is part of the theme issue ‘Origami/
Kirigami-inspired structures: from fundamentals to
applications’.

© 2024 The Author(s) Published by the Royal Society. All rights reserved.


http://orcid.org/
http://orcid.org/0009-0003-9050-5431
http://orcid.org/0000-0002-0355-1655
https://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2024.0009&domain=pdf&date_stamp=2024-10-03
https://doi.org/10.1098/rsta.2024.0009

Downloaded from https://royalsocietypublishing.org/ on 21 August 2025

1. Introduction

Deployable structures have garnered considerable interest over the past decades due to their
unique ability to transform from a compact volume to a larger scale, load-bearing shape [1-
3]. Their applications are diverse. For example, they have been the essential components for
satellites, exoplanet rovers and space telescopes [4,5]. They will continue to play a vital role
in the future for in-orbit fabrication [6,7] and space habit construction [8-10]. Here on Earth,
deployable structures are ideal for making military and civilian shelters [11,12] and are even
used to develop novel soft robots [13-16].

A successful deployable structure must meet multiple requirements. It should be efficient
in packing (aka high packing ratio), lightweight for easy transportation and load-bearing at its
final stage. To achieve these goals, researchers have explored various deployment approaches,
including pneumatic inflation [2,17,18], origami folding [19-23], rolling composite shells [24,25],
responsive materials [26-28] and multi-stable mechanics [29-31]. Furthermore, one can combine
some of these approaches to create innovative solutions. For instance, the combination of
pneumatic actuation, bi-stability and origami folding can enable rapid actuation, akin to the
Venus flytrap plant [32], and allow for metre-scale construction [33]. Integrating piezo-electric
patches onto composite shells can provide versatile actuation and shape control [34].

However, most deployable structures available today have limited capabilities in that they
can only achieve one targeted state. This constraint highlights the potential of a more versatile
solution. If a deployable structure can quickly morph into different load-bearing shapes, it
can be reconfigured on demand according to the dynamic working environment and desired
functionalities. This level of reconfigurability can significantly enhance its appeal. In the light of
this, we propose and examine a deployable boom structure with massive reconfigurability by
expanding the design space of Yoshimura origami.

The Yoshimura pattern is a classical origami design that naturally emerges from the buckling
mechanics of thin-wall cylindrical shells [35] (figure 1). When the cylinder is under axial
compression, a uniform tessellation of rhombus-shaped creases can develop on its surface.
Each rhombus consists of two triangular facets connected by a fold line along the cylinder’s
circumference. As the compression continues, the cylinder buckles along these crease lines, and
the two triangles in each rhombus fold inward, eventually packing the cylinder into a small
volume (figure 1). This buckling-induced crease pattern became the design basis for Yoshimura
origami, which has been made into deployable booms [37-40] and soft robotic spines [41-45].

Despite such wide usage, deployable Yoshimura has been fixated on a design rule in the
current literature: the shape of its triangular facets must be constrained by the number of
rhombus creases along the cylinder’s circumference. This rule can ensure the flat foldability
of Yoshimura. However, we showed that by intentionally breaking these established design
rules, one can significantly enrich the kinematic configuration space of Yoshimura and generate
a unique ‘meta-stability’. In this way, one can selectively pop out pairs of triangular facets to
settle the new Yoshimura into many different elastically stable and load-bearing configurations.
Note that this feature sacrifices the flat foldability, as the more generalized Yoshimura pattern
has a finite height when folded. Remarkably, and for the first time, we mathematically proved that,
for a Yoshimura pattern with three rhombi along its circumference (aka. n = 3 in figure 2), the required
triangular facet shape to attain such meta-stability follows the Golden Ratio (aka. cotf = ¢ = 1.618 in
figures 1 and 2). We refer to this new origami design as the ‘Golden Ratio Yoshimura’ and it can
become the foundation for those, as mentioned earlier, massively reconfigurable and deployable
structures.

In what follows, §2 details the design and kinematics of a Golden Ratio Yoshimura module.
Section 3 illustrates the meta-stability and configuration space of a larger scale boom structure
with multiple modules. Section 4 presents the fabrication and load-bearing test results of
three-dimensional-printed Golden Ratio Yoshimura samples. Finally, §5 ends this article with a
conclusion and discussion.
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Load-bearing Arc vT J CU

Figure 1. A big-picture overview of the Golden Ratio Yoshimura as a deployable and reconfigurable structure. (a) A
three-dimensional-printed, metre-scale prototype can be easily configured into different meta-stable shapes for different
purposes, including a fully folded (compact) configuration, a fully deployed configuration, a load-bearing arc or letters VT’
and ‘CU’ Notice the three-dimensional-printed sample weighs 225.6 g, and a second Yoshimura was used to finish the letter
‘T (b) The buckling pattern of a cylindrical thin shell reveals the origin of Yoshimura. Image adapted from Singer [36] with
permission.

2. Design and kinematics of the Golden Ratio Yoshimura

The Yoshimura pattern is a tessellation of mountain and valley folds such that a two-dimensional
sheet, upon folding, curls to form a closed shape resembling a cylinder. Figure 22 outlines
its layout, where valley creases align with the circumferential direction of the cylinder, and
the mountain creases are inclined relative to the valley ones. Such sector angle, 8, defines the
Yoshimura pattern’s overall shape and will play a central role later in the kinematic analysis.
Besides §3, L is the valley crease’s length and defines Yoshimura’s size; n is the number of rhombi
shapes (pairs of triangular facets) along the circumference direction. These three parameters
are sufficient to completely define the geometry of the Yoshimura. Moreover, we designate one
layer of rhombi creases as a module.

Traditionally, these three design parameters are not independent. Instead, they follow a
geometric constraint [41]:

_ (n-1)180°

B=90 o

, or 2nf3 = 180°. (2.1)
For clarity, we call such a design a ‘traditional Yoshimura’. This constraint ensures that, after
folding, the Yoshimura is stress free in its facets and has a zero height (aka flat foldability). For

this study, we focused on n = 3 design, so 8 = 30°.

However, what if Yoshimura defies this constraint? To this end, this study generalizes the
Yoshimura design by setting the sector angle 8 independent of n. We discovered that when g is
larger than the traditional value, the Yoshimura is no longer flat foldable but has a finite height
after folding, denoted as ‘folded-height’ h in figure 2. Moreover, this height is a function of the
dihedral angle 8 between the two triangular facets in each thombus so that:
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Figure 2. The design and kinematics of folded Yoshimura with a generalized design. (a) The crease pattern design highlights
the important parameters. r, number of rhombi along the circumference; L, length of the valley creases; and 3, sector
angle between the mountain and valley creases. (b) The correlations between facets dihedral angle 6, the normalized folded
height h/L and S.

h = Ltan f$sin 6. (2.2)

This dihedral angle in this folded configuration is also related to 8 and n through the following
equation:

- tan &
tan Bcos 6 = tan e (2.3)

The above relationship gives the lower bound for the generalized Yoshimura design: g > %,

and any smaller 8 value would not be geometrically possible, otherwise h and 6 become
negative. The traditional Yoshimura designs precisely follow this lower bound so that h = 0
and 6 = 0, giving its flat foldability. On the other hand, when § increases, the dihedral angle

and folded height increase rapidly (figure 2b). For example, when § = 45°, 6 reaches 55 and
h/L = 0.8.

(a) Popping and the emergence of Golden Ratio Yoshimura

The Yoshimura is often used in folded configurations due to its soft and conformable nature
for robotic manipulations and locomotion tasks. It is dexterous enough to be manipulated (or
actuated) into complex curvatures. However, a fully folded and soft Yoshimura has minimal
load-bearing capacity. For the first time, this study introduces ‘pop-out’ configurations to
the generalized Yoshimura, allowing it to obtain complex and stable shapes with significant
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load-bearing capacity. The idea is to carefully buckle-out the valley creases (or pushing the
valley folds in the mid-section of a module outwards) so that the rhombus shape inverts its
curvature and stabilizes into a new configuration (figure 31). Due to this transition, the valley
fold in the rhombus ‘disappears’, and a new vertical fold (or bend) emerges. Remarkably,
popping out/in a rhombus is an isolated event, and it would not induce popping in the nearby
rhombus. Therefore, one can achieve multiple combinations pop-outs and create a deployable and
reconfigurable structure. In this study focusing on n = 3, a generalized Yoshimura module has

2% = 8 distinct configurations that can be categorized into four groups: 0 pop-out, 1 pop-out, 2
pop-out and 3 pop-out. All of these configurations are elastically stable, and we refer to this as
‘meta-stability’. The following sections describe the kinematic characteristics of 1 and 2 pop-out
configurations in detail.

(i) 1 pop-out kinematics

A 1 pop-out configuration emerges when a single-valley crease is pushed outwards from the
mid-section of a module. Figure 3b details the geometry of a 1 pop-out module from three
different viewing angles. The isometric view highlights three essential features to explain its
kinematics. A top interface triangle ABC, a mid-surface OPQR and a base interface triangle
A'B'C'. Here, we made a critical assumption that the shape of the top and base interface triangle
remains fixed and equilateral, regardless of the popping configurations. In this way, one can seamlessly
assemble multiple modules at different configurations into a more complex structure (which we
will discuss in the later sections.)

The top view in figure 3b clearly shows the kite-shaped mid-surface OPQR. Here, the valley
crease PR is popped out, and we needed two angles to define this kite shape: @ and #, which
follows the relationship:

sina

sinzy = 5

(2.4)

Here, n must lie in [O, g] to ensure a real-valued solution for angle a. To further correlate these

two angles to the dihedral facet angle (6) and mountain crease incline angle 8, we started by
calculating the height of the original triangular facet (w as in figure 2), in that:

w = %tanﬁ. (2.5)
Then, using vertex O as the reference point, we can calculate the positions of vertices A, B and R

relative to O:

o

=[0, 0, 0], (Reference)

A = [0, Lcosn + %COS a, w],

B = [%, wcos B, wsin 6],
R =[Lsiny, Lcos, 0]. (2.6)

Based on the above-mentioned assumption on fixed interface triangles, the distance between
vertices A and B does not change after pop-out; therefore:

2 _ 2 _(L_V L : 2
|IA-BI° =L" = (7_0) + (wcos@—(Lcosn+7cosoc)) + (wsin - w)”. 2.7)
Simplifying this equation with the help of equation (2.5) yields:

2tan? B(1 —sin 6) + (2cos 7 + cosa)’ — 2tan fcos B(2cos 7 + cosa) = 3. (2.8)
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Figure 3. The kinematics of 1 and 2 pop-out Yoshimura modules. (a) Paper models illustrating the sequence of popping
out the horizontal valley fold lines to create new configurations. (b) The detailed view of a 1 pop-out module, highlighting
several important geometric features used in the kinematic analysis, such as the top and base interface triangles,
mid-surface, tilt angle y and dihedral angle between facets . (¢d) The correlation between y, 6 and 3, highlighting the
Golden Ratio Yoshimura design. (e—g) A similar kinematic analysis on a 2 pop-out module.

Similarly, the distance between the vertices R and B does not change so that,

2 2
IR-BI? = (2c§sﬁ) = (Lsinn—%) + (Lcos - weos 6)” + (0 - wsin 6)°. 2.9)

Simplifying again with the help from equation (2.5) yields,

1-siny

tan fcos 6 =
cos?n

(2.10)
Using equations (2.4)—(2.10), we could fully define the geometry of a 1 pop-out Yoshimura
module. These equations are highly nonlinear and transcendental, so they were solved
numerically. Figure 3c summarizes the numerical solution showing the correlation between
the dihedral facet angle 6 and the Yoshimura design parameter . It is worth noting that, in the
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0 pop-out configuration as shown in figure 2, the dihedral angle 0 is the same for all three pairs
of triangular facets. However, in the 1 pop-out configuration, 8 becomes 90° for the popped
facets (aka PAR and PA'R pair in figure 3b), while the dihedral angle 6 of the other two facet
pairs (OBR-OB'R and OCP-OC'P) are non-zero and related to 3.

To understand the lower limit of sector angle § that allows this kinematically admissible
configuration, we obtain the closed-form solution of § when the dihedral angle 6 vanishes. By
substituting zero dihedral angle condition (6 = 0), we observe from the top view of figure 3b

that = g - 2. Combining this observation with equation (2.4) implies that §8 is constrained

to the interval [%, %] Applying these conditions to equation (2.10) and using the identity

Tt

5 —x) = sin(x) yields:

COS(

2tan?B + (2sin(2B) + cosa)® — 2tan B(2sin(2B) + cos &) = 3. (2.11)

We then substitute a from equation (2.4) into equation (2.11), leading to a polynomial in tan :
(tanﬁ - qfl) (tan B - o) (5tan4ﬁ + 4,5tan’ B - 2tan® B — 4,/5tan § - 7) = 0. (2.12)

Here, ¢ denotes the Golden Ratio, given by # Given the constraints on §, tan 8 must

lie within the interval [2—\/?_), 1]. Consequently, the only valid solution for equation (2.12)
is tanf = % This implies cotf = ¢, which leads to 8= 31.72°. Hence, no solution exists for

B < 31.72°. This result is intrinsically linked to the Golden Ratio and guided us to define the
‘Golden Ratio Yoshimura” pattern, where the dihedral angle 6 of the folded facet pairs reduces
to zero. As a result, the vertices B and C on the top interface triangle will coincide with their
counterpart B’ and C’ on the base triangle (i.e. the top surface and base triangle share a common

edge). For any 8 < 31.72°, the two adjacent facets PCO and PC'O would interfere and create
geometric frustration, resulting in unreliable mechanics.

The tilt angle (y) is defined as the angle between the top and base interface triangle. It can
be calculated with the help of a vector joining the mid-point of BC and vertex A. The relative
coordinates of the mid-point of BC (let us say E) are,

E =0, wcos 6, wsin ] . (2.13)

Now, the angle between this vector EA and the mid-section plane is half of the tilt angle, which
can be found as,

w — wsin 6 _ 1-sinf
Lcosn + écos a—wcos® 2tanfcosn+tan Bcosa —cos6

tan

NI

(2.14)

The above equation explains the relation of the tilt angle for a generalized Yoshimura that
depends on the pattern angle, 5, dihedral angle, 6, and the angle #. This tilt angle for our
Golden ratio Yoshimura is (Vgold)1 - p/o = 41.8°, and it is interestingly the maximum for the n=3
design.

(ii) 2 pop-out kinematics

A 2 pop-out configuration emerges when two-valley creases in the mid-section of a module are
pushed outwards. One can reach this configuration either by popping out an additional valley
fold from a 1 pop-out state or popping in a rhombus from the 3 pop-out configuration. Figure
3e details the geometry of this configuration with three different views. Again, we assume the
top and base interface triangles remained unchanged.

!
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From the top view, one can see that mid-surface OPQSR —where the valley creases PR and
RO are popped out—has a square shape, which is relatively more straightforward to calculate
than the 1 pop-out case. To correlate the dihedral facet angle 6 with the facet sector angle 5, we
start by calculating the positions of vertices B and C relative to the mid-point of PO crease so
that:

C =[0, —wcos6, wsinf],

_LL]

B =7,§,w.

(2.15)

Here, the distance between the vertices B and C is conserved according to the fixed interface
triangle assumption,
L

IB-CI? = %= (%—0)2 + (7—(—wcos 6))2 + (w—wsin 6)°. (2.16)

Simplifying this equation yields the following nonlinear relationship
tan® (1 - sin 6) + tan fcos 6 = 1. (2.17)

The dihedral angle (6) between facet PCO and PC'O can drop to zero since any negative 8
will cause self-intersection between the two facets and are not physically possible. Substituting
0 =0 into equation (2.17) yields a quadratic equation of tan 5. Upon solving it with a quadratic

. . . s . . -1+ =
formula and choosing the solution with a positive value, we again obtain tan § = 1T\/§ =g’

or 8 =31.72°.

Therefore, we obtain the closed-form analytical solution that the Golden Ratio angle is the lower bound
of the 8 value for kinematically admissible pop-out operations (n = 3).

To calculate tilt angle y, we consider a vector from the mid-point of crease AB to vertex C. Its
angle with the mid-surface is half of the y angle. The coordinates of this mid-point (let us say D)
relative to the mid-point of crease OP are,

D= [0, Z w] . (2.18)
Hence, the tilt angle is defined by,

tan? = w-wsin® _ 1-sin6

2 %+wc059_tan[3+cose'

(2.19)

The correlation between y and § is presented in figure 3f. Interestingly, the maximum tilt angle
also occurs at the Golden Ratio design, and it is the same as that for the 1 pop-out configuration,
i.e. (Vgold)2- pjo = 41.8°. Although the orientation of this tilt angle is different from the 1 pop-out
configurations (more on this in the following section).

3. Configuration space of a Golden Ratio Yoshimura boom

(a) Forward kinematic formulation

The previous section’s kinematic analysis on the Golden Ratio Yoshimura shows its modules’
state depends on the number of popped-out facets and the relative orientation of the adjacent
modules. Here, the equilateral and fixed triangular interface shared by two adjacent modules is
an essential feature of this arrangement, allowing for seamless and independent assembly of all
possible states. We used a binary ‘pop state” representation, where ‘1" corresponds to a pop-out
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(deployed) facet and ‘0" represents a pop-in (folded) facet. For the n = 3, there are a total of
2% = 8 distinct states, as shown in figure 4a.

Naturally, the following fundamental question arises: How can we derive a comprehensive model
to analyse the kinematic configuration space of a large-scale Golden Ratio Yoshimura boom with multiple
modules? To this end, we formulated a modified Denavit—-Hartenberg convention that is typically
used in robot kinematics [46], essentially treating each module like a robotic link. First, we
defined a coordinate frame r; attached to module #i’s base interface triangle, where the vertex A’
of the base triangle lies on the y —axis, and the side formed by the remaining vertices is parallel
to the x —axis (highlighted in figure 3g). All dimensions are re-scaled so that the side length of
the interface triangle equals 1 unit.

To calculate the position and orientation of the next coordinate frame r;,;—which defines
the top interface triangle of module #i or the base interface triangle of the next module #i+1
(figure 3g)—one must apply two consecutive transformations based on Yoshimura’s kinematic
model: one from the base triangle A'B'C’ to the mid-surface (baseTy;4) and the other from the
mid-surface to the top interface triangle ABC (midTy,p).

First, assuming the Yoshimura module’s configuration is symmetric about the y — z reference
plane, which applies to states 000, 100, 011 and 111 in figure 44, one can write this transforma-
tion matrix as:

Tieq =P Typig ™ Tiop, 3.1

where
baseTpyig = ROty (y/2)Try(0)Rot,(0)Tr,(d/2), (3.2)
midTyop = [Rot,(—y/2)Tr,(0)Rot,(0)Tr,(-d/2)] . (33)

Here, Rot, and Tr; are the rotation and translation matrices along the k—coordinate axes
(k = x, y, or z). y is the tilt angle between the top and base interface triangles, as defined in
figure 3, and d is the distance between the centre points of these two triangles (also referred to
as the “slant height’). For example,

1 0 0 s
0100
R A
0 0 0 1 (3.4)
100 0
0100
Tr,(s;) = 00 1 sl
0 001 (3.5)
1 0 0 0
R 0 cos¢, -sing, 0
t = ’
ot{() 0 sing, cos¢, 0
0 0 0 1 (3.6)
cos¢, -sin¢, 0 O
Rot(0)) = sing, cos¢, 0 0 .
0 0 10
0 0 01 (3.7)

Here, s, s, ¢, and ¢, are generic length and angle variables. If the Yoshimura module’s

configuration is not symmetric about the y — z reference plane (which applies to meta-stable
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Figure 4. Kinematics and configuration space of the multi-modular Golden Ratio Yoshimura boom: (a) illustration of the
eight distinct meta-stable states in the binary ‘pop state’ representation. (b) Plots comparing the achievable configuration
from Yoshimura boom with 1, 2 and 3 modules, showing a fractal nature. (c) Representation of the state transition scheme
using a three-bit Gray code. (d) Examples of length scaling (left), curvature scaling (centre) and a complex curve (right) that
are achievable with Yoshimura booms.

states 001, 010, 101 and 110 in figure 4a), one can first rotate the module about its z —axis at
the base by a “phase angle” i until becoming symmetric, apply the transformation defined in
equation (3.1), and then rotate back. Therefore, a more generic transformation matrix becomes:

1T, = Rot,(§)Rot,(/2)Tr.(d)Rot,(y/2)Rot.(~ §). (38)

More specifically,
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cos? 1 + cos ysin P %(1 —cosy)sin2y  sinysiny  dsin %sin P
1T %(1 —cosy)sin2yp  cosycos?y + sin®y -sinycosy —dsin %cos P
i+1T; = .
—sinysin sinycos ¥ cosy dcos %
0 0 0 1 3.9)

The corresponding transformation parameters for each module are listed in table 1 (detailed
calculations of parameters are given in appendix A). Finally, by treating each module as an
independent building block, we could determine the kinematic state of the entire structure, by

applying a chain of transformations from the i"" and j"" modules (i < j):
X; =J Tj_lj_lTj_z...i+1Ti'Xi, (310)

whereas x; and x; are the vertices coordinates of j[h and i modules.

(b) Exploring and accessing the configuration space of Yoshimura

Since the modules are independent of each other as they switch between meta-stable states,
the achievable configuration space of a deployable Yoshimura can grow exponentially as its
number of modules increases. Using the transformation equation (3.9), we can calculate the
reachable workspace of a single Yoshimura module by calculating the positions of its top
interface triangle’s centre at the eight meta-stable states (the first plot of figure 3b). With each
additional module, the workspace ‘replicates’ and ‘grows’, similar to a fractal tree canopy.
This self-similarity allows for diverse shapes and configurations, as illustrated in the second
and third plots in figure 3b. As a result, even with a few modules, a substantial portion of
space becomes accessible, emphasizing the Golden Ratio Yoshimura’s massive deployability
and reconfigurability.

Adding more modules to the Yoshimura boom presents a challenge in actuation; attaching
one actuator to every facet might create an overly complicated mechatronic set-up. To solve
this problem, we suggest using a single actuator that can travel freely through a hollow cavity
inside the Yoshimura and along its spline. This way, the actuator can selectively pop out or in
individual facets, one at a time. While developing such an actuator is out of the scope of this
article, we formulated a three-bit Gray code to establish an efficient state transition scheme for
a single module, as demonstrated in figure 4c. This code ensures that adjacent states differ by
only one switch, providing a single face-popping action per step. As a result, following this
Gray code minimizes the actuation requirements. For example, in the lattice visualization of
three-bit Gray code, there are two minimum actuation paths to switch from the state 000 to 111,
one shown in blue and one in red. One could repeat the same scheme iteratively when dealing
with structures containing multiple modules (e.g. using a six-bit Gray code for two modules
and a 3n-bit Gray code length for n modules).

The Golden Ratio Yoshimura boom offers a versatile way to construct complex shapes
by combining different modules. We can adjust the length scaling and curvature to achieve
intricate shapes overall. For example, we could reach the maximum increment in length (I') by
stacking either the 111 module or a pair of 1 and 2 pop-out modules with the same phase ¥ (e.g.
001 and 110 according to table 1). The corresponding increment in length is 1/¢ = 0.618. On the
other hand, the minimum increment in length (I) is achieved with 000 modules, and the value is
given by 1/¢y/1 - ¢*/3 = 0.2205.

Curvature also varies across modules. Yoshimura’s curvature can be calculated as the ratio
of tilt angle y to slant height d. Based on the kinematic model and its results summarized in
table 1, Modules 000 and 111 exhibit zero curvature. 2 pop-out modules have the intermediate
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Table 1. Forward kinematic model parameters for each meta-stable state. Note that ¢ represents the golden ratio, i.e.

- +2‘/§ = 1.618. All angles are given in radians.

pop in/out state 1 (phase angle) v (tilt angle) d (slant height)

000 0 0 1 \/1_7
.......................................................................................................... ¢

001 —23—" 2sin 1(%) %
TR 23_]1 .............. Zsin—1(%;.). ....................................... g ..........................
B e S R B

100 0 2sin 1( %(p ) #
s 23_]1 .............. _Zsmq(%). .................................... % ..........................
e _23_" .............. _Zsmq(%). .................................... g ..........................
e o I

curvature, and 1 pop-out module has maximum curvature. Stacking different models with
curvatures in the same plane could achieve varying x in that,

_ total angle swept _ 2.7
average arc-length Yud;

(3.11)

In figure 44, the various combinations of module configurations are depicted. These simulations
are made by triangulating nodes calculated using the kinematic model and then plotted using a
three-dimensional visualizer based on Python.

4. Experimental assessments

It is worth noting that besides the rich configuration space via meta-stability, another signifi-
cant advantage of the Golden Ratio Yoshimura boom is that each meta-stable state should be
load-carrying (except for the fully folded 0 pop-out one). This is because the popped-out facets
take up the shape of a cylindrical shell. Evidently, a more robust fabrication method is necessary
to assess such load-carrying performance. Although the paper-folded samples used in the
previous sections exhibit kinematic properties similar to those predicted by the theoretical
model, they are too fragile to carry any meaningful payloads. To this end, we developed a
customized fabrication technique using dual-material three-dimensional printing.

(a) Sample fabrication via three-dimensional printing

In this study, we employed the widely used fused deposition modelling (FDM) three-dimen-
sional-printing technique to fabricate the Golden Ratio Yoshimura samples (dual-material
Ultimaker S5 printer). As outlined in figure 5, the Yoshimura structure is printed flat first
and then folded, reflecting the origami paper folding philosophy. However, unlike paper,
the three-dimensional-printed model utilizes two materials: stiff nylon and soft thermoplastic
polyurethane (TPU) 95A. Here, nylon is used for the triangular facets, significantly enhancing
Yoshimura’s meta-stability and overall stiffness. TPU 95A primarily functions as the crease
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lines, ensuring sufficient flexibility for folding and reconfiguration. It is important to note that
creating a strong bond between these two materials during the printing process poses signifi-
cant challenges, and our repeated trials and errors showed that nylon has the best compatibil-
ity with TPU 95A. To further strengthen the bonding, we took inspiration from prior works
[47] and developed a layer-by-layer printing method. First, we reduced the three-dimensional
printing’s layer thickness to 0.1 mm. Then, we printed the flat Yoshimura pattern in three parts:
a TPU base, nylon facets and a TPU cover (figure 54,b). The TPU base—with a thickness (t3)
0.4 mm and a zig-zag printing path—is a durable foundation for the entire structure. Thin
TPU walls (d3) built on top of this base create space for the nylon facets and provide lateral
connections between nylon and TPU. The nylon facets are 0.6 mm thick (¢;). Finally, a 0.2 mm
thin TPU cover (t,) securely seals the nylon facets within the structure, ensuring proper bonding
even under significant load and deformation.

Overall, the three-dimensional-printed sample used thicker and stiffer nylon to define the
facets and relied on the thinner and softer TPU 95 to define the fold lines. Its design aims to
closely replicate the kinematic model (e.g. the printed facet sector angle matched the Golden

Ratio g = 31.7°). Still, it differs from the paper-folded sample, which has a negligible thickness
and sharp folds. So, we made a few design accommodations. For example, we designed a gap,
labelled as (d; and d,), between the thick facets to facilitate proper folding. We also strategically
placed holes of radius r; or r; at the vertices to reduce stress concentration. Table 2 summarizes
the design parameters selected for three-dimensional printing.

Once printing was complete, the Yoshimura sample was wrapped around a plastic tube
and covered with a plastic film for annealing. Note that the tube’s radius was large enough
so that the Yoshimura sample would not overlap itself, and the plastic film cover was tight.
Then, the sample was annealed in a temperature-controlled oven at 120°C for 5 min (EasyCom-
posites OV301). This step created a curvature in the Yoshimura to facilitate the subsequent heat
welding (figure 5¢). We used a manual soldering gun set at 265°C to weld the curved Yoshimura
sample into a closed cylinder. It is critical to point out that the triangular nylon facets on the one
side of the Yoshimura sample protrude out of the base TPU layer, and this protrusion directly
matches the exposed TPU base layers on the other side (highlighted in figure 5b,c). This design
maximized the surface area for heat welding while ensuring the finished specimen’s overall
thickness and mechanical properties are consistent between welded and unwelded portions.

Once the welding was complete, we folded the Yoshimura sample along the crease lines into
the fully folded 0 pop-out state. We custom-built a frame to compress and hold the sample
and then put everything into the oven for another annealing at 140°C for 15 min. This was
a crucial step in reducing tension along the crease lines to facilitate folding. After cooling
to room temperature, the sample remained fixed to the frame for an additional 30 min to
eliminate any residual stress. Following these procedures, the sample was removed from the
frame, and as shown in figure 5c, the Yoshimura sample exhibited meta-stability and retained
its configuration once the desired facets were popped out.

(b) Load-bearing capacity tests

We conducted longitudinal compression and three-point bending tests on the three-dimen-
sional-printed Yoshimura samples to assess their mechanical load-bearing capacity.

(i) Longitudinal compression test

Two different Yoshimura samples were fabricated for the compression tests: the first sample
had a dual-material set-up with nylon facets, while the second was entirely printed from TPU
95. The two samples shared identical geometry with three modules. Comparing the load-bear-
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(a) Dual nozzle FDM printer TPU Cover

TPU Base

Annealing 120°C

Exposed TPU base * {  Roll & Bag % Annealing 120°C

P

* Protuded
facets for
welding

Welding
Fold & Hold 265 °C

" | <

Annealing 140°C

Figure 5. Three-dimensional printing and fabrication process of a Golden Ratio Yoshimura sample. (a) Diagram of a flat
Yoshimura sample being printed using the layer-by-layer approach. (b) Detailed design parameter of the three-dimensional-
printed sample. (c) Fabrication steps after printing.

Table 2. Design parameters for three-dimensional printed Yoshimura sample.

parameter value

triangular facet angle 8 31.72°
""(jap W|dtr.1"f.(.).f.fold|ng d1 B
""g.].apWIdtf.l"f.(.)}.folding dz T
SR thicl{ﬁ.é;s.d3 ...................... T
S rell.e"\)i.n"g o radlusm L
e rell.é.\)i.n"g o rad|u5r2 T
wﬁylon P t1 ............................ L
top - Iayerthmknesstz ........................ T
e TPUIayer thickné.s.smt.;. ...................... L

ing capabilities of these two samples could help us investigate how the material composition
influences the overall structural performance.

Figure 61 summarizes the longitudinal compression test results (Instron 6500 with 100 N
load cell). Overall, the three-dimensional-printed Yoshimura samples showed robust perform-
ance, exhibiting repeatable mechanical behaviours even after extensive usage. The dual-mate-
rial Yoshimura sample withstood over 50 N of compression force before beginning to buckle
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Figure 6. Experimental testing on three-dimensional-printed Golden Ratio Yoshimura’s load-bearing capacity.
(a) Longitudinal compression test results, highlighting the differences between a dual-material sample and a pure TPU
sample. (b) Details of the experimental set-ups for the three-point bending tests. (c) Three-point bending test results of the
three-dimensional-printed Yoshimura sample, which was bent either via the valley crease or via the vertex. Here, the solid
lines are averaged results, and the accompanying shaded regions are standard deviations of seven consecutive loading cycles.

and transitioning from the deployed 3 pop-out state to the folded 0 pop-out state eventually
(the sample itself weighs about 23 g). Such buckling and folding occurred in sequence, so
each small peak on the force-deformation curve indicates an inward buckling (or pop-in) of
one triangular facet pair. The Yoshimura sample fully folded after being compressed by 62
mm, and once it transitioned into the folded state, the Yoshimura sample behaved like a soft
linear spring. By contrast, the pure TPU Yoshimura sample could carry only about 25 N of
compression force. These compression tests demonstrated that the nylon facets can significantly
enhance the overall load-bearing, so we only used the dual material sample for the subsequent
three-point bending tests.
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(ii) Three-point bending test

For the three-point bending test, we designed a Yoshimura sample with five modules. The
central module was the focus of the test: it was switched between 0 pop-out, 2 pop-out and
3 pop-out states, while the four modules at both ends remained in the fully pop-out configura-
tion. This set-up ensured consistent boundary conditions when the input force was applied to
the central module. Moreover, we bent the Yoshimura sample in two opposite directions: one
involving loading on a valley crease and the other on a vertex. A three-dimensional-printed ring
fixture distributed the transverse load more evenly over Yoshimura’s surface (figure 6b).

Figure 6c summarizes the tested external moment-bending angle relationships, elucidating
the bending stiffness of the Yoshimura structure under various configurations. Overall, the
Yoshimura could carry significantly more bending loads in their 2 pop-out and 3 pop-out
configurations than the 0 pop-out state, validating its advantage as a load-carrying reconfig-
urable structure. The bending response is generally linear, except for the 2 pop-out results.
When loaded on the valley crease, the 2 pop-out Yoshimura exhibits a close-to-linear bending
response. However, when loaded on the vertex, the 2 pop-out Yoshimura showed a signifi-
cantly nonlinear behaviour with two distant ‘snap-through” events. These snap-through events
occurred when the popped-out facets, under compression in this loading condition, eventually
buckled and folded inwards. This behaviour is similar to what was observed in the longitudinal
compression test.

5. Conlusion and discussion

By intentionally breaking the traditional design rules of Yoshimura origami, this study presents
a new ‘Golden Ratio Yoshimura’ as the backbone for new deployable and massively re-configu-
rable structures. The conventional Yoshimura design requires the sector angle of its triangular
facets (B) to be directly related to the number of rhombus patterns (n) along its circumference.
However, we generalized the design in this study by setting § as an independent variable.
For the first time, we proved mathematically that when n = 3, the more general Yoshimura
pattern would obtain meta-stability when the facet sector angle is larger than the Golden Ratio:

B > 31.7° = cot 1 1.618. With such meta-stability, one can selectively pop out pairs of triangular
facets of the Yoshimura and transition it between many elastically stable states. On the other

hand, if the 8 < 31.7°, these meta-stable states become kinematically inadmissible.
Each pop-out/in-operation is independent, meaning that an elementary module of the

n = 3 Golden Ratio Yoshimura has 2% = 8 meta-stable states. As a result, a deployable Yosh-

imura Boom structure with m modules can theoretically achieve 8™ geometrically unique
and load-bearing shapes. Furthermore, we demonstrated the practical use of Golden Ratio
Yoshimura by fabricating metre-scale prototypes using multi-material FDM three-dimensional
printing. These prototypes, with their soft TPU 95A base and stiff nylon facets, validated the
potential of the Golden Ratio Yoshimura boom to be reconfigured into a wide variety of shapes,
each suited for different tasks.

Philosophically speaking, this study’s results highlight that even a seemingly minor tweak to
the decade-old origami design rules could unveil significant new potential, potentially fostering
a new generation of deployable and reconfigurable structures.

Data accessibility. The original research data, including the kinematic simulation of Golden Ratio Yoshimura
and load-bearing experimental data, are available via the following public repository: [48].
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Appendix A. Forward kinematic parameters
A.1.Phase angles ()

As explained in §3, configurations 000, 100, 011 and 111 are symmetric about the y—z reference
plane; hence, the phase angle is 0. On the other hand, the asymmetry of 001, 010, 101 and 110 is
compensated by a rotation about the z-axis with an angle of 27t/n. In this study, n = 3, so that
the phase angle is 27t/3. Based on figure 44, one can see that the 010 and 101 configurations need
a rotation by 27/3 to become symmetric about the y—z reference plane. Similarly, 001 and 100
configurations need a rotation of 4m/3 or -2m/3.

A.2.Tilt angles (y)

The tilt angles for the 000 and 111 configurations are 0 as the top and bottom planes are
parallel. Furthermore, both the 1 pop-out configurations (001, 010 and 100) and the 2 pop-out
configurations (101, 110 and 011) are congruent in terms of tilt, resulting in equal magnitudes of
tilt angles in these cases. The magnitudes are calculated using equation (2.14) for 1 pop-out and
equation (2.19) for 2 pop-out.

For the 1 pop-out configuration, one can substitute 6 =0, § = cot™ @, and the values of @ and 7

calculated in §2 (5 = m/2 -2, a = tan"!2) to simplifying equation (2.14), yielding:

V- _¢
)= 125 @
. . i . . S tan x
which further simplifies based on the trigonometric identity sinx = ——————:
J1+tan®x
| (Vgold)1- pjo | = 2sin”" L) s arsre (A2)
e V3¢

Interestingly, substituting 8 = 0 into equation (2.19) yields the exact same solution:

4 1
|(Vgold)2— pjo | = 2sin 1(@) = 41.81. (A3)

Since the symmetric configurations 100 and 011 are tilted opposite to each other, we assign
positive values to the 1 pop-out configuration and negative values to the 2 pop-out configura-
tion.

A.3. Slant heights (d)

For the 0 and 3 pop-out configurations, the slant height is the same as the module’s total height.
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The height at the 000 configurations can be calculated using the equation for h (equation (2.2))
and substituting the 8 solution from equation (2.3) corresponding to the Golden Ratio, i.e.

substituting 8 = cot™ ¢, so that:

(dgold)o- pjo = %sin(cos‘l(q;tan(%))) = %,[1 - %2 ~0.2205. (A 4)

For the 1 and 2 pop-out configurations, the slant height is defined as the distance between the
centroids of the top and bottom connecting surfaces. One can calculate them by doubling the
averages of the ‘z’ coordinates calculated in §2. Therefore, the slant height for 1 pop-out is given

by:

A,+B,+C, w+2wsin 6
(dgotd)1 - pjo = 2( 3 ) = 2( 3

Similarly, for 2 pop-out:

1
) = 35~ 0206 (A5)

AZ+BZ+CZ) _ 2(wsir16+2w)

2
(dgold)zfp/o = 2( 3 3 = — = 0412. (A 6)

3¢
As the 3 pop-out configuration (111) is fully opened, the total height is 2w, more specifically,

(dsoia-pio = tan(f) = - = 0618 (A7)
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