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Abstract

Let X be a smooth Fano variety over C and let B be a smooth projective curve over C. Geo-
metric Manin’s Conjecture predicts the structure of the irreducible components M C Mor(B, X)
parametrizing curves which are non-free and have large anticanonical degree. Following ideas
of [19], we prove the first prediction of Geometric Manin’s Conjecture describing such irre-
ducible components. As an application, we prove that there is a proper closed subset V ¢ X
such that all non-dominant components of Mor(B, X) parametrize curves in V, verifying an ex-
pectation put forward by Victor Batyrev. We also demonstrate two important ways that studying
Mor(B, X) differs from studying the space of sections of a Fano fibration X — B.

1. Introduction

Let X be a smooth complex Fano variety and let B be a smooth complex projective curve.
We let Mor(B, X) denote the scheme parametrizing morphisms from B to X as in [17, Chap-
ter I 1.9 Definition and 1.10 Theorem]. Recall that a morphism s : B — X is called a free
curve if s*Tx is globally generated and H'(B, s*Tx) = 0. Our goal is to classify the irre-
ducible components of the morphism scheme Mor(B, X) which parametrize only non-free
curves of large anticanonical degree. Ever since Mori’s inspirational work constructing ra-
tional curves on a Fano variety X, the moduli spaces Mor(B, X) have been a subject of intense
investigation. An important motivation behind our work comes from arithmetic geometry:
by Batyrev’s heuristics ([2]), one can deduce Manin’s conjecture over global function fields
from certain properties of components of the morphism scheme Mor(B, X).

[19] studies an analogous problem in a more general setting. A Fano fibrationz7 : X — B
is a morphism of smooth complex projective varieties such that the generic fiber of 7 is
a geometrically integral Fano variety. We will denote by Sec(X/B) the Hilbert scheme of
sections of m. Note that Mor(B, X) is isomorphic to the space of sections of the trivial
fibration Sec(X X B/ B); we distinguish the two settings by referring to the study of Mor(B, X)
as the “absolute setting” and the study of Sec(X/B) as the “relative setting”.

[19] showed that the irreducible components M C Sec(X'/B) which parametrize non-
free sections can be classified using the Fujita invariant. More precisely, such components
come from B-morphisms f : Y — X which increase the Fujita invariant along the generic
fiber. Passing to the absolute setting, we can apply the results of [19] to the trivial fibration
m: X X B — B. However, it is natural to wonder whether the conclusions of the theorem
also hold true in the absolute setting: can we account for non-free curves using morphisms
of the form f : Y — X instead of morphisms of the form f : V — X X B? The question is
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subtle, and not all of the results of [19] hold in this context.

The goal of the present paper is to clarify which results from the relative setting carry
over to the absolute setting. We show that the qualitative results about non-free curves
mostly carry over and that the boundedness results carry over for non-dominant families of
curves. To prove these results we need to modify the arguments of [19] while keeping the
same overall structure. There are several minor points of distinction between the absolute
and relative settings which we highlight throughout the paper. On the other hand, we give
counterexamples to show where key parts of the argument of [19] simply do not hold in the
absolute setting. We would like to emphasize that whenever the two settings diverge, the
relative setting seems to be more natural.

1.1. Geometric Manin’s Conjecture. Geometric Manin’s Conjecture is a set of prin-
ciples that unifies predictions in the arithmetic setting (such as the function field version
of Manin’s Conjecture) and predictions in the geometric setting (such as the Cohen-Jones-
Segal conjecture). The key invariant in Geometric Manin’s Conjecture is the Fujita invariant.

DermniTion 1.1. Let X be a smooth projective variety over a field of characteristic 0 and
let L be a big and nef Q-Cartier divisor on X. The Fujita invariant of (X, L) is

a(X, L) = min{r € R | Ky + tL is pseudo-effective }.

If L is nef but not big, we formally set a(X, L) = co. If X is singular, choose a resolution of
singularities ¢ : X’ — X and define a(X, L) to be a(X’, ¢*L). (The choice of resolution does
not affect the value by [15, Proposition 2.7].)

1.2. Main results. The first part of Geometric Manin’s Conjecture predicts that all non-
free curves come from morphisms f : ¥ — X which increase the Fujita invariant, and our
results verify this prediction over the field C of complex numbers. It is the analogue in the
absolute setting of [19, Theorem 1.3]. Before stating our main theorem, let us introduce one
piece of terminology we use frequently: let ¥ — T be a morphism between quasi-projective
varieties such that a general fiber is irreducible. Let Z — T be any morphism between
algebraic varieties such that the image meets with the Zariski open locus parametrizing
irreducible fibers. Then the fiber product Z Xy Y admits a unique irreducible component
dominating B which we call the “main component.” With this terminology, here is our main
theorem:

Theorem 1.2. Let X be a smooth projective Fano variety defined over C and let B be
a complex smooth projective curve. There are constants ¢ = &£(dim(X),g(B)) and I' =
I'(dim(X), g(B)) such that the following holds. Suppose that M C Mor(B, X) is an irre-
ducible component parametrizing non-free maps s : B — X of anticanonical degree > &.
Let U be the normalization of the universal family over M and let ev : U — X be the
evaluation map. Then either:

(1) ev is not dominant. Then the subvariety Y swept out by the curves parametrized by

M satisfies a(Y, —Kx) > a(X, —Kx).
2) evis dommant and the general map parametrized by M is birational onto its zmage
Let U be a normal projective compactification of U with a morphism ev : U -
X extending ev. Then the finite part f : Y — X of the Stein factorization of ev
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satisfies
a(Y,—f"Kx) = a(X, —Kx).

Furthermore, there is a rational map ¢ : Y --> T such that the following properties
hold. Let F denote a smooth resolution of the closure of a general fiber of ¢. Then

(@) a(F,-f"Kxlr) = a(X, —Kx).

(b) The litaka dimension of Ky — a(X, —Kx)Kx|r is equal to 0.

(c) Let s : B — X denote a general map parametrized by M, let s" : B — Y
denote the corresponding map to the Stein factorization and let W denote the
main component of B Xy Y. Then the image in M of the parameter space of
deformations of the map (id, s”) : B — W has codimension at most I in M.

(3) evis dominant and the general map parametrized by M is not birational to its image.
In this case the image of the general map is a rational curve of anticanonical degree
2. Thus ev factors rationally through a generically finite map g : V — X where V is
a projective model of a universal family U — N of rational curves of anticanonical
degree 2 on X where N is an irreducible open locus of the Hilbert scheme of X. In
particular a(V, —g*Kx) = a(X, —Kx).

Remark 1.3. In the analogous result [19, Theorem 1.3] condition (2).(b) is slightly dif-
ferent. This highlights one distinction between the absolute and relative settings — the litaka
dimension does not behave the same. See Theorem 7.2 and Example 7.1 for details.

This theorem is significant for two reasons. First, it explicitly identifies the “accumulating
varieties” which have more curves than expected. Since the Fujita invariant is easier to
work with than families of curves, we obtain a practical method for understanding non-
free curves. Second, by connecting the geometry of curves to the Fujita invariant we gain
access to powerful methods from the Minimal Model Program. In particular, [5] yields a
boundedness statement for the varieties considered in Theorem 1.2.

Next we prove the following theorem using the boundedness results of accumulating
maps proved in [19, Section 8]:

Theorem 1.4. Let X be a smooth projective Fano variety defined over C and let B be
a complex smooth projective curve. There is a proper closed subset V. C X such that if
M c Mor(B, X) is an irreducible component parametrizing a non-dominant family of curves
then every curve parametrized by M is contained in V.

This theorem generalizes earlier results in [22] and [23]. The proof essentially follows
from boundedness results in [19]. However, we need slight modifications of the results in
[19] in order to adjust to the absolute setting. We carry out this project in Section 6.

Remark 1.5. Boundedness theorems lead to an important distinction between the relative
and absolute cases. [19, Theorem 8.8] shows that all non-free sections of a Fano fibration
are accounted for by a bounded family of twists of finitely many morphisms f : Y — X.

In the absolute setting, one might guess that it is possible to “ignore the twists”: is there
a finite family of maps f : ¥ — X which account for all non-free curves? In Example 7.3
we demonstrate that this is not always possible: even in the absolute setting one must allow
twists over K(B).
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The following result is one of the key steps in the proof of Theorem 1.2. We present it
here as it gives new insight into the geometric significance of the Fujita invariant. It is an
analogue of [19, Theorem 1.12].

Theorem 1.6. Let X be a smooth projective Fano variety defined over C and let B be
a complex smooth projective curve. Fix a positive rational number a and a non-negative
integer T. There is some constant ¢ = £(dim(X), g(B), a, T) with the following property.

Suppose that Y is a smooth projective variety equipped with a morphism f : Y — X that
is generically finite onto its image. Suppose that N is an irreducible component of Mor(B, Y)
parametrizing a dominant family of curves C on Y which satisfy —f*Kx - C > &. Finally,
suppose that

dim(N) > a-dim(M) - T.
Then
a(Y,—f"Kx) > a.

2. Background

Throughout we work with schemes whose irreducible components are finite type over
a field k of characteristic 0. A variety is a separated scheme of finite type over k that is
reduced and irreducible. Given a coherent sheaf 7 on a variety V, we denote by F,, its
torsion subsheaf and by (F),; the quotient of 7 by its torsion subsheaf.

When X is a projective variety, we will let N'(X)r denote the space of R-Cartier divisors
up to numerical equivalence. In this finite-dimensional vector space we have the pseudo-
effective cone ﬁl (X) and the nef cone Nef ! (X). Dually, we will let N (X)r denote the space
of R-curves up to numerical equivalence. Given a curve C, we will denote its numerical class
by [C]. Inside N{(X)r we have the pseudo-effective cone Eff|(X) and the nef cone Nef;(X).

2.1. Vector bundles on curves. Throughout this paper, B denotes a smooth projective
curve defined over C. In this section we let £ be a vector bundle of rank » on B. We recall
several definitions on semistability of &:

DeriniTion 2.1. Let B be a complex smooth projective curve and let £ be a vector bundle
of rank r on B. We define the slope of £ on B as

deg &

() = -

We say £ is unstable if there is a non-zero subsheaf 7 c £ such that

u(F) > u(é).

When it is not unstable, we say £ is semistable.
The Harder-Narasimhan filtration of £ is a sequence of saturated subsheaves

O=FoCcFh c---CF=¢&
such that for each i, F;,.; /F; is semistable and we have

u(Fis1/Fi) > u(Fiza/Fivr).
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We denote u(F;) and u(Fy/Fi_1) by g™ (&) and u™"(£) respectively.

DeriniTION 2.2. We say that a coherent sheaf £ on a smooth projective curve B is generi-
cally globally generated if the evaluation map

HB,E)® O — &

is surjective at the generic point of B.

We will need the following results concerning the positivity of generically globally gen-
erated bundles on curves.

Lemma 2.3 ([19, Lemma 2.5]). Let B be a smooth projective curve. Suppose that £ is a
generically globally generated vector bundle on B. Then every successive quotient F;/Fi_;
in the Harder-Narasimhan filtration of € satisfies u(F;/F;—1) = 0.

Lemma 2.4 ([19, Lemma 2.8]). Let B be a smooth projective curve of genus g. Suppose
that &€ is a generically globally generated vector bundle on B. Then
(1) KB, &) < deg(&) + rk(&).
(2) h'(B, &) < g(B)1k(E).

2.2. Morphism spaces. Suppose that Z is a smooth projective variety and B is a smooth
projective curve. If M € Mor(B, Z) is an irreducible component, we have

—K; - 5.B +dim(Z)(1 — g(B)) < dim(M) < h°(B, 5*T),

where s : B — Z is any curve parametrized by M. (See [17, Chapter 2, 1.7 Theorem]
for this claim.) More generally, suppose we fix closed points pi,...,p, € B and closed
points qi,...,q, € Z and consider the sublocus Mor(B, Z; p; — ¢;) of morphisms s such
that s(p;) = ¢; for every i. If M c Mor(B, Z; p; — ¢;) is an irreducible component then

-K7 - s.B+dim(Z)(1 — g(B)) — mdim(Z) < dim(M) < h°(B, S*Tz(=p1 = ... — Pw)),

where s : B — Z is any morphism parametrized by M. (Again see [17, Chapter 2, 1.7
Theorem] for this claim.)

For a morphism s : B — Z to a smooth projective variety Z, we denote by N the normal
sheaf of s, i.e. the cokernel of Tp — s*T. If s is a general member of a dominant family of
morphisms to Z then the normal sheaf N will be generically globally generated.

Proposition 2.5. Let Z be a smooth projective variety and let B be a smooth projective
curve. Suppose that M is an irreducible component of Mor(B, Z) parametrizing a dominant
Sfamily of curves. Letting s denote a general map parametrized by M, we have

-K7 - s.B+dim(Z)(1 — g(B)) < dim(M) < —Kz - 5.B + dim(Z) + 2g(B).

Proof. In this situation the normal sheaf Ny is generically globally generated. Indeed,
let V be the tangent space of M at s. We can identify V as a subspace of H°(B, s*T). Let
m: U =M X B — M be the universal family over M with the evaluation map ev : U" — Z.
Then the tangent space of U at a general point p € B above s is given by V & T'g ,. Because
ev is dominant, the evaluation map induces a surjection V& Tg ), — Tz ). In particular, this
implies that H(B, s*Tz)®Tp,, — Tz is surjective. This means that H(B, s*Tz) — N;, =
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s*Tzs»/Tpp s surjective. Since H(B, s*T7) — Ny, factors through H°(B, N,) — N ,, we
conclude that H(B, N,) — N;p is surjective. Hence Nj is generically globally generated.
Now we have

h'(B, s*Tz) <h'(B,Tg) +h'(B,Ns)=h'(B, Tg) + h'(B, (Ny),s) < 3g(B) + (dim(Z) — 1)g(B),

where in the last line we have used the elementary inequality h'(B, Tg) < 3g(B) and have
applied Lemma 2.4 to (Ny),r. The desired statement follows. O

The deformation theory of a map s : B — Z is best behaved under a stronger assumption
on the positivity of s*7.

DeriniTION 2.6. Let Z be a smooth projective variety and let B be a smooth projective
curve. We say that a map s : B — Z is HN-free if u™"(s*T,) > 2g(B).

The following result summarizes the key properties of HN-free maps.

Lemma 2.7 ([19, Lemma 3.6]). Let Z be a smooth projective variety and let B be a
smooth projective curve. Suppose that s : B — Z is an HN-free map. Then:
(1) H'(B, s*T) = 0 and for any closed point p € B we have H'(B, s*Tz(-p)) = 0.
(2) s*Tz is globally generated.
(3) Let b be the smallest slope of a quotient of successive terms in the Harder-
Narasimhan filtration for s*T,. Then deformations of s : B — Z can pass through
at least |b] — 2g(B) + 1 general points of Z.

Proof. In the notation of [19, Lemma 3.6], Z = Z X B and Tz/p|c is s*Tz. With these
translations, the statements follow from [19, Lemma 3.6]. O

The previous lemma shows that HN-free maps go through many general points of Z.
Conversely, maps through sufficiently many general points of the product B X Z must be
HN-free.

Proposition 2.8 ([19, Proposition 3.7]). Let Z be a smooth projective variety and let B be
a smooth projective curve. Let M be a component of Mor(B, Z). Equivalently, we can think
of M as parametrizing a family of sections of the projection map B X Z — B. Suppose that
the sections parametrized by M pass through > 2g(B) + 1 general points of B X Z. Then the
general curve parametrized by M is HN-free.

ExampLE 2.9. In the setting of Proposition 2.8 we really need to work with the product
B x Z and not the variety Z. For example, suppose that Z is a P'-bundle over a high genus
curve 7. Then sections of Z — T can contain arbitrarily many general points of Z but will
never be HN-free. This issue will come up again in Example 7.1.

We will also need to know the following avoidance property of HN-free maps.

Lemma 2.10 ([19, Lemma 3.8]). Let Z be a smooth projective variety and let B be a
smooth projective curve. Suppose that s : B — Z is an HN-free map. Then for any codimen-
sion 2 closed subset W C Z there is a deformation of s which is HN-free and whose image
avoids W.
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2.3. Fujita invariant. Recall from Definition 1.1 that for a smooth projective variety X
defined over a field of characteristic 0 and a big and nef Q-Cartier divisor L on X, we define
the Fujita invariant by

a(X,L) = min{t € R | Ky + 1L € BT (X))

It follows from the seminal work [6] that the Fujita invariant will be positive if and only
if X is geometrically uniruled. We will use the Spectrum Conjecture for Fujita Invariants
which was first established in slightly different settings by DiCerbo and by Han and Li using
Birkar’s solution of the BAB conjecture ([4]):

Theorem 2.11 ([10, Theorem 1.2], [14, Theorem 1.3]). Fix a positive integer n and fix
€ > 0. Let X vary over all smooth projective varieties of dimension n defined over a field of
characteristic O and L vary over all big and nef Cartier divisors on X, the set

{aX,D)]a(X,L) = €}
is finite.
The following definition is frequently useful when working with the Fujita invariant.

DermniTion 2.12. Let X be a smooth projective variety and let L be a big and nef Q-
divisor on X. A pair (X, L) is adjoint rigid if Kx + a(X, L)L has litaka dimension 0. When
X is singular and L is a big and nef Q-Cartier divisor on X, we say (X, L) is adjoint rigid
if (X', ¢*L) is adjoint rigid for a smooth resolution ¢ : X’ — X. This definition does not
depend on the choice of resolution.

The Fujita invariant can be used to bound adjoint rigid subvarieties. Indeed, let X be a
smooth projective variety defined over an algebraically closed field and L be a big and nef
Q-divisor on X. Then [20, Theorem 4.17] shows that the subvarieties Y C X such that L]y is
big, a(Y, L) > a(X, L), and (Y, L|y) is adjoint rigid, are parametrized by a bounded family.

2.4. Slope stability for smooth projective varieties. The notion of slope stability with
respect to movable curve classes was developed by [8] and subsequently by [12] and [13].

DEermviTioN 2.13. Let X be a smooth projective variety and let @ € Nef(X) be a non-zero
nef 1-cycle on X. For any non-zero torsion-free sheaf £ on X, we consider the following
invariant:

&) a
Ha(E) = e

which is called as the slope of & with respect to a class @. A torsion-free sheaf &£ is a-
semistable if we have p,(F) < u,(€) for every non-zero torsion-free subsheaf F C £.

Dermnition 2.14. Let X be a smooth projective variety and let @« € Nef;(X) be a nef 1-
cycle on X. Let £ be a torsion-free sheaf of rank » > 0. Suppose that

O=FycFicFc...cF=E&E

is the a-Harder-Narasimhan filtration of £. The slope panel SP,(€) is the r-tuple of rational
numbers obtained by combining for every index i the list of tk(F;/F;_1) copies of u(F;/Fi-1)
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(arranged in non-increasing order). We define p/**(£) as the maximal slope of any torsion-
free subsheaf, i.e., u/**(€) = uo(F1). We define ,ug”'”(é‘ ) as the minimal slope of any torsion-
free quotient, i.e., W™™(E) = pa(E/Fr1).

When we discuss slope panels of a curve, we will always assume that « is a degree 1 line
bundle and thus we will simply write g"**(&), u™"(E), SP(E).

Suppose that X is a smooth projective variety. Recall that a foliation F on X is a coherent
subsheaf of the tangent bundle 7 C Tx such that that is closed under the Lie bracket of T,
ie. [F,F]CF.

Theorem 2.15 ([24, Proposition 1.3.32]). Suppose that X is a smooth projective variety
and let a € Nef((X) be a non-zero nef curve class. Let

OZF()CFlC...CFkITX

be the a-Harder-Narasimhan filtration of Tx. Then every term F; with i™"(F;) > 0 defines
a foliation on X.

Given arational map f : X --» Y from a smooth projective variety X to a normal projective
variety Y, the fibers of f define leaves of a foliation where the map is smooth. The foliation
induced by f is the corresponding saturated subsheaf of Tx.

2.5. Families of non-birational maps. Let Z be a smooth projective variety and let B be
a smooth projective curve. Suppose that M is an irreducible component of Mor(B, Z) such
that the general map parametrized by M is not birational onto its image. In this situation,
we will show that there is an intermediate curve B’ such that a general map s : B — Z
parametrized by M factors through a morphism s’ : B — Z that is birational onto its image.

Lemma 2.16. Suppose B is a smooth projective curve of genus g. Suppose we have a
Sfamily of degree d maps from B to smooth projective curves {C,}, i.e. a commuting diagram

BXT —C
T

where C — T is a smooth proper morphism of relative dimension 1 and T is connected.
Then the set {B — C,} of maps from B are all isomorphic to each other.

Proof. By taking relative Jacobians, we obtain a family of maps of abelian varieties
Jac(B) x T — J. We first claim that the fibers of J — T are all isomorphic to each other.
Consider the Stein factorization Jac(B) X T — A — J. Then A, is an abelian variety and
A; — J; is finite of a fixed degree.

First note that the morphism Jac(B) X T — A over T is isotrivial. Indeed, a contraction
morphism from Jac(B) is determined by the numerical class of the pullback of an ample
divisor on A,. Let L be a relatively ample divisor on .A. Then the numerical class of the
pullback of L|4, does not depend on ¢ because the numerical class is invariant under flat
deformations, proving the claim.

Next note that J — T is isotrivial. It suffices to prove that the kernel of Jac(B) — J;
does not depend on ¢. Note that the connected component of the kernel of Jac(B) — J; is
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the kernel of Jac(B) — A, which does not depend on ¢. Thus we need to show that the order
of the kernel of A, — J; does not depend on . However, this follows from the fact that the
degree of A, — J, is constant. The upshot is that the kernel of Jac(B) — J; does not depend
on ¢ and this implies that J — T is isomorphic to J X T — T as relative abelian varieties
where J is an abelian variety.

To prove that the family C — T is isotrivial, it suffices to consider the relative principal
polarization of J — T by the Torelli theorem. However, since H?(.J;,Z) is discrete and the
monodromy is trivial, any deformation will fix the numerical class of the polarization, prov-
ing that C; are all isomorphic to each other. Moreover since Jac(B) — Jac(C,) is identified
with Jac(B) — J, the maps B — C,; are all isomorphic to each other. Thus our assertion
follows. O

Corollary 2.17. Let Z be a smooth projective variety and let B be a smooth projective
curve. Suppose that W is a locally closed subvariety of Mor(B, Z) such that the morphisms
parametrized by W are not birational onto their image. Then there is a finite morphism
g : B — B’ to a smooth projective curve B" and a locally closed subvariety Y C Mor(B’, Z)
such that the general morphism parametrized by W is the composition of g with a morphism
parametrized by Y.

Proof. Apply Lemma 2.16 to the family of maps of smooth curves obtained by taking the
normalizations of the images of the general maps parametrized by W. O

3. Grauert-Mulich

In the remaining of this paper, we work over C and we let B denote a complex smooth
projective curve. Suppose that Z is a smooth projective variety and W C Mor(B,Z) is a
variety parametrizing a family of maps s : B — Z with universal family Uy — W. In this
section we will usually assume that the evaluation map ev : Uy — Z is dominant and that a
general fiber over W is contained in the flat locus of ev.

Let £ be a torsion-free sheaf on Z. Under the assumptions above, the Grauert-Mulich
theorem of [19] shows that for a general curve s : B — Z parametrized by W the Harder-
Narasimhan filtration of s*& is “approximately” the pullback of the Harder-Narasimhan fil-
tration of £ with respect to s..B.

Dermition 3.1. Let Y be a variety and £ be a globally generated vector bundle on Y. The
syzygy bundle (or Lazarsfeld bundle) Mg is the kernel of the evaluation map Oy®H’(Y, £) —
E.

Theorem 3.2 ([19] Corollary 4.6). Let Z be a smooth projective variety and let £ be a
torsion free sheaf on Z of rank r. Let W be a variety equipped with a generically finite
morphism W — Mg’o(Z) and let p : Uy — W denote the universal family over W with
evaluation map evy : Uy — Z. Assume that a general map parametrized by W has smooth
irreducible domain, that evy is dominant, that the general fiber of the composition of the
normalization map for Uy with evy is connected, and that a general fiber of p is contained
in the locus where evy is flat.

Let C denote a general fiber of Uy — W equipped with the induced morphism s : C — Z.
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Let t be the length of the torsion part of Ny, let G be the subsheaf of (Ny),r generated by global
sections, and let V be the tangent space to W at s. Let q be the dimension of the cokernel of
the composition

V= T5p s = H(C N = HY(C,(No)ip).
Let || — || denote the sup norm on Q®". Then we have

1
1SP2ic1(€) = SPe(sEl < 5 (g + D™ (M) + 1) 1K(€).

To apply Theorem 3.2 in practice one needs to be able to bound the quantities ¢, ¢, and
,u”"”‘(Mg ) appearing in the statement. In this section we will show how to bound these
quantities using the genus of B and the dimension of Z. Using these bounds, we will obtain
a version of the Grauert-Mulich Theorem for Mor(B, Z).

The following result of [7] (explained carefully in [19, Theorem 4.8]) allows us to bound
the slope of the syzygy bundle for the restricted tangent bundle.

Theorem 3.3. Let £ be a globally generated locally free sheaf on a curve C of genus g
and let Mg be its syzygy bundle.
(1) If f™™(&) = 2g then W™ (Mg) > —2.
(2) If ™€) < 2g then u™™(Mg) > —2g1k(E) — 2.

We next discuss the quantity . The key to bounding the ramification of a morphism
s 1 B — Z is the following result of Arbarello and Cornalba.

Theorem 3.4 ([1, Corollary 6.11]). Let Z be a smooth projective variety defined over C
and let B be a complex smooth projective curve. Suppose that W C Mor(B, Z) is a locally
closed reduced subvariety such that the maps parametrized by W dominate Z and the general
map parametrized by W is birational onto its image. Let s be a general map parametrized
by W. Then the image of the map H°(B, s*Tz) — H°(B, Ny) has vanishing intersection with
(NS)IOVS‘

Using this result we can bound the ramification of a map s : B — Z in terms of the genus
of B and the dimension of Z.

Proposition 3.5. Let Z be a smooth projective variety defined over C and let B be a
complex smooth projective curve. Suppose that W is a locally closed subvariety of Mor(B, Z)
such that the morphisms parametrized by W dominate Z. Let s be a general element of W.

(1) If the general map s is birational onto its image then the length of the torsion of N,
is at most 3g(B).

(2) Ifthe general map s factors as the composition of a finite morphism of smooth curves
h : B — B’ followed by a morphism s’ : B — Z that is birational onto its image,
then the length of the torsion of Ny is 3g(B’)d + r where d is the degree of h and r
is the total ramification degree of h. In particular, if g(B") > 2 then the length of the
torsion of Ny is at most 6g(B).

Proof. (1) We have the short exact sequence

H°(B,s*T;) — H°(B,N,) — H'(B, Tp).
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By Theorem 3.4 we see the image of H’(B,s*Tz) in H°(B,N,) is disjoint from
HO(B, (Ny),ors). Since the cokernel of H(B, s*T;) — H°(B, N,) injects into H'(B, Tp), it
follows that H(B, (Ny),rs) has dimension at most 4'(B, T) < 3g(B).

(2) Consider the diagram

0 Tp s*Tz Ny 0
Lo
0 — h*TB’ S*TZ h*Ns' 0

Note that (h* Ny ),.rs has length d times the length of (Ny ),,,s which by (1) is at most 3g(B’).
By the snake lemma, i is surjective and its kernel is a torsion sheaf of length at most r.
Altogether this proves the first statement. The final statement follows from the Riemann-
Hurwitz formula g(B) = dg(B’) + 5 —d + 1. Indeed, we have

6g(B)=6dg(B’) +3r—6d+6=3dg(B’)+r+ (3dg(B’)+2r—6d +6)>3dg(B’)+r. O

In many situations one can show that a general map will not have any ramification at all.
The following result is an analogue of [17, 11.3.14 Theorem].

Proposition 3.6. Let Z be a smooth projective variety. Suppose that M is an irreducible
component of Mor(B, Z) that is generically reduced such that the morphisms parametrized
by M dominate Z. Let s be a general element of M and consider the Harder-Narasimhan
filtration 0 = Fy C ... C F, = s*Tx. Suppose there is a term F in this filtration which has
rank at least 2 such that /"™(F) > 2g(B). Then the general s parametrized by M must be
unramified.

In particular, if s*T, contains a subsheaf F of rank at least 2 such that z™"(F) > 2g(B)
then the general s must be unramified.

Proof. We start with some reminders about deformations of ramified maps. Suppose that
s : B — Z is a map parametrized by M which has a ramification point p and let z = s(p).
Let M), . be the space of morphisms s : B — Z such that s(p) = z and M}* be the space of
morphisms s : B — Z such that s(p) = z and s is ramified at p. Then the tangent space to
M, atsis HO(B, s*Tz(—p)) and the tangent space to M;“;“ at s is HO(B, s*Tz(=2p)).

Let 7, m, denote the two projection maps on M X B. Suppose for a contradiction that a
general map parametrized by M is ramified. Consider the composition ev*Q; — Qpup =
7 Qy & 15Qp — m5Qp. We let R € M X B be the closed subscheme whose ideal sheaf is
the image of the corresponding morphism ev* Q7 @ 13T — Oyxp.

We fix an irreducible component R of R equipped with the reduced structure. We let
Y be the irreducible subvariety of Z obtained by taking the closure of the image of Ry. If
(s, p) is a general point of R, then it follows from generic smoothness for the restriction of
ev to the smooth locus of R that the image of dey : T(s )M X B — T,»Z contains T'y,)Y.
However, since s ramifies at p the image of 7, B under this map is zero. Thus, the image of
the corresponding map HOB, s*T7) = T,M — s*Ty| » has dimension at least dim Y.

Since M is generically reduced we have dim M = h°(B, s*T;). Thus for a general point
(s, p) in Ry we have

1°(B, s*Tz(—p)) = h°(B, s"T) — dimim (HO(B, s*Ty) — HO(p, s*TZ|,,)) <dimM - dimY.
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Since the minimal slope of a quotient of F is greater than 2g(B), F(—p) is globally generated.
Thus

(B, s"T4(=2p)) = h’(B, s"Tz(~p)) — dimim (H'(B, 5" T(~p)) = H'(p, " Tz(~p)l,))
< (dim M — dim ¥) — dimim (H(B, F(=p)) = H(p. F(~p)|,))
=dimM -dimY -tk F.
It follows that dim M} < dim M — dim Y — 2 in a neighborhood of any general point (s, p)

n Ro.

On the other hand, note that R has dimension at most sup, ,{dim M;‘f:,’gp)} + 1+ dim(Y)
as we vary (s, p) over general points in R. Here the 1 accounts for the choice of p € B and
the dim(Y’) accounts for the choice of image s(p) € Y. Combining with the inequality above,
we conclude that dim(R() < dim(M) — 1. This shows that R cannot map dominantly to M.

O

We next bound the quantity g.

Lemma 3.7. Let Z be a smooth projective variety. Suppose that M C Mor(B, Z) is an
irreducible component parametrizing a dominant family of curves on Z and let W = M,.,.
For a general map s parametrized by M consider the composition

V — HY(B,5"Tz) — H(B, (Ny),y),

where V.C H(B, s*T) is the tangent space to W at s. Then the cokernel of the composed
map has dimension at most g(B) dim(Z) + 5g(B).

Proof. Since we have a dominant family the normal sheaf N, is generically globally
generated for a general map s. Since H(B, (N)ir) 1s a quotient of H°(B, Ny), the dimension
of cok(V — H(B, (Ns)ir)) is bounded above by

(h°(B, s*T7) — dim(V)) + dim(cok(H°(B, s*T;) — H(B, N,)))
and we estimate each piece in turn. First of all, we have
h(B, s"Tz) — dim(V) < h%(B, s"T) — dim(M) < h'(B, s"T)
< h'(B,Tp) + h'(B, Ny) < 3g(B) + g(B)(dim(Z) — 1),

where the last inequality follows from Lemma 2.4. Second, the cokernel of H(B, s*T;) —
H°(B, N,) has dimension bounded by h'(B, T) < 3g(B). O

Putting these results together, we obtain the Grauert-Mulich theorem for spaces of mor-
phisms.

Theorem 3.8 (Grauert-Mulich). Let Z be a smooth projective variety defined over C and
let € be a torsion free sheaf on Z of rank r. Let M be an irreducible component of Mor(B, Z)
and let ev : U — Z denote the evaluation map.

(1) Assume that the composition of ev with the normalization map for U is dominant
with connected fibers and that ev is flat on the preimage of some open subset of M ..
Assume that a general s : B — Z parametrized by M is birational onto its image.
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Then we have
| SPZ 58y (E) = SP(s*E)|| <
% (2g(B)2 dim(Z)* + 10g(B)* dim(Z) + 4¢g(B) dim(Z) + 13¢g(B) + 2) k(&).

(2) Assume that the composition of ev with the normalization map for U is dominant
with connected fibers and that ev is flat on the preimage of some open subset of
M, eq. Assume that there is some curve B’ of genus > 2 such that the general map
s : B — Z parametrized by M factors through a morphism s’ : B" — Z that is
birational onto its image. Then we have

ISPz (E) = SP(s™E)|| <
(g(B)2 dim(Z)* + 5¢(B)? dim(Z) + 2g(B) dim(Z) + 8¢(B) + 1) k(&).

() Let s : B — Z be a general map parametrized by M. Assume that y""(s*T;) >
2g(B) and that dim(Z) > 2. Then

ISPz (€) = SP(s"E)I| < Bg(B) + D 1k(E).

Proof. (1) Let ¢ be the length of the torsion part of Ny, let G be the subsheaf of (Ny),r
generated by global sections, and let ¢ be the dimension of the cokernel of the composition

V — HB, s*T;) — H(B, (Ny)s),

where V ¢ H(B, s*T) is the tangent space to M,.4 at s.

Theorem 3.3 shows that umax(Mg) < 2¢g(B)dim(Z) + 2. Proposition 3.5.(1) shows that
t < 3g(B). By Lemma 3.7 we have g < g(B) dim(Z) + 5g(B). We then apply Theorem 3.2 to
obtain the desired statement.

(2) Proposition 3.5.(2) shows that in this situation # < 6g(B). Then we can obtain the
desired bound by repeating the argument for (1) using this new estimate on z.

(3) In this setting the general map s is unramified by Proposition 3.6 so that N is torsion-
free. By Lemma 2.7 s*7T is globally generated and thus Nj is also globally generated. We
have p™"(Ny) > u™"(s*Tz) > 2g(B) so by Theorem 3.3 ,um‘”(MX,Y) < 2. Furthermore M is
smooth at a general morphism s and the map H°(B, s*T,) — HO(B, Nj) has cokernel whose
dimension is bounded above by h!(B, Tg) < 3g(B).

Note that the general fiber of U — M is contained in the locus where ev is smooth, and
hence also in the flat locus of ev. Thus we have verified the hypotheses of Theorem 3.2
which gives the desired statement. O

4. Constructing foliations

Suppose that Z is a smooth projective variety and M is an irreducible component of
Mor(B, Z) parametrizing a dominant family of curves. We would like to understand the
slopes in the Harder-Narasimhan filtration of s*7; for a general map s : B - C C Z
parametrized by M. In turn, these slopes control the deformation theory of s. In this section
we show that under certain conditions one can identify an algebraic foliation on Z which
controls the behavior of these deformations.
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We will need the following construction describing the relationship between foliations
and relative tangent bundles.

ConstrucTION 4.1. Let Z be a smooth projective variety. Suppose that F is a foliation on
Z that is is induced by a rational map p : Z -->» W with connected fibers.

Suppose that s : B — Z is a morphism whose image is contained in the regular locus of F
and goes through a general point of Z. Let Y denote the main component of B Xy Z equipped
with the map g : ¥ — Z. By [16, Remark 19] we can choose a resolution y : Y > Yanda
morphism s : B — Y suchthatgopuoS = and Ty = 5"F.

We will also need the following flattening construction.

ConstrucTiON 4.2. Let Z be a smooth projective variety and let W be a locally closed
subvariety of Mor(B, Z) parametrizing a dominant family of curves. Let Uy denote the
universal family over W and let U7y, denote the normalization of Uy. Then U7, is equipped
with a map p : U}, — W and an evaluation map evy : Uy, — Z. We claim there is a
birational map ¢ : Z’ — Z from a smooth variety Z’ and an open subset W° c W such that
the preimage Uy° := p~'W° admits a flat morphism ev’ : Uy° — Z' satisfying evwlyre =
poev.

Indeed, suppose we take a flattening of ev, i.e. a diagram

—_—
W evy

where V and Z are quasi-projective varieties, ¢ and Yz are projective birational morphisms,
and ev is flat. (See, e.g., [11, Theorem 14.143] for the version of flattening we use or the
original source [25].) Letp : Z' — Z be a resolution of singularities. Since ev is flat,
V' :=V x5 Z' is also a quasi-projective variety and the projection map ev’ : V' — Z’ is still
flat. The induced map ' : V' — U7y, is still birational. Since p defines a family of curves,
there is an open subset W° c W such that p~! W° is disjoint from every y/’-exceptional center.
Then W° has the desired properties.

We are now prepared to prove the main theorem in this section.

Theorem 4.3. Let Z be a smooth projective variety defined over C. Fix a positive integer
J > 2g(B) + 3. Suppose M is an irreducible component of Mor(B, Z) parametrizing a
dominant family of morphisms and let ev : U — Z denote the evaluation map for the
normalization of the universal family over M. Assume that either:
e the general map s : B — Z parametrized by M is birational onto its image, or
e there is a smooth projective curve B’ of genus > 2 such that the general map s : B —
Z parametrized by M factors through a morphism s’ : B' — Z that is birational onto
its image.

Suppose furthermore that

deg(s*Tz) > dim(Z)(J + 2¢9(B) + ) + g(B)(dim(Z) + 2),
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where we define
y = (g(B)2 dim(Z)* + 5¢(B)? dim(Z) + 2¢(B) dim(Z) + 8¢(B) + 1) dim(Z).

Let U be a normal projective compactification of U with a morphism ev : U - X
extending ev. Let f : S — Z denote the finite part of the Stein factorization of ev. Then
there is a rational map ¢ : S --> W such that the following holds. Let s : B — S be a
general morphism parametrized by M and define Y to be the main component of B Xy S in
the pullback diagram

BXW§—>§

| .

B /4

where ¢ - S — W is a resolution of ¢. We denote by g the morphzsm g: Y 58> Z
Then there is a resolution u : Y - Y and a sections: B — Y of the map Y — B such that
gouos=sand:
(1) The deformations of s in Y contain at least J general points of Y.
(2) The space of deformations of s in Y has codimension in M at most
(dim(Z) + 1)(J + 3g(B) +y + 1).

Proof. As in Construction 4.2 we choose a smooth birational model §* — S that flattens
the family M. Since the evaluation map for M factors through S, we can take strict trans-
forms of the general maps parametrized by M to obtain a family of maps s’ : B — §’. Note
that the general map s’ is either birational onto its image or it factors through a birational
map from a curve of genus > 2 (possibly different from B’).

Recall that the normal sheaf Ny is generically globally generated when we have a domi-
nant family of maps. In particular, by Lemma 2.4 we have

h(B, Ny) < h%(B, (Ny)is) + h°(B, (Ny)rors)
< deg((Ny)ip) + tk((Ny)ip) + h°(B, (Ny)iors) = deg(Ny) + tk(Ny).
Thus

-Kz - 5.B + dim(Z)(1 - g(B)) < dim(M) < h’(B,s"*Tg) < h°(B,Ny) +3
< —Kg - s'B+ (2g(B) — 2) + (dim(S") — 1) + 3.

Combining with our degree bound, we see
4.1) dim(Z)(J +2g(B) +y) < —Kz - 5.B — g(B)(dim(Z) + 2) < —Ky - 5. B.

Consider the family of sections of B X §" — B corresponding to the morphisms s" : B —
S’. Let us assume that this family does not contain J general points of BX.S’. By [19, Lemma
3.6] we see that

4.2) W Tg) < J +2g(B) — 1.

Write the Harder-Narasimhan filtration of T'sy with respect to « := [s, B] as
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O=FycFiCc---CFr=Tg.

Since by (4.1) we have

4

_KS’ © S, B

po(Ts) = d—(Z)

> J+29(B) +,

there is some index i > 1 such that we have p min(F,) > J+2g(B)+y. Let i be the maximum in-
dex for which this inequality holds. Applying Theorem 3.8 to relate the Harder-Narasimhan
filtration of Ty to the Harder-Narasimhan filtration of its pullback, we obtain

U Tg) < p™"(s*Ts) +y < J +2g(B) +y -1,

where the second inequality follows from Equation (4.2). This shows that i < k. On the
other hand, since i was selected to be as large as possible we must have

Mo (Ts [F) < J +29(B) + .

Since F; is a term in the a-Harder-Narasimhan filtration of 7's that satisfies ﬂgi"(F,-) > 0, it
is a foliation on §” by Theorem 2.15.

By [9, Theorem 1.1] the foliation F; is induced by a rational map ¢ : S’ --> W that has
connected fibers. Since i < k this rational map is not trivial. By our flatness construction a
general morphlsm s’ parametrized by M will have image contained in the regular locus of
F;. Let Y denote a resolution of the main component of B Xy S as in the statement of the
theorem and let 3 : B — Y denote the section chosen as in Construction 4.1. In particular
we have

?TY/B = S*P,'.
Theorem 3.8 implies that
p(sF) 2 " (F) —y 2 J + 29(B),

and so by Proposition 2.8 we see that deformations of 's can go through at least J general
points of Y verifying (1). To prove (2), let N denote the space of deformations of sin Y.
Appealing to Proposition 2.5, we see that

dim(M) — dim(N) < (-Ky - 5.B + dim(Z) + 2g(B)) - (K7, - 5. B + (dim(Y) - 1)(1 — g(B)))
=deg(s*Ts /F;) + (dim(Z) — dim(Y) + 1) + g(B)(dim(Y) + 1)
< (dim(Z) — dim(Y) + 1)(J +2g(B) +y + 1) + g(B)(dim(Y) + 1)
<(dim(Z) + )(J +3g(B) +y + 1).

Since the dimension of the space of sections is birationally invariant, we obtain (2). |

5. Main results

5.1. Families of curves and Fujita invariants. We start by relating the Fujita invariant
to the existence of families of curves. The following is an analogue of [19, Theorem 1.12]
(and in fact can be deduced from this result).
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Theorem 5.1. Let X be a smooth projective Fano variety defined over C and let B be a
complex smooth projective curve. Fix a positive rational number a. Fix a positive integer T.
There is some constant ¢ = £(dim(X), g(B), a, T) with the following property.

Suppose that Y is a smooth projective variety equipped with a morphism f : Y — X that
is generically finite onto its image. Suppose that N is an irreducible component of Mor(B, Y)
parametrizing a dominant family of curves C on Y which satisfy —f*Kx - C > &. Finally,
suppose that

(5.1 dim(N) > a(-Kx - C + dim(X)(1 — g(B))) — T.
Then

aY,-f"Kx) > a.

ReMARk 5.2. Since dim(M) always has at least the expected dimension, the condition in
Equation (5.1) is implied by the more evocative inequality dim(N) > a - dim(M) — T.

Proof. By [14, Theorem 1.3] there is a rational number € > 0 depending only on a and
dim(X) such that no smooth variety of dimension < dim(X) has Fujita invariant in the range
((1 — €)a, a) with respect to any big and nef Cartier divisor. We define

é(dim(X),g(B),a, T) =1+ sup {O, é (g(B)(adim(X) + 2) + (dim(Y) — adim(X)) + T))} .

Since N parametrizes a dominant family of curves on Y, Proposition 2.5 yields an in-
equality

dim(N) < =Ky - C + dim(Y) + 2¢g(B).
Combining with Equation (5.1) and rearranging, we find
(Ky —af*Kx) - C < g(B)(adim(X) + 2) + (dim(Y) — adim(X)) + T.
Since we are assuming —f*Kx - C > &, this inequality implies
(Ky — (1 —e)af*Kx)-C <0.

Since C moves in a dominant family on Y, this means that Ky — (1 — €)af* Ky is not pseudo-

effective. In other words, we must have a(Y, —f*Kx) > (1 — €)a. But by our choice of € this
implies a(Y, — f*Kx) > a. O

5.2. Classifying non-free curves. Our earlier theorems address morphisms B— X which
factor through a curve of genus > 2, so we will need an additional result to handle the genus
<1 case.

Theorem 5.3. Let X be a smooth projective Fano variety of dimension > 2 defined over
C and let B be a complex smooth projective curve. There is a constant ® = O(dim(X), g(B))
such that the following results hold.

Let M be an irreducible component of Mor(B, Z) parametrizing a dominant family of
maps of anticanonical degree > ©.

(1) Suppose that a general morphism parametrized by M factors through a morphism
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P' — X that is birational onto its image. Then the image of the general morphism
is an anticanonical conic.

(2) There cannot be a curve B’ of genus > 1 such that a general morphism parametrized
by M is the composition of a morphism B — B’ of degree > 2 followed by a mor-
phism B" — X that is birational onto its image.

Proof. Let s : B — X be a general map parametrized by M. Set r = deg(s*Tx) and define
® =1+ sup{9, 12(g(B) dim(X) + 2g(B) — 2)}.

(1) First note that dim(M) > r + dim(X)(1 — g(B)). Suppose that the image of the general
morphism s is a rational curve of anticanonical degree d. Since a dominant family of rational
curves has the expected dimension, we find:

dim(M) < dim Mor, 4(B, P') + (d + dim(X) — 3)
< (25 1+ 29(3)) +(d + dim(X) - 3).

Comparing, we see that
2
r(l - 2) <d+ ¢g(B)dim(X) + 2¢g(B) — 2.

Note that 2 < d and d = r/e for some integer e > 2. We have the following cases:

e Suppose d > 5. We conclude that » < %(a’ +g(B)dim(X) + 2g(B) —2). Since 2d < r,
this in turn implies that » < 10(g(B) dim(X) + 2¢g(B) — 2), contradicting the bound
O<r

e Suppose d = 4. Then r < 2(d + g(B) dim(X) +2g(B) - 2). If the generic map B — P!
has degree 2 then r = 8. Otherwise r > 3d and we conclude r < 6(g(B) dim(X) +
2g(B) — 2), contradicting the bound ©® < r.

e Suppose d = 3. Then r < 3(d + g(B)dim(X) + 2g(B) — 2). If the generic map
B — P! has degree 2 or 3 then r < 9. Otherwise r > 4d and we conclude r <

12(g(B) dim(X) + 2¢g(B) — 2), contradicting the bound ® < r.

Altogether we see that we must have d = 2, proving the statement.

(2) As before we have dim(M) > r + dim(X)(1 — g(B)). Suppose that the image of the
general morphism s is a curve birational to B’ of anticanonical degree d. By Proposition 2.5
a dominant family of maps B’ — X dimension at most d + dim(X) + 2¢g(B’). On the other
hand, the tangent space to Mor,,4(B, B") has dimension 1 (if B’ is elliptic) or O (if g(B’) > 2),
and this also bounds the dimension of the moduli space. Altogether we find

dim(M) < dimMor,/4(B, B") + (d + dim(X) + 2g(B)) < d + dim(X) + 2¢g(B) + 1.
Comparing against the lower bound on dim(M), we see that
r < d+dim(X)g(B) + 2g(B) + 1.
Since we must have r > 2d, we see that »r < 2 dim(X)g(B) + 4¢g(B) + 2. But this contradicts

the assumption ® < r. O

We can now prove a classification theorem for non-free curves.
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Theorem 5.4. Let X be a smooth projective Fano variety defined over C and let B be
a complex smooth projective curve. There are constants E = E(dim(X),g(B)) and T* =
T*(dim(X), g(B)) such that the following holds. Suppose that M C Mor(B, X) is an irre-
ducible component parametrizing non-free maps s : B — X of anticanonical degree > E
Let U be the normalization of the universal family over M and let ev : U — X be the
evaluation map. Then either:

1)

)

3)

ev is not dominant. Then the subvariety Y swept out by the curves parametrized by
M satisfies a(Y, —Kxly) = a(X, —Kx).

ev is dominant and the general map parametrized by M is birational onto its image.
Let U be a normal projective compactification of U with a morphism ev : U -
X extending ev. Then the finite part f : Y — X of the Stein factorization of ev
satisfies

a(Y,-f"Kx) = a(X, —Kx).

Furthermore, there is a rational map ¢ : Y --> Z such that the following properties
hold. Let Y denote a smooth projective birational model of Y admitting a morphism
a: Y — Z that resolves @.

(a) Let F denote a general fiber of ¢. Then we have a(F,—f*Kx|r) = a(X,—Kx)
and (F, —f*Kx|r) is adjoint rigid.

(b) Lets: B — Y denote a map to Y induced by a general point of M and let W
denote the main component of B Xz Y. Then the image in M of the parameter
space of deformations of the map (id,s) : B — W has codimension at most T
in M.

ev is dominant and the general map parametrized by M is not birational to its image.
In this case the image of the general map is a rational curve of anticanonical degree
2. Thus ev factors rationally through a generically finite map g : V — X where V is
a projective model of a universal family U — N of rational curves of anticanonical
degree 2 on X where N is an irreducible open locus of the Hilbert scheme of X. In
particular a(V, —g*Kx) = a(X, —Kx).

Proof. We first define several constants. Let & be the constant £(dim(X), g(B), 1,0) in
Theorem 5.1. By [18, Theorem 0.2] there is a constant b depending only on dim(X) such
that —bKy is basepoint free. We next apply [19, Theorem 7.10] with our choice of b, with
areg = a = 1, with E = 7(m, E) = 0, with T = 0, and with 8 = 0 to obtain a constant
I'(dim(X), g(B)). Define T* = (dim(X) + 1)(I' + 3g(B) + y + 2) where

y = (g(B)2 dim(X)? + 5¢(B)* dim(X) + 2¢(B) dim(X) + 8¢(B) + 1) dim(X).

Finally set

&(dim(X), g(B)) = sup {

&1, &(dim(X), g(B), 1, (dim(X) + I)(T" + 3g(B) + v +2)),
©,dim(X)(T" +2g(B) +y + 1) + g(B)(dim(X) +2) [’

where ¢ is defined as in Theorem 5.1 and ® is defined as in Theorem 5.3.

(1) Let ¢ : Y — Y be a resolution and let N parametrize the strict transforms of the
curves on Y. Denote the composition of ¢ with the inclusion map by E Y — X. Since
dim(N) = dim(M), we may apply Theorem 5.1 to Y with the constants a = 1 and T = 0. We
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conclude that a(?, —Z*Kx) > a(X, —Ky). Since the Fujita invariant is a birational invariant,
we conclude (1).

(2) Let ¢ : Y — Y be a resolution and let N parametrize the strict transforms of the
curves on Y. Denote the composition of Y with f by f Y — X. Since dim(N) = dim(M),
we may apply Theorem 5.1 to f with the constants a = 1 and 7 = 0. We conclude that
a(Y f*KX) > a(X,—Kx); since f is dominant the equality must be achieved. Since the
Fujita invariant is a birational invariant, we also have a(Y, —f*Ky) = a(X, —Kx).

Since our curves have anticanonical degree > Eand the general morphism s is birational
onto its image, we can apply Theorem 4.3 to X and M with J = sup{2¢g(B) + 3,I" + 1}. Since
by assumption the curves parametrized by M are non-free the corresponding sections cannot
go through J general points of ¥ X B (see [19, Proposition 3.7]). Thus Theorem 4.3 ylelds
a non-trivial rational map ¢ : Y --» Z with the followmg property. Suppose ¢ : Y - Z
is a resolution of ¢. For a general maps : B — Y parametrlzed by M, let W denote the
main component of B Xy Y. Then there is a resolution W — W and a section 5 : B — W
such that the deformations of s contain at least I' + 1 general points of W. Furthermore the
space of deformations of s in W has codimension at most 7+ in M. Letting £ : ¢
denote the induced map and Wn denote the generic fiber of 4, our choice of ¢ shows that
a(W s —h*KXIVT,”) = 1 and the conclusion of [19, Theorem 7.10] shows that (W ,—h*le‘,T,n)
is adjoint rigid. Since the Fujita invariant and the litaka dimension are constant for general
fibers of the map W — B by invariance of plurigenera (see [21, Theorem 4.3]) we conclude
that a general fiber F of W — B has Fujita invariant 1 and is adjoint rigid with respect to the
pullback of —Ky. But since s is general we see that F is also a general fiber of E, finishing
the proof.

(3) It only remains to consider the case when a general map s is the composition of a
morphism B — B’ of degree > 2 and a morphism s” : B’ — X that is birational to the
image. Theorem 5.3 combined with our definition of E shows the case g(B’) > 1 is not
possible. If g(B’) = 0 then the rational factoring through V is an immediate consequence of
Theorem 5.3. Note that a rational curve of anticanonical degree 2 on X satisfies a(C, —Kx) =
1 = a(X,—-Kx). Since V is covered by such conics, we have a(V,—g*Kx) > a(X,—-Kx)
by [20, Lemma 4.8]. The reverse inequality a(V, —g*Kx) < a(X, —Kyx) follows from the
Riemann-Hurwitz formula as in [20, Lemma 4.7]. O

6. Boundedness statements in the absolute case
The goal of this section is to prove the following boundedness theorem.

Theorem 6.1. Let X be a smooth projective Fano variety and let B be a smooth projective
curve, both are defined over C. There is a proper closed subset V- C X such that if M C
Mor(B, X) is an irreducible component parametrizing a non-dominant family of curves then
every curve parametrized by M is contained in V.

This theorem is almost an immediate consequence of the analogous boundedness result
in the relative setting, [19, Theorem 8.10]. There is one important issue: there is a particular
closed set of X X B used in [19] and we must verify that this closed set does not dominate
X under the projection map. This claim is true, but unfortunately a careful verification takes
some work. We make this verification in the rest of the section, giving the precise statement
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in Theorem 6.11.

For the rest of this section k denotes an algebraic closed field of characteristic 0 and B
denotes a smooth projective curve defined over k. We denote the function field of B by
F. We will freely use the language and constructions of [20] and [19] when we give the
appropriate reference.

6.1. Lemma 8.3 of [20]. First we recall some definitions from [20]:

DermiTion 6.2. Let F be a field of characteristic 0. Let X be a smooth geometrically
uniruled projective variety defined over F' and L be a big and nef Q-divisor on X. We define
the b-invariant for (X, L) as

b(F, X, L) := codimension of the supported face of ﬁl (X) containing a(X, L)L + Ky.
When X is singular, we take a resolution 8 : X — X and define the b-invariant as
b(F,X,L) := b(F, X,°L).

This is well-defined due to [15, Proposition 2.10]. When F is algebraically closed, we drop
F from b(F, X, L) and simply denote it by b(X, L).

DEeriniTION 6.3 ([20, Definition 7.1 and Definition 8.2]). First let us assume that our
ground field F is an algebraically closed field of characteristic 0. A good family of ad-
joint rigid varieties is a morphism p : U" — W of quasi-projective smooth varieties and
p-relatively big and nef Q-divisor L on U satisfying the following properties:

(1) The morphism p is projective, smooth, and surjective with irreducible fibers;

(2) For any closed point w € W and the corresponding fiber U, above w, a(V},, L|y,) is
constant and positive, and (U, Lly~,) is adjoint rigid;

(3) b(Uy, Llyr,) is also constant for any closed point w € W; and,

(4) Let Q denote the union of all divisors D in fibers U/, such that a(D,L|p) >
a(Vy, Lly,). Then Q is closed in U and flat over W. Moreover if weset V = U\ 0,
there is a projective birational morphism ¢ : U — U that is an isomorphism over
V such that U is smooth over W and U™ \ V is a strict normal crossings divisor

relative to W.

Now let us assume that F is an arbitrary field of characteristic 0. A projective morphism
p: U — Wis a good family of adjoint rigid varieties if the base change of p to F is a good
family of adjoint rigid varieties.

DermiTion 6.4 ([20, p.1405]). Again let us assume that our ground field F is an alge-
braically closed field of characteristic 0. A good morphism of good families of adjoint rigid
varieties is a diagram

y-lov
N
T — =W

and p-relatively big and nef Q-divisor L on U such that p, g are good families of adjoint
rigid varieties with respect to L and f*L respectively, the relative dimensions of p, g are
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equal, and for any closed point ¢ € T, we have a(};, f*Ll|y,) = a(Uy, Llv,).
When F is an arbitrary field of characteristic 0, a diagram

Ay,

ql ”l

Tr——Ww
is a good morphism of good families if its base change to F is a good morphism.

The following lemma is essentially [20, Lemma 8.3]. The only difference is that we
perform every construction in the absolute setting:

Lemma 6.5. Let X be a uniruled smooth projective variety defined over k and L be a big
and nef Q-divisor on X. Let X be the base change of X to F and Ly be the base change of
LtoF. Let p: U — W be a surjective morphism between projective k-varieties where U is
equipped with a morphism s : U — X. Let pp : U" — W be the base change of p to F with
the morphism sp : U — X.

Suppose that there exists a Zariski open subset W° C W such that p : U° — W° is a
good family of adjoint rigid varieties over k (here U° denotes the preimage of W°) and that
any fiber over W° has the same a-invariant with respect to s*L as X has with respect to L.
Then there exist a proper closed subset R C X and a finite set of dominant generically finite
morphisms {f; : Y; — U} defined over k that can be fit into commutative diagrams

Ji

Y, >

U
J ]
Tj—>W

such that the following holds. Let Y;, T, f;r,q,r be the base changes of the corresponding
objects to F. Then:
(1) BothY;and T ; are projective varieties, Y is smooth, T is normal, and q; : Y; — T;
is generically a good family of adjoint rigid varieties;
(2) The canonical model for a(X, L) fj 's*L+ Ky, is a morphism and this morphism agrees
with q; over some open set of T j;
(3) The morphism T; — W is dominant, finite, and Galois;
(4) We have Bir(Y;/X) = Aut(Y;/X); and,
(5) Assume that g : Y — T is a projective surjective morphism of varieties over F
where Y is smooth and geometrically integral and that we have a diagram

y—Lev

ql pfl

7w
satisfying the following properties:

(a) There is a Zariski open subset T' C T such that Y is a good family of adjoint
rigid varieties over T’ and the map f : ¢~ "(T’) — U has image in U'° and is
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a good morphism of good families.

(b) There exists a rational point y € Y(F) such that sp o f(y) ¢ R where R is the
base change of R to F.

Then for some index j there will be a twist f]‘.T : y;.’ — U over F such that f(y) €

f}‘? (37;7 (F)). Furthermore, there exists a dominant generically finite map T > 7T

such that the main component q : y - T of the base change of q by T > 7T
satisfies that the induced map ]7: YU factors rationally through f;’ in a way
that a general geometric fiber of ¢ maps birationally to a geometric fiber of the map
q7 Y7 = Tj‘T.

Proof. This lemma follows from the proof of [20, Lemma 8.3]. Indeed, one can perform
every construction in Steps 1 and 2 of the proof of [20, Lemma 8.3] over k. Their base
changes to F will satisfy the universal property (5) which can be justified by Step 3 of the
proof of [20, Lemma 8.3]. O

6.2. Section 2.5 of [19]. We modify [19, Construction 2.17].

ConsTruCTION 6.6. Let X be a uniruled smooth projective k-variety and let L be a big and
nef Q-Cartier divisor on X. It follows from [20, Theorem 4.19] that there are a proper closed
subset V, finitely many projective varieties W; C Hilb(X), proper families p; : U; — W;
where U; is a smooth birational model of the universal family U/ — W;, and dominant
generically finite morphisms s; : U; — X such that

e a general fiber Z of p; : U; — W; is a smooth uniruled projective variety which is
mapped birationally by s; onto the subvariety of X parametrized by the correspond-
ing point of Hilb(X) and it also satisfies a(Z, s7L|z) = a(X, L) and is adjoint rigid
with respect to s7L|z; and

e for every subvariety ¥ C X not contained in B, (L) which satisfies a(Y, L|y) > a(X, L)
and which is adjoint rigid with respect to L, either Y is contained in V or there is
some index i and a smooth fiber of p; that is mapped birationally to ¥ under the map
Si.

The following theorem is essentially [19, Theorem 2.18] but stated in the absolute setting.

Theorem 6.7. Let X be a uniruled smooth projective k-variety and let L be a big and nef
Q-Cartier divisor on X. Denote by {p; : U; — W} the finite set of families equipped with
maps s; : U; — X and by V the closed subset of Construction 6.6. There are a closed set
R C X and finitely many smooth projective varieties Y; ; equipped with dominant morphisms
rij o Yij — T;; with connected fibers and dominant morphisms h;; : Y;; — U; forming
commuting diagrams

hl'./
Yij ——=U;

Tij——W,
iJ

that satisfy the following properties. Let us denote the base changes of
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X, L U;,s,Y;,Tij,rij,hij,R
to F by
X, Lp, Ui, sip, Vij, Tijs 1ijrshijr, R

respectively. Then we have

(1) Each map h; ; is generically finite and f; j = s; o h; j is not birational;

(2) t; ) is a finite Galois cover and T; j is normal;

(3) We have Bir(Y; ;/U;) = Aut(Y; ;/U;);

(4) Every twist y;'j of Vi,j over U; admits a morphism rl?’rj’ P )?f] — 7:‘; which is a twist
of rijF;

(5) We have a(Y, ;, f:jL) =a(X,L); and,

(6) Suppose that Y is a geometrically integral smooth projective variety and that f :
Y — X is a morphism that is generically finite onto its image but not birational
such that a(Y, f*Lr) > a(X,Lg). Suppose furthermore that y € Y(F) satisfies
f(y) ¢ R. Then:

(a) there are indices i, j and a twist hl‘.”j’F : )73 — U; of hijr such that f(y) €
P 17, p(FY)), and
d) if (Y, f*Lr) is adjoint rigid then furthermore f factors rationally through h;”j’ 7

o

and f maps Y birationally to a fiber of e iF

Proof. There are two inputs into [19, Theorem 2.18]: [20, Lemma 8.3] and [19, Construc-
tion 2.17]. Lemma 6.5 is a version of [20, Lemma 8.3] in the absolute setting. It is clear that
the closed set V of X x B constructed in [19, Construction 2.17] is obtained by base change
from a closed subvariety V c X. With these changes the proof of [19, Theorem 2.18] works
with no issues. |

6.3. Section 8.1 of [19]. Here we improve results from [19, Section 8] in the absolute
setting. Given a smooth projective curve B, we denote by 7 its generic point; given a mor-
phism X — B, we denote by X, its generic fiber. We recall the following definition from
[19]:

DeriniTioN 6.8 ([19, Definition 3.1]). We say that a morphism 7= : Z — B is a good
fibration if:

(1) Z is a smooth projective variety,
(2) B is a smooth projective curve, and
(3) = 1is flat and has connected fibers.

We then perform constructions from [19, Section 8] in the absolute setting:

ConsTrUCTION 6.9. Let X be a uniruled smooth projective variety defined over k and L be
a big and semiample Cartier divisor on X. Set a = a(X, L) and denote X X B by X and the
pullback of L to X by L.

Applying Construction 6.6 to X we obtain a proper closed subset V C X and a finite
collection of families p; : U; — W; whose smooth fibers are birational to closed subvarieties
of X. Let U; and W; be U; X B and W; X B with the natural map p;5 : U; — W, and let V
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denote V X B. Let W; be Sec(W;/B). We define W = L;W;. Let W7 C W; be a Zariski open
subset such that over W7, p;| W) is smooth. We first shrink 23 so that the generic point of
every section parametrized by 2B is contained in Wl.‘fn. We enlarge V by adding the images
in X of the fibers of p; over W; \ W;?. While doing so, we continue to let V denote V X B.

ConstrucTioN 6.10. Let UgH (G, B) be the Hurwitz stack parametrizing pairs (C — B, )
where C — B is a Galois cover from a smooth projective curve C and ¢ : Gal(C/B) = G
is an isomorphism of groups. (See [27] for the construction of such a stack as a Deligne-
Mumford stack.) Fix an étale covering LigHg — UgH(G, B) from a scheme.

Let X be a uniruled smooth projective variety defined over k and L be a big and semiample
Cartier divisor on X. Set a = a(X, L). We denote X X B by & and the pullback of L to X by
Lg. Let 3 — 2 X B be the morphism constructed in Construction 6.9.

By Theorem 6.7 we obtain a closed set R C X and a finite set of smooth projective
k-varieties Y; ; equipped with dominant generically finite morphisms 4;; : Y;; — U; and
dominant morphisms r;j : ¥; ; — T; ;. Let V be the union of R with the closed set from Con-
struction 6.9. Then we enlarge V by adding s;(B; ;) where B; ; is the union of the irreducible
components of the branch locus of #; ;. We further enlarge V by adding the Zariski closure
of the union of the images of the fibers of r; ; which fail to be smooth, fail to have the same
a-invariant as Y; ;, or fail to be adjoint rigid. We denote V X Bby V.

We then exactly repeat the remaining steps in [19, Construction 8.4]. The result is a
family & — & X B whose base is a countable union of finite type schemes and a morphism
g: & — S X X such that

(1) the fiber ¥ is a normal projective B-variety such that §; — B has connected fibers
for every closed point s € S ;
(2) the map g5 : &y — X is a B-morphism that is generically finite onto its image
and the corresponding morphism §; — 3, is a dominant finite morphism for every
closed point s € S;
(3) we have a(%¥s,, g5Ll5,,) = a and (&4, g Ll5,,) 1s adjoint rigid for every closed point
s E
(4) moreover if Y is a good fibration over B and f : Y — X is a generically finite
B-morphism such that a(Y,, f*Lly,) = a and (Y, f*Lly,) is adjoint rigid, either
the map f is birationally equivalent to g, for some closed point s in our family or
FQ) Y,
We also have a family 9 — D X X parametrizing integral models hgj : yf] — U; of twists
hgj’n Vg = Vine
The following theorem is essentially [19, Theorem 8.7]. The only difference is that we
can take our proper closed subset to be the base change of a proper closed subset on X.

Theorem 6.11. Let X be a uniruled smooth projective variety defined over C and L be
a big and semiample Cartier divisor on X. Set a = a(X,L). Denote X X B by X and the
pullback of L to X by Lg.

Fix a rational number B. Fix a positive integer T. Fix a positive integer b > a such that
bL’ defines a basepoint free linear series. There are:

e a constant & = £'(dim(X), g(B), a, T, 3, b),
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e a proper closed subset V C X, and
e a bounded family of smooth projective varieties q ¥ > G equipped with c-
morphismsp:’i§\—>@XBandgzﬁﬁ@xX
which have the following properties:

(1) The morphism %;\S — B is a good fibration for every closed point s € G:;

(2) The morphism g : "‘8;\5 — X is a B-morphism that is generically finite onto its image
for every closed point s € S;

(3) The composition of glz - §,~ — S X X with the projection SxX > X > Xis
dominant for every irreducible component ’i§l~ of 3

(4) We have a(’i?s,,],gﬁLglgw) = a(X,L) and (’gs’,,,gnglgw) is adjoint rigid for every
closed point s € @; and,

(5) Assume thaty : Y — Bis a good fibration equipped with a B-morphism f : Y — X
that is generically finite onto its image and satisfies a(Yy, f*Lgly,) > a. Suppose
that N is an irreducible component of Sec(Y/B) parametrizing a dominant family
of sections C on Y which satisfy f*Lg - C > & and f*(Kx;p + aLp) - C < 8. Let
M C Sec(X/B) be the irreducible component containing the pushforward of the
sections parametrized by N. Finally, suppose that

dim(N) > dim(M) - T.

For a general section C parametrized by N, either:

o f(C)is containedinV =V X B, or

o there exist an irreducible component ';?i of ¥ and an irreducible component N’
of Sec(gi | B) parametrizing a dominant family of sections on 78;,- such that f(C)
is the image of a section C' parametrized by N’ and if §i’S denotes the fiber
containing C’ then the strict transform of C’ in a resolution of @i,s is HN-free.

Proof. We let L’ denote the sum of Lg and the pullback of an ample line bundle of degree
1 from B. Note that L’ is big and semiample on X’. Step 1: Let d be as in Step 1 of the
proof of [19, Theorem 8.7]. Let UsH(G, B) be the Hurwitz stack and fix an étale covering
UgczdHc — Ugc<a (G, B) by a scheme. We will work over this base for the entire
proof.

Note that the divisor £ = 0 satisfies the condition of [19, Proposition 7.1]. Define & =
&(dim(X), g(B),0,1,a,T,B + a,b) as in [19, Theorem 7.6]. We then choose

& =£&7(dim(X),g(B),0,1,a,T.f+a,b) and T =T*(dim(X),9(B),0,1,a,T,B+a,b)

as in [19, Corollary 7.11]. Define 7 = 7(dim(X), g(B), 1,a,T,B + a, b) as in [19, Theorem
8.1]. Finally we define &' = sup (£, £*).

Since L is big and semiample, there is a closed subvariety V| C X such that the family
of subvarieties of X that are not contained in V| and have L-degree < 7 is bounded. By
[20, Theorem 4.18.(2)] there is a closed sublocus V, C X that contains all subvarieties with
larger generic Fujita invariant. Let V3 be the exceptional closed set from Construction 6.10.
We start by setting V to be the union of Vi, V,, and V3; we will later enlarge it.

Let 3; — 2;x B be the families in Construction 6.9. Then there is a finite-type subscheme
R; c W; parametrizing those varieties whose images in X have L’-degree < 7 and are not
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contained in V. We define 3;x, — R; as the universal family over R;. Set R = LI;R;.

Let) > T > D, T ->M,F - Sandg : § > X X B be defined as in Construction
6.10. We let &' denote the sublocus of S consisting of maps g; whose image is a member
of our fixed bounded family 3y — R and denote by & — & the corresponding family.

Step 2: We next claim that there is a morphism Q — &’ C & such that Q is of finite
type over C and for every map g, parametrized by &’ the map g, is a twist of the generic
fiber of a map parametrized by Q. Indeed, this follows from the discussion of Step 2 of [19,
Theorem 8.7] without any modification.

Step 3: Next we define an integer ¢ as in the discussion of Step 3 of [19, Theorem 8.7].

Step 4: Lemma 6.3 and Corollary 6.13 of [19] show that as we vary the closed point
g € Q the set of twists of h, : B, — Z, which are trivialized by a base change B’ — B of
degree at most d and with at most 7 + d(T + T*) branch points is parametrized by a bounded
famlly We denote by ¥ — G the bounded subfamily of §’ — &’ parametrizing maps

P 8s = Zs satlsfylng these properties. After taking smooth resolutions and stratifying
the base, we obtain {f; — G such that each fiber is a good fibration over B. We then shrink
S by removing all irreducible components &; such that the corresponding family I ; fails to
dominate X and we enlarge V by taking the union with the closures of the images of these
families.

Step 5: Finally the verification of the desired properties of § — G follows from Step 5
of [19, Theorem 8.7] without any modification. O

Now, we prove Theorem 6.1 using Theorem 6.11:.

Proof of Theorem 6.1. It follows from [18, Theorem 0.2] that there exists a constant
b’ only depending on dim X such that —b’Ky is base point free. Let L = —Kx. We apply
Theorem 6.11 with 8 = 0,b = (Zg(B) + )b, T =0,a = 1 to obtain &, V;, and a bounded
family of good fibrations F — C. Let V, C X be the closure of the loci swept out by non-
dominant families of curves s : B — X with deg(—s*Ky) < £'. Note that since the parameter
space for such curves has finite type, V; is a proper closed set of X.

We claim that V = V; U V; satisfies our assertion. Indeed, suppose that we have a non-
dominant family M c Mor(B, X) of anticanonical degree > £7. Suppose that a general curve
parametrized by M is not contained in V. By the universal property, a general C comes from
a relatively free section C’ in a member of our bounded family of varieties ¥ — C. Then
it follows from [19, Lemma 8.5] that such C” deforms to other varieties in our family so
that it dominates an entire irreducible component of {‘§ However, such a component maps
dominantly to X. This is a contradiction. Thus every non-dominant family parametrizes
curvesin V. O

7. Distinctions between relative and absolute case

There are several ways in which the absolute case is fundamentally different from the
relative case. We briefly explain the key distinctions.

The first difference is the behavior of adjoint rigidity. Suppose that 7 : X — B is a Fano
fibration and that f : J — X is a generically finite map such that ' admits a family of
sections of high degree that is “large” in the corresponding component on &X’. [19, Theorem
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7.10] shows that if these sections go through sufficiently many general points on ) then
(Yy, —f"Kx/p) 1s adjoint rigid.

The analogous statement in the absolute setting for maps f : ¥ — X is no longer true, as
demonstrated by the following example.

ExampiE 7.1. Let X be a general quartic threefold. For sufficiently positive d > 0 we will
construct a curve B of genus 801 and a component N, of Mor(B, X) such that the curves
parametrized by N, sweep out a surface S with the following properties:

(1) (S, —-Kxls) is not adjoint rigid.
(2) The curves parametrized by N, have anticanonical degree d and go through at least
max{0, 2d — 1921} general points of S.

Thus there is no bound we can impose on the number of general points contained in our
curves which will force S to be adjoint rigid.

Let S denote the surface in X swept out by lines. By [26] S is contained in [80H|. Fur-
thermore, if we denote the universal family of lines by g : ¥ — B with evaluation map
f : Y — X then g is a P'-bundle over a smooth curve B of genus 801 and f : ¥ — S is
birational.

Let £ denote the rank 2 locally free sheaf on B such that ¥ = Pp(€). Then Kyp =
g c1(€) — 2¢ where ¢ is a divisor representing Oy;p(1). On the other hand, if we write
—f"Kx = aF + bé where F denotes a fiber of g then we have

~f'Kx-F=1 = b=1 (-f*Kx)* =320 = b%*c1(E) + 2ab = 320

so that —f*Kx ~pum & + 160F — %g*cl(é'). Thus Ky/p — 2f*Kx ~pum 320F. In particular,
since f : ¥ — §is birational we conclude that (S, —Kx|s) is not adjoint rigid.

When d is sufficiently large there is an irreducible component N; C Sec(Y/B) parametriz-
ing sections of g satisfying —f*Kx - C = d. Then we have

dim(Ng) > —Ky/p - C+ (1 = g(B)) = (2d — 320) + (1 — g(B)).

Let us show that N, is also an irreducible component of Mor(B, X). If the curves deformed
out of Y then they would lie in an irreducible component M parametrizing a dominant family.
Then we would have

dim(M) < d +3(1 - g(B)) + h'(B,s"Tx) < d + 3(1 — g(B)) + h'(B, T) + h' (B, s Tx/Tp)
<d+3(1 -g(B)) + (3g(B)) + (29(B)),

where the final inequality follows from Lemma 2.4. Since this is less than dim(N,;), we
conclude that when d is sufficiently large N, is an irreducible component of Mor(B, X). By
[19, Lemma 3.6] the sections parametrized by N, go through at least (2d — 320) — 2g(B) + 1
general points of Y.

Rather, the correct statement is the following.

Theorem 7.2. Let X be a smooth projective Fano variety and let B be a smooth projective
curve. Fix a positive integer T. There is some constant I = I'(dim(X), g(B), T) with the
following property.

Suppose that f : Y — X is a morphism that is generically finite onto its image and N is
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an irreducible component of Mor(B, Y) parametrizing a dominant family of curves C on Y
such that

dim(N) > —Kx - C + dim(X)(1 —g(B)) - T.

Suppose that a(Y,—f*Kx) = 1. Then either:
(1) (Y, —f"Ky) is adjoint rigid, or
(2) deformations of the corresponding sections on Y X B go through at most I general
points of Y X B.

Proof. This follows immediately from [19, Theorem 7.10] applied with a,.,; = 1, 8 = 0,
E = 0, and b a positive integer only depending on dim(X) chosen so that | — bKx| is very
ample. m|

A second difference between the relative and absolute settings is the formulation of
boundedness statements. Loosely speaking, [19, Theorem 8.8] shows that in the relative
setting all non-free curves can be accounted for by the union of a closed set and twists of
a finite set of dominant morphisms. It is natural to wonder if in the absolute setting we
can “remove the twists”: does a Fano variety X admit a closed set and a finite collection of
generically finite maps f : ¥ — X which account for all non-free curves? The following
example answers this question in the negative.

ExawmpLE 7.3. Let X be the Fano threefold Pp(O @ O(1)) equipped with the projective
bundle map g : X — P2. We will let H denote a divisor representing g*((1) and let E denote
the rigid section of g. By [3, Lemma 5.2, Theorem 5.3, Theorem 5.5] every dominant map
f Y — Xsatistying a(Y, — f*Kx) = a(X, —Ky) will be birationally equivalent to a projection
map ]?: S xp2 X — X induced by a generically finite morphism ¢ : § — P2

Let B be a general hyperelliptic genus 8 curve so that B admits a unique degree 2 mor-
phism 4 : B — P! up to automorphisms of P'. We let £ denote the degree 2 line bun-
dle defining these morphisms. Let M, denote the closure of the sublocus of Mor(B, X)
parametrizing maps s : B — X such that s is birational onto its image, g o sis a2 : 1 map
onto a conic in P?, and deg(—s*Kx) = d. Note that M, is non-empty when d is sufficiently
large. Indeed, the product G = B xp> X is a P!-bundle and so admits sections of large degree
and we can simply take the image of these sections in X. For d large enough, we see that the
normal bundle Ny, will have very large degree, so that Ny,(—p) will be globally generated
for any p, and hence the curves in M, which pass through p will not all pass through some
other point g of G. It follows that a general s is birational onto its image in X.

We claim that when d is sufficiently large then M, is an irreducible component of
Mor(B, X) which parametrizes a dominant family of non-free curves. Suppose the maps
parametrized by M; were not dense in an irreducible component. Then when we compose
the general map in this component with g we would obtain a birational morphism B — P?
onto a degree 4 curve. But this is not possible since the genus of B is too large. To show
that the general map s parametrized by M, is not free, note that the surjection Ty — ¢g*Tp2
yields a surjection s*Tx — h*(O(3) & O(3)). Thus

h'(B,s*Tx) = h'(B, £%) > (g(B) - 1) — 3 deg(£) > 0,
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and so s is not free.

Next we show that when d is sufficiently large there is no dominant generically finite
map f : ¥ — X of degree > 2 and no irreducible component N C Mor(B, Y) such that
f« + N — M; is dominant. If there were such a map, then Theorem 5.1 implies that
a(Y,—f*Kx) = a(X,—Ky). Thus Y is birationally equivalent to the projection S Xp2 X — X
for some generically finite map i : S — P? of degree > 2. After replacing Y by a birational
model and N by a family of strict transforms, we may assume that ¥ admits a morphism to
S.

Consider the images on S of the curves parametrized by N on Y. There are two cases:

(1) The image on S of the general curve parametrized by N is rational. Then S carries a
family R of rational curves C such that /|¢ is an isomorphism

and i.(R) is dense in the family of conics on P?. Since the preimage of a general
conic is irreducible by the Bertini theorem, the only possibility is that ¢ : § — P? is
also degree 1 and hence birational. This contradicts our assumption that deg(f) > 2.

(2) The image on S of the general curve parametrized by N is birational to B. Then §
carries a family R of curves C birational to B such that y|c isa 2 : 1 cover of a conic
in P2 and ¢, (R) is dense in the family of conics on P2. Note that the y-preimage of a
general conic is smooth by the Bertini theorem so that a general curve parametrized
by R is isomorphic to B.

Let D denote the branch divisor of ¢. Let U denote the parameter space of conics
in P2 As we vary Q € U the intersection DN Q defines a morphism U — Mo,z deg(D)
where the latter space parametrizes stable genus O curves with 2 deg(D) marked
points. We claim that the image of this map has dimension at least 1; indeed, some
conics are tangent to D while others will meet D transversally at distinct points.
However, the ramification divisor for the 2 : 1 cover B — P! corresponds to a unique
point in Mo,z deg(p) (since any two such maps are related by an automorphism of P).
Thus it is impossible for the y-preimage of every general conic to be isomorphic to
B.

Together (1) and (2) show the impossibility of a morphism f : ¥ — X and an irreducible
component N C Mor(B, Y) as above. It follows that there is not a finite set of dominant
generically finite maps {f; : ¥; — X} of degree > 2 such that a general curve parametrized
by M, can be obtained by composing f; withamap s: B — Y;.
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