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Abstract

When trained on biased datasets, Deep Neural Networks (DNNs) often make pre-
dictions based on attributes derived from features spuriously correlated with target
labels. This is especially problematic if these irrelevant features are easier for
the model to learn than the truly relevant ones. Many existing debiasing methods
have been proposed to address this issue, but they often require predefined bias
labels and entail significantly increased computational complexity by incorporating
additional auxiliary models. Instead, we provide an orthogonal perspective from
existing approaches, inspired by cognitive science, specifically Global Workspace
Theory (GWT). Our method, Debiasing Global Workspace (DGW), is a novel
debiasing framework that consists of specialized modules and a shared workspace,
allowing for increased modularity and improved debiasing performance. Further-
more, DGW improves the transparency of decision-making processes by visualizing
which features of inputs the model focuses on during training and inference through
attention masks. We begin by proposing an instantiation of GWT for the debi-
asing method. We then outline the implementation of each component within
DGW. Finally, we validate our method across various biased datasets, proving its
effectiveness in mitigating biases and improving model performance.

1 Introduction

Deep Neural Networks (DNNs) have achieved remarkable advancements across various domains,
such as image classification (He et al., 2019; Xie et al., 2020), generation (Wang and Gupta, 2016;
Kataoka et al., 2016), and segmentation (Luo et al., 2017; Zheng et al., 2014). However, DNNs
often show limited generalization capability to out-of-distribution (OOD) data and are susceptible
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to biases present in their training datasets (Torralba and Efros, 2011). These biases occur when
irrelevant features, such as background color, correlate with target labels, causing models to rely on
these features for making predictions (Geirhos et al., 2020). This reliance on biased features leads to
poor performance when the model encounters new data that do not share the same biases. Biased
datasets possess many bias-aligned samples, where irrelevant features correlate with the labels, and a
small number of bias-conflicting samples, where these features do not align with the labels. Models
trained on such data tend to be disproportionately influenced by bias-aligned samples, leading to poor
generalization (Hendrycks et al., 2021b,a).

Various debiasing methods have been proposed to prevent a network from relying on spurious
correlations when trained on a biased dataset. Some methods assume that biased features are “easier”
to learn than robust ones, leading to the use of auxiliary models that exploit these biased features
to guide the main model’s training (Nam et al., 2020; Sanh et al., 2020). Strategies such as re-
weighting samples (Liu et al., 2021; Nam et al., 2020) and data augmentation (Kim et al., 2021; Lee
et al., 2021) are common but often struggle with insufficiently diverse samples. Other approaches
involve identifying specific biases prior to training (Hong and Yang, 2021; Kim et al., 2019; Li
and Vasconcelos, 2019; Sagawa et al., 2019), allowing the model to ignore or correct these biases.
Although effective, this requires accurate bias identification and extensive manual labeling (Bahng
et al., 2020; Tartaglione et al., 2021).

In this work, we depart from the above perspectives and focus on a novel and completely different
approach to implement a debiasing framework. In modern ML and Al, it has been argued that
it is better to build an intelligent system from many interacting specialized modules rather than
a single “monolithic” entity to deal with a broad spectrum of conditions and tasks (Goyal and
Bengio, 2022; Minsky, 1988; Robbins, 2017). Toward this end, we focus on Global Workspace
Theory (GWT), a framework from cognitive science proposed to underlie perception, executive
function, and consciousness. GWT is a crucial element of modern cognitive science that models
human consciousness arising from integrating and broadcasting information across specialized,
unconscious processes in the brain (Baars, 1993, 2005). Many recent studies proposing a deep-
learning implementation of GWT (Bengio, 2017; Goyal et al., 2021; VanRullen and Kanai, 2021) have
demonstrated their effectiveness in allowing a model to have: general-purpose functionality, increased
modularity, improved performance, and interpretable representation learning. This perspective is
expected to be well suited for application in implementing debiasing methods.

Therefore, we propose the Debiasing Global Workspace (DGW), a novel instantiation of GWT for
debiasing to eliminate the negative effect of the misleading correlations. Our debiasing approach
involves specialized modules (acting as the specialists in GWT) and an attention-based information
bottleneck (acting as the global workspace in GWT). This allows the model to achieve straight-
forward, functional modularity, and effective debiasing performance while providing interpretable
representation by visualizing which attributes are essential for accurate predictions and which are
irrelevant and likely to cause errors.

The remainder of this paper is organized as follows. We begin in Section 2 with a review of related
work and relevant background literature. Then, in Section 3, we propose a conceptual modification of
the GWT to implement a debiasing method. This involves defining specialized modules and the shared
global workspace (Section 3.1). Then, we provide a step-by-step framework for defining the essential
deep-learning components of our debiasing model within an Al system (Section 3.2). In Section 4,
we empirically test our method on biased datasets, including Colored MNIST, Corrupted CIFARI10,
and Biased FFHQ, and demonstrate that DGW effectively separates and understands intrinsic and
biased features through both performance metrics and visualizations. Finally, we conclude with a
discussion of future work and limitations of our approach in Section 5.

2 Related Work

2.1 Debiasing Methods for Deep Neural Networks

Relative to existing debiasing methods for DNNs, our work aims to reduce training complexity while
improving generalization performance. We survey those existing methods here.

Debiasing with predefined forms of bias or specific bias labels. One approach to debiasing is to
identify specific biases prior to training (Hong and Yang, 2021; Kim et al., 2019; Li and Vasconcelos,



2019; Sagawa et al., 2019). The model then learns to ignore or correct these biases. Although
effective, it depends on accurately identifying biases beforehand, which can be challenging. Another
approach uses bias labels to tag the data (Bahng et al., 2020; Tartaglione et al., 2021), which allows
the model to differentiate between biased and unbiased data during training. This improves learning
but requires extensive manual labeling.

Debiasing using the easy-to-learn heuristic. Biases are “easier” for models to learn (Nam et al.,
2020) than intrinsic features. Techniques like dynamic training schemes, re-weighting samples, and
data augmentation (Geirhos et al., 2018; Lee et al., 2021; Minderer et al., 2020; Li and Vasconcelos,
2019; Lim et al., 2023) help models focus on unbiased features. However, these methods do not
perform well if training samples have low diversity. Complex models can learn invariant features or
correct representations but are difficult to design and train (Tu et al., 2022; Zhao et al., 2020; Agarwal
et al., 2020; Bahng et al., 2020; Geirhos et al., 2018; Goel et al., 2020; Kim et al., 2019; Li et al.,
2020; Minderer et al., 2020; Tartaglione et al., 2021; Wang et al., 2020).

Others. SelecMix (Hwang et al., 2022) uses an auxiliary contrastive model with new training
samples that mix pairs with similar labels but different biases or different labels but similar biases.
This method is effective but adds significant training complexity. x? model (Zhang et al., 2023)
learns debiased representations by identifying Intermediate Attribute Samples (IAS) and using a
x-structured metric learning objective. However, its reliance on training dynamics to identify IASs
makes it different from our approach and out of the scope of our study.

2.2 Deep Learning and Global Workspace Theory

In neuroscience and cognitive science, there are ongoing efforts to identify neural correlates of
consciousness, as reviewed by Seth and Bayne (2022), and to form explanatory theories of conscious-
ness (ToC). One such theory is the Global Workspace Theory (GWT) (Baars, 1993; Dehaene and
Changeux, 2011; Mashour et al., 2020), which is inspired by the “blackboard architecture” used in
artificial intelligence. In this architecture, a centralized, shared blackboard resource facilitates the
exchange of information between specialized processors.

Recent studies have aimed to bridge the gap between neuroscience and deep learning, focusing
on practical solutions to implement a GWT using current deep learning components while also
incorporating organizational principles from functionally equivalent brain mechanisms (Goyal and
Bengio, 2022; Minsky, 1988; Robbins, 2017; Goyal et al., 2021; Hong et al., 2024). Bengio (2017)
emphasized learning high-level concepts by selecting key elements through attention, forming a
low-dimensional conscious state similar to language, which aids in better representation learning.
Mashour et al. (2020) details GWT’s implementation in neuroscience, suggesting that consciousness
arises from extensive information sharing across brain regions via a central network of neurons.

Inspired by GWT, our Debiasing Global Workspace (DGW) framework manages intrinsic and biased
attributes in neural networks. DGW integrates information from intrinsic and bias specialists, ensuring
that disentangled representations are used in decision making. Unlike prior works that focus on
monolithic architectures or general-purpose learning, our approach uniquely applies these theories to
the specific problem of debiasing neural networks.

3 Method

We propose the Debiasing Global Workspace (DGW), an instantiation of GWT for debiasing. DGW
learns the composition of attributes in a dataset and provides interpretable explanations for the
model’s decisions. We introduce the conceptual framework of GWT for debiasing first (Section 3.1),
its implementation in a deep learning framework next (Section 3.2), and the training objectives
last (Section 3.3).

3.1 The Conceptual Instantiation of Debiasing Global Workspace

Figure 1 shows a conceptual overview of our proposed DGW framework. The conceptual flow of the
DGW proceeds through a sequence of steps that we describe in detail here.
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Figure 1: Conceptual framework of Debiasing Global Workspace (DGW). (a) Section 3.1: When
attention selects inputs from specialists (Step 0), its latent-space activation is copied into DGW and
immediately translated into representations suitable for each module (Step 1). We control which
module is mobilized into the workspace to receive and process the corresponding data effectively. For
example, upon recognizing digit “zero,” the corresponding classifiers are activated in the workspace.
The classifier )" is initiated for intrinsic attributes (Step 2-1), and the classifier wb is activated for
learning bias attributes (Step 2-2). (b) Broadcast in Section 3.2: The information broadcast in DGW
can demonstrate interpretable representation for attribute learning. (c) Section 3.3: Unlike the original
GWT, where task definitions can be preset in Step 0, we address them using our training objectives
using relative attribution score. Figure inspired by VanRullen and Kanai (2021, Fig. 3)

Step 0. For learning disentangled representations of intrinsic and biased attributes, we introduce

two specialists: intrinsic ¢" and biased ¢b. In the original GWT, the specialists connect to the
global workspace before any stimulus appears, coupling their latent spaces bidirectionally with the
workspace. We modify this arrangement to so that different information will be backpropagated
to the two specialists separately (black and red connections between specialists and DGW in Step
0in Fig. 1). Specifically, the intrinsic and bias specialists function identically in the forward pass.
However, during the backpropagation stage, only the intrinsic attribute encoder updates its parameters
and learns, while the bias attribute encoder remains frozen and does not undergo parameter updates
when the model is tasked to find intrinsic attributes.

Step 1. The DGW acts as an independent and intermediate shared latent space trained to perform
unsupervised neural translation between the C' latent spaces of the specialized modules. The transla-
tion system is optimized to ensure that successive translation and back translation (e.g., a cycle from
A to B, then back to A) return the original input (Goyal et al., 2021; VanRullen and Kanai, 2021). We
implement specific operations to mimic the translation system by leveraging residual operations (He
et al., 2016) and a variant of mixup (Verma et al., 2019).

Posner (1994) argues that attention determines what information is consciously perceived and what is
discarded in brains. In GWT, attention selects the information that enters the workspace. When a
specific module is connected to the workspace through attention, its latent space activation vector is
copied into the DGW. This internal copy serves as a bidirectional connection interface between the
corresponding module and the DGW.

When a new stimulus, such as the digit “zero,” appears, its latent activity is transferred to the
corresponding internal copy inside the workspace, initiating a broadcast to all other domains. This
shared latent space (Slatent in Fig. 1) uses translations and back translations from all modules to
compute and train using error backpropagation. We introduce a recurrent, top-down pathway, which
can sometimes be considered a key to account for the global ignition property observed in the brain



when an input reaches consciousness, and the corresponding module is mobilized into the conscious
global workspace (VanRullen and Kanai, 2021).

Step 2. The incoming information is then immediately broadcasted and translated (through the
shared latent space) into the latent space of all other modules. In GWT, this translation process is
automatic. However, we modify this to force the learning of intrinsic and biased attribute represen-
tations by using different loss functions. Specifically, we force the classifier ¢i to learn intrinsic
attributes by error backpropagation from specific training objectives (Step 2-1 in Fig. 1). Step 2-2
simultaneously forces the connection to the classifier +? and limits backpropagation to the intrinsic
specialist ¢' to learn the representations of bias attributes.

3.2 Roadmap to Implement Debiasing Global Workspace

Here, we present our deep-learning-based implementation of the DGW. It combines and organizes
existing components for effective debiasing frameworks in a way that is consistent with the cognitive-
science-inspired DGW framework described above.

Two specialized modules and the shared workspace. DGW uses two independent specialists, the
intrinsic attribute encoder ¢’ and the bias attribute encoder (;Bb. From these, we derive concatenated
features E £ [¢'(x); ¢°(x)] € RE*P. To connect specialists and the shared workspace, we
define e € {E?, E’}, where E = [¢(x);sg(¢"(x))] and E? is vice versa, with sg(-) as the stop-
gradient operator. We introduce the Global Latent Attention (GLA) module, which acts as a shared
workspace that encourages synchronization within the input feature vector E through a latent feature
representation Syaen;.

Latent-slot binding specific to each input. The GLA module uses a set number of latent em-
beddings or latent slots C'. These latent slots represent the learnable embedding vectors in the
DGW and provide competitive attention (Vaswani et al., 2017) on input features e. We define
Statent € {Shyent> Staent} € RE*P where C? is the number of slots for intrinsic features and C? for
bias features, with C = C 4+ C®. The attention mechanism is such that:

k(e) - q(Siaent) "
A (e, Siaent) = softmax (()\/(Elmm)) e RO*E, 1)
where, k, g are linear projection matrices, and the softmax function normalizes the slots, creating
competition among them. The slots are refined iteratively using the following:

st — GRU (s(n) Normalize (A(e, sl(;fgm)—r) v (E)) , 2)

latent latent?
(n)
latent
neural network, and v is another liner projection matrix. The initial slots sl(flgm are initialized with
learnable queries following Jia et al. (2022).

where: s is the latent-slot representation after n iterations, GRU (Cho et al., 2014) is a recurrent

The above computations can be considered to implement a shared global workspace (Goyal et al.,
2021; Hong et al., 2024) as they allow different parts of the model to compete for attention and
integrate and broadcast information similar to GWT.

Broadcast updated information to specialists. Specialists update their states using information
from the shared workspace. The inverted cross-attention mechanism allows specialists to query and

interact with updated latent slots sl(:;;tl), updating their states through:
e=ed (A (sl(;:;tl), e) v (sl(;f:;tl))) € REXD, 3)

where v is a linear projection matrix. Here, & can be instantiated with various computational opera-
tions that implement different forms of information broadcast, including a residual connection (He
et al., 2016). The other way of operation is a modified version of Manifold Mixup (Verma et al.,
2019), which interpolates feature embeddings to capture higher-level information:

_ ] 41 n+1
e = MIXQ (ev (A <sl(ailen[ )’ e) v (Sl(alent )))> ’



where: Mix, (a,b) = a-a+ (1 — «a) - band a ~ Beta(, ). The updated feature vector € is then

fed to the classifier %" and 1°. We compare the performance of using residual connections versus
our modified Manifold Mixup in Section 4.1.

In GWT, the information broadcast through the global workspace is a necessary and sufficient

condition for conscious perception (VanRullen and Kanai, 2021). Intuitively, the attention mask

A(sl(;;t ), e) can be seen as artificial phenomenal consciousness, indicating the immediate subjective

experience of sensations and perceptions. These non-negative relevance scores depend on x through
the averaged attention weight, allowing us to show interpretable representations for intrinsic and
biased attributes in our analysis (Section 4.2).

3.3 Training Objectives

Here, we summarize the objective functions to train our framework. We have two linear classifiers
1" and wb that take the updated concatenated vector € from the previous module as input to predict
the target label y. Our training objectives consist of: i) the relative attribute score learning phase, and
ii) the attribute composition phase.

Relative attribute score learning phase. In this phase, we define two tasks within the conceptual
framework: identification of intrinsic attributes and identification of biased attributes. Without
specific information about bias types, we utilize the relative difficulty score of each data sample, as

proposed by Nam et al. (2020). Specifically, we train ¢°, S?, ., and " to focus on bias attributes
using generalized cross entropy (GCE) (Zhang and Sabuncu, 2018), while ¢°, Sj,.,, and 1)* are

latent
trained with the cross entropy (CE) loss. Samples with high CE loss from 4? are considered bias
conflicting compared to those with low CE loss. We define the relevance-score function:

Score(2,y) 2 CE("(@),1) [ (CEW'(2),y) + CE@'(@).y)) - @
Thus, the objective function is defined using the above relative difficulty score for each data sample:

L1 2 Score(€,y) - CE(Y'(€),y) + A GCE (" (&), 1),

where weight A adjusts the balance between the two loss terms. This loss function balances learning
between intrinsic and biased attributes, ensuring effective identification and separation of these
attributes during the training phase.

Attribute-composition phase. We swap the disentangled latent vectors among the training sets (Lee
et al., 2021). We randomly permute the intrinsic and bias features in each mini-batch, creating
Egap = [0"(x); ¢>fwap(x)] where ¢, (x) denotes the randomly permuted bias attributes. This
process produces augmented bias-conflicting latent vectors. As in the definition of e, we define
€swap € {El Efwap} and generate €gy,p following the same process described in egs 1, 2 and 3.

L L swap) TTsw - .
The objective function for this phase is:

Eswap £ SCOI‘G(é, y) : OE('QM (éswap)a y) + AswapGCE(";bb(éswap)a g);

where: ¢ denotes the target labels for the permuted bias attributes (ﬁfwap (x), the weight Agyap adjusts

the balance between two loss terms, and the relevance score Score(€, y) from eq. 4 is reused from
L) to reduce computational complexity. This loss function swaps bias features so that the model
learns to handle a wider variety of bias-conflicting samples, improving its ability to generalize beyond
the specific biases present in the training data. Consequently, the model becomes more robust as
it learns to focus on intrinsic features while disregarding spurious correlations, resulting in better
performance on unbiased data. Furthermore, augmenting the training data in this manner helps the
model generalize better to new, unseen data by exposing it to a wider range of possible biases during
training.

Entropy regularization. We empirically incorporate an additional regularization term on the latent
slot attention mask to enhance performance:

Lo 2 H(A(s{hy,©)) + H(A (S €suap)),



where A(s") ) and A(s\") | eq.p) are attention masks from the last iteration of eq. 2. Minimizing
entropy H(A) = H(ay,...,aa]) = (1/|A])>_; —a; - log(a;) encourages the attention masks to
be consistent across the input features captured by the latent slots. This regularization ensures that

the model’s attention remains focused and interpretable across different input scenarios.

Final loss. The total loss function Lo = Lrel + Aswap * Lswap + Aent * Lenc is @ weighted combi-
nation of the above components, where the weights Agyap and Ay adjust the relative importance of
feature augmentation and entropy regularization, respectively. This comprehensive loss function
ensures balanced training that enhances the model’s ability to learn and generalize effectively while
maintaining interpretability and robustness.

4 Experiments

Here, we present our experimental results, focusing on performance evaluation on various biased
datasets (Section 4.1), interpretable analysis for attribute-centric representation learning (Section 4.2),
and additional qualitative and quantitative analyses (Section 4.3).

Datasets. Following the previous work (Lee et al., 2021), we used the following three well-known
benchmark datasets for debiasing methods to evaluate the performance and interpretability of DGW.

* Colored MNIST (C-MNIST) and Corrupted CIFAR10 (C-CIFAR-10): These synthetic
datasets are designed to test model generalization on unbiased test sets by varying the ratio
of bias-conflicting samples (0.5%, 1%, 2%, and 5%).

e Bias FFQH (BFFHQ): This real-world dataset from FFHQ (Karras et al., 2019) contains
face images annotated with age (intrinsic attribute) and gender (bias attribute). Most of the
samples are from young women and old men, creating a high correlation between age and
gender. For BFFHQ, we included 0.5% bias-conflicting samples in the training set and used
a bias-conflicting test set to ensure robust evaluation.

At inference time, we evaluated the models on clean data containing no bias-conflicting samples.

4.1 Performance Evaluation

Baselines. Our set of debiasing baselines includes the following six different approaches': Vanilla
network, HEX (Wang et al., 2018), EnD (Tartaglione et al., 2021), ReBias (Bahng et al., 2020),
LfF (Nam et al., 2020), and LFA (Lee et al., 2021). Vanilla refers to the classification model trained
only with the original cross-entropy (CE) loss without debiasing strategies. EnD leverages explicit
bias labels, such as color labels in the C-MNIST dataset, during the training phase. HEX and ReBias
assume an image’s texture as a bias type, whereas LfF, LFA, and our method do not require any prior
knowledge about the bias type. Furthermore, we configure a naive debiasing approach integrated
with GWT implementation: V+CCT. CCT (Hong et al., 2024) proposed an instantiation of GWT
applicable to implement an interpretable model. To compare our DGW, we simply configure the
direction fusion of the Vanilla network with CCT as a GWT debiasing method.

Implementation details. Following the implementation details of Lee et al. (2021), we used a fully
connected network for attribute encoders with three hidden layers for C-MNIST and ResNet-18 for
C-CIFAR-10 and BFFHQ. We used a fully connected classifier with twice the hidden units to handle

the combined output of the intrinsic attribute encoder ¢ and the bias attribute encoder q,’)b.

During testing, only the intrinsic classifier wi(e) was used for the final predictions. We used batch
sizes of 256 for C-MNIST and C-CIFAR-10, and 64 for BFFHQ, respectively. Two concepts and a
size of 8 were used for C-MNIST, 5 and 16 for C-CIFAR-10, and 10 and 32 for BFFHQ, respectively.

'We only establish baselines that can be directly tested. For example, x? (Zhang et al., 2023) is not included
because its code is not publicly available, and SelecMix (Hwang et al., 2022) is not included because it is a
data-augmentation method that differs from our method category and has high training complexity, taking over
approximately four times longer than our method. Additionally, although the authors of SelecMix claim it runs
on an RTX 3090, we found that our environment with a 24GB RTX A6000 could not handle the real-life dataset
BFFHQ, indicating significant computational resource requirements.



Table 1: Test accuracy (%) on unbiased test sets of C-MNIST and C-CIFAR-10, and the bias-
conflicting test set of BFFHQ with varying ratio of bias-conflicting samples. (x) denotes methods
tailored to predefined forms of bias, (°) methods using bias labels, (1) methods relying on the easy-
to-learn heuristic, and () methods combined with GWT. V+CCT indicates the direct integration of
Vanilla and CCT. DGW+M refers to DGW with our mixup strategy, and DGW+R refers to DGW
with residual connection. Performance for HEX and EnD is from (Lee et al., 2021), while results for
Vanilla, ReBias, LfF, LFA, V+CCT and DGW are from our evaluation. The best-performing results
are shown in bold, and the second-best results are underlined.

Dataset  Ratio (%) Vanilla ~ HEX* EnD’ ReBias®  LfF' LFAT V+CCT!  DGW+M! DGW+R?

0.5 36.241.8 [30.3108 [34.3+12 [722415 [47.5430 674417 263411 | 689428 |70.344,

C-MNIST 1.0 508423 |43.7155 495425 |86.6106 |64.6425 |79.0110 [40.1401 |[81341,5 |77.4x04
2.0 65.2401 |56.9426 |68.5422 [92.74103 |74.9437 [85.0408 [56.2418 |[84.6415 [85.3. (7

5.0 81.640¢6 |74.6432 [81.2414 [97d4106 |80.2409 |88.741.3 |73.4408 88.9410.2 89-110.6

0.5 | 228105 |13.9501 | 229105 | 208502 |25.0515 | 279510 | 152505 | 296,05 | 30410,

C-CIFAR-10 1.0 26.2105 |14.8404 [25.5404 |24.4104 |31.0404 |34.3106 [20.6104 | 349104 [33.645,
20 |3L1lios (152405 |3L3104 |29.6400 |38.3104 |403104 |24.6105 | 413, |42.0410

50 420105 |16.0106 |40.3100 |4l.1i0s |48.8109 |50.3,,, |35.610s | 523105 |50.3,, 0

BFFHQ 0.5 54.5406 |52.840.9 |956.9+1.4 |58.0+09.2 |63.6429 [59.5438 [52.6411 [[66.9+10 [65.6,53

Original Attention Mask

(a) Intrinsic

Figure 2: Visualization of A% and A’ for the C-MNIST dataset

We trained our model and baselines with three trials and reported the averaged accuracy and standard
deviation. More details of the experimental settings are explained in Appendix C.4.

Performance Comparison. Table 1 shows that ReBias outperforms DGW on C-MNIST because
it uses additional predefined bias labels. This gives ReBias a specific advantage. However, DGW
excels without needing predefined bias labels, making it more versatile. DGW, with all operators,
also outperforms LFA in all datasets, demonstrating its robustness and flexibility in debiasing image
classification tasks. Furthermore, the poor performance of V+CCT highlights the importance of
finding the proper configuration for debiasing methods, indicating the effectiveness of our DGW
configuration as a debiasing method.

4.2 Analysis for Interpretable Attribute Representation

To make the analysis of interpretable attribute representation learning in our model more intuitive,
let us explore the attention mask patterns A ( (nt1) ) for the C-MNIST and C-CIFAR-10 datasets.

s e
latent
In the broadcast in our formulation (A(sl(;;:ll), e) in eq. 3)), DGW generates two attention masks:

A" = A(S},.., EY) for intrinsic attributes, focusing on essential features like shape, and A® =

A(S?,..., EY) for biased attributes, capturing non-essential features like color.

For the C-MNIST dataset, intrinsic attention masks highlight the shapes of the digits, ignoring colors.
For example, the digits “0,” “6,” and “8” consistently highlight shape regions (Fig. 2(a)), showing
that the model focuses on shape for classification. In contrast, bias-attention masks highlight color
regions, not shapes. Digits “1,” “5,” “2,” and “8” in yellow/magenta/green show nearly identical
masks (Fig. 2(b)), indicating a focus on color. This confirms that the biased components of DGW
capture color information, which is irrelevant for digit recognition.
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Figure 3: Visualization of A’ and A® for the C-CIFAR10 dataset
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Figure 4: t-SNE plots for intrinsic and bias features on C-MNIST (with 0.5% setting).

For the C-CIFAR-10 dataset, intrinsic masks focus on uncorrupted parts of the images (Fig. 3(b)),
highlighting true object features. For example, masks for a truck, car, dog, and horse highlight
uncorrupted areas, avoiding noise. The bias masks, on the other hand, focus on corrupted areas,
showing no overlap with intrinsic masks (Fig. 3(c)). This complementary relationship illustrates the
effective segregation of essential (intrinsic) and non-essential (biased) information.

In summary, for C-MNIST, intrinsic masks focus on digit shapes, while bias masks focus on colors.
For C-CIFAR-10, intrinsic masks highlight uncorrupted parts, and bias masks cover corrupted parts.
This clear separation supports the model’s robustness and interpretability, ensuring decisions are
based on relevant features while ignoring spurious correlations. More visualization results can be
found in Appendix C.5.

4.3 Quantitative and Qualitative Analysis

We provide additional analysis to compare our DGW (DGW+M in Table 1) method with Vanilla
and LFA (Lee et al., 2021). More experimental results with different settings can be found in
Appendix C.6.

t-SNE and Clustering. We measured clustering performance using t-SNE (van der Maaten and
Hinton, 2008) and V-Score (Rosenberg and Hirschberg, 2007) on features from various models cap-
turing intrinsic and bias attributes on C-MNIST. V-Score represents homogeneity and completeness,
with higher values indicating better clustering. In Fig. 4, our DGW’s ¢* captures intrinsic attributes
effectively, resulting in tighter clusters and better separation, as indicated by the V-Score. The bias
attributes are well captured by ¢”, as shown in Fig. 4(d).

Model Similarity. We visualize model similarity using Centered Kernel Alignment (CKA) (Raghu
et al., 2021; Kornblith et al., 2019; Cortes et al., 2012), comparing similarities between all pairs of
layers for different models. In this analysis, I and B denote ¢* and qbb. As shown in Fig. 5, Vanilla
and LFA have similar weights across many layers, whereas DGW shows fewer similarities in both
initial and deeper layers, indicating different behavior across layers compared to baselines.



o LNENNNEE D 60
= 5 l 50 50
: g - T 5% ’ )
Z 2, Bl | 2 .
. o “
ﬁ . 10 = 10 10
= | SR IR eEEa o
0 20 40 60 0 20 40 60
Layers of LFA (I) Layers of LFA (B) Layers of DGW (I) Layers of DGW (B)
(a) LFA (Intrinsic) (b) LFA (Bias) (c) DGW (Intrinsic) (d) Vanilla vs DGW (Bias)

Figure 5: Representations of similarities for vanilla and different methods with all pairs of layers on
C-CIFAR-10 (0.5% setting). High similarity score denotes high values.

Table 2: ECE (%) and NLL under different settings on C-CIFAR-10.

Ratio (%): 0.5 1.0 2.0 5.0
Model ECE NLL ECE NLL ECE NLL ECE NLL
Vanilla 1375 599 13.14 987 1225 6.65 13.76 5.99
LFA 1209 581 1145 727 1025 514 756 3.09

DGW (Ours) 11.85 5.71 1153 6.88 996 441 755 3.01

Model Reliability. We evaluate model generalizability using Expected Calibration Error (ECE)
and Negative Log Likelihood (NLL) (Guo et al., 2017). ECE measures calibration error, and NLL
assesses probabilistic quality. As shown in Table 2, DGW consistently has the lowest ECE and NLL,
indicating better generalizability compared to baselines.

5 Conclusion

In this work, we introduced Debiasing Global Workspace (DGW), a framework designed to learn
debiased representations of attributes in neural networks. By leveraging attention mechanisms
inspired by the Global Workspace Theory, our method effectively differentiates between intrinsic and
biased attributes, enhancing both performance and interpretability. Comprehensive evaluations across
various biased datasets demonstrated that DGW improves model robustness and generalizability
on biased data and provides interpretable insights into the model’s decision-making process. Our
approach results in tighter clusters and better model separation, indicating superior performance in
both intra- and inter-classification tasks. Furthermore, DGW shows improved model reliability and
generalizability, making it a better solution to address biases in real-world applications. Future work
could focus on reducing this complexity, exploring the scalability of DGW to even larger and more
diverse datasets, and extending the framework into a general-purpose drop-in layer to enhance robust
performance across a wider range of image recognition tasks.

Limitations. We acknowledge that the introduction of our modules can increase the complexity of
the training, including the size of the model and the training time. This represents a trade-off between
performance and transparency in decision making. Although our additional overhead is minimal,
further analysis is necessary to optimize and streamline the process.
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