




mate individual camera poses. For this, SfM is often

addressed in a few independent steps, including detect-

ing/describing/matching local features across multiple views

(e.g., SIFT [40], ORB [50], LIFT [84]), triangulating fea-

tures to estimate sparse 3D geometry and camera poses (e.g.,

COLMAP [53]), applying bundle adjustment over many

views (see Triggs et al. [61] for an overview), etc. Though

steady progress has been made in the past decades [44], and a

large number of applications have been enabled [10, 31, 71],

the classic SfM pipeline solves sub-tasks individually and

sequentially, accumulating errors. More recent SfM meth-

ods improve traditional pipeline with learnable compo-

nents [28, 65]. MASt3R-SfM [20] extends MASt3R [36],

which only produces local reconstructions for 2-view input,

to perform global optimization for aligning local reconstruc-

tions via gradient descent to minimize 3D matching loss.

Multi-View Stereo. MVS reconstructs dense 3D scene ge-

ometry from multiple views [24], often in the form of 3D

points. In the classic PatchMatch-based framework [91],

per-pixel depth in the reference image is estimated from a

set of unstructured source images via patch matching un-

der a homography transform [54]. Subsequent work has

substantially improved feature matching [63, 69, 92] and

depth estimation [25, 52, 76]. More recent learning-based ap-

proaches [67, 78] often build an end-to-end pipeline, where

deep models extract visual features, model cross-view cor-

respondences (e.g., cost volume [26]), and regress depth

maps [79]. Note, with few exceptions [80], most approaches

require prior knowledge of camera intrinsics from SfM or

camera calibration. Our MV-DUSt3R network also pro-

cesses sparse multi-view input, but does not require prior

knowledge of camera parameters.

Neural Scene Reconstruction. Compared to classic meth-

ods, which reconstructs a scene using either explicit rep-

resentations (e.g., 3D point, mesh) or implicit represen-

tations (e.g., signed distance function [43]), recent ap-

proaches adopt different neural representations [55], in-

cluding Neural Distance Fields [16, 38], Neural Radi-

ance Fields (NeRFs) [3, 4, 34, 42, 62], Gaussian Splat-

ting [30, 32, 86], and their combination [93]. Many of

them require slow per-scene optimization to attain accu-

rate results, while more recent methods explore the use of

feed-forward networks for generalizable reconstruction at a

fraction of the time, including those for generating Neural

Distance Functions [16, 45, 56], NeRFs [14, 19, 85], and

Gaussians [13, 15, 59, 72]. Note, neural scene reconstruc-

tion often requires input views with known camera poses,

albeit quite a few exceptions exist, such as CoPoNeRF [29],

Splatt3R [57], and NoPoSplat [81]. For example, NoPoSplat

predicts 3D Gaussians in the same camera coordinates, akin

to the key idea of DUSt3R. However, those pose-free meth-

ods primarily focus on inference with 2 input views. It is not

clear how they perform when processing sparse multi-view

input. In contrast, our models MV-DUSt3R, MV-DUSt3R+

equipped with 3D Gaussian splatting heads, not only waive

the need for camera pose, but also reconstruct large scenes

from multiple views in a single feed-forward pass.

Dense Unconstrained Scene Reconstructions from Multi-

View Input. To bypass estimation of camera parameters and

poses, recent works like DUSt3R [68] and MASt3R [36]

propose a new approach: directly regress pixel-aligned 3D

pointmaps for pairs of input views. An expensive 2nd stage

global optimization is required to align all pairwise recon-

structions in the same coordinate system. Both DUSt3R and

MASt3R are only evaluated on object-centric DTU data [1]

where all views are concentrated in a small region. Notably,

methods are not validated if their 2-stage pipeline excels at

reconstructing larger scenes captured with sparse multi-view

input. Subsequently, Spann3R [64] augments DUSt3R with

a spatial memory to process an ordered set of images. Al-

though capable of performing online scene reconstruction

for object-centric scenes, for larger scenes, Spann3R is more

likely to drift, generating a misaligned reconstruction due to

the limited size of the spatial memory and the lack of glob-

ally aligning reconstructions. In contrast, our MV-DUSt3R+

performs offline scene reconstruction by processing all input

views (up to 24 in our experiments) at once. Different from

DUSt3R, it does not require global optimization because the

predicted per-view pointmaps are already globally aligned.

Generative models for 3D reconstruction. Reconstruct-

ing scenes from a small number of views is challenging,

in particular for unseen areas. Recent advances such as

InFusion [39], ZeroNVS [51], Reconfusion [73], and Re-

conX [37] exploit priors encoded in image and video gener-

ative models [5, 6, 58]. We leave benefit from image priors

of diffusion models as future work.

3. Method

Our goal is to densely reconstruct a scene given a sparse

set of rgb images with unknown camera intrinsics and

poses. Following DUSt3R, our model predicts 3D pointmaps

aligned with 2D pixels for each view. Different from

DUSt3R, our model jointly predicts 3D pointmaps for any

number of input views in a single forward pass. Formally,

given N input image views of a scene {Iv}Nv=1, where

Iv ∈ R
H×W×3, from which we select one reference r ∈

{1, . . . , N}, our goal is to predict per-view 3D pointmaps

{Xv,r}Nv=1. Note, the 3D pointmap Xv,r ∈ R
H×W×3 de-

notes the coordinates of 3D points for image Iv in the camera

coordinate system of the reference view r.

In Sec. 3.1, we introduce our Multi-View Dense Uncon-

strained Stereo 3D Reconstruction (MV-DUSt3R) network

to efficiently processes all input views in one pass and with-

out subsequent global optimization, while considering a

single chosen reference view. In Sec. 3.2, we present MV-

DUSt3R+, which processes all input views while consid-
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Figure 3. Overview of MV-DUSt3R. Visual tokens for the reference

view and other source views are shown in Blue and Green. Black

straight solid lines indicate the primary token flow while gray lines

indicate secondary token flow.

ering multiple reference views. Finally, to support novel

view synthesis, in Sec. 3.3, we augment our networks with

Gaussian heads to predict pixel-aligned 3D Gaussians.

3.1. MV­DUSt3R

A Multi-View Model Architecture. As shown in Fig. 3,

MV-DUSt3R consists of an encoder to transform images into

visual tokens, decoder blocks to fuse tokens across views,

and regression heads to predict per-view 3D pointmaps

aligned with 2D pixels. Different from DUSt3R, our network

uses decoder blocks to fuse tokens across all views rather

than independently fusing only tokens for two views at a

time. Concretely, a ViT [18] encoder with shared weights,

denoted as Enc, is first applied on input views {Iv}Nv=1 to

compute initial visual tokens {F v
0 }

N
v=1, i.e., F v

0 = Enc(Iv).
Note, the resolution of the encoder output features is 16×
smaller than the input image before being flattened into a

sequence of tokens.

To fuse the tokens, two types of decoders are used, one for

the chosen reference view and one for the remaining source

views. They share the same architecture but their weights

differ. Each decoder consists of D decoder blocks referred

to as DecBlockref
d and DecBlocksrc

d for d ∈ {1, . . . , D}.

Their difference is, DecBlockref
d is dedicated to update ref-

erence view tokens F r, while DecBlocksrc
d updates tokens

{F v}v ̸=r from all other source views. Each decoder block

takes as input a set of primary tokens from one view, and a

set of secondary tokens from other views. In each block, a

self-attention layer is applied to primary tokens only, and a

cross-attention layer fuses primary tokens with secondary

tokens before a final MLP is applied on the primary tokens.

Layer norm is also applied before both attentions and the

MLP. Using those, the decoder computes the final token

representations F v
D via

F v
d =

{

DecBlock
ref
d (F v

d−1
,F−v

d−1
) if v = r,

DecBlock
src
d (F v

d−1
,F−v

d−1
) otherwise.

(1)

Here, the secondary tokens F−v
d =

{F 1
d , . . . , F

v−1

d , F v+1

d , . . . , FN
d } subsume tokens from all

views other than the view of the primary tokens F v
d .

To finally predict the per-view 3D pointmaps, we use

two heads: Headref
pcd for the reference view and Head

src
pcd

for all other views. They share the same architecture but

use different weights. Each consists of a linear projection

layer and a pixel shuffle layer with an upscale factor of

16 to restore the original input image resolution. As in

DUSt3R, the head predicts 3D pointmaps Xv,r ∈ R
H×W×3

and confidence maps Cv,r ∈ R
H×W via

Xv,r, Cv,r =

{

Head
ref
pcd(F

v
D) if v = r,

Head
src
pcd(F

v
D) otherwise.

(2)

Note that DUSt3R is a special case of MV-DUSt3R if the

number of views N = 2. However, for multiple input views,

MV-DUSt3R will update primary tokens using a much larger

set of secondary tokens. Hence, it is able to benefit from

many more views. Importantly, as our architecture compo-

nents and structure only differ slightly from those in DUSt3R

(additional skip connection and conv net), we have only

marginally more trainable parameters. Since, the number of

parameters in MV-DUSt3R is almost identical to DUSt3R,

MV-DUSt3R can beneficially be initialized using pre-trained

DUSt3R weights.

Training Recipe. Inspired by DUSt3R, we use a confidence-

aware pointmap regression loss Lconf, i.e.,

Lconf =
∑

v∈{1,...,N}

∑

p∈Pv

Cv,r
p ℓregr(v, p)− β logCv,r

p , (3a)

where ℓregr(v, p) =

∥

∥

∥

∥

1

z
Xv,r

p −
1

z̄
X̄v,r

p

∥

∥

∥

∥

. (3b)

Here, Pv denotes the set of valid pixels in view v where

groundtruth 3D points are well defined. β controls the weight

of the regularization term. The pointmap regression loss ℓregr

measures the difference between predicted and groundtruth

3D points after normalization, which is needed to resolve

the scale ambiguity between prediction and groundtruth. It

uses X̄v,r
p , the groundtruth 3D point of pixel p of view v in

the reference view r. The scale normalization factor z =
norm(X {v},r) and z̄ = norm(X̄ {v},r) are computed as the

average distance of valid 3D points to the coordinate origin

in all views, for prediction and groundtruth, respectively.

3.2. MV­DUSt3R+

As shown in Fig. 4, for different reference view choices, the

quality of the scene reconstructed by MV-DUSt3R varies

spatially. The predicted pointmap for an input source view

tends to be better when the viewpoint change to the reference

view is small, and deteriorates as the viewpoint change in-

creases. However, to reconstruct a large scene with a sparse

set of input views, a single reference view with only moder-

ate viewpoint changes to all other source views is unlikely to

exist. Therefore, it is difficult to reconstruct scene geometry





Dataset Eval setting Scene type

HM3D Supervised multi-room

ScanNet Supervised single-room

MP3D Zero-shot multi-room & outdoor

Table 1. Evaluation datasets comparison.

perceptual similarity loss LPIPS as the rendering loss Lrender

to train the Gaussian heads. The final training loss includes

both Lconf and Lrender (for details see appendix).

4. Experiments

4.1. Datasets

Our training data includes ScanNet [17], ScanNet++ [83],

HM3D [49], and Gibson [74]. Note, all of them are also

used by DUSt3R. For evaluation, we use datasets MP3D [12],

HM3D [49], and ScanNet [17]. While ScanNet scenes are

often small single-room sized and with low diversity, scenes

in MP3D and HM3D are often large multi-room sized and

with high diversity. MP3D also contains outdoor scenes.

See Tab. 1 to compare evaluation datasets. We use the same

train/test split as DUSt3R, and our training data is a subset

of DUSt3R’s training data (for details see appendix).

Trajectory Generation. To generate a set of input views

{Iv}Nv=1 for N > 2, we first randomly select one frame and

initialize the current scene point cloud using its data. Then

we sequentially sample more candidate frames. We retain a

candidate frame and add its corresponding point cloud to the

current scene, if the overlap between the candidate frame’s

point cloud and the current scene point cloud is between a

lower threshold tmin and an upper bound tmax.

Training Trajectories. To sample the training set trajecto-

ries, we employ two choices of thresholds: (tmin, tmax) ∈
{(30%, 70%), (30%, 100%)}. From ScanNet and Scan-

Net++, we sample 1K trajectories of 10 views per scene,

and a total of 3.2M trajectories. On HM3D and Gibson,

where the scene is often larger, we sample 6K trajectories

per scene with 10 views each, and a total of 7.8M trajectories.

Test Trajectories. For the test set, we generate 1K trajecto-

ries per dataset. To support evaluation with a larger number

of inputs views, we sample 30 views per trajectory.

4.2. Implementation Details

We process input views at resolution 224× 224. We utilize

64 Nvidia H100 GPUs for the model training. To initialize,

DUSt3R model weights are used. We use the first N = 8
views of each trajectory as input views, and randomly select

1 view as the reference view for MV-DUSt3R and M = 4
views for MV-DUSt3R+. We train for 100 epochs using

150K trajectories per epoch, which takes 180 hours. For

MVS reconstruction evaluation, to assess the performance of

each method in reconstructing scenes of variable sizes, we

report results with input views ranging from 4 to 24 views.

For NVS evaluation, we use the remaining 6 views as novel

Method GO
HM3D ScanNet MP3D Time

ND ↓ DAc ↑ CD ↓ ND ↓ DAc ↑ CD ↓ ND ↓ DAc ↑ CD ↓ (sec)

4
v
ie

w
s

Spann3R × 37.1 0.0 225(184) 8.9 19.5 54.7(50.1) 42.7 0.0 248(202) 0.36

DUSt3R ✓ 1.9 75.1 5.6(2.3) 1.3 89.8 4.0(0.4) 3.9 41.7 40.0(5.3) 2.42

MV-DUSt3R × 1.1 92.2 2.0(1.1) 1.0 93.3 2.0(0.4) 2.5 62.4 25.3(4.1) 0.05

MV-DUSt3R+ × 1.0 95.2 1.5(0.9) 0.8 94.9 1.5(0.3) 2.2 68.0 19.9(3.4) 0.29

MV-DUSt3Roracle × 1.0 94.6 1.5(0.7) 0.8 95.5 1.3(0.3) 2.3 66.6 20.7(4.0) -

MV-DUSt3R+oracle × 0.9 96.5 1.4(0.7) 0.7 95.8 1.2(0.2) 2.1 70.6 17.9(3.3) -

1
2

v
ie

w
s

Spann3R × 32.6 0.0 125(113) 9.1 16.3 36.6(31.2) 35.0 0.0 138(112) 1.34

DUSt3R ✓ 3.9 30.7 18.1(3.4) 1.9 82.6 4.1(0.6) 6.6 12.0 49.6(8.3) 8.28

MV-DUSt3R × 1.6 79.5 3.0(1.2) 1.4 86.8 2.3(0.8) 3.4 41.3 22.6(5.5) 0.15

MV-DUSt3R+ × 1.2 91.5 1.8(0.7) 1.2 88.4 1.8(0.7) 2.6 55.0 15.1(3.8) 0.89

MV-DUSt3Roracle × 1.3 88.8 1.8(0.9) 1.0 90.6 1.3(0.7) 2.9 51.3 16.4(4.0) -

MV-DUSt3R+oracle × 1.1 94.8 1.4(0.7) 1.0 90.9 1.3(0.5) 2.5 59.8 13.6(3.5) -

2
4

v
ie

w
s

Spann3R × 41.7 0.0 139(121) 11.4 1.6 37.4(35.5) 46.6 0.0 151(121) 2.73

DUSt3R ✓ 6.8 7.3 32.4(5.2) 2.4 72.6 5.1(1.0) 11.4 2.5 80.9(14.3) 27.21

MV-DUSt3R × 3.4 36.7 10.0(3.5) 2.2 75.2 2.7(0.9) 6.3 12.2 38.6(13.9) 0.35

MV-DUSt3R+ × 2.1 64.5 3.9(2.0) 1.6 81.2 1.7(0.7) 4.3 26.7 22.0(5.9) 1.97

MV-DUSt3Roracle × 2.1 58.9 3.5(2.1) 1.4 82.9 1.4(0.7) 4.4 22.0 19.9(5.1) -

MV-DUSt3R+oracle × 1.8 77.9 2.6(1.3) 1.3 85.1 1.3(0.6) 3.6 33.1 15.1(4.4) -

Table 2. MVS reconstruction results. Best results are marked in

red. For clarity, metric ND is scaled up by 10×, DAc is in percent

%, and CD is scaled by 100× with its median given in parentheses.

Results of our oracle methods are obtained by manually selecting

the best single reference view from reference view candidates to

report a possibly achievable performance. In the rightmost column,

each method’s time for scene reconstruction is reported.

views. Below we report results on all evaluation datasets

for all choices of the number of input views using only one

MV-DUSt3R model and one MV-DUSt3R+ model.

4.3. Multi­View Stereo Reconstruction

Metrics. We report Chamfer Distance (CD), as in prior

work [1, 68], as well as 2 additional metrics. Normalized-

Distance (ND): ℓregr with zero-centering to make it scale and

translation invariant; DistanceAccu@0.2 (DAc): propor-

tion of pixels where the corresponding normalized distance

between prediction and groundtruth in pointmap is ≤ 0.2.

Baselines. We compare with baselines that reconstruct

scenes from input rgb views without knowing camera in-

trinsics and poses. We evaluate the DUSt3R model trained at

input resolution 224× 224 with Global Optimization (GO),

and also the Spann3R [64] model on Github.

Results are shown in Tab. 2. In the supervised setting, we

compare DUSt3R and our methods on HM3D and ScanNet.

On HM3D (multi-room scenes), MV-DUSt3R consistently

outperforms DUSt3R, as the scene size increases and more

input views are sampled (from 4 to 24 views). For exam-

ple, MV-DUSt3R reduces ND by 1.7× and increases DAc

by 1.2× for 4-view input. For 24-view input, MV-DUSt3R

improves ND by 2× and DAc by 5.3×. This confirms: as

more input views are available, single-stage MV-DUSt3R

exploits multi-view cues to infer 3D scene geometry better

than DUSt3R, which only exploits pairwise stereo cues at a

time. Furthermore, MV-DUSt3R+ substantially improves

upon MV-DUSt3R, especially when the scene size is large

and many more input views are used. With 12-view input,

MV-DUSt3R+ improves ND by 1.3× and DAc by 1.2×.

With 24-view input, the improvements are more significant,

with a 1.6× lower ND and a 1.8× higher DAc. The multi-

path architecture enables MV-DUSt3R+ to more effectively

fuse multi-view cues across different choices of reference



Method GO
HM3D ScanNet MP3D

RRE ↓ RTE ↓ mAE ↓ RRE ↓ RTE ↓ mAE ↓ RRE ↓ RTE ↓ mAE ↓

4
v
ie

w
s

DUSt3R ✓ 2.4 3.1 12.5 3.0 20.0 30.7 3.5 3.8 13.3

MV-DUSt3R × 1.5 1.5 5.5 2.3 16.8 27.0 1.2 1.0 5.4

MV-DUSt3R+ × 1.2 1.1 4.9 1.4 16.1 26.2 0.8 0.8 4.6

MV-DUSt3Roracle × 0.0 0.1 2.8 0.9 7.0 18.9 0.1 0.1 2.9

MV-DUSt3R+oracle × 0.0 0.0 2.4 0.9 6.8 18.7 0.1 0.0 2.4

1
2

v
ie

w
s

DUSt3R ✓ 3.7 8.3 20.1 4.6 22.6 34.2 4.5 8.4 19.8

MV-DUSt3R × 1.5 2.6 8.4 3.7 14.7 26.1 1.6 2.6 8.2

MV-DUSt3R+ × 0.6 1.2 5.2 2.5 11.6 22.9 0.5 1.0 4.9

MV-DUSt3Roracle × 0.4 0.6 4.9 1.7 7.8 20.2 0.6 0.7 5.1

MV-DUSt3R+oracle × 0.3 0.3 3.4 1.7 6.0 17.9 0.3 0.3 3.3

2
4

v
ie

w
s

DUSt3R ✓ 8.8 18.1 30.9 8.1 26.6 38.9 10.0 18.2 30.5

MV-DUSt3R × 8.9 12.8 23.7 8.2 21.9 34.2 8.2 11.1 21.4

MV-DUSt3R+ × 3.0 6.5 15.8 4.6 16.7 29.4 3.3 6.0 14.6

MV-DUSt3Roracle × 3.2 4.4 14.7 3.4 13.1 26.7 3.4 4.2 14.0

MV-DUSt3R+oracle × 1.4 2.4 11.1 2.6 9.9 23.7 1.8 2.4 10.6

Table 3. Multi-View Pose Estimation results. Metrics are reported

in percent %.

frames, which holistically improves the scene geometry re-

construction in all input views. For a qualitative compar-

isons, see Fig. 6. For zero-shot evaluation on the challenging

MP3D data, all methods have worse results. However, both

of our methods consistently improve upon DUSt3R across

different numbers of input views.

In all settings, Spann3R performs worse than all other

methods, and often fails to reconstruct a scene from sparse

views, a setting which is more challenging than the sequen-

tial video frames used for evaluation in the original paper.

4.4. Multi­View Pose Estimation

For both baseline and our methods, we estimate the relative

camera pose for all pairs of input views from a given set

of input views. We use the Weiszfeld algorithm [47] to

estimate camera intrinsics, and RANSAC [22] with PnP [35]

to estimate camera pose (see appendix for more details).

Baselines. We compare with other pose-free methods in-

cluding DUSt3R and PoseDiffusion [66], a recent diffusion

based method for camera pose estimation.

Metrics. Prior methods [68] report Relative Rotation Accu-

racy (RRA@15), Relative Translation Accuracy (RTA@15)

under threshold 15 degrees, and mean Average Accuracy

(mAA@30) under threshold 30 degrees. For clarity, we re-

port Relative Rotation Error (RRE@15 = 1.0− RRA@15),

Relative Translation Error (RTE@15 = 1.0− RTA@15) and

mean Average Error (mAE@30 = 1.0− mAA@30).

Results. The comparisons with DUSt3R are presented

in Tab. 3, while comparisons with PoseDiffusion are included

in the appendix, as we find PoseDiffusion significantly un-

derperforms other methods on our evaluation datasets. As

shown in Tab. 3, in the supervised setting on HM3D, our

method MV-DUSt3R achieves a 2.3× lower mAE for 4-view

input, and a 1.3× lower mAE for 24-view input, compared

with DUSt3R. MV-DUSt3R+ performs best, achieving a

2.6× lower mAE for 4-view input, and a 2.0× lower mAE

for 24-view input, compared with DUSt3R. For another

supervised setting ScanNet and the zero-shot MP3D, our

method MV-DUSt3R+ performs best, while MV-DUSt3R

consistently outperforms DUSt3R under all circumstances.

Method GO
HM3D ScanNet MP3D

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

4
v

ie
w

s

DUSt3R ✓ 16.0 5.0 3.7 17.0 6.0 3.0 15.5 4.6 4.0

MV-DUSt3R × 19.9 6.0 2.0 21.9 7.1 1.6 19.6 5.8 2.1

MV-DUSt3R+ × 20.2 6.1 1.9 22.2 7.1 1.5 19.9 5.9 2.0

MV-DUSt3Roracle × 21.0 6.5 1.6 22.8 7.4 1.4 20.6 6.2 1.8

MV-DUSt3R+oracle × 21.4 6.6 1.5 23.0 7.4 1.4 21.0 6.3 1.7

1
2

v
ie

w
s

DUSt3R ✓ 15.1 4.4 4.9 16.3 5.4 3.6 14.7 4.0 5.3

MV-DUSt3R × 18.9 5.6 2.7 20.1 6.5 2.2 18.4 5.3 2.8

MV-DUSt3R+ × 19.4 5.8 2.4 20.4 6.6 2.1 19.0 5.5 2.6

MV-DUSt3Roracle × 19.9 5.9 2.2 21.0 6.8 1.9 19.3 5.6 2.4

MV-DUSt3R+oracle × 20.4 6.1 2.0 21.3 6.8 1.8 19.9 5.8 2.2

2
4

v
ie

w
s

DUSt3R ✓ 14.3 4.2 5.6 15.2 5.0 4.2 13.8 3.6 6.1

MV-DUSt3R × 17.8 5.3 3.6 18.4 6.0 2.9 17.3 4.9 3.8

MV-DUSt3R+ × 18.4 5.4 3.2 18.6 6.0 2.8 17.9 5.1 3.5

MV-DUSt3Roracle × 18.5 5.5 3.1 19.3 6.2 2.5 18.0 5.1 3.3

MV-DUSt3R+oracle × 19.0 5.6 2.9 19.4 6.2 2.5 18.5 5.3 3.1

Table 4. Novel View Synthesis results. For clarity, we scale up

metrics SSIM and LPIPS by 10×.

4.5. Novel View Synthesis

Metrics. Following prior works [13, 21, 57], we report Peak

Signal-to-Noise Ratio (PSNR), Structural Similarity Index

Measure (SSIM) [70], and Learned Perceptual Image Patch

Similarity (LPIPS) [89].

Baseline. We compare with a DUSt3R-based baseline,

which generates per-pixel Gaussian parameters as follows.

We use the pointmap predicted by DUSt3R as the Gaussian

center, use pixel RGB color Iv as the color, a constant 0.001
for the scale factor Sv,m, an identity transform, 1.0 for opac-

ity, and spherical harmonics with zero-degree. See appendix

for more details on rendering.

Results. As shown in Tab. 4, MV-DUSt3R improves upon

the DUSt3R baseline across all evaluation datasets under

all choices of input views. The improvements are also con-

firmed qualitatively in Fig. 6: the novel views synthesized

by MV-DUSt3R better infer 3D geometry of objects and

background (e.g., walls, ceiling). MV-DUSt3R+ further

improves in challenging situations, such as a scene with mul-

tiple close-by objects of similar appearance (e.g., chairs). As

an example, consider the ScanNet scene with 20 views in

Fig. 6. Using multiple reference views, and fusing features

computed in different model paths help resolve ambiguity in

inferring the spatial relations between input views.

4.6. Scene Reconstruction Time

We compare the time of MVS reconstruction in Tab. 2. Our

single-stage feed-forward networks entirely run on a GPU,

without Global Optimization (GO). Compared with DUSt3R,

our MV-DUSt3R runs 48× to 78× faster than DUSt3R,

while the more performant MV-DUSt3R+ runs 8× to 14×
faster, when considering 4 to 24 input views. MV-DUSt3R+

reconstructs 24-view input for scenes of average size 17.9
m2 on HM3D and 37.3m2 on MP3D in less than 2 seconds.

4.7. Ablation Studies

Number of input views at training time. We compare

1-stage and 2-stage trained MV-DUSt3R+ on the HM3D

evaluation set. For 1-stage training, we choose the first 4 or

8 views of the trajectory. For 2-stage training, we finetune





References

[1] Henrik Aanæs, Rasmus Ramsbøl Jensen, George Vogiatzis,

Engin Tola, and Anders Bjorholm Dahl. Large-scale data for

multiple-view stereopsis. IJCV, 2016. 2, 3, 6

[2] Armen Avetisyan, Christopher Xie, Henry Howard-Jenkins,

Tsun-Yi Yang, Samir Aroudj, Suvam Patra, Fuyang Zhang,

Duncan Frost, Luke Holland, Campbell Orme, et al. Scene-

script: Reconstructing scenes with an autoregressive struc-

tured language model. arXiv preprint arXiv:2403.13064,

2024. 1

[3] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P

Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded

anti-aliased neural radiance fields. In CVPR, 2022. 3

[4] Wenjing Bian, Zirui Wang, Kejie Li, Jia-Wang Bian, and Vic-

tor Adrian Prisacariu. Nope-nerf: Optimising neural radiance

field with no pose prior. In CVPR, 2023. 3

[5] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel

Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi,

Zion English, Vikram Voleti, Adam Letts, et al. Stable

video diffusion: Scaling latent video diffusion models to

large datasets. arXiv preprint arXiv:2311.15127, 2023. 3

[6] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dock-

horn, Seung Wook Kim, Sanja Fidler, and Karsten Kreis.

Align your latents: High-resolution video synthesis with la-

tent diffusion models. In CVPR, 2023. 3

[7] Sylvain Bougnoux. From projective to euclidean space under

any practical situation, a criticism of self-calibration. In ICCV,

1998. 1

[8] Eric Brachmann, Alexander Krull, Sebastian Nowozin, Jamie

Shotton, Frank Michel, Stefan Gumhold, and Carsten Rother.

Dsac-differentiable ransac for camera localization. In CVPR,

2017. 1

[9] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Da-
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