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Figure 1. The proposed Multi-View Dense Unconstrained Stereo 3D Reconstruction Prime (MV-DUSt3R+) is able to reconstructs large
scenes from multiple pose-free RGB views. Top row: one single-room scene and one large multi-room scene reconstructed by MV-DUSt3R+
in 0.89 and 1.54 seconds using 12 and 20 input views respectively (only a subset is shown for visualization). Bottom row: MV-DUSt3R+ is
able to synthesize novel views by predicting pixel-aligned Gaussian parameters. Reconstruction of such large scenes are challenging for
prior methods (e.g., DUSt3R [68]). See Fig. 6 and appendix for more results with comparison.

Abstract

Recent sparse multi-view scene reconstruction advances
like DUSt3R and MASt3R no longer require camera calibra-
tion and camera pose estimation. However, they only process
a pair of views at a time to infer pixel-aligned pointmaps.
When dealing with more than two views, a combinatorial
number of error prone pairwise reconstructions are usually
followed by an expensive global optimization, which often
fails to rectify the pairwise reconstruction errors. To han-
dle more views, reduce errors, and improve inference time,
we propose the fast single-stage feed-forward network MV-
DUSt3R. At its core are multi-view decoder blocks which
exchange information across any number of views while con-
sidering one reference view. To make our method robust to
reference view selection, we further propose MV-DUSt3R+,
which employs cross-reference-view blocks to fuse infor-
mation across different reference view choices. To further
enable novel view synthesis, we extend both by adding and
Jjointly training Gaussian splatting heads. Experiments on
multi-view stereo reconstruction, multi-view pose estimation,
and novel view synthesis confirm that our methods improve
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significantly upon prior art. Code released."

1. Introduction

Multi-view scene reconstruction as shown in Fig. 1 has been
a fundamental task in 3D computer vision for decades [27].
It is widely applicable in mixed reality [2], city recon-
struction [62], autonomous driving simulation [33, 75],
robotics [87] and archaeology [46]. Classic methods de-
compose multi-view scene reconstruction into sub-tasks, in-
cluding camera calibration [7, 90], pose estimation [8, 48],
feature detection and matching [40, 50, 84], structure from
motion (SfM) [53], bundle adjustment [9, 61], efc., and
assemble individual components into a pipeline. Recent
approaches adopt a learning-based paradigm for those sub-
tasks [23], explore different neural scene representations
(e.g., Neural Signed Distance Functions [23, 41, 45], Neu-
ral Radiance Fields [11, 42], Gaussian Splatting [30, 32]),
and build more end-to-end pipelines to reconstruct ob-
jects [60, 77] and scenes [13, 15, 88]. While these ap-

Inttps://mv-dust3rp.github.io/



Figure 2. Left: Groundtruth scene with 8 views: Three chairs
surrounding one table and one more chair next to another table.
Right: reconstruction and pose estimation of DUSt3R with global
optimization: all chairs incorrectly surround one table. Wrong
poses are marked in red.

proaches have enjoyed quite some success, they often re-
quire prior knowledge or nontrivial pre-processing to obtain
camera parameters and poses.

More recently, novel multi-view scene reconstruction ap-
proaches, such as DUSt3R [68] and MASt3R [36], directly
process an unordered set of unposed rgb views, i.e., camera
intrinsics and poses are unknown. These methods process
two views, i.e., a chosen reference view and another source
view, at a time, and directly infer pixel-aligned 3D pointmaps
in the reference view’s camera coordinate system. To han-
dle a larger set of input views, a combinatorial number of
pairwise inferences is followed by a second stage of global
optimization to align the local pairwise reconstructions into
a single global coordinate system.

While evaluation results of these methods are promising
on object-centric DTU data [1], we point out inefficiencies
in reconstructing scenes, as stereo cues in 2-view input could
be ambiguous. Further, despite plausible reconstructions of
individual 2-view inputs, conflicts often arise when aligning
them in a global coordinate system. Such conflicts can be
challenging to resolve by a global optimization, which only
rotates pairwise predictions but doesn’t rectify wrong pair-
wise matches. As a consequence, scene reconstructions ex-
hibit misaligned pointmaps. One example is shown in Fig. 2.

To address the aforementioned issues, we propose the
single-stage network Multi-View Dense Unconstrained
Stereo 3D Reconstruction (MV-DUSt3R), which jointly
processes a large number of input views in one feed-forward
pass, and completely removes the cascaded global optimiza-
tion used in prior arts. To achieve this, we employ multi-view
decoder blocks, which jointly learn not only all pairwise rela-
tionships between a chosen reference view and all the other
source views, but also appropriately address pairwise rela-
tionships among all source views. Moreover, our training
recipe encourages the predicted per-view pointmaps to ad-
here to the same reference camera coordinate system, which
waives the need for a subsequent global optimization.

When reconstructing a large scene from sparse multi-view
images, the stereo cues between the one selected reference
view and certain source views could be insufficient. This is
because significant changes in camera poses make it difficult
to directly infer the relation between the reference view
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and those source views. Therefore, long-range information

propagation is required for those source views. To handle

this efficiently, we further present MV-DUSt3R+. It operates
on a set of reference views and employs Cross-Reference-

View attention blocks for effective long-range information

propagation. See Fig. 1 for its reconstructions.

On the three benchmark scene-level datasets HM3D [49],
ScanNet [17], and MP3D [12], we demonstrate that MV-
DUSIt3R achieves significantly better results on the tasks of
Multi-View Stereo (MVS) reconstruction and Multi-View
Pose Estimation (MVPE) while being 48 ~ 78 faster than
DUSt3R. In addition, MV-DUSt3R+ is able to improve the
reconstruction quality especially on harder settings, while
still inferring one order of magnitude faster than DUSt3R.

To extend both of our methods towards Novel View Syn-
thesis (NVS), we further attach lightweight prediction heads
which regress to 3D Gaussian attributes. The predicted per-
view Gaussian primitives are transformed into the coordinate
of a target view before splatting-based rendering [32]. Using
this, we also show that our models outperform DUSt3R with
heuristically designed 3D Gaussian parameters under the
standard photometric evaluation protocol. The gains can be
attributed to the more accurate predictions of the Gaussian
locations by our method. We summarize our contributions
as follows:

* We present MV-DUSt3R, a novel feed-forward network
for pose-free scene reconstruction from sparse multi-view
input. It not only runs 48 ~ 78x faster than DUSt3R for
4 ~ 24 views, but also reduces Chamfer distance on 3
challenging evaluation datasets HM3D [49], ScanNet [17],
and MP3D [12] by 2.8 %, 2x and 1.6x for smaller scenes
of average size 2.2, 7.5, 19.3 (m?) with 4-view input, and
3.2x%,1.9% and 2.1 x for larger scenes of average size 3.3,
17.9, 37.3 (m?) with 24-view input.

* We present MV-DUSt3R+, which improves MV-DUSt3R
by using multiple reference views, addressing the chal-
lenges which occur when inferring relations between all
input views via a single reference view. We validate, M'V-
DUSt3R+ performs well across all tasks, number of views,
and on all three datasets. For example, for MVS recon-
struction, it further reduces Chamfer distance on 3 datasets
by 2.6x,1.6x, 1.8x for large scenes with 24-view input,
while still running 14 x faster than DUSt3R.

* We extend both networks to support NVS by adding Gaus-
sian splatting heads [82] to predict per-pixel Gaussian
attributes. With joint training of all layers using both re-
construction loss and view rendering loss, we demonstrate
that the model outperforms a DUSt3R-based baseline sig-
nificantly.

2. Related Work

Structure-from-Motion (SfM). STM methods reconstruct
sparse scene geometry from a set of images and esti-



mate individual camera poses. For this, SfM is often
addressed in a few independent steps, including detect-
ing/describing/matching local features across multiple views
(e.g., SIFT [40], ORB [50], LIFT [84]), triangulating fea-
tures to estimate sparse 3D geometry and camera poses (e.g.,
COLMAP [53]), applying bundle adjustment over many
views (see Triggs et al. [61] for an overview), etc. Though
steady progress has been made in the past decades [44], and a
large number of applications have been enabled [10, 31, 71],
the classic SfM pipeline solves sub-tasks individually and
sequentially, accumulating errors. More recent STM meth-
ods improve traditional pipeline with learnable compo-
nents [28, 65]. MASt3R-SfM [20] extends MASt3R [36],
which only produces local reconstructions for 2-view input,
to perform global optimization for aligning local reconstruc-
tions via gradient descent to minimize 3D matching loss.

Multi-View Stereo. MVS reconstructs dense 3D scene ge-
ometry from multiple views [24], often in the form of 3D
points. In the classic PatchMatch-based framework [91],
per-pixel depth in the reference image is estimated from a
set of unstructured source images via patch matching un-
der a homography transform [54]. Subsequent work has
substantially improved feature matching [63, 69, 92] and
depth estimation [25, 52, 76]. More recent learning-based ap-
proaches [67, 78] often build an end-to-end pipeline, where
deep models extract visual features, model cross-view cor-
respondences (e.g., cost volume [26]), and regress depth
maps [79]. Note, with few exceptions [80], most approaches
require prior knowledge of camera intrinsics from SfM or
camera calibration. Our MV-DUSt3R network also pro-
cesses sparse multi-view input, but does not require prior
knowledge of camera parameters.

Neural Scene Reconstruction. Compared to classic meth-
ods, which reconstructs a scene using either explicit rep-
resentations (e.g., 3D point, mesh) or implicit represen-
tations (e.g., signed distance function [43]), recent ap-
proaches adopt different neural representations [55], in-
cluding Neural Distance Fields [16, 38], Neural Radi-
ance Fields (NeRFs) [3, 4, 34, 42, 62], Gaussian Splat-
ting [30, 32, 86], and their combination [93]. Many of
them require slow per-scene optimization to attain accu-
rate results, while more recent methods explore the use of
feed-forward networks for generalizable reconstruction at a
fraction of the time, including those for generating Neural
Distance Functions [16, 45, 56], NeRFs [14, 19, 85], and
Gaussians [13, 15, 59, 72]. Note, neural scene reconstruc-
tion often requires input views with known camera poses,
albeit quite a few exceptions exist, such as CoPoNeRF [29],
Splatt3R [57], and NoPoSplat [81]. For example, NoPoSplat
predicts 3D Gaussians in the same camera coordinates, akin
to the key idea of DUSt3R. However, those pose-free meth-
ods primarily focus on inference with 2 input views. It is not
clear how they perform when processing sparse multi-view

input. In contrast, our models MV-DUSt3R, MV-DUSt3R+
equipped with 3D Gaussian splatting heads, not only waive
the need for camera pose, but also reconstruct large scenes
from multiple views in a single feed-forward pass.

Dense Unconstrained Scene Reconstructions from Multi-
View Input. To bypass estimation of camera parameters and
poses, recent works like DUSt3R [68] and MASt3R [36]
propose a new approach: directly regress pixel-aligned 3D
pointmaps for pairs of input views. An expensive 2™ stage
global optimization is required to align all pairwise recon-
structions in the same coordinate system. Both DUSt3R and
MASTt3R are only evaluated on object-centric DTU data [1]
where all views are concentrated in a small region. Notably,
methods are not validated if their 2-stage pipeline excels at
reconstructing larger scenes captured with sparse multi-view
input. Subsequently, Spann3R [64] augments DUSt3R with
a spatial memory to process an ordered set of images. Al-
though capable of performing online scene reconstruction
for object-centric scenes, for larger scenes, Spann3R is more
likely to drift, generating a misaligned reconstruction due to
the limited size of the spatial memory and the lack of glob-
ally aligning reconstructions. In contrast, our MV-DUSt3R+
performs offline scene reconstruction by processing all input
views (up to 24 in our experiments) at once. Different from
DUSTt3R, it does not require global optimization because the
predicted per-view pointmaps are already globally aligned.

Generative models for 3D reconstruction. Reconstruct-
ing scenes from a small number of views is challenging,
in particular for unseen areas. Recent advances such as
InFusion [39], ZeroNVS [51], Reconfusion [73], and Re-
conX [37] exploit priors encoded in image and video gener-
ative models [5, 6, 58]. We leave benefit from image priors
of diffusion models as future work.

3. Method

Our goal is to densely reconstruct a scene given a sparse
set of rgb images with unknown camera intrinsics and
poses. Following DUSt3R, our model predicts 3D pointmaps
aligned with 2D pixels for each view. Different from
DUSt3R, our model jointly predicts 3D pointmaps for any
number of input views in a single forward pass. Formally,
given N input image views of a scene {I”})V,, where
I € REXWX3 from which we select one reference r €
{1,..., N}, our goal is to predict per-view 3D pointmaps
{Xv"}V | Note, the 3D pointmap XV € RT*Wx3 de-
notes the coordinates of 3D points for image /" in the camera
coordinate system of the reference view r.

In Sec. 3.1, we introduce our Multi-View Dense Uncon-
strained Stereo 3D Reconstruction (MV-DUSt3R) network
to efficiently processes all input views in one pass and with-
out subsequent global optimization, while considering a
single chosen reference view. In Sec. 3.2, we present M V-
DUSt3R+, which processes all input views while consid-



view1%

-
A

view 2

uE
view N
Enc Dec Head

Figure 3. Overview of MV-DUSt3R. Visual tokens for the reference
view and other source views are shown in Blue and . Black
straight solid lines indicate the primary token flow while gray lines
indicate secondary token flow.
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ering multiple reference views. Finally, to support novel
view synthesis, in Sec. 3.3, we augment our networks with
Gaussian heads to predict pixel-aligned 3D Gaussians.

3.1. MV-DUSt3R

A Multi-View Model Architecture. As shown in Fig. 3,
MV-DUSt3R consists of an encoder to transform images into
visual tokens, decoder blocks to fuse tokens across views,
and regression heads to predict per-view 3D pointmaps
aligned with 2D pixels. Different from DUSt3R, our network
uses decoder blocks to fuse tokens across all views rather
than independently fusing only tokens for two views at a
time. Concretely, a ViT [18] encoder with shared weights,
denoted as Enc, is first applied on input views {I°}V_; to
compute initial visual tokens {FU}Y | ie., FY = Enc(I?).
Note, the resolution of the encoder output features is 16 x
smaller than the input image before being flattened into a
sequence of tokens.

To fuse the tokens, two types of decoders are used, one for
the chosen reference view and one for the remaining source
views. They share the same architecture but their weights
differ. Each decoder consists of D decoder blocks referred
to as DecBlock™ and DecBlock®® ford € {1,...,D}.
Their difference is, DecBlock™! is dedicated to update ref-
erence view tokens F'", while DecBlock‘ updates tokens
{F"}yr from all other source views. Each decoder block
takes as input a set of primary tokens from one view, and a
set of secondary tokens from other views. In each block, a
self-attention layer is applied to primary tokens only, and a
cross-attention layer fuses primary tokens with secondary
tokens before a final MLP is applied on the primary tokens.
Layer norm is also applied before both attentions and the
MLP. Using those, the decoder computes the final token
representations F'p) via

DecBlockS (FY |, F; %) ifv=r,

F; = SIC v —v : (1)
DecBlocky®(Fy_ 4, F, ") otherwise.

Here, the secondary tokens F q v =

{Fj,..., Fé’*l, F(}JH, ..., FN} subsume tokens from all

views other than the view of the primary tokens F;.
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To finally predict the per-view 3D pointmaps, we use
two heads: Head{fcij for the reference view and Headjgy
for all other views. They share the same architecture but
use different weights. Each consists of a linear projection
layer and a pixel shuffle layer with an upscale factor of
16 to restore the original input image resolution. As in
DUSt3R, the head predicts 3D pointmaps X V" € RH*xWx3

and confidence maps CV" € REXW vyia

f .
X, ovr = HeadEid(F%’) ifv= Tv, 2
Head(Fp) otherwise.

Note that DUSt3R is a special case of MV-DUSt3R if the
number of views N = 2. However, for multiple input views,
MV-DUSt3R will update primary tokens using a much larger
set of secondary tokens. Hence, it is able to benefit from
many more views. Importantly, as our architecture compo-
nents and structure only differ slightly from those in DUSt3R
(additional skip connection and conv net), we have only
marginally more trainable parameters. Since, the number of
parameters in MV-DUSt3R is almost identical to DUSt3R,
MV-DUSt3R can beneficially be initialized using pre-trained
DUSt3R weights.

Training Recipe. Inspired by DUSt3R, we use a confidence-
aware pointmap regression loss Leon, i.€.,

DD CYle(v,p) — Blog CYT, (3a)

ve{l,...,N} peP?

Lconf =

1 1_
where  lregr(v,p) = ‘ ;X;7T ~3 o (3b)

Here, P, denotes the set of valid pixels in view v where
groundtruth 3D points are well defined. /3 controls the weight
of the regularization term. The pointmap regression 10ss £rcgr
measures the difference between predicted and groundtruth
3D points after normalization, which is needed to resolve
the scale ambiguity between prediction and groundtruth. It
uses X;j '", the groundtruth 3D point of pixel p of view v in
the reference view r. The scale normalization factor z =
norm(X {}7) and z = norm(X{*}7) are computed as the
average distance of valid 3D points to the coordinate origin
in all views, for prediction and groundtruth, respectively.

3.2. MV-DUSt3R+

As shown in Fig. 4, for different reference view choices, the
quality of the scene reconstructed by MV-DUSt3R varies
spatially. The predicted pointmap for an input source view
tends to be better when the viewpoint change to the reference
view is small, and deteriorates as the viewpoint change in-
creases. However, to reconstruct a large scene with a sparse
set of input views, a single reference view with only moder-
ate viewpoint changes to all other source views is unlikely to
exist. Therefore, it is difficult to reconstruct scene geometry



Figure 4. Top: A multi-room scene: 16 views are sampled as input
to MV-DUSt3R. For clarity, only 6 are shown. 3 of them are refer-
ence view candidates, highlighted in blue. Bottom: In each row,
we select a different reference view and render the reconstructed
scene from 6 input views. Renderings in good and poor quality are
highlighted in green and red. As the viewpoint change between the
input view and the reference view increases, quality of the recon-
structed scene geometry in that input view decreases.
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Figure 5. DecBlock and CrossRefViewBlock in MV-
DUSt3R+: tokens of the reference and other views are highlighted
in blue and green, respectively. Each model path uses a differ-
ent reference view. For clarity, only 1 of stacked DecBlock and
CrossRefViewBlock are shown.

CrossRefViewBlock

equally well everywhere with a single selected reference
view. To address this, we propose MV-DUSt3R+, which
selects multiple views as the reference view, and jointly
predicts pointmaps for all input views in the camera coor-
dinate of each selected reference view. We hypothesize:
while pointmaps of certain input views are difficult to pre-
dict for one reference view, they are easier to predict for
a different reference view (e.g., smaller viewpoint change,
more salient matching patterns). To holistically improve the
pointmap prediction of all input views, we include a novel
Cross-Reference-View block into MV-DUSt3R+.
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A Multi-Path Model Architecture. Let R = {r™}}_,
denote a set of M reference views randomly chosen from
an unordered set of input views. We adopt the same de-
coder blocks from MV-DUSt3R, deploy them in a multi-path
model architecture (see Fig. 5), and use them to compute a
reference-view dependent intermediate representation G,
at decoder layer d for input view v and reference view r™:

com DecBlock (Fy™, F ™) ifv=r™, (4)
d = - .
DecBlocky(Fy"1, F,; ;™) otherwise, (5)
F]™ = CrossRefViewBlockq(Gy™, Gy~ ™). (6)
—v, 1, -1, +1, N,
Here, F; "™ = {FL7, .. Fy-bm potbm  pNmy

As shown in Fig. 5, we fuse and update per-view tokens
computed under different reference views by adding a Cross-
Reference-View block after each decoder block (Eq. (6)),
where G0 = {GY, . Gy Gyt Ge MY
Following Eq. (2), we compute per-view pointmaps X"
and confidence map C">"* under each reference view ™.
Training Recipe. Compared with MV-DUSt3R, MV-
DUSt3R+ only adds a small number of additonal trainable
parameters via the Cross-Reference-View blocks (see ap-
pendix). During training, a random subset of A/ input views
are selected as the reference views. We average the pointmap
regression losses in Eq. (3a) for all reference views.

Model Inference. At inference time, we uniformly select a
subset of M input views as the reference views, while the 1st
input view is always selected. A model with M paths is used
but the final per-view pointmap predictions are computed
using the heads in the 1st path.

3.3. MV-DUSt3R(+) for Novel View Synthesis

Next we extend our networks to support NVS with Gaussian
primitives [32]. For clarity, below we use MV-DUSt3R+ as
an example. MV-DUSt3R can be extended similarly.

Gaussian Head. We add a separate set of heads to pre-
dict per-pixel Gaussian parameters, including scaling factor
Svm ¢ REXWX3 rotation quaternion g% € RHXW x4,
and opacity a”™ € RH*XW_  We add Gaussian heads

Headfhgs and Head$ss for reference and other views:

Sv,m7 qv,m’ aQlm = HeadE%GS(Fgﬂn) ifv= va (7)
Head{5gs(Fp"™) otherwise. (8)
For other Gaussian parameters, we use the predicted
pointmap XV as the center, the pixel color I” as the color
and fix the spherical harmonics degree to be 0.
Training Recipe. During training, for a chosen reference
view r™, we perform differentiable splatting-based render-
ing [32] to generate rendering predictions for both input
views and novel views. Following prior approaches [13, 15,
591, we use a weighted sum of L? pixel difference loss and



Dataset |Eval setting

HM3D | Supervised
ScanNet| Supervised
MP3D | Zero-shot

Scene type

multi-room
single-room
multi-room & outdoor

Table 1. Evaluation datasets comparison.

perceptual similarity loss LPIPS as the rendering 10ss Lyender
to train the Gaussian heads. The final training loss includes
both Leonr and Lyenger (for details see appendix).

4. Experiments

4.1. Datasets

Our training data includes ScanNet [17], ScanNet++ [83],
HM3D [49], and Gibson [74]. Note, all of them are also
used by DUSt3R. For evaluation, we use datasets MP3D [12],
HM3D [49], and ScanNet [17]. While ScanNet scenes are
often small single-room sized and with low diversity, scenes
in MP3D and HM3D are often large multi-room sized and
with high diversity. MP3D also contains outdoor scenes.
See Tab. | to compare evaluation datasets. We use the same
train/test split as DUSt3R, and our training data is a subset
of DUSt3R’s training data (for details see appendix).
Trajectory Generation. To generate a set of input views
{1}V, for N > 2, we first randomly select one frame and
initialize the current scene point cloud using its data. Then
we sequentially sample more candidate frames. We retain a
candidate frame and add its corresponding point cloud to the
current scene, if the overlap between the candidate frame’s
point cloud and the current scene point cloud is between a
lower threshold ¢,;, and an upper bound ¢ .

Training Trajectories. To sample the training set trajecto-
ries, we employ two choices of thresholds: (fmin, tmax) €
{(30%, 70%), (30%, 100%)}. From ScanNet and Scan-
Net++, we sample 1K trajectories of 10 views per scene,
and a total of 3.2M trajectories. On HM3D and Gibson,
where the scene is often larger, we sample 6K trajectories
per scene with 10 views each, and a total of 7.8M trajectories.
Test Trajectories. For the test set, we generate 1K trajecto-
ries per dataset. To support evaluation with a larger number
of inputs views, we sample 30 views per trajectory.

4.2. Implementation Details

We process input views at resolution 224 x 224. We utilize
64 Nvidia H100 GPUs for the model training. To initialize,
DUSt3R model weights are used. We use the first N = 8
views of each trajectory as input views, and randomly select
1 view as the reference view for MV-DUSt3R and M = 4
views for MV-DUSt3R+. We train for 100 epochs using
150K trajectories per epoch, which takes 180 hours. For
MYVS reconstruction evaluation, to assess the performance of
each method in reconstructing scenes of variable sizes, we
report results with input views ranging from 4 to 24 views.
For NVS evaluation, we use the remaining 6 views as novel

Method GO HM3D ScanNet MP3D Time
ND| DAcT CD| |NDJ DAciT CDJ] |NDJ| DAct CDJ |(sec)
Spann3R x |37.1 0.0 225(184)| 8.9 19.5 54.7(50.1)| 42.7 0.0 248(202) | 0.36
g DUSt3R v |19 751 5.6(23)| 1.3 89.8 4.0(04) | 39 417 40.0(5.3) | 2.42
~;’ MV-DUSt3R x | 11922 20(1.1)| 1.0 933 20(04) | 25 624 253(4.1)|0.05
<| MV-DUSt3R+ x 1.0 952 1509 08 949 15(03) |22 680 199(3.4)|0.29
X -
‘| |
Spann3R x 326 0.0 125(113)| 9.1 163 36.6(31.2)| 350 0.0 138(112) | 1.34
Z DUSt3R v |39 307 18.1(34)| 1.9 826 4.1(00.6) | 6.6 120 49.6(8.3) | 8.28
E’ MV-DUSt3R x| 1.6 795 3.0(1.2)| 1.4 86.8 23(0.8) | 3.4 413 22.6(5.5) |0.15
' MV-DUSt3R+ x 12 915 1.8(0.7) 12 884 18(0.7) | 26 550 15.1(3.8)|0.89
X N
‘| | -
Spann3R x |41.7 0.0 139(121)| 11.4 1.6 37.4(35.5)|46.6 0.0 151(121)|2.73
S DUSt3R v |68 73 324(52)| 24 726 5.1(1.0) |11.4 25 80.9(14.3)|27.21
§ MV-DUSt3R x | 34 367 10.03.5)| 22 752 27(09) | 63 122 38.6(13.9)| 0.35
& MV-DUSER+ x 21 645 392200 1.6 812 1.7(0.7) | 43 26.7 22.0(59) | 1.97
X N
x |

Table 2. MVS reconstruction results. Best results are marked in

. For clarity, metric ND is scaled up by 10x, DAc is in percent
%, and CD is scaled by 100x with its median given in parentheses.
Results of our oracle methods are obtained by manually selecting
the best single reference view from reference view candidates to
report a possibly achievable performance. In the rightmost column,
each method’s time for scene reconstruction is reported.

views. Below we report results on all evaluation datasets
for all choices of the number of input views using only one
MV-DUSt3R model and one MV-DUSt3R+ model.

4.3. Multi-View Stereo Reconstruction

Metrics. We report Chamfer Distance (CD), as in prior
work [, 68], as well as 2 additional metrics. Normalized-
Distance (ND): /., with zero-centering to make it scale and
translation invariant; DistanceAccu@0.2 (DAc): propor-
tion of pixels where the corresponding normalized distance
between prediction and groundtruth in pointmap is < 0.2.
Baselines. We compare with baselines that reconstruct
scenes from input rgb views without knowing camera in-
trinsics and poses. We evaluate the DUSt3R model trained at
input resolution 224 x 224 with Global Optimization (GO),
and also the Spann3R [64] model on Github.

Results are shown in Tab. 2. In the supervised setting, we
compare DUSt3R and our methods on HM3D and ScanNet.
On HM3D (multi-room scenes), MV-DUSt3R consistently
outperforms DUSt3R, as the scene size increases and more
input views are sampled (from 4 to 24 views). For exam-
ple, MV-DUSt3R reduces ND by 1.7x and increases DAc
by 1.2x for 4-view input. For 24-view input, MV-DUSt3R
improves ND by 2x and DAc by 5.3 x. This confirms: as
more input views are available, single-stage MV-DUSt3R
exploits multi-view cues to infer 3D scene geometry better
than DUSt3R, which only exploits pairwise stereo cues at a
time. Furthermore, MV-DUSt3R+ substantially improves
upon MV-DUSt3R, especially when the scene size is large
and many more input views are used. With 12-view input,
MV-DUSt3R+ improves ND by 1.3x and DAc by 1.2x.
With 24-view input, the improvements are more significant,
with a 1.6 lower ND and a 1.8 x higher DAc. The multi-
path architecture enables MV-DUSt3R+ to more effectively
fuse multi-view cues across different choices of reference



Method GO HM3D ScanNet MP3D
RRE | RTE | mAE ||RRE | RTE | mAE | |RRE | RTE | mAE |
DUSt3R V| 24 3.1 12.5 3.0 200 307 3.5 38 133
2 MV-DUSt3R x | L5 1.5 55 23 168 270 1.2 1.0 5.4
2| MV-DUSB3R+ | x 12 1.1 4.9 14 161 262 | 08 0.8 4.6
< x
X
DUSEBR V| 37 83 201 46 226 342 | 45 8.4 19.8
Z| MV-DUSt3R x | 15 2.6 8.4 37 147 26.1 1.6 2.6 8.2
2| MV-DUSB3R+ | x 06 2 52 25 116 229 | 05 1.0 4.9
aQ X
X
DUSt3R v | 88 181 309 | 81 266 389 | 100 182 305
Z| MV-DUSt3R x| 89 128 237 82 219 342 | 82 111 214
2| MV-DUSB3R+ | x 3.0 65 158 | 46 167 294 | 33 6.0 146
& X
X

Table 3. Multi-View Pose Estimation results. Metrics are reported
in percent %.

frames, which holistically improves the scene geometry re-
construction in all input views. For a qualitative compar-
isons, see Fig. 6. For zero-shot evaluation on the challenging
MP3D data, all methods have worse results. However, both
of our methods consistently improve upon DUSt3R across
different numbers of input views.

In all settings, Spann3R performs worse than all other
methods, and often fails to reconstruct a scene from sparse
views, a setting which is more challenging than the sequen-
tial video frames used for evaluation in the original paper.

4.4. Multi-View Pose Estimation

For both baseline and our methods, we estimate the relative
camera pose for all pairs of input views from a given set
of input views. We use the Weiszfeld algorithm [47] to
estimate camera intrinsics, and RANSAC [22] with PnP [35]
to estimate camera pose (see appendix for more details).
Baselines. We compare with other pose-free methods in-
cluding DUSt3R and PoseDiffusion [66], a recent diffusion
based method for camera pose estimation.

Metrics. Prior methods [68] report Relative Rotation Accu-
racy (RRA@15), Relative Translation Accuracy (RTA@15)
under threshold 15 degrees, and mean Average Accuracy
(mAA @30) under threshold 30 degrees. For clarity, we re-
port Relative Rotation Error (RRE@15 = 1.0 — RRAQ15),
Relative Translation Error (RTE@15 = 1.0 — RTAQ@15) and
mean Average Error (mAE@30 = 1.0 — mAAQ@30).
Results. The comparisons with DUSt3R are presented
in Tab. 3, while comparisons with PoseDiffusion are included
in the appendix, as we find PoseDiffusion significantly un-
derperforms other methods on our evaluation datasets. As
shown in Tab. 3, in the supervised setting on HM3D, our
method MV-DUSt3R achieves a 2.3 x lower mAE for 4-view
input, and a 1.3 x lower mAE for 24-view input, compared
with DUSt3R. MV-DUSt3R+ performs best, achieving a
2.6x lower mAE for 4-view input, and a 2.0x lower mAE
for 24-view input, compared with DUSt3R. For another
supervised setting ScanNet and the zero-shot MP3D, our
method MV-DUSt3R+ performs best, while MV-DUSt3R
consistently outperforms DUSt3R under all circumstances.
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Method GO HM3D ScanNet MP3D
PSNR 1 SSIM 1 LPIPS | |[PSNR 1 SSIM 1 LPIPS | [PSNR 1 SSIM 1 LPIPS |
DUSt3R v 16.0 5.0 3.7 17.0 6.0 3.0 15.5 4.6 4.0
2| MV-DUSBR x| 199 6.0 2.0 21.9 7.1 1.6 19.6 5.8 2.1
2| MV-DUSB3R+ | x | 202 6.1 1.9 22.2 7.1 1.5 19.9 5.9 2.0
<+ X
X
DUSt3R v |15l 4.4 4.9 16.3 54 3.6 14.7 4.0 53
Z2| MV-DUSBR x| 189 5.6 2.7 20.1 6.5 22 18.4 53 2.8
2| MV-DUSB3R+ | x | 194 5.8 24 20.4 6.6 2.1 19.0 85 2.6
Q X
x | |
DUSt3R V| 143 4.2 5.6 15.2 50 42 13.8 3.6 6.1
£| MV-DUSBR X 17.8 53 3.6 18.4 6.0 2.9 17.3 4.9 3.8
2| MV-DUSB3R+ | x | 184 54 32 18.6 6.0 2.8 17.9 5.1 35
= X
Q
: | |

Table 4. Novel View Synthesis results. For clarity, we scale up
metrics SSIM and LPIPS by 10x.

4.5. Novel View Synthesis

Metrics. Following prior works [13, 21, 57], we report Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM) [70], and Learned Perceptual Image Patch
Similarity (LPIPS) [89].

Baseline. We compare with a DUSt3R-based baseline,
which generates per-pixel Gaussian parameters as follows.
We use the pointmap predicted by DUSt3R as the Gaussian
center, use pixel RGB color IV as the color, a constant 0.001
for the scale factor S¥""™, an identity transform, 1.0 for opac-
ity, and spherical harmonics with zero-degree. See appendix
for more details on rendering.

Results. As shown in Tab. 4, MV-DUSt3R improves upon
the DUSt3R baseline across all evaluation datasets under
all choices of input views. The improvements are also con-
firmed qualitatively in Fig. 6: the novel views synthesized
by MV-DUSt3R better infer 3D geometry of objects and
background (e.g., walls, ceiling). MV-DUSt3R+ further
improves in challenging situations, such as a scene with mul-
tiple close-by objects of similar appearance (e.g., chairs). As
an example, consider the ScanNet scene with 20 views in
Fig. 6. Using multiple reference views, and fusing features
computed in different model paths help resolve ambiguity in
inferring the spatial relations between input views.

4.6. Scene Reconstruction Time

We compare the time of MVS reconstruction in Tab. 2. Our
single-stage feed-forward networks entirely run on a GPU,
without Global Optimization (GO). Compared with DUSt3R,
our MV-DUSt3R runs 48x to 78x faster than DUSt3R,
while the more performant MV-DUSt3R+ runs 8x to 14 x
faster, when considering 4 to 24 input views. MV-DUSt3R+
reconstructs 24-view input for scenes of average size 17.9
m? on HM3D and 37.3 m? on MP3D in less than 2 seconds.

4.7. Ablation Studies

Number of input views at training time. We compare
1-stage and 2-stage trained MV-DUSt3R+ on the HM3D
evaluation set. For 1-stage training, we choose the first 4 or
8 views of the trajectory. For 2-stage training, we finetune



MV-DuSt3R

DuSt3R

ScanNet
12 views

ScanNet
20 views

HM3D
16 views

HM3D
20 views

MP3D
8views

MP3D
20 views

MV-DuSt3R+

Figure 6. MVS reconstruction and NVS qualitative results. We show one method in each column, which includes the reconstructed
pointcloud and 1 rendered new view. Incorrectly reconstructed geometry is highlighted in red boxes. DUSt3R often introduces incorrect
pairwise reconstructions when the scene has multiple objects with similar appearance (e.g., windows, chairs, doors), which can not be
recovered by the global optimization. MV-DUSt3R is more robust overall but still sometimes fails to reconstruct geometry accurately in
regions far away from the reference view, while MV-DUSt3R+ predicts geometry more evenly across the space.

Test| Training recipe MVS Reconstruction MVPE NVS
s S1eClP®  IND ] DAcT CDJ [RRE] RTE ] mAE [|PSNR T SSIM T LPIPS |
z 1-stage, 4 views 1.0 944 1.7(1.2) | 09 0.9 2.6 20.7 6.3 1.7
49;’ 1-stage, 8 views 1.0 952 1.5(0.9) 12 1.1 49 20.2 6.1 1.9
< |2-stage, mixed views| 0.9 955 1.5(0.8) | 0.8 0.7 2.0 20.7 6.3 1.8
£ 1-stage, 4 views 63 03 238(18.2) 151 175 34.1 16.5 4.9 44
2 1-stage, 8 views 12 915 1.80.7) | 0.6 12 52 19.4 58 24
o |2-stage, mixed views| 1.2 922 1.5(1.0) | 04 0.8 38 19.5 59 22
£ 1-stage, 4 views 177 0.0 81.4(555)| 455 474 632 145 4.6 6.2
-°—; 1-stage, 8 views 2.1 645 3.92.0) 3.0 6.5 15.8 18.4 54 32
3 |2-stage, mixed views| 1.7 814  2.6(1.3) 14 3.0 9.1 19.1 57 27

Table 5. Impact of # of input views at training time on the perfor-
mance of MV-DUSt3R+ on the HM3D evaluation set.

Method GS HM3D ScanNet MP3D
ND| DAcT CDJ] |[ND|DAcT CDJ] |[ND| DAcT CDJ

g| MV-DUSBR | 7 g L) [BERE .000. st
=[mvousore | 7110053 1205 0% oro 1sion| 22 ko 1osn
g vvousar | 7 SN o 22 752 2009 REEENBINSG)
gjmvpusare | X[ 210 3000 T B Iaonl 43267 2089)

Table 6. Impact of adding Gaussian (GS) heads on MVS recon-
struction performance on HM3D, ScanNet, and MP3D datasets.

upon MV-DUSt3R+’s 1-stage 8-view training, by using a
mixed set of inputs with the number of views uniformly
sampled between 4 and 12. As shown in Tab. 5, 1-stage
training on 4 views doesn’t generalize well to more views,
1-stage training on 8 views performs decent, and 2-stage
training outperforms 1-stage training on almost all tasks on
HM3D. See appendix for more 2-stage results.
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Upper bound performance of our networks. We study or-
acle performance if the best reference view is chosen based
on groundtruth. For MV-DUSt3R, we consider all input
views as reference view candidates, and manually select
the one with best MVS reconstruction (MV-DUSt3R gracle)-
For MV-DUSt3R+, we choose the model path with best
MVS reconstruction (MV-DUSt3R+¢pacle). As shown in
Tabs. 2 to 4, the performance gap between MV-DUSt3R+
and MV-DUSt3R+ e 18 significantly smaller than that be-
tween MV-DUSt3R and MV-DUSt3R;.cle. This validates
our multi-path MV-DUSt3R+ architecture.

Impact of adding Gaussian head on MVS reconstruction
performance. In Tab. 6, we compare MV-DUSt3R and M V-
DUSt3R+ models with and without Gaussian heads, while
keeping other settings identical. As shown in Tab. 6, adding
Gaussian heads does not significantly improve or degrade
performance of our models on MVS reconstruction.

5. Conclusion

We propose fast single-stage networks MV-DUSt3R and
MV-DUSt3R+ to reconstruct scenes from up to 24 input
views in one feed-forward pass without requiring camera
intrinsics and poses. We extensively evaluate results on
3 datasets in both supervised and zero-shot settings, and
confirm compelling results and efficiency over prior art.
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