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Abstract

We present RELOCATE, a simple training-free baseline de-
signed to perform the challenging task of visual query
localization in long videos. To eliminate the need for
task-specific training and efficiently handle long videos,
RELOCATE leverages a region-based representation de-
rived from pretrained vision models. At a high level, it
follows the classic object localization approach: (1) iden-
tify all objects in each video frame, (2) compare the objects
with the given query and select the most similar ones, and
(3) perform bidirectional tracking to get a spatio-temporal
response. However, we propose some key enhancements
to handle small objects, cluttered scenes, partial visibility,
and varying appearances. Notably, we refine the selected
objects for accurate localization and generate additional
visual queries to capture visual variations. We evaluate
RELOCATE on the challenging Ego4D Visual Query 2D Lo-
calization dataset, establishing a new baseline that outper-
forms prior task-specific methods by 49% (relative improve-
ment) in spatio-temporal average precision.

1. Introduction

Visual Query Localization (VQL) requires localizing the
last appearance of an object of interest in a long video.
The object of interest is specified via a reference image,
also known as the visual query. Figure 1 provides illustra-
tive examples. VQL is an important task, e.g., for surveil-
lance, legal investigations, wildlife monitoring, or simply
for tracking down a misplaced item. However, the task
presents several unique challenges that push the boundaries
of contemporary computer vision methods. For instance,
unlike classic object detection models that are trained to
identify a fixed set of object categories [5, 32], VQL re-
quires localizing an open-ended range of objects. Addition-
ally, while typical object tracking methods are initialized
with a bounding box close to the object’s temporal location
in the video [19, 22, 41], the VQL reference image (visual
query) often originates outside the video, i.e., there may be

no exact or neighboring frame for reliable matching. Fur-
ther, the object’s appearance may vary significantly from
the visual query due to changes in orientation, scale, con-
text, lighting, motion blur, and occlusions. Compounding
these issues, the object of interest usually appears briefly in
a long, untrimmed video.

Classic VQL methods typically use a stage-wise
pipeline [12, 39, 40]: (1) identify all objects in each video
frame, (2) compare these objects with the given query to
select the most similar ones, and (3) perform bidirectional
tracking to obtain a spatio-temporal response. While this
pipeline is well-grounded in the object localization litera-
ture, it is effective only for large, consistently visible ob-
jects that closely match the visual query in short video
clips. A more recent work [15] has proposed an end-to-
end framework that aims to understand the holistic rela-
tionship between a given query and the video, perform-
ing spatio-temporal localization in a single step. However,
this approach requires extensive training on large, annotated
datasets, which can be challenging to obtain. Additionally,
since such a method learns a holistic video-query relation-
ship, it must process the entire video for each query, even
when multiple queries are to be localized in the same video.

To address these limitations, we propose Region-based
representations for Localizing Anything in Episodic mem-
ory (RELOCATE), a simple training-free baseline for VQL.
Being training-free, RELOCATE eliminates the need for ex-
tensive task-specific training and large annotated datasets.
Moreover, it encodes a video independently of the query,
allowing the same video encoding to be reused for multiple
queries. This makes the method more suitable for episodic
memory tasks, as it enables us to perform the resource-
intensive video encoding just once for multiple queries.

RELOCATE follows a classic stage-wise setup for object
localization while integrating techniques to efficiently en-
code long videos, handle small and fleeting objects, and
manage varying appearances of the query object. Specif-
ically, it begins by extracting region-based representations
from the video and searching for candidates that match the
visual query. The selected candidates are then refined to im-
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Figure 1. RELOCATE is a training-free framework designed for visual query localization. It can effectively localize target objects in long
videos despite challenging conditions such as visual clutter, occlusions, background blending, motion blur, viewpoint changes, and brief
object appearances. Here we show visual queries on the left and the successfully localized object appearances marked by cyan bounding

boxes on the right.

prove precision, and the most relevant candidate is tracked
across video frames to generate an initial prediction. In a
subsequent iteration, this prediction is used to create new vi-
sual queries, which are then employed to relocalize the ob-
ject, aiming to capture appearances that differ significantly
from the original visual query.

We evaluate RELOCATE using the Ego4D Visual Query
2D (VQ2D) Localization benchmark [12] and observe sig-
nificant improvements over prior methods. We achieve a
49% increase in spatio-temporal average precision and a
33% boost in temporal average precision compared to prior
state-of-the-art, all without task-specific training.

In summary, the main contributions of this work are:

1. We propose RELOCATE, a training-free method for lo-

calizing objects in long videos. Despite no task-specific
training, RELOCATE significantly improves upon prior
VQL work on the Ego4D VQ2D benchmark.

. We demonstrate the benefits of using region-based rep-

resentations from pretrained vision models for object lo-
calization. Particularly, we show that these represen-
tations form a detailed yet compact encoding for long
videos. Furthermore, they allow us to efficiently and ro-
bustly perform object retrieval using a simple matching
function like cosine similarity.

. We propose techniques to improve the robustness and

precision of a stage-wise object localization framework.
Specifically, to enhance localization accuracy, we intro-
duce a refinement step that allows RELOCATE to closely



examine the selected candidates and improve their rep-
resentations, while filtering out incorrect selections. Ad-
ditionally, we introduce a technique to generate multiple
visual queries from a single query, which helps capture
varying appearances, changing contexts, and occlusions
of objects in a dynamic video setting.

2. Related Work

Object Instance Recognition. Early approaches to ob-
ject instance recognition retrieve images with similar key-
points to the visual query [18, 24, 25, 37]. This works
well for objects with distinctive textures, but fails for low-
texture, blurry, and highly occluded objects, which are
common in the VQL task. Subsequent research shifts to-
wards using features extracted from convolutional neural
networks (CNNs) as descriptors for image retrieval [1-
3, 7, 30, 31]. However, these early CNN-based methods
suffer when faced with large changes in scale, rotation, or
viewpoint. The advent of vision foundation models such
as CLIP [28], DINO [6], and DINOvV2 [26] has enabled
new strategies for instance recognition and retrieval. Sev-
eral works [4, 9, 34, 35] have leveraged the cross-modal
capabilities of CLIP for specialized retrieval tasks. How-
ever, these approaches are primarily designed for scenar-
ios where query objects occupy a substantial portion of
the target frame, which is not the case in VQL. Recent
work on region-based representations [36] shows that pool-
ing DINOV2 features over SAM regions provides effective
example-based object category retrieval. In this work, we
apply a similar approach for our initial search but propose
enhancements to refine, track, and expand the initial query.
Video Object Tracking. Conventional tracking approaches
are initialized with a bounding box in an initial frame of the
target video, and they track objects through gradual appear-
ance changes. In contrast, VQL often involves queries from
frames outside the target video, leading to significant vari-
ations in appearance, viewpoint, and context. Nevertheless,
tracking remains crucial in VQL. Early tracking approaches
relied on motion and appearance cues, using correlation fil-
ters and keypoint matching [13, 16, 33]. More recently,
trackers leverage large Transformer models to effectively
track one or more objects in long videos [8, 11, 19, 21, 23,
41]. Some recent works have also extended SAM [17] for
tracking [10, 29, 42]. In this work, we use SAM 2 [29].

Visual Query Localization. The Ego4D benchmark [12]
recently introduced VQ2D, a benchmark for VQL. The ini-
tial approach, proposed as a baseline in Ego4D, employs
a three-stage detection and tracking framework: perform-
ing frame-level detection, identifying the most recent de-
tection peak across time, and applying bi-directional track-
ing to determine the complete temporal extent of the tar-
get object [12]. Subsequent works enhance the framework’s
performance through various refinements like incorporating

negative frame sampling to reduce false positives [39] and
leveraging background objects as contextual cues [40]. In
this work, we adopt a similar stage-wise framework, intro-
ducing key design decisions and refinements that signifi-
cantly improve the baseline. A more recent effort trains a
network to learn the query-video relationship and perform
VQL in a single step. However, it relies on a large amount
of annotated data, which is costly to obtain. In contrast, we
present a training-free solution.

3. RELOCATE

We focus on VQL, the task of localizing the last occurrence
of a query object in a video. Formally, given a video V, a vi-
sual query Q, and a query time 7', the objective is to predict
a response track R = {bs,bs41,-..,be} that localizes and
tracks the latest occurrence of the query object prior to time
T. Here, Q is specified by a bounding box in a reference
frame, s and e < T denote the first and the last frames in
which the query object is visible, and b; represents a bound-
ing box around the object in frame 1.

As shown in Figure 2, RELOCATE prepares video repre-
sentations to facilitate a swift search for objects that match
the given visual queries. It then refines the search results for
better precision and tracks the latest match across frames.
After making a prediction, it can reiterate the localization
process using the previous prediction for better results.
Prepare (Section 3.1). A given video is first distilled
into semantically meaningful object-level representations,
or object tokens. For this, RELOCATE uses a segmentation
model to generate object-wise binary masks for each object
across all video frames and a feature extractor to produce
dense feature maps for each frame. The features within each
object mask are then pooled to produce an object token.
Search (Section 3.2). After preparing object tokens from
the video, RELOCATE creates a similar region-based repre-
sentation for the visual query, referred to as the query token.
It then searches the object tokens for candidates that match
the query token.

Refine (Section 3.3). The candidates identified in the ini-
tial search are then refined to improve spatial precision and
remove any spurious matches. For example, Figure 2 illus-
trates how refinement enhances spatial precision by captur-
ing the base of the monitor.

Track (Section 3.4). The latest refined search is tracked
across video frames using an off-the-shelf tracking model
to produce a response track localizing the most recent oc-
currence of the query object in the video.

Reiterate (Section 3.5). To better capture the visual vari-
ations of the query object, we leverage the object’s appear-
ance in the tracked frames to create more visual queries and
then re-apply RELOCATE to the video segment that follows
the previously predicted track.
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Figure 2. RELOCATE framework: Prepare object tokens from the given video V and
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the latest refined candidate across video frames to get a response track

prediction R. Finally, use the response track to create additional visual queries and reiterate the search, refinement, and tracking process.

3.1. Prepare

To address VQL, it is imperative to encode and represent
all regions/objects in each frame of a video. However, cre-
ating patch-level features for each frame results in an ex-
cessive number of tokens for long videos, making the task
computationally expensive. To address this issue, we pro-
pose using region-based representations [36] to encode each
frame. As shown in Table 2, the region-based approach sig-
nificantly reduces the number of tokens needed to encode
a video. Moreover, this produces semantically meaningful
object tokens, simplifying entity search for a given query.
Building on this insight, RELOCATE prepares object to-
kens from a given video as follows:
1. Segment Objects. We first generate a binary mask for
each region/object in all frames of the video via a segmen-
tation model. Formally, for a frame f; € R *W>3 e ex-
tract a set of binary masks M; = {my1,mya, ... }, one for
each region. Here, m;; € R¥*W is a binary mask with 1
in the area occupied by the object ¢ and O otherwise. In this
work, we use SAM ViT-H [17] as the segmentation model,
which processes each frame at a resolution of 1024 x 1024.
2. Extract Features. We then extract dense features from
every frame of the video via a pretrained vision model.
Formally, for every frame f; € RH*W>3 we compute a
high-dimensional feature map h; € R"*®*4 1In this work,
we experiment with different feature extractors and choose
DINO ViT-B/8 [6] with a frame resolution of 384 x 512.

3. Resize and Pool. Subsequently, we resize the frame
features h, € R*wxd to b, € RH*Wxd 1o fit the height
and width of the masks. We then pool the features within
each object mask my; to get an object token o;; € R?. Fol-
lowing the insights from [36], we use bilinear interpolation
to resize the features and average pooling to aggregate the
features within the mask.

3.2. Search

Videos spanning tens of minutes and processed at 5 FPS
typically involve more than 150,000 object tokens, with
only about 0.01% corresponding to the target response
track. To find candidates similar to the visual query,
RELOCATE searches over the object tokens. Concretely,
given an image and a bounding box localizing the query
object, we extract the query token via the process used for
video preparation and proceed with the following steps:

1. Compute Similarity. We compute pairwise cosine sim-
ilarity between all object tokens and query tokens. Initially,
only one query token is generated from the given visual
query, but multiple query tokens can be created for the same
object. When multiple query tokens are present, we use the
maximum similarity score across all tokens as the object
score, ensuring that an object is selected if it matches any
view of the query. Formally, for the i object token in frame
t (i.e., 0,;) and m query tokens [g;]72;, the similarity score
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We also studied test-time training (TTT) [38], but it per-
formed worse than a simple cosine similarity search due to
an insufficient number of query tokens for effective training.
2. Perform Intra-Frame NMS. Given that each frame can
contain at most one instance of the query object, we ap-
ply non-maximum suppression (NMS) to retain only the
highest-scoring object per frame, setting the scores of all
other objects to zero. This process results in a single candi-
date object per frame, yielding a total number of candidate
objects equal to the number of frames in the video.

3. Perform Inter-Frame NMS. Since we perform bidirec-
tional tracking at a later stage, selecting one candidate from
a potential track is sufficient. So, we perform NMS across
consecutive frames to select the highest-scoring match for a
query object, suppressing lower-scoring instances in neigh-
boring frames. More precisely, we iteratively select the ob-
ject with the maximum score and nullify candidate scores
in preceding and subsequent frames until the score drops
below 80% of this peak score. As a result, we end up with
sparsely selected high-scoring objects across video frames.
4. Select Candidates. Finally, we select up to k¥ = 10 can-
didate objects that exceed a tgy, = 0.7 similarity threshold,
yielding an average of 7.5 candidates per query.

3.3. Refine

The objects of interest are often small and situated in clut-
tered scenes, making it challenging for the segmentation
model and feature extractor to produce high-quality object
tokens. To address this, we propose refining the selections
made after the initial search. We find that this refinement
significantly enhances the spatial precision of RELOCATE
and helps filter out any spurious selections made after the
initial search (see Section 4.3 for an ablation).

We refine the candidates selected from the search in con-
junction with the query to generate a more precise set of
candidates. This is done as follows:

1. Get Object-Centric Crop. We crop the video frames
containing the selected candidates and visual queries such
that these objects occupy a larger area at the center of the
cropped view. These crops are then resized to the original
frame dimensions. To prevent pixelation in the case of ex-
tremely small objects, we ensure that no frame is cropped
with a zoom factor exceeding 2.5 times.

2. Generate Refined Token. We process the object-centric
crops of candidates and queries using the segmentation
model and feature extractor to generate refined object and
query tokens. This process yields improved tokens because
the segmentation model and feature extractor can produce
more accurate masks and detailed features for the objects
from the object-centric crop.

3. Recompute Similarity and Filter. We recompute the
cosine similarity scores for the selected candidates using
the refined object tokens and query tokens, and filter out
candidates that have a score below threshold ¢, = 0.7.

3.4. Track

RELOCATE uses an off-the-shelf tracker to bidirectionally
track the refined candidate that shows up last in the video,
yielding the response track R = {bs,bsy1,...,be}. Fur-
ther, it assigns the similarity score of the candidate as the
track score. In this work, we use SAM 2 [29] for tracking.

3.5. Reiterate

The query object often appears multiple times in a given
video, and RELOCATE is highly successful at localizing at
least one of these appearances from a single visual query
(see Section 4.1). However, our goal is to identify the latest
appearance, which may be heavily occluded or seen from
a significantly different viewpoint compared to the visual
query. To achieve this, we generate additional visual queries
using the response track predicted with the original query
and reiterate the process of search, refinement, and tracking.
This expanded pool of queries offers diverse views of the
object, enhancing the likelihood of detection even when it is
obscured or appears in a radically altered form. In practice,
we perform this query expansion and reiteration step only
once. This is carried out as follows:

1. Generate Query Tokens. Given the response track R =
{bs,bs+1,-..,bc.}, we apply the segmentation model and
feature extractor to produce region tokens for the objects
within the bounding boxes across the frames comprising the
response track.

2. Filter Queries. We filter out low-quality query tokens
generated in the previous step, specifically targeting three
types: (1) query tokens with very low cosine similarity (less
than 0.5) to the original query token, (2) queries associ-
ated with extremely small bounding boxes (occupying less
than 0.07% of the frame area), and (3) queries derived from
blurry frames (indicated by a Laplacian operator variance
below 100).

3. Search, Refine, and Track. After expanding the query
pool, we search the video segment following the last frame
of the previously predicted response track. The search re-
sults are then refined, and the latest refined candidate is
tracked across frames to generate a new prediction. If the
score of the new prediction exceeds a threshold relative to
the previous track score, we update the previous prediction.

4. Experiments

In this section, we evaluate RELOCATE (Section 4.1), dis-
cuss key design decisions (Section 4.2), and present abla-
tion studies (Section 4.3).



Method stAP2s  tAP2s Success  Recovery
Validation Set
SiamRCNN [12] 0.15 0.22 43.2 329
NFM [39] 0.19 0.26 479 37.9
CocoFormer [40] 0.19 0.26 47.7 37.7
VQLoC [40] 0.22 0.31 55.9 47.1
RELOCATE 0.33 0.41 58.0 50.5
Test Set

SiamRCNN [12] 0.13 0.21 41.6 34.0
CocoFormer [40] 0.18 0.26 48.1 432
VQLoC [40] 0.24 0.32 55.9 45.1
RELOCATE 0.35 0.43 60.1 50.6

Table 1. Results on Ego4D VQ2D benchmark. The validation
results are taken from [40], and the test results are obtained from
the challenge leaderboard.

4.1. Evaluation

Dataset. We evaluate RELOCATE on the Ego4D VQ2D
dataset [12], a large collection of egocentric videos anno-
tated for VQL within episodic memory. On average, the
videos in this dataset are 140 seconds long, and the tar-
get response tracks last for roughly 3 seconds. The dataset
comprises 13,600 training, 4,500 validation, and 4,400 test
queries, annotated across 262, 87, and 84 hours of video,
respectively. We use the validation set for our development
and ablations. To our knowledge, VQ2D is the only pub-
licly available dataset for VQL.

Metrics. Following the official metrics outlined by the
benchmark, we report spatio-temporal average precision
(stAP95), temporal average precision (tAP25), success, and
recovery. stAPos and tAPos evaluate the accuracy of the
predicted response tracks’ spatio-temporal and temporal ex-
tents using an Intersection over Union (IoU) threshold of
0.25. Success measures whether the IoU between predic-
tions and ground truth exceeds 0.05, and recovery measures
the proportion of predicted frames where the bounding box
achieves an IoU of at least 0.5 with the ground truth.
Results. Table | shows results on the validation and test
sets. Despite no task-specific training, RELOCATE outper-
forms the next-best baseline by 49% stAPss5, 33% tAPos,
8% Success, and 12% Recovery on the test set. Note, these
are relative improvements. Figure 1 shows some qualitative
examples of RELOCATE in action.

Additionally, a manual analysis of 100 randomly sam-
pled examples from the VQ2D validation set shows that
RELOCATE successfully localizes the last occurrence of the
object in 61 cases, localizes an earlier instance in 32 cases,
and identifies the wrong object in 7 cases. Figure 3 cate-
gorizes these failure modes for the cases where RELOCATE
localizes the wrong object, highlighting that the framework
typically fails to localize the correct object only in extreme
situations, such as when the visual query is ambiguous or

Q Tracked Candidate Q
(a) An object visually similar to the query (blue boxes) is mistakenly
tracked instead of the correct query object (green boxes).

Tracked Candidate

Q Target response track

(b) The visual query shows the target object from a distinctly different
viewpoint compared to its single appearance in the video (green boxes).

Q Q Q Q

(c) These visual queries lack discriminative features due to motion blur,
low contrast with background, or poor visibility.

Figure 3. Examples where a wrong object is localized. Among
100 randomly sampled instances from the VQ2D validation set,
RELOCATE localized an instance of the query object in 93 cases,
and failed to localize the correct object only under extreme condi-
tions.

there exists another object that closely resembles the query.
Timing Analysis. On average, preparing a 1000-frame
video (i.e., extracting object tokens) takes 1422.5 seconds
with our current setup. Subsequent steps are faster: search
takes 0.8 seconds, refinement 12.6 seconds, tracking 26.3
seconds, and generating additional queries from a response
track is instantaneous. Note that our current implementation
is not optimized for speed. For applications requiring faster
localization, several simple optimizations can be made with
minimal impact on the metrics, such as using HNSW [20]
for search, increasing the batch size for feature extraction,
using faster SAM variants [27] for region generation, and
employing faster trackers. We leave these enhancements
for future work.

4.2. Design Decisions

Region vs. Patch Representations. Most contempo-
rary approaches to object localization and tracking encode
video frames using patch-based representations, where each
frame is divided into non-overlapping patches and encoded
with a vision transformer. Region-based representations
derived from pretrained vision models [36] have recently
been proposed as an efficient alternative. These represen-
tations offer both semantic richness and compact encod-
ing—qualities that align with the requirements of VQL.
Notably, region token count depends on the scene con-
tent (detected objects or regions) rather than spatial param-



Number of tokens

Encoding Method
384 x 512 Frames 1024 x 1024 Frames
Patches 3,072,000 16,384,000
Regions 130,507 130,507

Table 2. Token count for patch-based and region-based encod-
ings. Region-based representations typically use fewer tokens than
the patch-based method, and their token count does not scale with
resolution. Token counts are reported for a 1000-frame video, us-
ing a patch size of 8 and SAM ViT-H for region-based encoding.

eters (image dimensions and patch size). As a result, in
most practical cases, a region-based approach yields a much
lower token count than the patch-based approach. As shown
in Table 2, a region-based encoding of a 200-second VQ2D
video produces 24x fewer tokens compared to a patch-
based encoding at an image resolution of 384 x 512 with
a patch size of 8. Moreover, this difference drastically in-
creases if we increase the resolution; e.g. if the image reso-
lution is increased to 1024 x 1024, a region-based encoding
produces 126 x fewer tokens than a patch-based encoding.
Thus, the decoupling of token count from spatial parameters
allows the region-based approach to leverage the benefits of
smaller patches and high-resolution images without incur-
ring the computational overhead typically associated with
increased token counts.

Beyond their compactness, region-based representations
excel at capturing semantic information, enabling spatio-
temporal object localization through simple token similar-
ity matching. Figure 4 illustrates this through cosine sim-
ilarity heatmaps, where region-based representations show
precise areas of high similarity for the query objects, while
patch-based representations result in less focused similarity
distributions. Our comparative analysis reveals that while
patch encodings achieve better frame-level retrieval (65%
vs. 60%), they perform significantly worse at spatial local-
ization (42% vs. 58%) compared to region-based represen-
tations. For specific applications, one could combine patch-
based frame retrieval with region-based object localization.
For episodic memory tasks, however, we believe that a
streamlined approach using only region-based representa-
tions is advantageous as it avoids the computational over-
head of storing and searching through substantially more
patch tokens and eliminates the need to generate regions
during retrieval.

Feature Extraction. To search and retrieve objects that
match a given query, VQL requires capturing fine-grained
details from each video frame, and the DINO models are
particularly well-suited for this task [14, 36]. We com-
pare DINO [6] and DINOv2 [26] using various ViT back-
bones, with results shown in Table 3. Our findings indicate
that DINO ViT-B/8 outperforms ViT-B/16, likely due to its
smaller patch size enabling finer feature extraction. Addi-

Patches

Regions

Figure 4. Comparing cosine similarity heatmaps for patch-
based and region-based representations. Region-based repre-
sentations yield distinct, high-similarity matches for query ob-
jects (brighter regions), while patch-based representations produce
more diffuse similarity patterns.

Extractor stAP25  tAP25  Success Recovery
DINO ViT-B/16 0.254 0.301 50.0 47.7
DINOV2 ViT-L/14 0.331 0.452 55.8 453
DINO ViT-B/8 0.333 0.409 58.0 50.5

Table 3. Performance comparison of feature extractors. DI-
NOv2 ViT-L/14 shows superior frame-level retrieval while DINO
ViT-B/8 is better at spatial localization.

Method stAP25 tAP2s5  Success Recovery
RELOCATE-NoRefine 0.246 0.364 49.1 39.8
RELOCATE-NoReiter 0.247 0.293 50.9 48.2

RELOCATE 0.333 0.409 58.0 50.5

Table 4. Impact of refining search results and reiterating af-
ter query expansion. Ablating either refinement (RELOCATE-
NoRefine) or reiteration (RELOCATE-NoReiter) significantly re-
duces the performance of RELOCATE.

tionally, DINOv2 ViT-L/14 shows stronger frame-level re-
trieval, and DINO ViT-B/8 is better at spatial localization of
objects. We choose DINO ViT-B/8 as our feature extractor
due to its higher spatio-temporal localization success rate,
smaller model size for faster inference, and reduced feature
dimensionality requiring less memory.

4.3. Ablation Study

Refining Search Results. Results in Table 4 show that
removing search refinement (RELOCATE-NoRefine) from
the framework significantly degrades RELOCATE’s perfor-
mance. As illustrated in Figure 5a, refinement enhances
spatial precision for localizing small objects and fine parts



Q Selected Candidate Refined Candidate

Q Spurious Selection

Rectified Spurious Selection

(a) Cropping around objects during refinement helps capture small ob-

jects or object parts that full-frame processing might miss.

(b) Refinement fixes incorrect selections due to feature bleeding (row 1)
and removes false selections by lowering their scores (rows 2 and 3).

Figure 5. Impact of refining search results. Initial candidates are shown in yellow boxes, and refined candidates are shown in green.

Q Track predicted using Q
j ———

Track predicted using Q+

Figure 6. Impact of query expansion and reiteration. Using only the initial query Q, RELOCATE misses the object’s final appearance
due to its partial view and low feature similarity. However, the expanded query set QT captures multiple object perspectives, enabling

successful detection of the final occurrence.

by generating regions from an object-centric crop that cap-
tures more of the object of interest. Additionally, refine-
ment removes incorrect selections from the initial search by
rescoring candidates using region tokens generated from an
object-centric crop. Furthermore, for small or thin objects,
feature bleeding can result in the selection of an object adja-
cent to the target object. Object-centered cropping can also
help avoid this by providing a clearer view of the target.
This is demonstrated in Figure 5b.

Query Expansion and Reiteration. Results in Table 4
show that query expansion and reiteration significantly im-
prove RELOCATE’s performance compared to the variant
without this step (RELOCATE-NoReiter). Figure 6 shows an
example where query expansion using an initial prediction
helps capture a wider range of views for the visual query.

This, in turn, helps in successfully localizing the final oc-
currence of the object that was missed when only the initial
visual query was used. Additional examples where reiter-
ation after query expansion leads to successful localization
are illustrated in rows 2, 5, and 6 of Figure 1.

5. Conclusion

We present RELOCATE, a framework utilizing region-
based representations from pretrained vision models to
address VQL. Despite a simple design and no task-
specific training, RELOCATE can localize target ob-
jects in long videos, even under challenging conditions
such as clutter, occlusion, blur, and viewpoint changes.
On the VQ2D benchmark, it significantly outperforms
existing methods that are specifically trained on this
dataset.
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RELOCATE: A Simple Training-Free Baseline for Visual Query Localization
Using Region-Based Representations

Supplementary Material

k stAP25 tAP25  Success Recovery
5 0.302 0.371 56.5 49.9
10 0.333 0.409 58.0 50.5
25 0.329 0.404 58.2 50.6
50 0.330 0.409 58.5 50.8

Table 5. Effect of initially selected candidates on model perfor-
mance. Our final evaluations use £ = 10.

tsim  StAP25  tAP2s5  Success Recovery
0.6 0.348 0.446 58.4 47.8
0.7 0.333 0.409 58.0 50.5
0.8 0.258 0.316 529 48.0

Table 6. Effect of candidate selection threshold on model per-
formance. Our final evaluations use tsim = 0.7.

This supplementary material is structured as follows. In Ap-
pendix A we analyze the sensitivity of RELOCATE to its hy-
perparameters. In Appendix B we study the performance of
SAM 2 on the VQL task.

A. Hyperparameter Sensitivity Analysis

We analyze RELOCATE’s sensitivity to four key hyperpa-
rameters: (1) the maximum number of initially retrieved
candidates k, (2) the candidate selection threshold tgy,
(3) the inter-frame NMS threshold ¢, and (4) the query
selection threshold ¢,. Tables 5-8 and Figure 7 present
model’s performance across different hyperparameter con-
figurations.

For the initial retrieval count k, we observe stable per-
formance across values from 10 to 50, with only a slight
degradation at £ = 5. The candidate selection threshold %,
leads to a noticeable decline in performance when set above
0.7. The inter-frame NMS threshold ¢, demonstrates con-
sistent performance across the range 0.7-0.9, suggesting ro-
bustness to this parameter. Similarly, the query selection
threshold ¢, shows minimal variation in performance be-
tween 0.4 and 0.6.

Overall, these results indicate that our model maintains
stable performance across a wide range of hyperparameter
values, with selected values of £ = 10, tgn = 0.7, tams =
0.8, and t4 = 0.5 providing a robust operating point.

B. Evaluating SAM 2 on VQ2D

Jiang et al. [15] demonstrated significant limitations in VQL
capabilities among contemporary tracking systems. Specif-

tnms StAP2s5  tAP2s  Success  Recovery
0.6 0.308 0.379 57.1 50.9
0.7 0.320 0.393 57.8 51.0
0.8 0.333 0.409 58.0 50.5
0.9 0.324 0.404 58.3 50.8

Table 7. Effect of inter-frame NMS threshold on model perfor-
mance. Our final evaluations use tyms = 0.8.

tq stAP25  tAP2s5  Success Recovery
0.4 0.320 0.402 58.2 50.2
0.5 0.333 0.409 58.0 50.5
0.6 0.320 0.396 58.0 50.4

Table 8. Effect of query selection threshold on model perfor-
mance. Our final evaluations use ¢, = 0.5.

Method stAP25  tAP25  Success Recovery
SAM 2 [29] 0.290 0.329 55.0 42.7
RELOCATE 0.378 0.458 63.0 49.1

Table 9. Evaluating SAM 2 on VQ2D. Here, we evaluate on 100
randomly sampled examples from the VQ2D validation set.

Category SAM 2 RELOCATE
Last occurrence localized 54 61
Prior occurrence localized 24 32
Wrong object localized 18 7
No track returned 4 0

Table 10. Response track prediction analysis of SAM 2
and RELOCATE. We compare the predictions of SAM 2 and
RELOCATE on 100 sampled examples from the VQ2D validation
set. Predictions are categorized into four types, and the count for
each category is reported.

ically, they showed that STARK [41], a state-of-the-art vi-
sual tracker at the time, achieves only a 0.04 stAPs5 score
on the VQ2D validation set. Since then, tracking systems
have advanced considerably. To evaluate the capabilities of
current tracking systems, we test SAM 2 [29] on the VQL
task.

To adapt SAM 2 for VQ2D, we prepend the query frame
to the target video and use the query bounding box from
the annotations as the prompt for mask generation. SAM
2 then propagates the generated mask across all subsequent
frames, tracking multiple occurrences of the query object.
We select the last contiguous track as the response track
prediction.

We evaluate SAM 2 on 100 randomly sampled examples
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Figure 7. Hyperparameter sensitivity analysis of RELOCATE. Empirical evaluation demonstrates RELOCATE’s robustness across differ-

ent hyperparameter configurations.

previously used for the manual analysis of RELOCATE re-
ported in Section 4.1, and the results are shown in Tables 9
and 10. While SAM 2 shows competitive performance on
VQ2D (Table 9), it underperforms compared to RELOCATE.
Our qualitative analysis (Table 10) reveals that SAM 2 has
a higher tendency to localize incorrect objects or produce
no tracks compared to RELOCATE. On an NVIDIA A40,
with our implementation, SAM 2 takes an average of 110.7
seconds to locate a query object in a 1000-frame video. In
comparison, RELOCATE incurs a one-time cost of 1422.5
seconds to prepare a 1000-frame video, followed by 73.6
seconds to process each query. However, the processing
time of RELOCATE can be significantly reduced by using
batch processing and faster SAM variants.
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