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Abstract

We present RELOCATE, a simple training-free baseline de-

signed to perform the challenging task of visual query

localization in long videos. To eliminate the need for

task-specific training and efficiently handle long videos,

RELOCATE leverages a region-based representation de-

rived from pretrained vision models. At a high level, it

follows the classic object localization approach: (1) iden-

tify all objects in each video frame, (2) compare the objects

with the given query and select the most similar ones, and

(3) perform bidirectional tracking to get a spatio-temporal

response. However, we propose some key enhancements

to handle small objects, cluttered scenes, partial visibility,

and varying appearances. Notably, we refine the selected

objects for accurate localization and generate additional

visual queries to capture visual variations. We evaluate

RELOCATE on the challenging Ego4D Visual Query 2D Lo-

calization dataset, establishing a new baseline that outper-

forms prior task-specific methods by 49% (relative improve-

ment) in spatio-temporal average precision.

1. Introduction

Visual Query Localization (VQL) requires localizing the

last appearance of an object of interest in a long video.

The object of interest is specified via a reference image,

also known as the visual query. Figure 1 provides illustra-

tive examples. VQL is an important task, e.g., for surveil-

lance, legal investigations, wildlife monitoring, or simply

for tracking down a misplaced item. However, the task

presents several unique challenges that push the boundaries

of contemporary computer vision methods. For instance,

unlike classic object detection models that are trained to

identify a fixed set of object categories [5, 32], VQL re-

quires localizing an open-ended range of objects. Addition-

ally, while typical object tracking methods are initialized

with a bounding box close to the object’s temporal location

in the video [19, 22, 41], the VQL reference image (visual

query) often originates outside the video, i.e., there may be

no exact or neighboring frame for reliable matching. Fur-

ther, the object’s appearance may vary significantly from

the visual query due to changes in orientation, scale, con-

text, lighting, motion blur, and occlusions. Compounding

these issues, the object of interest usually appears briefly in

a long, untrimmed video.

Classic VQL methods typically use a stage-wise

pipeline [12, 39, 40]: (1) identify all objects in each video

frame, (2) compare these objects with the given query to

select the most similar ones, and (3) perform bidirectional

tracking to obtain a spatio-temporal response. While this

pipeline is well-grounded in the object localization litera-

ture, it is effective only for large, consistently visible ob-

jects that closely match the visual query in short video

clips. A more recent work [15] has proposed an end-to-

end framework that aims to understand the holistic rela-

tionship between a given query and the video, perform-

ing spatio-temporal localization in a single step. However,

this approach requires extensive training on large, annotated

datasets, which can be challenging to obtain. Additionally,

since such a method learns a holistic video-query relation-

ship, it must process the entire video for each query, even

when multiple queries are to be localized in the same video.

To address these limitations, we propose Region-based

representations for Localizing Anything in Episodic mem-

ory (RELOCATE), a simple training-free baseline for VQL.

Being training-free, RELOCATE eliminates the need for ex-

tensive task-specific training and large annotated datasets.

Moreover, it encodes a video independently of the query,

allowing the same video encoding to be reused for multiple

queries. This makes the method more suitable for episodic

memory tasks, as it enables us to perform the resource-

intensive video encoding just once for multiple queries.

RELOCATE follows a classic stage-wise setup for object

localization while integrating techniques to efficiently en-

code long videos, handle small and fleeting objects, and

manage varying appearances of the query object. Specif-

ically, it begins by extracting region-based representations

from the video and searching for candidates that match the

visual query. The selected candidates are then refined to im-





examine the selected candidates and improve their rep-

resentations, while filtering out incorrect selections. Ad-

ditionally, we introduce a technique to generate multiple

visual queries from a single query, which helps capture

varying appearances, changing contexts, and occlusions

of objects in a dynamic video setting.

2. Related Work

Object Instance Recognition. Early approaches to ob-

ject instance recognition retrieve images with similar key-

points to the visual query [18, 24, 25, 37]. This works

well for objects with distinctive textures, but fails for low-

texture, blurry, and highly occluded objects, which are

common in the VQL task. Subsequent research shifts to-

wards using features extracted from convolutional neural

networks (CNNs) as descriptors for image retrieval [1–

3, 7, 30, 31]. However, these early CNN-based methods

suffer when faced with large changes in scale, rotation, or

viewpoint. The advent of vision foundation models such

as CLIP [28], DINO [6], and DINOv2 [26] has enabled

new strategies for instance recognition and retrieval. Sev-

eral works [4, 9, 34, 35] have leveraged the cross-modal

capabilities of CLIP for specialized retrieval tasks. How-

ever, these approaches are primarily designed for scenar-

ios where query objects occupy a substantial portion of

the target frame, which is not the case in VQL. Recent

work on region-based representations [36] shows that pool-

ing DINOv2 features over SAM regions provides effective

example-based object category retrieval. In this work, we

apply a similar approach for our initial search but propose

enhancements to refine, track, and expand the initial query.

Video Object Tracking. Conventional tracking approaches

are initialized with a bounding box in an initial frame of the

target video, and they track objects through gradual appear-

ance changes. In contrast, VQL often involves queries from

frames outside the target video, leading to significant vari-

ations in appearance, viewpoint, and context. Nevertheless,

tracking remains crucial in VQL. Early tracking approaches

relied on motion and appearance cues, using correlation fil-

ters and keypoint matching [13, 16, 33]. More recently,

trackers leverage large Transformer models to effectively

track one or more objects in long videos [8, 11, 19, 21, 23,

41]. Some recent works have also extended SAM [17] for

tracking [10, 29, 42]. In this work, we use SAM 2 [29].

Visual Query Localization. The Ego4D benchmark [12]

recently introduced VQ2D, a benchmark for VQL. The ini-

tial approach, proposed as a baseline in Ego4D, employs

a three-stage detection and tracking framework: perform-

ing frame-level detection, identifying the most recent de-

tection peak across time, and applying bi-directional track-

ing to determine the complete temporal extent of the tar-

get object [12]. Subsequent works enhance the framework’s

performance through various refinements like incorporating

negative frame sampling to reduce false positives [39] and

leveraging background objects as contextual cues [40]. In

this work, we adopt a similar stage-wise framework, intro-

ducing key design decisions and refinements that signifi-

cantly improve the baseline. A more recent effort trains a

network to learn the query-video relationship and perform

VQL in a single step. However, it relies on a large amount

of annotated data, which is costly to obtain. In contrast, we

present a training-free solution.

3. RELOCATE

We focus on VQL, the task of localizing the last occurrence

of a query object in a video. Formally, given a video V , a vi-

sual query Q, and a query time T , the objective is to predict

a response track R = {bs, bs+1, . . . , be} that localizes and

tracks the latest occurrence of the query object prior to time

T . Here, Q is specified by a bounding box in a reference

frame, s and e ≤ T denote the first and the last frames in

which the query object is visible, and bi represents a bound-

ing box around the object in frame i.

As shown in Figure 2, RELOCATE prepares video repre-

sentations to facilitate a swift search for objects that match

the given visual queries. It then refines the search results for

better precision and tracks the latest match across frames.

After making a prediction, it can reiterate the localization

process using the previous prediction for better results.

Prepare (Section 3.1). A given video is first distilled

into semantically meaningful object-level representations,

or object tokens. For this, RELOCATE uses a segmentation

model to generate object-wise binary masks for each object

across all video frames and a feature extractor to produce

dense feature maps for each frame. The features within each

object mask are then pooled to produce an object token.

Search (Section 3.2). After preparing object tokens from

the video, RELOCATE creates a similar region-based repre-

sentation for the visual query, referred to as the query token.

It then searches the object tokens for candidates that match

the query token.

Refine (Section 3.3). The candidates identified in the ini-

tial search are then refined to improve spatial precision and

remove any spurious matches. For example, Figure 2 illus-

trates how refinement enhances spatial precision by captur-

ing the base of the monitor.

Track (Section 3.4). The latest refined search is tracked

across video frames using an off-the-shelf tracking model

to produce a response track localizing the most recent oc-

currence of the query object in the video.

Reiterate (Section 3.5). To better capture the visual vari-

ations of the query object, we leverage the object’s appear-

ance in the tracked frames to create more visual queries and

then re-apply RELOCATE to the video segment that follows

the previously predicted track.





sti is computed via

sti = max
j∈{1,...,m}

oti · qj
∥oti∥∥qj∥

. (1)

We also studied test-time training (TTT) [38], but it per-

formed worse than a simple cosine similarity search due to

an insufficient number of query tokens for effective training.

2. Perform Intra-Frame NMS. Given that each frame can

contain at most one instance of the query object, we ap-

ply non-maximum suppression (NMS) to retain only the

highest-scoring object per frame, setting the scores of all

other objects to zero. This process results in a single candi-

date object per frame, yielding a total number of candidate

objects equal to the number of frames in the video.

3. Perform Inter-Frame NMS. Since we perform bidirec-

tional tracking at a later stage, selecting one candidate from

a potential track is sufficient. So, we perform NMS across

consecutive frames to select the highest-scoring match for a

query object, suppressing lower-scoring instances in neigh-

boring frames. More precisely, we iteratively select the ob-

ject with the maximum score and nullify candidate scores

in preceding and subsequent frames until the score drops

below 80% of this peak score. As a result, we end up with

sparsely selected high-scoring objects across video frames.

4. Select Candidates. Finally, we select up to k = 10 can-

didate objects that exceed a tsim = 0.7 similarity threshold,

yielding an average of 7.5 candidates per query.

3.3. Refine

The objects of interest are often small and situated in clut-

tered scenes, making it challenging for the segmentation

model and feature extractor to produce high-quality object

tokens. To address this, we propose refining the selections

made after the initial search. We find that this refinement

significantly enhances the spatial precision of RELOCATE

and helps filter out any spurious selections made after the

initial search (see Section 4.3 for an ablation).

We refine the candidates selected from the search in con-

junction with the query to generate a more precise set of

candidates. This is done as follows:

1. Get Object-Centric Crop. We crop the video frames

containing the selected candidates and visual queries such

that these objects occupy a larger area at the center of the

cropped view. These crops are then resized to the original

frame dimensions. To prevent pixelation in the case of ex-

tremely small objects, we ensure that no frame is cropped

with a zoom factor exceeding 2.5 times.

2. Generate Refined Token. We process the object-centric

crops of candidates and queries using the segmentation

model and feature extractor to generate refined object and

query tokens. This process yields improved tokens because

the segmentation model and feature extractor can produce

more accurate masks and detailed features for the objects

from the object-centric crop.

3. Recompute Similarity and Filter. We recompute the

cosine similarity scores for the selected candidates using

the refined object tokens and query tokens, and filter out

candidates that have a score below threshold tsim = 0.7.

3.4. Track

RELOCATE uses an off-the-shelf tracker to bidirectionally

track the refined candidate that shows up last in the video,

yielding the response track R̂ = {bs, bs+1, . . . , be}. Fur-

ther, it assigns the similarity score of the candidate as the

track score. In this work, we use SAM 2 [29] for tracking.

3.5. Reiterate

The query object often appears multiple times in a given

video, and RELOCATE is highly successful at localizing at

least one of these appearances from a single visual query

(see Section 4.1). However, our goal is to identify the latest

appearance, which may be heavily occluded or seen from

a significantly different viewpoint compared to the visual

query. To achieve this, we generate additional visual queries

using the response track predicted with the original query

and reiterate the process of search, refinement, and tracking.

This expanded pool of queries offers diverse views of the

object, enhancing the likelihood of detection even when it is

obscured or appears in a radically altered form. In practice,

we perform this query expansion and reiteration step only

once. This is carried out as follows:

1. Generate Query Tokens. Given the response track R̂ =

{bs, bs+1, . . . , be}, we apply the segmentation model and

feature extractor to produce region tokens for the objects

within the bounding boxes across the frames comprising the

response track.

2. Filter Queries. We filter out low-quality query tokens

generated in the previous step, specifically targeting three

types: (1) query tokens with very low cosine similarity (less

than 0.5) to the original query token, (2) queries associ-

ated with extremely small bounding boxes (occupying less

than 0.07% of the frame area), and (3) queries derived from

blurry frames (indicated by a Laplacian operator variance

below 100).

3. Search, Refine, and Track. After expanding the query

pool, we search the video segment following the last frame

of the previously predicted response track. The search re-

sults are then refined, and the latest refined candidate is

tracked across frames to generate a new prediction. If the

score of the new prediction exceeds a threshold relative to

the previous track score, we update the previous prediction.

4. Experiments

In this section, we evaluate RELOCATE (Section 4.1), dis-

cuss key design decisions (Section 4.2), and present abla-

tion studies (Section 4.3).
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k stAP25 tAP25 Success Recovery

5 0.302 0.371 56.5 49.9

10 0.333 0.409 58.0 50.5

25 0.329 0.404 58.2 50.6

50 0.330 0.409 58.5 50.8

Table 5. Effect of initially selected candidates on model perfor-

mance. Our final evaluations use k = 10.

tsim stAP25 tAP25 Success Recovery

0.6 0.348 0.446 58.4 47.8

0.7 0.333 0.409 58.0 50.5

0.8 0.258 0.316 52.9 48.0

Table 6. Effect of candidate selection threshold on model per-

formance. Our final evaluations use tsim = 0.7.

This supplementary material is structured as follows. In Ap-

pendix A we analyze the sensitivity of RELOCATE to its hy-

perparameters. In Appendix B we study the performance of

SAM 2 on the VQL task.

A. Hyperparameter Sensitivity Analysis

We analyze RELOCATE’s sensitivity to four key hyperpa-

rameters: (1) the maximum number of initially retrieved

candidates k, (2) the candidate selection threshold tsim,

(3) the inter-frame NMS threshold tnms, and (4) the query

selection threshold tq. Tables 5-8 and Figure 7 present

model’s performance across different hyperparameter con-

figurations.

For the initial retrieval count k, we observe stable per-

formance across values from 10 to 50, with only a slight

degradation at k = 5. The candidate selection threshold tsim

leads to a noticeable decline in performance when set above

0.7. The inter-frame NMS threshold tnms demonstrates con-

sistent performance across the range 0.7-0.9, suggesting ro-

bustness to this parameter. Similarly, the query selection

threshold tq shows minimal variation in performance be-

tween 0.4 and 0.6.

Overall, these results indicate that our model maintains

stable performance across a wide range of hyperparameter

values, with selected values of k = 10, tsim = 0.7, tnms =

0.8, and tq = 0.5 providing a robust operating point.

B. Evaluating SAM 2 on VQ2D

Jiang et al. [15] demonstrated significant limitations in VQL

capabilities among contemporary tracking systems. Specif-

tnms stAP25 tAP25 Success Recovery

0.6 0.308 0.379 57.1 50.9

0.7 0.320 0.393 57.8 51.0

0.8 0.333 0.409 58.0 50.5

0.9 0.324 0.404 58.3 50.8

Table 7. Effect of inter-frame NMS threshold on model perfor-

mance. Our final evaluations use tnms = 0.8.

tq stAP25 tAP25 Success Recovery

0.4 0.320 0.402 58.2 50.2

0.5 0.333 0.409 58.0 50.5

0.6 0.320 0.396 58.0 50.4

Table 8. Effect of query selection threshold on model perfor-

mance. Our final evaluations use tq = 0.5.

Method stAP25 tAP25 Success Recovery

SAM 2 [29] 0.290 0.329 55.0 42.7

RELOCATE 0.378 0.458 63.0 49.1

Table 9. Evaluating SAM 2 on VQ2D. Here, we evaluate on 100

randomly sampled examples from the VQ2D validation set.

Category SAM 2 RELOCATE

Last occurrence localized 54 61

Prior occurrence localized 24 32

Wrong object localized 18 7

No track returned 4 0

Table 10. Response track prediction analysis of SAM 2

and RELOCATE. We compare the predictions of SAM 2 and

RELOCATE on 100 sampled examples from the VQ2D validation

set. Predictions are categorized into four types, and the count for

each category is reported.

ically, they showed that STARK [41], a state-of-the-art vi-

sual tracker at the time, achieves only a 0.04 stAP25 score

on the VQ2D validation set. Since then, tracking systems

have advanced considerably. To evaluate the capabilities of

current tracking systems, we test SAM 2 [29] on the VQL

task.

To adapt SAM 2 for VQ2D, we prepend the query frame

to the target video and use the query bounding box from

the annotations as the prompt for mask generation. SAM

2 then propagates the generated mask across all subsequent

frames, tracking multiple occurrences of the query object.

We select the last contiguous track as the response track

prediction.

We evaluate SAM 2 on 100 randomly sampled examples
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