
MMAudio: Taming Multimodal Joint Training

for High-Quality Video-to-Audio Synthesis

Ho Kei Cheng1* Masato Ishii2 Akio Hayakawa2 Takashi Shibuya2

Alexander Schwing1 Yuki Mitsufuji2,3

1University of Illinois Urbana-Champaign 2Sony AI 3Sony Group Corporation

{hokeikc2,aschwing}@illinois.edu, {masato.a.ishii,akio.hayakawa,takashi.tak.shibuya,yuhki.mitsufuji}@sony.com

Abstract

We propose to synthesize high-quality and synchronized au-

dio, given video and optional text conditions, using a novel

multimodal joint training framework (MMAudio). In con-

trast to single-modality training conditioned on (limited)

video data only, MMAudio is jointly trained with larger-

scale, readily available text-audio data to learn to generate

semantically aligned high-quality audio samples. Addition-

ally, we improve audio-visual synchrony with a conditional

synchronization module that aligns video conditions with

audio latents at the frame level. Trained with a flow match-

ing objective, MMAudio achieves new video-to-audio state-

of-the-art among public models in terms of audio quality,

semantic alignment, and audio-visual synchronization, while

having a low inference time (1.23s to generate an 8s clip)

and just 157M parameters. MMAudio also achieves surpris-

ingly competitive performance in text-to-audio generation,

showing that joint training does not hinder single-modality

performance. Code, models, and demo are available at:

hkchengrex.github.io/MMAudio.

1. Introduction

We are interested in Foley, i.e., for a given video we want to

synthesize ambient sound (e.g., rain, river flow) and sound

effects induced by visible events (e.g., a dog barks, a racket

hits a tennis ball). Note, Foley does not focus on synthesizing

background music or human speech, which is often added in

post-processing. Importantly, Foley requires to synthesize

convincing high-quality audio that is 1) semantically and 2)

temporally aligned to an input video. For semantic align-

ment, methods need to understand scene contexts and their

association with audio – the visual concept of rain should be

associated with the sound of splashing raindrops. For tempo-

ral alignment, methods need to understand audio-visual syn-

chrony as humans can perceive audio-visual misalignment as

*Work done during an internship at Sony AI.

��������	�
���
��
���


	�
	 ������
��
��


	�
	

�������

���
����
������
�
�
�����

���������

���
�
���
���
�����
��
�������


�����
������	 ��
��


����� ��	 ������
�


�����

Figure 1. In addition to training on audio-visual-(text) datasets,

we perform multimodal joint training with high-quality, abundant

audio-text data which enables effective data scaling. At inference,

MMAudio generates conditions-aligned audio with video and/or

text guidance.

slight as 25 ms [51]. Inspired by the efficacy of training data

scaling demonstrated by recent works [8, 21, 53], we pursue

a data-driven approach to synthesize high-quality audio that

respects these two types of alignment.

Current state-of-the-art video-to-audio methods either

train only on audio-visual data [1] from scratch [67] or train

new “control modules” [20, 66, 69, 73] for pretrained text-

to-audio models on audio-visual data. The former is limited

by the amount of available training data: the most com-

monly used audio-visual dataset VGGSound [1] contains

only around 550 hours of videos. Audio-visual data are

expensive to curate at a large scale, as in-the-wild videos

from the Internet 1) contain music and speech1, which has

limited utility for training a general Foley model, and 2)

contain non-diegetic [58] sounds such as background music

or sound effects added in post-processing, again unsuitable

for a Foley model. The latter, i.e., finetuning pretrained

text-to-audio models (with added control modules) on audio-

visual data, enables models to benefit from audio-generation

knowledge obtained from larger-scale audio-text data (e.g.,

1In AudioSet [9] (collected from YouTube), 82.48% of videos contain

either human speech or music according to the provided audio labels.

1



WavCaps [46] at 7,600 hours). However, adding control

modules to pretrained text-to-audio models complicates the

network architecture and limits the design space. It is also un-

clear whether pretrained text-to-audio models have sufficient

degrees of freedom to support all video-to-audio scenarios,

compared to training from scratch.

To avoid these limitations, we propose a multimodal joint

training paradigm (Figure 1) that jointly considers video,

audio, and text in a single multimodal transformer network

and masks missing modalities during training. This allows

us to train from scratch on both audio-visual and audio-text

datasets with a simple end-to-end framework. Jointly train-

ing on large multimodal datasets enables a unified semantic

space and exposes the model to more data for learning the

distribution of natural audio. Empirically, with joint train-

ing, we observe a significant relative improvement in audio

quality (10% lower Fréchet Distance [23] and 15% higher

Inception Score [56]), semantic alignment (4% higher Im-

ageBind [11] score), and temporal alignment (14% better

synchronization score).

To further improve temporal alignment, we introduce a

conditional synchronization module that uses high frame-

rate visual features (extracted from a self-supervised audio-

visual desynchronization detector [19]) and operates in the

space of scales and biases of adaptive layer normalization

(adaLN) layers [50], leading to accurate synchronization

(50% relative improvement in synchronization score).

In summary, we first propose MMAudio, a multimodal

joint training paradigm for video-to-audio. It enables ac-

cessible data scaling and cross-modal understanding, sig-

nificantly improving audio quality and semantic alignment.

We also propose a conditional synchronization module

which enables more precise audio-visual synchrony. We

train MMAudio on openly accessible datasets and scale it

to two audio sampling rates (16kHz and 44.1kHz) and three

model sizes (157M, 621M, 1.03B), with the smallest model

already achieving new state-of-the-art performance in video-

to-audio synthesis among public models. Surprisingly, our

multimodal approach also achieves competitive performance

in text-to-audio generation compared to dedicated text-to-

audio methods, showing that joint training does not hinder

single-modality performance.

2. Related Works

Semantic alignment. Semantic alignment between audio

and video is learned by training on paired audio-visual data

with a generation objective [2, 6, 18, 44, 49, 60, 66, 71]

or a contrastive objective [42]. To further understand au-

dio semantics, we additionally train on paired audio-text

data. We argue that the semantic understanding learned from

audio-text pairs can be transferred to video-text pairs, as

joint training leads to a shared semantic space (similar to

ImageBind [11] and LanguageBind [74]) and enables the

network to learn richer semantics from more diverse data.

Temporal alignment. Besides learning temporal align-

ment directly from audio-visual pairs, some recent works

first learn from videos a separate model to predict hand-

crafted proxy features such as audio onsets [54, 73], en-

ergy [17, 20], or root-mean-square of waveforms [4, 34].

We deviate from these handcrafted features and directly

learn alignment from the deep feature embeddings of a pre-

trained self-supervised desynchronization detector Synch-

former [19], allowing a more nuanced interpretation of the

input signal. A recent work V-AURA [65] also uses Synch-

former [19] for synchronization in an autoregressive frame-

work. However, [65] does not perform multimodal training

on text and has a short context window (2.56s) while we pro-

duce longer-term (8-10s) temporally consistent generations.

In terms of improving positional embeddings for temporal

alignment, Mei et al. [45] concurrently propose to subsam-

ple high-frequency (audio) positional embeddings, while we

propose to scale up the frequencies of low-frequency (visual)

positional embeddings – the effects are identical when the

higher frequency is an integer multiple of the lower one.

Multimodal conditioning. The most common way to sup-

port multimodal conditioned generation is to add “control

modules” that inject visual features to a pretrained text-to-

audio network [13, 17, 20, 34, 47, 54, 73]. However, this

increases the number of parameters. Besides, as the text

modality is fixed during video-to-audio training, it becomes

more challenging to learn a joint semantic space – the video

modality needs to bind to the semantics of text instead of

both modalities learning to cooperate. In contrast, we train

all modalities simultaneously in our multimodal training for-

mulation to learn joint semantics and enable omnidirectional

feature sharing among modalities. Alternatively, to align dif-

ferent modalities without training, Seeing-and-Hearing [69]

uses a pretrained text-to-audio model and performs gradi-

ent ascent on an alignment score (i.e., ImageBind [11]) at

test-time. We note that the test time optimization is slow and

sometimes results in low-quality and temporally misaligned

output. Indeed, our model is faster at test time and more

consistently produces synchronized audio. Concurrent to our

work, VATT [40] and MultiFoley [3] explore jointly trained

multimodal conditioning. VATT [40] uses both video and

text to generate audio but always requires video conditions

during training. MultiFoley [3] is formulated similarly to

ours, but MMAudio uses much higher frame-rate visual fea-

tures (24 FPS, while MultiFoley uses 8 FPS features), which

leads to significantly better audio-visual synchronization.

Multimodal generation. Related to multimodal condi-

tioning, multimodal generation models produce samples

composed of multiple modalities (e.g., video and audio).

Multimodal generation is more challenging and existing

approaches [25, 55, 61, 62] are not yet competitive with

dedicated video-to-audio models. In this work, we focus on

2



multimodal conditioned audio generation. We believe our

multimodal formulation and architecture serve as a founda-

tion for future work in multimodal generation.

3. MMAudio

3.1. Preliminaries

Conditional flow matching. We use the conditional flow

matching objective [37, 63] for generative modeling and

refer readers to [63] for details. In short, at test time, to

generate a sample, we randomly draw noise x_0 from the

standard normal distribution and use an ODE solver to nu-

merically integrate from time t=0   to time t=1   following

a learned time-dependent conditional velocity vector field

v_\theta (t, \conditions {}, x): [0, 1]\times \mathbb {R}^C \times \mathbb {R}^d \to \mathbb {R}^d   


 
, where t is the timestep,

\mathbf {C}{} is the condition (e.g., video and text), and x is a point in

the vector field. We represent the velocity vector field via a

deep net parameterized by \theta .

At training time, we find θ by considering the conditional

flow matching objective

  \mathbb {E}_{t, q(x_0), q(x_1, \conditions {})} \lVert v_\theta (t, \conditions {}, x_t) - u(x_t|x_0, x_1) \rVert ^2, \label {eq:cfm_objective}   
 (1)

where t\in [0, 1]   , q(x_0) is the standard normal distribution,

and q(x_1, \conditions {}) samples from the training data. Further,

  x_t = tx_1 + (1-t)x_0       (2)

defines a linear interpolation path between noise and data,

and

  u(x_t|x_0, x_1) = x_1 - x_0       (3)

denotes its corresponding flow velocity at x_t.

Audio encoding. For computational efficiency, we model

the generative process in a latent space, following the com-

mon practice [38, 67]. For this, we first transform audio

waveforms via Short-Time Fourier Transform (STFT) and

extract mel spectrograms [57], which are then encoded by a

pretrained variational autoencoder (VAE) [27] into latents x1.

During testing, the generated latents are decoded by the VAE

into spectrograms which are then vocoded by a pretrained

vocoder [35] into audio waveforms.

3.2. Overview

Following conditional flow matching, at test time, we nu-

merically integrate noise x0 from t = 0 to t = 1 following

a flow vθ, which was learned at training time by optimizing

Eq. (1). Numerical integration at test time arrives at a latent

x1 that is decoded to audio preferably of high-quality and

preferably semantically and temporally aligned to the video

and text conditions.

To estimate a flow vθ for the current latent x, MMAudio

operates on the video/text conditions and the flow timestep

t. Figure 2 illustrates our network architecture. To combine

inputs from different modalities, MMAudio consists of a

series of (N_1) multimodal transformer blocks [8] with vi-

sual/text/audio branches, followed by a series of (N_2) audio-

only transformer blocks [32]. Additionally, for audio-visual

synchrony, we devise a conditional synchronization mod-

ule that extracts and integrates into the generation process

high frame rate (24 frames per second (fps)) visual features

for temporal alignment. Next, we describe both components

in detail.

3.3. Multimodal Transformer

Core to our approach is the desire to model the interactions

between video, audio, and text modalities. For this purpose,

we largely adopt the MM-DiT block design from SD3 [8]

and introduce two new components for temporal alignment:

aligned RoPE positional embeddings for aligning sequences

of different frame rates and 1D convolutional MLPs (Con-

vMLPs) for capturing local temporal structure. Figure 2

(right) illustrates our block design. Note, we also include

a sequence of audio-only single-modality blocks following

FLUX [32], implemented by simply removing the streams

of the two other modalities (i.e., the joint attention becomes

a self-attention). Compared to considering all modalities at

every layer, this design allows us to build a deeper network

with the same parameter count and compute without sacrific-

ing multimodality. This multimodal architecture allows the

model to selectively attend to and focus on different modal-

ities depending on the inputs, thus enabling effective joint

training on both audio-visual and audio-text data. Next, we

describe the feature representation in our network and then

the core components of our block design.

Representations. We represent all the features as one-

dimensional tokens. Note, we deliberately do not use any

absolute position encoding which allows us to generalize

to different durations at test time. Thus, we specify the

temporal sequences in terms of frame rates to determine the

number of tokens for a given duration. The visual features

F_v (one token per frame, at 8 fps) and text features F_t (77

tokens) are extracted from CLIP [53] as 1024d features. The

audio latents x are in the VAE latent space (Section 3.1),

at 31.25 fps as 20d latents by default. The synchronization

features F_{\mathit {syn}} are extracted with Synchformer [19] at 24 fps

as 768d features, which we will detail in Section 3.4. Note,

except for the text tokens, all other tokens follow the same

temporal ordering, albeit at different frame rates. After the

initial ConvMLP/MLP layers, all features will be projected

to the hidden dimension h.

Joint attention. These tokens from different modalities

communicate via joint attention (Figure 2, right). Follow-

ing [8], we concatenate the query, key, and value represen-

tations from the three different modalities and apply scaled

dot product attention [64]. The output is split into three

modalities, following the input partition. We refer readers

to [8] for details. We note that joint attention alone does not

3



����� ���	 
�����
���

����������	����
�

� ��������������

���	����	����
�

� �����������	������

 �	��	�
� ������!�"�#�����

$�%����&�'�������&

������&�	������&�
( )*�

	��	���%����

( )*�

���������%����

+����

������&�	��	��&�

*��,�%	��� *��,�%	��� *��,�%	���

-��	�.�����	�������.���/��%�

0��&��1.�����	�������.���/��%�

-��	�.�����	�������.���/��%�

0��&��1.�����	�������.���/��%�

-��	�.�����	�������.���/��%�

0��&��1.�����	�������.���/��%�

�
1
�/��%��

�
2
�/��%��

��� +
�
�2��31(���

4��
���������!�"�#�����

05�%����	����
�

�	
 ��6�����������

05�%7���.������������%����

4��.�1���&�����5�%�

���	������!�"�#�����
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

⨁
4��.�1���&����

%����	�����&�
�

�
�
�!�"�#�����

8��/���

%����	�����&
�

�
�
�����	�����


�&1������

����������	����


�&1������

	��	����	����

��.��	��

�./�����&�

⨁ ⨁

*��,�%	����2�

����.���

�
� 

�
� 

�
 

��� +
�

 �����

9-0
���.

9-0
���.

 �����

9-0
���.

9-0
���.

 �����

9-0
���.

9-0
���.

⨀

⨀

⨀

:���	��		��	���

�31(���  ����� �31(���

�
� ��� +

�
��� +

�
�

�
�

�

��� +
�

�
� ��� +

�
��� +

�
�

�
�

�

;���5 ��5 �����

-��	�.�����	�������.���/��%�

9�*$ 9�*$ 9�*$ 9�*$

⨀

⨁

(��%�	���	���

0�..�	���

- *



��
��
&
�
��
�
�
���

&
��
%��

���	�.
�

�
�



��
��
&
�
��
�
�
���

&
��
%��

���	�
�
�
�
�

Conditional synchronization 

module (Sec. 3.4)

8�	��&
�

8�	��&
�

8�	��&
�

⨁ ⨁ ⨁

(���- * - * (���- *

8�	��&
�

8�	��&
�

8�	��&
�

�
�

�
� �

�

⨁ ⨁ ⨁

Figure 2. Overview of the MMAudio flow-prediction network. Video conditions, text conditions, and audio latents jointly interact in

the multimodal transformer network. A synchronization model (Section 3.4) injects frame-aligned synchronization features for precise

audio-visual synchrony.

capture temporal alignment which we will address next.

Aligned RoPE position embedding. For audio-visual syn-

chrony, precise temporal alignment is crucial. As typical

in transformers [64], we adopt positional embeddings to

inform the attention layers of time. Specifically, we apply

RoPE [59] embeddings on the queries and keys in the visual

and audio streams before joint attention (Figure 2). Note

that we do not apply it to the text stream since it does not

follow the temporal order of video or audio. Further, since

the frame rates do not align (8 fps for the visual stream,

31.25 fps for the audio stream), we scale the frequencies of

the positional embeddings in the visual stream proportion-

ally, i.e., by 31.25/8. We visualize the default (non-aligned)

RoPE and our proposed aligned RoPE in Figure A5. We note

that these aligned embeddings are beneficial yet insufficient

for good synchrony. Therefore, we introduce an additional

synchronization module, which we discuss in Section 3.4.

ConvMLP. To better capture local temporal structure, we

use ConvMLPs rather than MLPs in the visual and audio

streams. Concretely, our ConvMLP uses 1D convolutions

(kernel size =3  and padding =1 ) rather than linear layers.

Again, this change is not made to the text stream since it

does not follow the temporal order of video or audio.

Global conditioning. Global conditioning injects global

features into the network through scales and biases in adap-

tive layer normalization layers (adaLN) [50]. First, we com-

pute a global conditioning vector c_g\in \mathbb {R}^{1\times h} 
 shared across

all transformer blocks from the Fourier encoding [64] of the

flow timestep, the average-pooled visual features, and the

average-pooled text features (Figure 2). Then, each adaLN

layer modulates its input y\in \mathbb {R}^{L\times h} 
 (L is the sequence

length) with the global condition c_g as follows:

  \text {adaLN}_g(y, c_g) = \text {LayerNorm}(y) \cdot \mathbf {1}\mathbf {W}_\gamma (c_g) + \mathbf {1}\mathbf {W}_\beta (c_g). \label {eq:global_condition}       
(4)

Here, \protect \mathbf  {W}_\gamma , \mathbf {W}_\beta   are MLPs, and 1 is a L× 1 all-ones matrix,

which “broadcasts” the scales and biases to match the se-

quence length L – such that the same condition is applied to

all tokens in the sequence (hence global). Next, we describe

how we design position-dependent conditions for precise

audio-visual synchronization.

3.4. Conditional Synchronization Module

We develop a token-level conditioning to further improve

audio-visual synchrony. While the visual and audio streams

already communicate via cross-modality attention layers,

these layers aggregate features via a soft distribution, which

we found to hamper precision. To address this issue, we first

4



extract high frame rate (24 fps) features (F_{\mathit {syn}} ) from the input

video using the visual encoder of Synchformer [19]. We use

Synchformer because it is trained in a self-supervised manner

to detect temporal misalignment between video and audio

data, which we hypothesize will yield visual features relevant

to audio events and hence benefit synchronization.We find

the frame-aligned conditioning c_f\in \mathbb {R}^{L\times h} 
 via

  c_f = \text {Upsample}\left ( \text {ConvMLP}\left ( \featsync \right ) \right ) + \mathbf {1}c_g.        (5)

Upsample uses nearest neighbor interpolation and matches

the frame rate of the synchronization features F_{\mathit {syn}} with that

of the audio latent x. This frame-aligned conditioning c_f is

injected via the adaLN layers in the audio stream for feature

modulation. Similar to Eq. (4), we apply c_f via

  \text {adaLN}_f(x, c_f) = \text {LayerNorm}(x) \cdot \mathbf {A}_\gamma (c_f) + \mathbf {A}_\beta (c_f),           (6)

where \protect \mathbf  {A}_\gamma , \mathbf {A}_\beta \in \mathbb {R}^{h\times h}  
 are MLPs. Different from Eq. (4),

the scales and biases are applied per token without broad-

casting, providing fine-grained control.

3.5. Training and Inference

3.5.1. Multimodal Datasets

VGGSound. We train on VGGSound [1] as the only audio-

text-visual dataset. It offers around 500 hours of footage.

Additionally, VGGSound contains a class label (310 classes

in total) for each video and we use the class names as input

following ReWaS [20] and VATT [40]. We set aside 2K

videos from the training set for validation, resulting in a

training set of around 180K 10s videos. We use the first 8s

of each video for training.

Audio-text datasets. We use AudioCaps [24] (\sim 128 hours,

manually captioned), Clotho [5] (\sim 31 hours, manually cap-

tioned), and WavCaps [46] (\sim 7,600 hours, automatically

captioned from metadata) as audio-text datasets for training.

Since they do not contain the visual modality, we set all the

visual features and synchronization features corresponding

to these samples as learnable empty tokens ∅v and ∅syn

respectively. For short audios (<16s), we truncate them to 8s

for training, as in VGGSound. For longer audios, we take

up to five non-overlapping crops of 8s each. This results in a

total of 951K audio clip-text pairs.

Overlaps. We notice a minor (<1% of the test sets)

train/test data contamination among these datasets. For a fair

comparison, we have removed the test sets of VGGSound

and AudioCaps from all training data. We provide more

details in Appendix E.

3.5.2. Implementation Details

Model variants. Our default model generates 16kHz au-

dio encoded as 20-dimensional, 31.25fps latents (following

Frieren [67]), with N1 = 4, N2 = 8, h = 448. We refer

to this default model as ‘S-16kHz’. We additionally train

larger models and models with higher audio sampling rates:

‘S-44.1kHz’, ‘M-44.1kHz’, and ‘L-44.1kHz’, detailed in Ap-

pendix G.1. The parameter counts and running time of these

models are summarized in Table 1. We describe additional

implementation details in Appendices F to H.

Classifier-free guidance. To enable classifier-free guid-

ance [14] during inference, we randomly mask away the

visual tokens (F_v{} and F_{\mathit {syn}}{} ) or the text with a 10\% probabil-

ity during training. The masked visual tokens are replaced

with learnable tokens (\varnothing _v and \varnothing _{\mathit {syn}} ), while any masked text

is replaced with the empty string \varnothing _t.

Inference. By default, we use Euler’s method for numeri-

cal integration with 25 steps, with a classifier-free guidance

strength of 4.5. Both video and text conditions are optional

during test-time – we replace the missing modalities with

empty tokens \varnothing _v, \varnothing _{\mathit {syn}} , or \varnothing _t. Recall, we deliberately do

not use any absolute position encoding and thus can general-

ize to different durations at test time (e.g., 8s in VGGSound

and 10s in AudioCaps in Section 4.2).

4. Experiments

4.1. Metrics

We assess the generation quality in four different dimensions:

distribution matching, audio quality, semantic alignment,

and temporal alignment.

Distribution matching assesses the similarity in feature dis-

tribution between ground-truth audio and generated audio,

under some embedding models. Following common prac-

tice [18, 67], we compute Fréchet Distance (FD) and Kull-

back–Leibler (KL) distance. For FD, we adopt PaSST [30]

(FD_{\text {PaSST}}), PANNs [29] (FD_{\text {PANNs}}), and VGGish [9] (FD_{\text {VGG}})

as embedding models. Note, PaSST operates at 32kHz, while

both PANNs and VGGish operate at 16kHz. Moreover, both

PaSST and PANNs produce global features, while VGGish

processes non-overlapping 0.96s clips. For the KL distance,

we adopt PANNs (KL_{\text {PANNs}}) and PaSST (KL_{\text {PaSST}}) as classi-

fiers. We follow the implementation of Liu et al. [38].

Audio quality assesses the generation quality without com-

paring it to the ground truth using the Inception Score [56].

We adopt PANNs as the classifier following Wang et al. [67].

Semantic alignment assesses the semantic similarity be-

tween the input video and the generated audio. We use Im-

ageBind [11] following Viertola et al. [65] to extract visual

features from the input video and audio features from the

generated audio and compute the average cosine similarity

as “IB-score”.

Temporal alignment assesses audio-visual synchrony with

a synchronization score (DeSync). DeSync is predicted by

Synchformer [19] as the misalignment (in seconds) between

the audio and video. Note that Viertola et al. [65] also use

the synchronization score but evaluate on audio (2.56s) that

is shorter than the context window (4.8s) of Synchformer.

5



Method Distribution matching Audio qualitySemantic align.Temporal align.

Params FD_{\text {PaSST}}↓ FD_{\text {PANNs}}↓ FD_{\text {VGG}}↓ KL_{\text {PANNs}}↓ KL_{\text {PaSST}}↓ IS↑ IB-score↑ DeSync↓ Time (s)↓

ReWaS [20]∗ 619M 141.38 17.54 1.79 2.87 2.82 8.51 14.82 1.062 15.97

Seeing&Hearing [69]∗ 415M 219.01 24.58 5.40 2.26 2.30 8.58 33.99 1.204 14.55

V-AURA [65]∗♦ 695M 218.50 14.80 2.88 2.42 2.07 10.08 27.64 0.654 16.55

VATT [40]† - 131.88 10.63 2.77 1.48 1.41 11.90 25.00 1.195 -

Frieren [67]†♦ 159M 106.10 11.45 1.34 2.73 2.86 12.25 22.78 0.851 -

FoleyCrafter [73]∗ 1.22B 140.09 16.24 2.51 2.30 2.23 15.68 25.68 1.225 1.67

V2A-Mapper [66]†♦ 229M 84.57 8.40 0.84 2.69 2.56 12.47 22.58 1.225 -

MMAudio-S-16kHz 157M 70.19 5.22 0.79 1.65 1.59 14.44 29.13 0.483 1.23

MMAudio-S-44.1kHz 157M 65.25 5.55 1.66 1.67 1.44 18.02 32.27 0.444 1.30

MMAudio-M-44.1kHz 621M 61.88 4.74 1.13 1.66 1.41 17.41 32.99 0.443 1.35

MMAudio-L-44.1kHz 1.03B 60.60 4.72 0.97 1.65 1.40 17.40 33.22 0.442 1.96

Table 1. Video-to-audio results on the VGGSound test set. Following the common practice [67], the parameter counts exclude pretrained

feature extractors (e.g., CLIP), latent space encoders/decoders, and vocoders. Time is the total running time using the official code to

generate one sample with a batch size of one after warm-up and excludes any disk I/O operations on an H100 GPU. ∗: reproduced using

official evaluation code. †: evaluated using generation samples obtained directly from the authors. ♦: does not use text input during testing.

Note, Seeing&Hearing [69] directly optimizes ImageBind score during test time, therefore attains the highest IB-score.

Instead, we evaluate on longer (8s) audios by taking two

crops (first 4.8s and last 4.8s) and averaging the results.

Thus, the scores from Viertola et al. [65] are not directly

comparable with ours.

4.2. Main Results

Video-to-audio. Table 1 compares our main results on

the VGGSound [1] test set (\sim 15K videos) with existing

state-of-the-art models. We evaluate all generations at 8s

following Wang et al. [67] by truncating longer audio to 8

seconds. For V-AURA [65], we use the official autoregres-

sion code to generate 8s audio. ReWaS [20] only generates

5s audio thus we evaluate it as-is, by truncating the ground

truth also to 5s – we indicate this discrepancy via the gray

font in the table. Our smallest model (157M) demonstrates

better distribution matching, audio quality, semantic align-

ment, and temporal alignment than prior methods, while

being fast. A notable exception is the IB-score compar-

ison with Seeing-and-Hearing [69] (SAH). We note that

SAH directly optimizes the IB score during test time, which

we do not perform. Further, our larger models continue to

improve in FD_{\text {PaSST}} and IB-score, though we observe di-

minishing returns potentially limited by data quality and

the amount of audio-visual data. Note, while our method

uses more data for multimodal joint training, we do not use

more data overall than some of the existing methods: Foley-

Crafter [73], V2A-Mapper [66], ReWaS [20], and SAH [69]

all finetune/incorporate a text-to-audio model that has been

trained on audio-text data similar to the one we use. For a

fair evaluation, we use the precomputed samples provided

by [40, 66, 67], and reproduce the results using the official

inference code for [20, 65, 69, 73]. Figure 3 visualizes our

results and compares them with prior works. We present

the results of a user study and comparison with Movie Gen

Audio [52] in Appendices A and B. To address any potential

bias introduced by using the model-based DeSync metric, we

additionally assess synchronization via model-free metrics

on Greatest Hits [48] in Table 2, detailed in Appendix C.

Method Acc. \delimiter "3222378 AP \delimiter "3222378 F1\delimiter "3222378 DeSync\delimiter "3223379 

Frieren [67] 0.6949 0.7846 0.6550 0.851

V-AURA [65] 0.5852 0.8567 0.6441 0.654

FoleyCrafter [73] 0.4533 0.6939 0.4319 1.225

Seeing&Hearing [69] 0.1156 0.8342 0.1591 1.204

MMAudio-S-16kHz 0.7637 0.9010 0.7928 0.483

MMAudio-S-44.1kHz 0.7150 0.9097 0.7666 0.444

MMAudio-M-44.1kHz 0.7226 0.9054 0.7620 0.443

MMAudio-L-44.1kHz 0.7158 0.9064 0.7535 0.442

Table 2. Onset accuracy, average precision (AP), and F1-score on

Greatest Hits, with DeSync on VGGSound for reference.

Text-to-audio. Our multimodal framework can be applied

to text-to-audio synthesis without fine-tuning. Table 3 com-

pares our method with state-of-the-art text-to-audio models

using the AudioCaps [24] test set. For a fair comparison, we

follow the evaluation protocol of GenAU [12] to evaluate

10s samples in the AudioCaps [24] test set without using

CLAP re-ranking (used by AudioLDM [38]). We transcribe

the baselines directly from Haji-Ali et al. [12], who have re-

produced those results using officially released checkpoints

under the same evaluation protocol. We assess FD_{\text {PANNs}},

FD_{\text {VGG}}, IS, and CLAP [68]. CLAP measures the seman-

tic alignment between the generated audio and the input

caption. While our main focus is on video-to-audio synthe-

sis, MMAudio attains state-of-the-art semantic alignment

(CLAP) and audio quality (IS), due to a rich semantic feature

space learned from multimodal joint training. We note that

we attain a worse FD_{\text {VGG}} score compared to recent works.

We hypothesize that this is because VGGish processes local

features (clips of 0.96s) while our strength lies in generating

6



Mouth closed Howling Stops howling, mouth closed
Drum hit

Drum hit + 

oscillation Drum hit Drum hit

S
e

e
in

g
&

H
e

a
ri

n
g

V
-A

U
R

A
Fo

le
y

C
ra

ft
e

r
V

2
A

-M
a

p
p

e
r

O
u

rs
G

ro
u

n
d

-t
ru

th

Figure 3. We visualize the spectrograms of generated audio (by prior works and our method) and the ground-truth. Note our method

generates the audio effects most closely aligned to the ground-truth, while other methods often generate sounds not explained by the visual

input and not present in the ground-truth.

Method Params FD_{\text {PANNs}}\delimiter "3223379 FD_{\text {VGG}}\delimiter "3223379 IS\delimiter "3222378 CLAP\delimiter "3222378 

AudioLDM 2-L [39] 712M 32.50 5.11 8.54 0.212

TANGO [10] 866M 26.13 1.87 8.23 0.185

TANGO 2 [43] 866M 19.77 2.74 8.45 0.264

Make-An-Audio [16] 453M 27.93 2.59 7.44 0.207

Make-An-Audio 2 [15] 937M 15.34 1.27 9.58 0.251

GenAU-Large [12] 1.25B 16.51 1.21 11.75 0.285

MMAudio-S-16kHz 157M 14.42 2.98 11.36 0.282

MMAudio-S-44.1kHz 157M 15.26 2.74 11.32 0.331

MMAudio-M-44.1kHz 621M 14.38 4.07 12.02 0.351

MMAudio-L-44.1kHz 1.03B 15.04 4.03 12.08 0.348

Table 3. Text-to-audio results on the AudioCaps test set. For a fair compar-

ison, we follow the evaluation protocol of [12] and transcribe all baselines

directly from [12], who have reproduced those results using officially re-

leased checkpoints under the same evaluation protocol.

Training modalities FD_{\text {PaSST}}\delimiter "3223379 IS\delimiter "3222378 IB-score\delimiter "3222378 DeSync\delimiter "3223379 

AVT+AT 70.19 14.44 29.13 0.483

AV+AT 72.77 12.88 28.10 0.502

AVT+A 71.01 14.30 28.72 0.496

AVT 77.38 12.53 27.98 0.562

AV 77.27 12.69 28.10 0.502

Table 4. Results when we vary the training modalities. A: Au-

dio, V: Video, T: Text. In the second and third rows, we mask

away the text token in either audio-visual data or audio-text

data. In the last two rows, we do not use any audio-text data.

globally and semantically consistent audio.

4.3. Ablations

We base all ablations on the small-16kHz model and evaluate

distribution matching (FD_{\text {PaSST}}), audio quality (IS), semantic

alignment (IB-score), and temporal alignment (DeSync) on

the VGGSound [1] test set. We highlight our default setting

using a blue background.

Cross-modal alignment. To elucidate the benefits of joint

multimodal training, we mask away some modalities during

training and observe the effects on the results, summarized

in Table 4. We denote the setting as (modalities used for

audio-visual-text data + modalities used for audio-text data),

where A: Audio, V: Video, T: Text. Our default setting

(AVT+AT) means that we train on audio-visual-text data

(VGGSound class labels as text input) and audio-text data.

We make three observations:

1. Masking away the text modality from either the former

(AV+AT) or the latter (AVT+A) leads to worse results.

This suggests that having a joint “text feature space” is

beneficial for multimodal training.

2. Adding uncaptioned audio data improves results (AVT

7



% audio-text data FD_{\text {PaSST}}\delimiter "3223379 IS\delimiter "3222378 IB-score\delimiter "3222378 DeSync\delimiter "3223379 

100% 70.19 14.44 29.13 0.483

50% 71.03 14.62 29.11 0.489

25% 71.67 14.41 28.75 0.505

10% 79.21 13.55 27.47 0.514

None 77.38 12.53 27.98 0.562

Table 5. Results when we vary the amount of multimodal training

data. For the first four rows, we sample audio-visual and audio-text

data at a 1:1 ratio during training. For the last row, only audio-

visual data is used.

vs. AVT+A). This suggests that our network even ben-

efits from training on unconditional generation data by

learning the distribution of natural sounds.

3. When no audio-text data is used, using the simple class

labels in VGGSound does not affect results significantly

(AVT vs. AV). This suggests that training on large multi-

modal datasets, rather than adding a transformer branch

in the network or using the class labels, is key.

Multimodal data. Training on a large collection of mul-

timodal data is crucial. Table 5 shows our model’s per-

formance when we vary the amount of audio-text training

data. We always sample audio-visual data and audio-text

data at the same (roughly 1:1, see Appendix H) ratio ex-

cept when we use no audio-text data. When we do not

use audio-text data, we observe overfitting and stop train-

ing early. When more multimodal data is used, distribution

matching (FD_{\text {PaSST}}), semantic alignment (IB-score), and tem-

poral alignment (DeSync) improve with diminishing returns.

Conditional synchronization module. We compare sev-

eral different methods for incorporating synchronization fea-

tures: 1) our default of using the conditional synchronization

module (Section 3.4); 2) incorporating the synchronization

features into the visual branch of the multimodal transformer.

Concretely, we upsample (with nearest neighbor) the CLIP

features to 24fps, and then sum the CLIP features and Sync

features after linear projections as the final visual feature.

We illustrate this architecture in Figure A4; finally, 3) not

using synchronization features. Table 6 (top) shows that our

synchronization module attains the best temporal alignment.

We note the “sum sync with visual” method achieves higher

audio quality (IS) – we hypothesize that since upsampling

CLIP features increased the number of tokens in the visual

stream by three times, the model benefits from using the

longer sequence for more fine-grained computations.

RoPE embeddings. We compare our aligned RoPE for-

mulation with 1) not using RoPE embeddings and 2) non-

aligned RoPE embeddings, i.e., no frequency scaling in the

visual branch. Table 6 (bottom) shows that using aligned

RoPE embeddings [59] improves audio-visual synchrony.

ConvMLP. Table 7 (top) summarizes the performance dif-

ference of using MLP vs. ConvMLP. For the MLP model,

Variant FD_{\text {PaSST}}\delimiter "3223379 IS\delimiter "3222378 IB-score\delimiter "3222378 DeSync\delimiter "3223379 

With sync module 70.19 14.44 29.13 0.483

Sum sync with visual 73.59 16.70 28.65 0.490

No sync features 69.33 15.05 29.31 0.973

Aligned RoPE 70.19 14.44 29.13 0.483

No RoPE 70.24 14.54 29.23 0.509

Non-aligned RoPE 70.25 14.54 29.25 0.496

Table 6. Results when we use synchronization features or RoPE

embeddings differently.

Variant FD_{\text {PaSST}}\delimiter "3223379 IS\delimiter "3222378 IB-score\delimiter "3222378 DeSync\delimiter "3223379 

ConvMLP 70.19 14.44 29.13 0.483

MLP 73.84 13.01 28.99 0.533

N_1=4, N_2=8      70.19 14.44 29.13 0.483

N_1=2, N_2=13      70.33 15.18 29.39 0.487

N_1=6, N_2=3      72.53 13.75 29.06 0.509

Table 7. Results when we vary the MLP architecture or the ratio

between multi-/single-modality transformer blocks.

we increase h from 448 → 512, N1 from 4 → 6, and N2

from 8 → 10 to roughly match the number of parameters

in the ConvMLP model. The ConvMLP model is better

at capturing local temporal structure and thus has a better

performance, especially in synchronization.

Ratio between N1 and N2. Table 7 (bottom) compares

different assignments of the number of multimodal (N_1)

and single-modal (N_2) transformer blocks with roughly the

same parameter budget. We note our default assignment

(N_1=4, N_2=8     ) performs similarly as using more single-

modal blocks (N_1=2, N_2=13     ) and better than using

fewer single-modal blocks (N_1=6, N_2=3     ). We think this

is because using single-modal blocks allows us to build a

deeper network with the same parameter count.

4.4. Limitations

Our model generates unintelligible mumbles when prompted

to generate human speech (from seeing mouth movement

or from text input). We believe human speech is inherently

more complex (e.g., with languages, tones, and grammars)

and our model aimed at general audio effects (Foley) fails to

adequately accommodate.

5. Conclusion

We propose MMAudio, the first multimodal training pipeline

that jointly considers audio, video, and text modalities, re-

sulting in effective data scaling and cross-modal semantic

alignment. Combined with a conditional synchronization

module, our method achieves a new state-of-the-art perfor-

mance among public models and comparable performance

with Movie Gen Audio. We believe a multimodal formu-

lation is key for the synthesis of data in any modality and

MMAudio lays the foundation in the audio-video-text space.

8



Acknowledgment. This work is supported in part by Sony.

AS is supported by NSF grants 2008387, 2045586, 2106825,

and NIFA award 2020-67021-32799. We sincerely thank

Kazuki Shimada and Zhi Zhong for their helpful feedback

on this manuscript.

References

[1] Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zis-

serman. Vggsound: A large-scale audio-visual dataset. In

ICASSP, 2020. 1, 5, 6, 7, 13, 14, 15, 20

[2] Peihao Chen, Yang Zhang, Mingkui Tan, Hongdong Xiao,

Deng Huang, and Chuang Gan. Generating visually aligned

sound from videos. TIP, 2020. 2

[3] Ziyang Chen, Prem Seetharaman, Bryan Russell, Oriol Ni-

eto, David Bourgin, Andrew Owens, and Justin Salamon.

Video-guided foley sound generation with multimodal con-

trols. arXiv, 2024. 2

[4] Yoonjin Chung, Junwon Lee, and Juhan Nam. T-foley: A

controllable waveform-domain diffusion model for temporal-

event-guided foley sound synthesis. In ICASSP. IEEE, 2024.

2

[5] Konstantinos Drossos, Samuel Lipping, and Tuomas Virtanen.

Clotho: An audio captioning dataset. In ICASSP. IEEE, 2020.

5, 15

[6] Yuexi Du, Ziyang Chen, Justin Salamon, Bryan Russell, and

Andrew Owens. Conditional generation of audio from video

via foley analogies. In CVPR, 2023. 2, 14

[7] Benjamin Elizalde, Soham Deshmukh, and Huaming Wang.

Natural language supervision for general-purpose audio rep-

resentations. In ICASSP, 2024. 13

[8] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim En-

tezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz,

Axel Sauer, Frederic Boesel, et al. Scaling rectified flow

transformers for high-resolution image synthesis. In ICML,

2024. 1, 3

[9] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren

Jansen, Wade Lawrence, R Channing Moore, Manoj Plakal,

and Marvin Ritter. Audio set: An ontology and human-labeled

dataset for audio events. In ICASSP. IEEE, 2017. 1, 5, 15, 16

[10] Deepanway Ghosal, Navonil Majumder, Ambuj Mehrish,

and Soujanya Poria. Text-to-audio generation using instruc-

tion tuned llm and latent diffusion model. arXiv preprint

arXiv:2304.13731, 2023. 7

[11] Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat

Singh, Kalyan Vasudev Alwala, Armand Joulin, and Ishan

Misra. Imagebind: One embedding space to bind them all. In

CVPR, 2023. 2, 5, 13

[12] Moayed Haji-Ali, Willi Menapace, Aliaksandr Siarohin,

Guha Balakrishnan, Sergey Tulyakov, and Vicente Ordonez.

Taming data and transformers for audio generation. arXiv

preprint arXiv:2406.19388, 2024. 6, 7

[13] Moayed Haji-Ali, Willi Menapace, Aliaksandr Siarohin, Ivan

Skorokhodov, Alper Canberk, Kwot Sin Lee, Vicente Or-

donez, and Sergey Tulyakov. Av-link: Temporally-aligned

diffusion features for cross-modal audio-video generation.

arXiv, 2024. 2

[14] Jonathan Ho and Tim Salimans. Classifier-free diffusion

guidance. arXiv preprint arXiv:2207.12598, 2022. 5

[15] Jiawei Huang, Yi Ren, Rongjie Huang, Dongchao Yang, Zhen-

hui Ye, Chen Zhang, Jinglin Liu, Xiang Yin, Zejun Ma, and

Zhou Zhao. Make-an-audio 2: Temporal-enhanced text-to-

audio generation. arXiv preprint arXiv:2305.18474, 2023. 7,

16

[16] Rongjie Huang, Jiawei Huang, Dongchao Yang, Yi Ren, Lup-

ing Liu, Mingze Li, Zhenhui Ye, Jinglin Liu, Xiang Yin, and

Zhou Zhao. Make-an-audio: Text-to-audio generation with

prompt-enhanced diffusion models. In ICML, 2023. 7

[17] Zhiqi Huang, Dan Luo, Jun Wang, Huan Liao, Zhiheng Li,

and Zhiyong Wu. Rhythmic foley: A framework for seamless

audio-visual alignment in video-to-audio synthesis. arXiv

preprint arXiv:2409.08628, 2024. 2

[18] Vladimir Iashin and Esa Rahtu. Taming visually guided sound

generation. In BMVC, 2021. 2, 5

[19] Vladimir Iashin, Weidi Xie, Esa Rahtu, and Andrew Zisser-

man. Synchformer: Efficient synchronization from sparse

cues. In ICASSP. IEEE, 2024. 2, 3, 5, 13, 17

[20] Yujin Jeong, Yunji Kim, Sanghyuk Chun, and Jiyoung Lee.

Read, watch and scream! sound generation from text and

video. arXiv preprint arXiv:2407.05551, 2024. 1, 2, 5, 6

[21] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B

Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec

Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for

neural language models. arXiv preprint arXiv:2001.08361,

2020. 1

[22] Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten,

Timo Aila, and Samuli Laine. Analyzing and improving the

training dynamics of diffusion models. In CVPR, 2024. 16,

18

[23] Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, and

Matthew Sharifi. Fréchet audio distance: A metric for evalu-

ating music enhancement algorithms. In Interspeech, 2018.

2

[24] Chris Dongjoo Kim, Byeongchang Kim, Hyunmin Lee, and

Gunhee Kim. Audiocaps: Generating captions for audios in

the wild. In NAACL-HLT, 2019. 5, 6, 15

[25] Gwanghyun Kim, Alonso Martinez, Yu-Chuan Su, Brendan

Jou, José Lezama, Agrim Gupta, Lijun Yu, Lu Jiang, Aren

Jansen, Jacob Walker, et al. A versatile diffusion transformer

with mixture of noise levels for audiovisual generation. In

NeurIPS, 2024. 2

[26] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. ICLR, 2015. 18

[27] Diederik P. Kingma and Max Welling. Auto-encoding varia-

tional bayes. In ICLR, 2014. 3, 16

[28] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and

Sepp Hochreiter. Self-normalizing neural networks. NeurIPS,

2017. 17

[29] Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu

Wang, and Mark D Plumbley. Panns: Large-scale pretrained

audio neural networks for audio pattern recognition. TASLP,

2020. 5

[30] Khaled Koutini, Jan Schlüter, Hamid Eghbal-Zadeh, and Ger-

hard Widmer. Efficient training of audio transformers with

patchout. In Interspeech, 2022. 5

9



[31] Etienne Labb, Thomas Pellegrini, and Julien Pinquier.

Conette: An efficient audio captioning system leveraging

multiple datasets with task embedding. TASLP, 2024. 15

[32] Black Forest Labs. Flux. https://github.com/

black-forest-labs/flux, 2024. 3

[33] LAION-AI. Audio dataset project. https://github.

com/LAION-AI/audio-dataset, 2024. 15, 16

[34] Junwon Lee, Jaekwon Im, Dabin Kim, and Juhan Nam.

Video-foley: Two-stage video-to-sound generation via tem-

poral event condition for foley sound. arXiv preprint

arXiv:2408.11915, 2024. 2

[35] Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro,

and Sungroh Yoon. Bigvgan: A universal neural vocoder with

large-scale training. In ICLR, 2023. 3, 16

[36] Rensis Likert. A technique for the measurement of attitudes.

Archives of Psychology, 1932. 13

[37] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian

Nickel, and Matt Le. Flow matching for generative modeling.

arXiv preprint arXiv:2210.02747, 2022. 3

[38] Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu,

Danilo Mandic, Wenwu Wang, and Mark D Plumbley. Audi-

oldm: Text-to-audio generation with latent diffusion models.

In ICML, 2023. 3, 5, 6

[39] Haohe Liu, Yi Yuan, Xubo Liu, Xinhao Mei, Qiuqiang Kong,

Qiao Tian, Yuping Wang, Wenwu Wang, Yuxuan Wang, and

Mark D Plumbley. Audioldm 2: Learning holistic audio

generation with self-supervised pretraining. TASLP, 2024. 7

[40] Xiulong Liu, Kun Su, and Eli Shlizerman. Tell what you hear

from what you see – video to audio generation through text.

In NeurIPS, 2024. 2, 5, 6, 13

[41] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. ICLR, 2019. 18

[42] Simian Luo, Chuanhao Yan, Chenxu Hu, and Hang Zhao.

Diff-foley: Synchronized video-to-audio synthesis with latent

diffusion models. In NeurIPS, 2024. 2

[43] Navonil Majumder, Chia-Yu Hung, Deepanway Ghosal, Wei-

Ning Hsu, Rada Mihalcea, and Soujanya Poria. Tango 2:

Aligning diffusion-based text-to-audio generations through

direct preference optimization. In ACM MM, 2024. 7

[44] Xinhao Mei, Varun Nagaraja, Gael Le Lan, Zhaoheng Ni,

Ernie Chang, Yangyang Shi, and Vikas Chandra. Foley-

gen: Visually-guided audio generation. arXiv preprint

arXiv:2309.10537, 2023. 2

[45] Xinhao Mei, Gael Le Lan, Haohe Liu, Zhaoheng Ni, Varun K

Nagaraja, Anurag Kumar, Yangyang Shi, and Vikas Chandra.

Towards temporally synchronized visually indicated sounds

through scale-adapted positional embeddings. In Audio Imag-

ination: NeurIPS 2024 Workshop AI-Driven Speech, Music,

and Sound Generation, 2024. 2

[46] Xinhao Mei, Chutong Meng, Haohe Liu, Qiuqiang Kong,

Tom Ko, Chengqi Zhao, Mark D Plumbley, Yuexian Zou, and

Wenwu Wang. Wavcaps: A chatgpt-assisted weakly-labelled

audio captioning dataset for audio-language multimodal re-

search. TASLP, 2024. 2, 5, 15

[47] Shentong Mo, Jing Shi, and Yapeng Tian. Text-to-audio

generation synchronized with videos. arXiv preprint

arXiv:2403.07938, 2024. 2

[48] Andrew Owens, Phillip Isola, Josh McDermott, Antonio Tor-

ralba, Edward H Adelson, and William T Freeman. Visually

indicated sounds. In CVPR, 2016. 6, 14, 22

[49] Santiago Pascual, Chunghsin Yeh, Ioannis Tsiamas, and Joan

Serrà. Masked generative video-to-audio transformers with

enhanced synchronicity. In ECCV, 2024. 2

[50] Ethan Perez, Florian Strub, Harm De Vries, Vincent Du-

moulin, and Aaron Courville. Film: Visual reasoning with a

general conditioning layer. In AAAI, 2018. 2, 4

[51] Karin Petrini, Sofia Dahl, Davide Rocchesso, Carl Haakon

Waadeland, Federico Avanzini, Aina Puce, and Frank E Pol-

lick. Multisensory integration of drumming actions: musical

expertise affects perceived audiovisual asynchrony. Experi-

mental brain research, 198:339–352, 2009. 1

[52] Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra,

Animesh Sinha, Ann Lee, Apoorv Vyas, Bowen Shi, Chih-

Yao Ma, Ching-Yao Chuang, et al. Movie gen: A cast of

media foundation models. arXiv preprint arXiv:2410.13720,

2024. 6, 13, 14

[53] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,

Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning

transferable visual models from natural language supervision.

In ICLR, 2021. 1, 3

[54] Yong Ren, Chenxing Li, Manjie Xu, Wei Liang, Yu Gu,

Rilin Chen, and Dong Yu. Sta-v2a: Video-to-audio gen-

eration with semantic and temporal alignment. arXiv preprint

arXiv:2409.08601, 2024. 2

[55] Ludan Ruan, Y Ma, Huan Yang, Huiguo He, Bei Liu, Jianlong

Fu, Nicholas Jing Yuan, Qin Jin, and Baining Guo. Mm-

diffusion: Learning multi-modal diffusion models for joint

audio and video generation. 2023 ieee. In CVPR, 2023. 2

[56] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki

Cheung, Alec Radford, and Xi Chen. Improved techniques

for training gans. In NeurIPS, 2016. 2, 5

[57] Stanley Smith Stevens, John Volkmann, and Edwin Broomell

Newman. A scale for the measurement of the psychological

magnitude pitch. The journal of the acoustical society of

america, 1937. 3, 16

[58] Robynn J Stilwell. The fantastical gap between diegetic and

nondiegetic, 2007. 1

[59] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen

Bo, and Yunfeng Liu. Roformer: Enhanced transformer with

rotary position embedding. Neurocomputing, 2024. 4, 8, 18

[60] Kun Su, Kaizhi Qian, Eli Shlizerman, Antonio Torralba, and

Chuang Gan. Physics-driven diffusion models for impact

sound synthesis from videos. In CVPR, 2023. 2

[61] Zineng Tang, Ziyi Yang, Mahmoud Khademi, Yang Liu,

Chenguang Zhu, and Mohit Bansal. Codi-2: In-context inter-

leaved and interactive any-to-any generation. In CVPR, 2024.

2

[62] Zineng Tang, Ziyi Yang, Chenguang Zhu, Michael Zeng,

and Mohit Bansal. Any-to-any generation via composable

diffusion. In NeurIPS, 2024. 2

[63] Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yan-

lei Zhang, Jarrid Rector-Brooks, Kilian Fatras, Guy Wolf,

and Yoshua Bengio. Improving and generalizing flow-based

10



generative models with minibatch optimal transport. arXiv

preprint arXiv:2302.00482, 2023. 3

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-

eit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NeurIPS, 2017. 3, 4

[65] Ilpo Viertola, Vladimir Iashin, and Esa Rahtu. Temporally

aligned audio for video with autoregression. arXiv preprint

arXiv:2409.13689, 2024. 2, 5, 6, 13

[66] Heng Wang, Jianbo Ma, Santiago Pascual, Richard

Cartwright, and Weidong Cai. V2a-mapper: A lightweight

solution for vision-to-audio generation by connecting founda-

tion models. In AAAI, 2024. 1, 2, 6, 13

[67] Yongqi Wang, Wenxiang Guo, Rongjie Huang, Jiawei Huang,

Zehan Wang, Fuming You, Ruiqi Li, and Zhou Zhao. Frieren:

Efficient video-to-audio generation with rectified flow match-

ing. In NeurIPS, 2024. 1, 3, 5, 6, 16

[68] Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor

Berg-Kirkpatrick, and Shlomo Dubnov. Large-scale con-

trastive language-audio pretraining with feature fusion and

keyword-to-caption augmentation. In ICASSP, 2023. 6, 13

[69] Yazhou Xing, Yingqing He, Zeyue Tian, Xintao Wang, and

Qifeng Chen. Seeing and hearing: Open-domain visual-audio

generation with diffusion latent aligners. In CVPR, 2024. 1,

2, 6, 13

[70] Jinlong Xue, Yayue Deng, Yingming Gao, and Ya Li. Auf-

fusion: Leveraging the power of diffusion and large lan-

guage models for text-to-audio generation. arXiv preprint

arXiv:2401.01044, 2024. 15

[71] Qi Yang, Binjie Mao, Zili Wang, Xing Nie, Pengfei Gao, Ying

Guo, Cheng Zhen, Pengfei Yan, and Shiming Xiang. Draw

an audio: Leveraging multi-instruction for video-to-audio

synthesis. arXiv preprint arXiv:2409.06135, 2024. 2

[72] Lin Zhang, Shentong Mo, Yijing Zhang, and Pedro Morgado.

Audio-synchronized visual animation. ECCV, 2024. 15

[73] Yiming Zhang, Yicheng Gu, Yanhong Zeng, Zhening Xing,

Yuancheng Wang, Zhizheng Wu, and Kai Chen. Foleycrafter:

Bring silent videos to life with lifelike and synchronized

sounds. arXiv preprint arXiv:2407.01494, 2024. 1, 2, 6, 15

[74] Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Jiaxi Cui, HongFa

Wang, Yatian Pang, Wenhao Jiang, Junwu Zhang, Zongwei Li,

et al. Languagebind: Extending video-language pretraining to

n-modality by language-based semantic alignment. In ICLR,

2024. 2

11



Table of Contents

1 Introduction 1

2 Related Works 2

3 MMAudio 3

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.3 Multimodal Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.4 Conditional Synchronization Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.5 Training and Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.5.1 Multimodal Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.5.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Experiments 5

4.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.3 Ablations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Conclusion 8

A User Study 13

B Comparisons with Movie Gen Audio 13

C Evaluation on the Greatest Hits Dataset 14

D Ablations on Filling in Missing Modalities 15

E Details on Data Overlaps 15

F Details on the Audio Latents 16

G Network Details 16

G.1 Model Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

G.2 Projection Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

G.3 Gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

G.4 Details on Synchronization Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

G.5 Illustration of the “sum sync with visual” Ablation . . . . . . . . . . . . . . . . . . . . 17

G.6 Visualization of Aligned RoPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

H Training Details 18

I Additional Visualizations 20

12



A. User Study

In addition to the objective metrics presented in Table 1, we have also performed a user study for subjective evaluation on the

VGGSound [1] test set. For comparisons, we have selected our best model (MMAudio-L-44.1kHz) and four best baselines:

1. Seeing and Hearing [69], as it has the highest ImageBind (i.e., best semantic alignment with videos) score, besides ours.

2. V-AURA [65], as it has the lowest DeSync (i.e., best temporal alignment) with videos, besides ours.

3. VATT [40], as it has the lowest Kullback–Leibler divergence (i.e., KL_{\text {PANNs}} and KL_{\text {PaSST}}), besides ours.

4. V2A-Mapper [66], as it has the lowest Fréchet distances (i.e., FD_{\text {PaSST}}, FD_{\text {PANNs}}, and FD_{\text {VGG}}), besides ours.

We sample eight videos from the VGGSound [1] test set, after excluding videos that are of low-resolution (below 360p) or

that contain human speech. In total, each participant evaluates 40 videos (8 videos \times 5 methods). We group the samples for

the same video, and randomly shuffle the ordering in each group to avoid bias. We ask each participant to rate the generation

in three aspects using the Likert scale [36] (1-5; strongly disagree, disagree, neutral, agree, strongly agree) providing the

following instructions:

(a) The audio is of high quality.

Explanation: An audio is low-quality if it is noisy, unclear, or muffled. In this aspect, ignore visual information and

focus on the audio.

(b) The audio is semantically aligned with the video.

Explanation: An audio is semantically misaligned with the video if the audio effects are unlikely to occur in the scenario

depicted by the video, e.g., the sound of an explosion in a library.

(c) The audio is temporally aligned with the video.

Explanation: An audio is temporally misaligned with the video if the audio sounds delayed/advanced compared to the

video, or when audio events happen at the wrong time (e.g., in the video, the drummer hits the drum twice and stops; but

in the audio, the sound of the drum keeps occurring).

In total, we have collected 920 responses in each of these aspects from 23 participants. Table A1 summarizes the results

from the user study. MMAudio receives significantly higher ratings in all three aspects from the users, which aligns with the

objective metrics presented in Table 1 of the main paper.

Method Audio quality\delimiter "3222378 Semantic alignment\delimiter "3222378 Temporal alignment\delimiter "3222378 

Seeing&Hearing [69] 2.65±1.05 3.10±1.24 1.85±0.99

V-AURA [65] 3.59±1.02 3.70±1.17 3.65±1.16

VATT [40] 2.66±0.99 3.32±1.17 2.04±1.07

V2A-Mapper [66] 3.00±0.95 3.28±1.27 2.03±1.11

MMAudio-L-44.1kHz 4.14±0.77 4.52±0.74 4.46±0.80

Table A1. Average ratings for each method from the user study. We show mean\pm std in each aspect.

B. Comparisons with Movie Gen Audio

Recently, Movie Gen Audio [52] has been introduced for generating sound effects and music for input videos. While Movie

Gen Audio’s technical details are sparse, it represents the industry’s current state-of-the-art video-to-audio synthesis algorithm.

Its 13-billion parameters model has been trained on non-publicly accessible data that is >100\times  larger than ours. Nevertheless,

we compare MMAudio to Movie Gen Audio [52] to benchmark the differences between public and private models.

At the time of writing, the only accessible outputs from Movie Gen Audio are 5272 generations in the “Movie Gen Audio

Bench” dataset. All the videos from Movie Gen Audio Bench are generated by MovieGen [52], which we note is different

from the distribution of real-world videos (e.g., over-smoothed textures, slow motions). Since these are synthetic videos, there

is no corresponding ground-truth audio. We run our best model MMAudio-L-44.1kHz on these videos and the corresponding

audio prompts (which Movie Gen Audio also uses) and compare our generations with Movie Gen Audio.

Since there is no ground truth audio, among the standard metrics that we have used in the main paper, we can only evaluate

Inception Score (IS, audio quality), IB-score (ImageBind [11] similarly, semantic alignment between video and audio), DeSync

(misalignment predicted by SynchFormer [19] between video and audio), and CLAP [7, 68] (alignment between text and

2While the MovieGen technical report mentioned 538 samples, only 527 were released at the time of writing.

13





Audio prompt: rhythmic splashing and lapping of water

IB-score (Movie Gen Audio): 42.74

IB-score (MMAudio, ours): 53.95

Audio prompt: creamy sound of mashed potatoes being scooped

IB-score (Movie Gen Audio): 30.94

IB-score (MMAudio, ours): 10.52

Figure A2. Examples of videos in Movie Gen Audio Bench that are well/not well covered by our training data. Left: with a familiar concept

in our training data (516 swimming videos in the VGGSound training set), MMAudio achieves a higher IB-score. Right: with an unfamiliar

concept (there are no videos about mashed potatoes in VGGSound [1], according to the provided labels), MMAudio attains a significantly

lower IB-score.

D. Ablations on Filling in Missing Modalities

Among our training data, VGGSound is the only tri-modal (with class names as text) dataset while all others are audio-text.

For other data, we replace missing visual modalities (CLIP and Sync features) with end-to-end learnable embeddings (\varnothing _{\mathit {v}}

and \varnothing _{\mathit {syn}} ) and missing text modalities with the empty string (\varnothing _{\mathit {t}} ). We believe other methods to fill in missing modalities

would be similarly effective since the deep net likely adapts. Indeed, replacing the missing modalities with either all learnable

embeddings or zeros yields no significant difference (Table A3). Note, we also drop modalities randomly during training to

enable classifier-free guidance, which enhances the model’s robustness to missing modalities.

Method FD_{\text {PaSST}}\delimiter "3223379 IS\delimiter "3222378 IB-score\delimiter "3222378 DeSync\delimiter "3223379 

Ours 70.19 14.44 29.13 0.483

With all learnable 70.13 14.63 29.23 0.494

With zeros 69.91 14.60 29.22 0.496

Table A3. Comparisons of different methods to fill in missing modalities. As expected, there is no significant difference as the deep net

learns to adapt.

E. Details on Data Overlaps

We note that there are training and testing data overlaps among commonly used datasets for video-to-audio generation. For

example, AudioSet [9] is commonly used to train VAE encoders/decoders but it contains test set data from VGGSound [1] and

AudioCaps [24]. Additionally, AudioCaps is often used to train text-to-audio models [70], which is then used as the backbone

for video-to-audio models which evaluate on VGGSound [1] – however, part of the VGGSound test set overlaps with the

AudioCaps training set. Moreover, AVSync15 [72], which is sometimes used jointly with VGGSound for training/evaluating

video-to-audio algorithms [73], contains severe cross-contamination with VGGSound. This results in biased evaluations in

both VGGSound and AVSync15. To our best knowledge, this data contamination is not yet addressed in the video-to-audio

community. We thank Labb et al. [31] for raising this issue in the audio captioning field, which has helped us identify this

problem.

Table A4 summarizes the observed overlaps. The overlaps with WavCaps [46] and Freesound [33] have been included as

part of their release, which we do not repeat in our table.

We have carefully removed from our training data (AudioSet [9], AudioCaps [24], Clotho [5], Freesound [33], WavCaps [46],

and VGGSound [1]) anything that overlaps with any of the test sets (VGGSound and AudioCaps). Additionally, we have also

removed from our training data the test set of Clotho [5]. Since most baselines have been trained on VGGSound, we elect not

to evaluate on AVSync15.

15



Test sets (number of samples) Training sets

AudioSet AudioCaps VGGSound AVSync15

AudioCaps (975) 580 (59.5%) - 147 (15.1%) -

VGGSound (15,496) 132 (0.9%) 13 (0.1%) - 59 (0.4%)

AVSync-15 (150) - - 144 (96.0%) -

Table A4. Overlaps between training and test sets of different datasets. The percentage denotes the proportion of overlapping data in the

entire test set. “-” means that we did not compute this data (we do not train or test on AVSync15).

F. Details on the Audio Latents

As mentioned in the main paper, we obtain the audio latents by first transforming audio waveforms with the short-time Fourier

transform (STFT) and extracting the magnitude component as mel spectrograms [57]. Then, spectrograms are encoded into

latents by a pretrained variational autoencoder (VAE) [27]. During testing, the generated latents are decoded by the VAE

into spectrograms, which are then vocoded by a pretrained vocoder [35] into audio waveforms. Table A5 tabulates our STFT

parameters and latent information.

For the VAE, we follow the 1D convolutional network design of Make-An-Audio 2 [15] with a downsampling factor of

2 and trained with reconstruction, adversarial, and Kullback–Leibler divergence (KL) objectives. We note that the default

setting leads to extreme values in the latent at the end of every sequence (\pm 10\sigma  away). To tackle this problem, we have

applied the magnitude-preserving network design from EDM2 [22], by replacing the convolutional, normalization, addition,

and concatenation layers with magnitude-preserving equivalents. While this change removes the extreme values, it leads to no

significant empirical performance difference. We train the 16kHz model on AudioSet [9], following Make-An-Audio 2 [15].

For the 44.1kHz model, we increase the hidden dimension from 384 to 512 and train it on AudioSet [9] and Freesound [33] to

accommodate the increased reconstruction difficulty due to a higher sampling rate.

For vocoders, we use the BigVGAN [35] trained by Make-An-Audio 2 [15] in our 16kHz model. For our 44.1kHz model,

we use BigVGAN-v2 [35] (the bigvgan_v2_44khz_128band_512x checkpoint).

Model variants Latent frame rate # latent channels # mel bins # FFTs Hop size Window size Window function

16kHz 31.25 20 80 1024 256 1024 Hann

44.1kHz 43.07 40 128 2048 512 2048 Hann

Table A5. Short-time Fourier transform (STFT) parameters and latent information.

G. Network Details

G.1. Model Variants

Our default model generates 16kHz audio encoded as 20-dimensional, 31.25fps latents (following Frieren [67]), with

N1 = 4, N2 = 8, h = 448. We refer to this default model as ‘S-16kHz’. To faithfully capture higher frequencies, we also train

a 44.1kHz model (‘S-44.1kHz’) that generates 40-dimensional, 43.07fps latents while all other settings are identical to the

default. To scale up the high-frequency model, we first double the hidden dimension to match the doubled latent dimension,

i.e., we use N1 = 4, N2 = 8, h = 896 and refer to this model using ‘M-44.1kHz’. Finally, we scale the number of layers, i.e.,

N1 = 7, N2 = 14, h = 896 and refer to this model via ‘L-44.1kHz’. These model variants are summarized in Table A6.

G.2. Projection Layers

We use projection layers to project input text, visual, and audio features to the hidden dimension h and for initial aggregation

of the temporal context.

Text feature projection. We use a linear layer that projects to h, followed by an MLP.

Clip feature projection. We use a linear layer that projects to h, followed by a ConvMLP with a kernel size of 3 and a

padding of 1.

16



Model variants Params # multimodal blocks N_1 # single-modal blocks N_2 Hidden dim h Latent dim Time (s)

S-16kHz 157M 4 8 448 20 1.23

S-44.1kHz 157M 4 8 448 40 1.30

M-44.1kHz 621M 4 8 896 40 1.35

L-44.1kHz 1.03B 7 14 896 40 1.96

Table A6. Summary for different MMAudio model variants. Time is the total running time to generate one sample with a batch size of one

after warm-up and excludes any disk I/O operations on an H100 GPU.

Sync feature projection. We use a 1D convolutional layer with a kernel size of 7 and a padding of 3 that projects to h, an

SELU [28] activation layer, followed by a ConvMLP with a kernel size of 3 and a padding of 1.

Audio feature projection. We use a 1D convolutional layer with a kernel size of 7 and a padding of 3 that projects to h, an

SELU [28] activation layer, followed by a ConvMLP with a kernel size of 7 and a padding of 3.

G.3. Gating

The gating layers are similar to the adaptive normalization layers (adaLN). Each global gating layer modulates its input

y\in \mathbb {R}^{L\times h} 
 (L is the sequence length) with the global condition c_g as follows:

  \text {Gating}_g(y, c_g) = y \cdot \mathbf {1}\mathbf {W}_g(c_g). \label {eq:gate_global}       (A1)

Here, \protect \mathbf  {W}_g\in \mathbb {R}^{h\times h} 
 is an MLP, and 1 is a L× 1 all-ones matrix, which “broadcasts” the scales to match the sequence length L

– such that the same condition is applied to all tokens in the sequence (hence global).

Similarly, for per-token gating layers, the frame-aligned conditioning c_f is injected into the audio stream for precise feature

modulation via

  \text {Gating}_f(y, c_f) = y \cdot \mathbf {W}_f(c_f), \label {eq:gate_token}          (A2)

where \protect \mathbf  {W}_f\in \mathbb {R}^{h\times h} 
 is an MLP. Different from Equation (A1), the scales are applied per token without broadcasting,

G.4. Details on Synchronization Features

We use the visual encoder of Synchformer [19] to extract synchronization features. We use the pretrained audio-visual

synchronization model trained on AudioSet, provided by Iashin et al. [19]. As input, we obtain frames at 25 fps. Synchformer

partitions these frames into overlapping clips of 16 frames with stride 8 and produces features of length 8 for each clip. Thus,

for a video of length T_\text {sec} seconds, the sequence length of the synchronization features is

  L_\text {sync} = 8\left (\left \lfloor { \frac {25T_\text {sec} - 16}{8} }\right \rfloor + 1\right ).  



 









 (A3)

The corresponding feature fps is

  \text {FPS}_\text {sync} = \frac {L_\text {text}}{T_\text {sec}}. 




 (A4)

In this paper, we experimented with T_\text {sec}=8   and T_\text {sec}=10  . In both cases, \protect \text  {FPS}_\text {sync} is exactly 24. Additionally, we introduce a

learnable positional embedding of length 8 (matching the number of features in each clip processed by Synchformer) that is

added to the Synchformer features, as illustrated in Figure A3.

G.5. Illustration of the “sum sync with visual” Ablation

Figure A4 illustrates the network architecture for the “sum sync with visual” ablation in the “conditional synchronization

module” paragraph. The visual features are upsampled using the nearest neighbor to match the frame rate of the synchronization

features. This architecture has a worse FD_{\text {PaSST}}, IB-score, synchronization (DeSync) but a better inception score (IS), which

we hypothesize is due to the increased number of visual tokens in the upsampling step, leading to finer-grained computations.

17



��������sec 	�
���	�

25�
sec

����	

��
�����

�����������
��
���

���
�
�����

��	������
����

���������������������


���	����
����������
����	


���	����
�������8⨉768-d�
������	

 �	����������!������	
8⨉768-d

���
�
������	

�
��� 

�"�#���$%�
�	�

&�����������
���	

Figure A3. Synchformer feature extraction.

G.6. Visualization of Aligned RoPE

To visualize the effects of using aligned RoPE [59], we compare the dot-product affinity of two sequences \protect \mathbf  {1}^{250\times C} and \protect \mathbf  {1}^{64\times C}


when RoPE is applied. Here, 250 represents the audio sequence length (31.25 fps for 8 seconds), 64 represents the visual

sequence length (8 fps for 8 seconds), and C=64   is the channel size. Concretely, we visualize

  \text {RoPE}_\text {default}(\mathbf {1}^{250\times C}) \left (\text {RoPE}_\text {default}(\mathbf {1}^{64\times C})\right )^T, 








 (A5)

and,

  \text {RoPE}_\text {aligned}(\mathbf {1}^{250\times C}) \left (\text {RoPE}_\text {aligned}(\mathbf {1}^{64\times C})\right )^T, 








 (A6)

in Figure A5. Temporal alignment is attained when we use aligned RoPE.

H. Training Details

Training setup. Unless otherwise specified, we used the same set of hyperparameters for all model sizes. To train the

models, we use the base learning rate of 1\mathrm {e}-4, with a linear warm-up schedule of 1K steps, for 300K iterations, and with

a batch size of 512. We use the AdamW optimizer [26, 41] with \beta _1=0.9  , \beta _2=0.95  , and a weight decay of 1\mathrm {e}-6. If the

default \beta _2=0.999   was used instead, we notice occasional training collapse (to NaN). For learning rate scheduling, we reduce

the learning rate to 1\mathrm {e}-5 after 80% of the training steps, and once again to 1\mathrm {e}-6 after 90% of the training steps. For model

exponential moving average (EMA), we use the post-hoc EMA [22] formulation with a relative width \sigma _{\text {rel}}=0.05   for all

models. For training efficiency, we use bf16 mixed precision training, and all the audio latents and visual embeddings are

precomputed offline and loaded during training. Table A7 summarizes the training resources we used for each model size.

Model Number of GPUs used Number of hours to train Total GPU-hours

MMAudio-S-16kHz 2 22 44

MMAudio-S-44.1kHz 2 26 52

MMAudio-M-44.1kHz 8 21 168

MMAudio-L-44.1kHz 8 38 304

Table A7. The amount of training resources used for each model size. H100 GPUs are used in all settings.

18





By default, we apply a 5X duplication for a rough 1:1 data sampling ratio. For the “medium” and “large” models, we reduce

the duplication ratio to 3X to mitigate overfitting.

Duplicated videos. We observe VGGSound dataset [1] contains duplicated videos, likely due to multiple uploads of the

same video to YouTube under different video IDs. For instance, videos 4PjEi5fFD6A (in training set) and FhaYvI1yrUM

(in test set) are the same video.3 In Appendix E, we remove train-test sets overlaps by comparing the video IDs, though this

method does not eliminate repeated uploads. Since prior works have been trained on the same dataset, our training scheme

remains a fair comparison.

I. Additional Visualizations

We provide generated samples and comparisons with state-of-the-art methods on our project page https://hkchengrex.

com/MMAudio/video_main.html. Below, we provide additional spectrogram visualizations comparing our method

with prior works in Figures A6 to A8.

S
e

e
in

g
&

H
e

a
ri

n
g

V
-A

U
R

A
Fo

le
yC

ra
ft

e
r

V
2

A
-M

a
p

p
e

r
O

u
rs

G
ro

u
n

d
-t

ru
th

V
A

T
T

Fr
ie

re
n

Moment of impact

Figure A6. Left: our method can precisely capture the distinct audio event of striking a golf ball. Right: a dog barks in successive bursts.

Our generation does not line up with the ground-truth as precisely due to the ambiguous nature of video-to-audio generation, but does

capture the rapid bursts.

3Other uploads of this video that are not part of the VGGSound dataset include 1MQkMdlBezY and vHmRikW9axQ.

20



S
e
e
in
g
&
H
e
a
ri
n
g

V
-A
U
R
A

Fo
le
yC

ra
ft
e
r

V
2
A
-M

a
p
p
e
r

O
u
rs

G
ro
u
n
d
-t
ru
th

V
A
T
T

Fr
ie
re
n

Figure A7. Left: when visible audio events (e.g., when a string is played) can be clearly seen, MMAudio captures them much more precisely

than existing methods. Right: in a complex scenario, MMAudio does not always generate audio aligned to the ground-truth (as common in

the generative setting) but the generation is often still plausible.

21




	Introduction
	Related Works
	MMAudio
	Preliminaries
	Overview
	Multimodal Transformer
	Conditional Synchronization Module
	Training and Inference
	Multimodal Datasets
	Implementation Details


	Experiments
	Metrics
	Main Results
	Ablations
	Limitations

	Conclusion
	User Study
	Comparisons with Movie Gen Audio
	Evaluation on the Greatest Hits Dataset
	Ablations on Filling in Missing Modalities
	Details on Data Overlaps
	Details on the Audio Latents
	Network Details
	Model Variants
	Projection Layers
	Gating
	Details on Synchronization Features
	Illustration of the ``sum sync with visual'' Ablation
	Visualization of Aligned RoPE

	Training Details
	Additional Visualizations

