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Abstract

We study Variational Rectified Flow Match-

ing, a framework that enhances classic rectified

flow matching by modeling multi-modal velocity

vector-fields. At inference time, classic rectified

flow matching ‘moves’ samples from a source

distribution to the target distribution by solving

an ordinary differential equation via integration

along a velocity vector-field. At training time,

the velocity vector-field is learnt by linearly in-

terpolating between coupled samples one drawn

from the source and one drawn from the target dis-

tribution randomly. This leads to “ground-truth”

velocity vector-fields that point in different di-

rections at the same location, i.e., the velocity

vector-fields are multi-modal/ambiguous. How-

ever, since training uses a standard mean-squared-

error loss, the learnt velocity vector-field averages

“ground-truth” directions and isn’t multi-modal.

In contrast, variational rectified flow matching

learns and samples from multi-modal flow di-

rections. We show on synthetic data, MNIST,

CIFAR-10, and ImageNet that variational recti-

fied flow matching leads to compelling results.

1. Introduction

Diffusion models (Ho et al., 2020; Song et al., 2021a;b)

and flow matching (Liu et al., 2023; Lipman et al., 2023;

Albergo & Vanden-Eijnden, 2023; Albergo et al., 2023)

have been remarkably successful in recent years. These

techniques have been applied across domains from computer

vision (Ho et al., 2020) and robotics (Kapelyukh et al., 2023)

to computational biology (Guo et al., 2024) and medical

imaging (Song et al., 2022).

Flow matching (Lipman et al., 2023; Liu et al., 2023; Al-

bergo & Vanden-Eijnden, 2023) can be viewed as a continu-

ous time generalization of classic diffusion models (Albergo

et al., 2023; Ma et al., 2024). Those in turn can be viewed

as a variant of a hierarchical variational auto-encoder (Luo,
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2022). At inference time, flow matching ‘moves’ a sample

from a source distribution to the target distribution by solv-

ing an ordinary differential equation via integration along

a velocity vector-field. To learn this velocity vector-field,

at training time, flow matching regresses to a constructed

vector-field/flow connecting any sample from the source

distribution — think of the data-domain positioned at time

zero — to any sample from the target distribution attained

at time one. Notably, in a ‘rectified flow,’ the samples

from the source and target distribution are connected via a

straight line as shown in Figure 1(a). Inevitably, this leads

to multi-modality/ambiguity, i.e., flows pointing in different

directions at the same location in the data-domain-time-

domain, as illustrated for a one-dimensional data-domain in

Figure 1(a). Since classic rectified flow matching employs

a standard squared-norm loss to compare the predicted ve-

locity vector-field to the constructed velocity vector-field, it

does not capture this multi-modality. Hence, rectified flow

matching aims to match the source and target distribution in

alternative ways. This is illustrated in Figure 1(b).

To enable rectified flow matching to capture this multi-

modality in the data-domain-time-domain, we study varia-

tional rectified flow matching. Intuitively, variational recti-

fied flow matching introduces a latent variable that permits

to disentangle multi-modal/ambiguous flow directions at

each location in the data-domain-time-domain. This ap-

proach follows the classic variational inference paradigm

underlying expectation maximization or variational auto-

encoders. Indeed, as shown in Figure 1(c), variational recti-

fied flow matching permits to model flow trajectories that

intersect. This leads to learned trajectories that more closely

align with the ground truth flow. The latent variable can

also be used to disentangle different directions.

Note that flow matching, diffusion models, and variational

auto-encoders are all able to capture multi-modality in the

data-domain, as one expects from a generative model. Im-

portantly, variational rectified flow matching differs in that it

also models multi-modality in the data-domain-time-domain.

This enables different flow directions at the same data-

domain-time-domain point, allowing the resulting flows

to intersect at that location.

We demonstrate the benefits of variational rectified flow

matching across various datasets and model architectures.
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A coupled sample (x0, x1) and a time t ∈ [0, 1] is then

used to compute a time-dependent location xt at time t
via a function ϕ(x0, x1, t) = xt. Recall, rectified flow

matching uses xt = ϕ(x0, x1, t) = (1 − t)x0 + tx1. In-

terpreting xt as a location, intuitively, the “ground-truth”

velocity vector-field v(x0, x1, t) is readily available via

v(x0, x1, t) = ∂ϕ(x0, x1, t)/∂t, and can be used as the

target to learn the parametric velocity vector-field vθ(xt, t).
Concretely, flow matching learns the parametric velocity

vector field vθ(xt, t) by matching the target via an ℓ2 loss,

i.e., by minimizing w.r.t. trainable parameters θ the objective

Et,x0,x1

[

∥vθ(xt, t)− v(x0, x1, t)∥
2
2

]

.

Consider two different couplings that lead to different

“ground-truth” velocity vectors at the same data-domain-

time-domain point (xt, t). The parametric velocity vector-

field vθ(xt, t) is then asked to match/regress to a differ-

ent target given the same input (xt, t). This leads to av-

eraging and the optimal functional velocity vector-field

v∗(xt, t) = E{(x0,x1,t):φ(x0,x1,t)=xt} [v(x0, x1, t)]. Hence,

multi-modality in the data-domain-time-domain is not cap-

tured. In the following we discuss and study a method that

is able to model this multi-modality.

3. Variational Rectified Flow Matching

Our goal is to capture the multi-modality inherent in

“ground-truth” velocity vector-fields obtained from typically

used couplings (x0, x1) that connect source distribution

samples x0 ∼ p0 with target data samples x1 ∈ D. Here, p0
is a known source distribution and D is a considered dataset.

This differs from classic rectified flow matching which does

not capture this multi-modality even for simple distributions

as shown in Figure 1 and as discussed in Section 2. The

struggle to capture multi-modality leads to velocity vec-

tor fields that may be more curve and consequently more

difficult to integrate at inference time. In turn, this leads

to distributions that may not fit the data as well. We will

show evidence for both, more difficult integration and less

accurately captured data distributions in Section 4.

To achieve our goal we combine rectified flow matching and

variational auto-encoders. In the following we first discuss

the objective before detailing training and inference.

3.1. Objective

The goal of flow matching is to learn a velocity vector-

field vθ(xt, t) that transports samples from a known source

distribution p0 at time t = 0 to samples from a commonly

unknown probability density function p1(x1) at time t = 1.

The probability densities p0, p1 and the velocity vector-field

vθ are related to each other via the transport problem

∂ log pt(xt)

∂t
= − div vθ(xt, t), (2)

or its integral form given in Equation (1).

Solving the partial differential equation given in Equa-

tion (2) in general analytically is challenging, even when

assuming availability of the probability density functions,

i.e., when addressing a classic boundary value problem.

However, if we assume the probability density functions to

be Gaussians and if we restrict the velocity vector-field to be

constant, i.e., of the simple parametric form vθ(xt, t) = θ,

we can obtain an analytic solution. This is expressed in the

following claim:

Claim 1. Consider two Gaussian probability density func-

tions p̃0 = N (ξ0;x0, I) and p̃1 = N (ξ1;x1, I) with mean

x0 and x1 respectively. Assume a constant velocity vector-

field vθ(ξt, t) = θ. Then θ = x1 − x0 solves the partial

differential equation given in Equation (2) and its integral

form given in Equation (1) and xt = (1− t)x0 + tx1.

Proof: Given the constant velocity vector-field vθ(ξt, t) =

θ, we have
∫ 0

1
div vθ(ξt, t)dt ≡ 0. Plugging this and

both probability density functions into Equation (1) yields

(ξ0 − x0)
2 − (ξ1 − x1)

2 ≡ 0 ∀ξ0, ξ1. Using ξ1 = ξ0 +
∫ 1

0
vθ(ξt, t)dt = ξ0+θ leads to (ξ0−x0)

2−(ξ0−x1+θ)2 ≡
0 ∀ξ0 which is equivalent to (x1 −x0 − θ)(2ξ0 −x0 −x1 +
θ) ≡ 0 ∀ξ0. This can only be satisfied ∀ξ0 if θ = x1 − x0,

leading to xt = x0 + tθ = (1− t)x0 + tx1, which proves

the claim. ■

The arguably very simple setup in Claim 1 provides intuition

for the objective of classic rectified flow matching and offers

an alternative way to interpret the flow matching procedure.

Specifically, instead of two Gaussian probability density

functions p̃0 and p̃1, we assume the real probability den-

sity functions for the source and target data are composed

of Gaussians centered at given data points x0 and x1 re-

spectively, e.g., p0(ξ0) =
∑

x0∈S N (ξ0;x0, I)/|S|. More-

over, importantly, let us assume that the velocity vector-field

vθ(xt, t) at a data-domain-time-domain location (xt, t) is

characterized by a uni-modal standard Gaussian

p(v|xt, t) = N (v; vθ(xt, t), I)

with a parametric mean vθ(xt, t). Maximizing the log-

likelihood of the empirical “velocity data” is equivalent

to the following objective

Et,x0,x1
[log p(x1 − x0|xt, t)]

∝ −Et,x0,x1

[

∥vθ(xt, t)− x1 + x0∥
2
2

]

.
(3)

Note that this objective is identical to classic rectified flow

matching. Moreover, note our use of the standard rectified

flow velocity vector-field, also derived in Claim 1.

This derivation highlights a key point: because the vector

field is parameterized via a Gaussian at each data-domain-

time-domain location, multi-modality cannot be captured:

3



Variational Rectified Flow Matching

the Gaussian distribution is uni-modal. Hence, classic recti-

fied flow matching averages the “ground-truth” velocities.

As mentioned before, this can be sub-optimal. To capture

multi-modality, we study the use of a mixture model over

velocities at each data-domain-time-domain location. For

this, we assume an unobserved continuous random variable

z, drawn from a prior distribution p(z), governs the mean of

the conditional distribution of the velocity vector-field, i.e.,

p(v|xt, t, z) = N (v; vθ(xt, t, z), I).

Note, this model captures multi-modality as p(v|xt, t) =
∫

p(v|xt, t, z)p(z)dz is a Gaussian mixture.

We now derive the variational flow matching objective.

Since the random variable z is not observed, at training

time, we introduce a recognition model qφ(z|x0, x1, xt, t)
a.k.a. an encoder. It is parameterized by ϕ and approximates

the intractable true posterior.

Using this setup, the marginal likelihood of an individual

data point can be lower-bounded by

log p(v|xt, t) ≥ Ez∼qφ [log p(v|xt, t, z)]

−DKL(qφ(·|x0, x1, xt, t)|p(·)).
(4)

Replacing the log-probability of the Gaussian in the deriva-

tion of Equation (3) with the lower bound given in Equa-

tion (4) immediately leads to the variational rectified flow

matching objective Et,x0,x1
[log p(x1 − x0|xt, t)] ≥

Et,x0,x1
[−Ez∼qφ

[

∥vθ(xt, t, z)− x1 + x0∥
2
2

]

−DKL(qφ(·|x0, x1, xt, t)|p(·))].
(5)

We note that this objective could be extended in a number of

ways: for instance, the prior p(z) could be a trainable deep

net conditioned on x0 and/or t. Note however that this leads

to a more complex optimization problem with a moving

target. We leave a study of extensions to future work.

In Appendix A, we provide a theoretical proof demonstrat-

ing that the distribution learned by the variational objective

preserves the marginal data distribution, as previously estab-

lished for classic rectified flow matching (Liu et al., 2023).

In the following we first discuss optimization of this objec-

tive before detailing the inference procedure.

3.2. Training

To optimize the objective given in Equation (5),

we follow the classic VAE setup. Specifically,

we let the prior p(z) = N (z; 0, I) and we let

the approximate posterior qφ(z|x0, x1, xt, t) =
N (z;µφ(x0, x1, xt, t), σφ(x0, x1, xt, t)). This enables

analytic computation of the KL-divergence in Equation (5).

Note that the mean of the approximate posterior is obtained

Algorithm 1 Variational Rectified Flow Matching Training

Data: source distribution p0 and target sample dataset D
while stopping conditions not satisfied do

sample x0 ∼ p0, x1 ∈ D {we use a mini-batch}
sample t ∼ U(0, 1) {different t for each mini-batch

sample}
xt = (1− t)x0 + tx1

get latent z = µφ(x0, x1, xt, t) + ϵσφ(x0, x1, xt, t)
with ϵ ∼ N (0, 1) {reparameterization trick}
compute loss following Equation (5)

perform gradient update on θ, ϕ
end while

Algorithm 2 Variational Rectified Flow Matching Inference

Data: source distribution p0
sample x0 ∼ p0
get latent z ∼ p(z)
ODE integrate x0 from t = 0 to t = 1 using velocity

vector-field vθ(xt, t, z)

from the deep net µφ(x0, x1, xt, t) and the standard

deviation is obtained from σφ(x0, x1, xt, t). Further, we

use the re-parameterization trick to enable optimization

of the objective w.r.t. the trainable parameters θ and

ϕ. Moreover, we use a single-sample estimate for the

expectation over the unobserved variable z. We summarize

the training procedure in Algorithm 1. Note, it’s more

effective to work with a mini-batch of samples rather than a

single data point, which was merely used for readability in

Algorithm 1.

Note that variational rectified flow matching training differs

from training of classic rectified flow matching in only a

single step: computation of a latent sample z in Algorithm 1.

From a computational point of view we add a deep net

forward pass to obtain the mean µφ and standard deviation

σφ of the approximate posterior, and a backward pass to

obtain the gradient w.r.t. ϕ. Also note that the velocity

vector-field architecture vθ(xt, t, z) might be more complex

as the latent variable z needs to be considered. However, the

additional amount of computation is likely not prohibitive.

We provide implementation details for the deep nets

vθ(xt, t, z), µφ(x0, x1, xt, t), and σφ(x0, x1, xt, t) in Sec-

tion 4, as their architecture depends on the data.

3.3. Inference

We summarize the inference procedure in Algorithm 2. Note

that we sample a latent variable only once prior to classic

ODE integration of a random sample x0 ∼ p0 drawn from

the source distribution p0. To obtain the latent z we sample

from the prior z ∼ p(z) = N (z; 0, I). Subsequently, we

ODE integrate the velocity field vθ(xt, t, z) from time t = 0
to time t = 1 starting from a random sample x0 drawn from

the source distribution.
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NFE / sample # Params. 2 5 10 50 100 1000 Adaptive

OT-FM (Lipman et al., 2023) 36.5M 166.655 36.188 14.396 5.557 4.640 3.822 3.655
I-CFM (Tong et al., 2024) 36.5M 168.654 35.489 13.788 5.288 4.461 3.643 3.659

1 V-RFM (adaptive norm, x1, 2e-3) 37.2M 135.275 28.912 13.226 5.382 4.430 3.642 3.545
2 V-RFM (adaptive norm, x1, 5e-3) 37.2M 159.940 35.293 14.061 5.265 4.349 3.582 3.561
3 V-RFM (adaptive norm, x1 + t, 5e-3) 37.2M 117.666 27.464 13.632 5.512 4.484 3.614 3.478
4 V-RFM (bottleneck sum, x1 + t, 2e-3) 37.0M 104.634 25.841 13.508 5.618 4.540 3.596 3.520

Table 1: Following Tong et al. (2024), we train the same UNet model and reported the FID scores for our method and the

baselines using both fixed-step Euler and adaptive-step Dopri5 ODE solvers. The baselines checkpoint was directly taken

from Tong et al. (2024). We present four model variants of our V-RFM, which differ in fusion mechanism, posterior model

input, and KL loss weight.

is conditioned using adaptive group normalization. The

network predicts µφ and σφ with dimensions 1× 1× 768.

During training, the conditional latent z is sampled from

the predicted posterior, and at test time, from a standard

Gaussian prior. The latent is processed through two MLP

layers and serves as a conditional signal for the velocity

network vθ. We identify two effective approaches as con-

ditioning mechanisms: adaptive normalization, where z is

added to the time embedding before computing shift and

offset parameters, and bottleneck sum, which fuses the la-

tent with intermediate activations at the lowest resolution

using a weighted sum before upsampling.

We evaluate results using FID scores computed for varying

numbers of function evaluations, as shown in Table 1. Four

model variants were tested, differing in fusion mechanisms,

posterior model qφ inputs, and KL loss weighting. Com-

pared to prior work (Lipman et al., 2023; Liu et al., 2023;

Tong et al., 2024), model 1 achieves superior FID scores

with fewer function evaluations and performs comparably at

higher evaluations. Using the adaptive Dopri5 solver further

improves scores, highlighting the importance of capturing

flow ambiguity. Model 2 increases the KL loss weight,

improving performance at higher function evaluations but

reducing effectiveness at lower evaluations, likely due to

reduced information from latent z. Model 3, with additional

time conditioning, significantly improves FID at low eval-

uations and performs best with the adaptive solver. Model

4, incorporating bottleneck sum fusion, delivers robust FID

scores across evaluation settings, demonstrating the flexibil-

ity of the variational rectified flow objective with different

fusion strategies.

Similar to the MNIST results in Section 4.3, we observe

clear patterns in color and content for the generated samples

x1, demonstrating a degree of controllability. Figure 7 visu-

alizes three sets of images (a)–(c). Each set is conditioned

on a different latent z, while the starting noise x0 varies

across individual images within each set. The same noise

x0 is applied to images at the same grid location across all

subplots. Images conditioned on the same latent exhibit con-

sistent color patterns, while images at the same grid location

display similar content, as highlighted in the last row.

(a) z0 (b) z1 (c) z2

Figure 7: Varying x0 while keeping the latent z fixed. Im-

ages at the same position across panels share the same x0,

while images within a panel share the same latent sampled

from the prior distribution.

4.5. ImageNet

To assess efficacy on large-scale data, we use ImageNet

256 × 256 data and SiT-XL (Ma et al., 2024), a recent

transformer-based model that has shown strong results in

image generation. For a fair comparison, we strictly follow

the original training recipe in the open-source SiT repository

and replicate the training process from the SiT paper, while

introducing our model, V-SiT-XL, by substituting the classic

rectified flow loss with the variational rectified flow loss in

Equation (5). The posterior model qφ also utilizes an SiT

transformer architecture but with half the number of blocks.

In the final layer, the features are average pooled and passed

through an MLP layer to predict µφ and σφ. We sample the

latent variable z from the posterior during training and from

the prior distribution during inference. This latent variable

z is then processed by two MLP layers and fused with the

velocity network vθ via adaptive normalization. By default,

we use the Euler-Maruyama sampler with the SDE solver

and 250 integration steps, as described by Ma et al. (2024).

Following the evaluation protocol of Ma et al. (2024), we

randomly generate 50K images from the models and report

the FID scores in Table 2. V-SiT-XL consistently outper-

forms both DiT-XL and SiT-XL, achieving gains under the

same training conditions, with and without classifier-free

guidance. These results underscore the importance of mod-

eling multi-modality in the velocity vector field, which con-

tributes to a substantial improvement in generation quality,

particularly in the large-scale high-resolution data domain.

Additionally, we analyze the model’s performance across

different training iterations and varying numbers of function

7





Variational Rectified Flow Matching

References

Albergo, M. and Vanden-Eijnden, E. Building normalizing

flows with stochastic interpolants. In Proc. ICLR, 2023.

Albergo, M., Boffi, N., and Vanden-Eijnden, E. Stochastic

Interpolants: A unifying framework for flows and diffu-

sions. In arXiv preprint arXiv:2303.08797, 2023.

Chen, R., Rubanova, Y., Bettencourt, J., and Duvenaud, D.

Neural ordinary differential equations. In Proc. NeurIPS,

2018.

Eijkelboom, F., Bartosh, G., Naesseth, C., Welling, M., and

van de Meent, J.-W. Variational Flow Matching for Graph

Generation. In arXiv preprint arXiv:2406.04843, 2024.

Esser, P., Kulal, S., Blattmann, A., Entezari, R., Müller,

J., Saini, H., Levi, Y., Lorenz, D., Sauer, A., Boesel, F.,

Podell, D., Dockhorn, T., English, Z., Lacey, K., Good-

win, A., Marek, Y., and Rombach, R. Scaling rectified

flow transformers for high-resolution image synthesis. In

Proc. ICML, 2024.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,

Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.

Generative adversarial nets. In Proc. NeurIPS, 2014.

Grathwohl, W., Chen, R., Bettencourt, J., Sutskever, I., and

Duvenaud, D. FFJORD: Free-form continuous dynamics

for scalable reversible generative models. In Proc. ICLR,

2018.

Guo, Z., Liu, J., Wang, Y., Chen, M., Wang, D., Xu, D.,

and Cheng, J. Diffusion models in bioinformatics and

computational biology. Nature reviews bioengineering,

2024.

He, K., Zhang, X., Ren, S., and Sun, J. Deep

Residual Learning for Image Recognition. In

https://arxiv.org/abs/1512.03385, 2015.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-

bilistic models. In Proc. NeurIPS, 2020.

Hutchinson, M. A stochastic estimator of the trace of the

influence matrix for Laplacian smoothing splines. Com-

munications in Statistics-Simulation and Computation,

1990.

Kapelyukh, I., Vosylius, V., and Johns, E. Dall-e-bot: In-

troducing web-scale diffusion models to robotics. IEEE

Robotics and Automation Letters, 2023.

Kim, D., Sony, A., Lai, C.-H., Liao, W.-H., Murata, N.,

Takida, Y., He, Y., Mitsufuji, Y., and Ermon, S. Consis-

tency trajectory models: Learning probability flow ode

trajectory of diffusion. In Proc. NeurIPS, 2023.

Kingma, D. and Welling, M. Auto-Encoding Variational

Bayes. In Proc. ICLR, 2014.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 1998.

Lipman, Y., Chen, R., Ben-Hamu, H., Nickel, M., and Le,

M. Flow Matching for Generative Modeling. In Proc.

ICLR, 2023.

Liu, X., Gong, C., and Liu, Q. Flow straight and fast:

Learning to generate and transfer data with rectified flow.

In Proc. ICLR, 2023.

Luo, C. Understanding diffusion models: A unified perspec-

tive. In arXiv preprint arXiv:2208.11970, 2022.

Ma, N., Goldstein, M., Albergo, M., Boffi, N., Vanden-

Eijnden, E., and Xie, S. SiT: Exploring Flow and

Diffusion-based Generative Models with Scalable Inter-

polant Transformers. In arXiv preprint arXiv:2401.08740,

2024.

Nguyen, B., Nguyen, B., and Nguyen, V. A. Bellman opti-

mal stepsize straightening of flow-matching models. In

The Twelfth International Conference on Learning Repre-

sentations, 2024.

Pandey, K., Mukherjee, A., Rai, P., and Kumar, A. Dif-

fuseVAE: Efficient, controllable and high-fidelity gener-

ation from low-dimensional latents. In arXiv preprint

arXiv:2201.00308, 2022.

Preechakul, K., Chatthee, N., Wizadwongsa, S., and Suwa-

janakorn, S. Diffusion autoencoders: Toward a meaning-

ful and decodable representation. In Proc. CVPR, 2022.

Rezende, D. and Mohamed, S. Variational inference with

normalizing flows. In Proc. ICML, 2015.

Skilling, J. The eigenvalues of mega-dimensional matrices.

Maximum Entropy and Bayesian Methods, 1989.

Song, J., Meng, C., and Ermon, S. Denoising diffusion

implicit models. In Proc. ICLR, 2021a.

Song, Y. and Ermon, S. Generative modeling by estimating

gradients of the data distribution. In Proc. NeurIPS, 2019.

Song, Y., Sohl-Dickstein, J., Kingma, D., Kumar, A., Ermon,

S., and Poole, B. Score-Based Generative Modeling

Through Stochastic Differential Equations. In Proc. ICLR,

2021b.

Song, Y., Shen, L., Xing, L., and Ermon, S. Solving inverse

problems in medical imaging with score-based generative

models. In Proc. ICLR, 2022.

9



Variational Rectified Flow Matching

Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. Consis-

tency models. In International Conference on Machine

Learning, pp. 32211–32252. PMLR, 2023.

Tong, A., Fatras, K., Malkin, N., Huguet, G., Zhang, Y.,

Rector-Brooks, J., Wolf, G., and Bengio, Y. Improv-

ing and generalizing flow-based generative models with

minibatch optimal transport. TMLR, 2024.

Yan, H., Liu, X., Pan, J., Liew, J. H., Liu, Q., and Feng,

J. Perflow: Piecewise rectified flow as universal plug-

and-play accelerator. arXiv preprint arXiv:2405.07510,

2024.

Yang, L., Zhang, Z., Zhang, Z., Liu, X., Xu, M., Zhang,

W., Meng, C., Ermon, S., and Cui, B. Consistency flow

matching: Defining straight flows with velocity consis-

tency. arXiv preprint arXiv:2407.02398, 2024.

Zhang, Y., Yan, Y., Schwing, A., and Zhao, Z. Towards

Hierarchical Rectified Flow. In Proc. ICLR, 2025.

10













Variational Rectified Flow Matching

NFE / sample 2 5 10 50 100 1000 Adaptive

I-CFM
(Liu et al., 2023; Tong et al., 2024)

2.786 7.143 8.326 8.770 8.872 9.022 9.041

1 V-RFM (adaptive norm, x1, 2e-3) 3.943 7.728 8.499 8.973 9.050 9.168 9.171
2 V-RFM (adaptive norm, x1, 5e-3) 3.083 7.202 8.342 8.868 8.997 9.166 9.183
3 V-RFM (adaptive norm, x1 + t, 5e-3) 4.460 7.930 8.583 9.007 9.104 9.220 9.238
3 V-RFM (bottleneck sum, x1 + t, 2e-3) 4.831 7.996 8.529 9.062 9.150 9.293 9.308

Table 4: Inception Score evaluation of our method compared to the baseline on CIFAR-10, using fixed-step Euler and

adaptive-step Dopri5 ODE solvers. Higher scores indicate better performance.

NFE / sample 2 5 10 50 100 1000 Adaptive

OT-FM
(Lipman et al., 2023; Tong et al., 2024)

166.655 36.188 14.396 5.557 4.640 3.822 3.655

I-CFM
(Liu et al., 2023; Tong et al., 2024)

168.654 35.489 13.788 5.288 4.461 3.643 3.659

1 V-RFM-L (100% Posterior Model) 135.275 28.912 13.226 5.382 4.430 3.642 3.545
2 V-RFM-M (17.5% Posterior Model) 135.983 30.106 13.783 5.486 4.500 3.697 3.607
3 V-RFM-S (6.7% Posterior Model) 144.676 31.224 13.406 5.289 4.398 3.699 3.639

Table 5: We use the same flow matching model vθ and pair it with different sizes of encoders qφ during training while

maintaining the exact same hyper-parameters. We report the FID scores for our method and the baseline using both fixed-step

Euler and adaptive-step Dopri5 ODE solvers.

the KL divergence loss, with the KL loss weighted at 1.0 for the 1D experiments and 0.1 for the 2D experiments. We employ

AdamW as the optimizer with a learning rate of 1× 10−3 and train the two networks qφ and vθ jointly for 20,000 iterations.

D.2. MNIST

In the rectified flow baseline, the velocity network vθ uses separate encoders for time t and data x. The time t encoder

consists of a sinusoidal positional encoding layer followed by two MLP layers with SiLU activation. The data x encoder

includes a convolutional in-projection layer, five consecutive ResNet (He et al., 2015) blocks (each consisting of two

convolutional layers with a kernel size of 3, group normalization, and SiLU activation), followed by a convolutional

out-projection layer. The time and data embeddings are concatenated and passed to a decoder composed of a convolutional

in-projection layer, five consecutive ResNet blocks, and a convolutional out-projection layer with a kernel size of 1 and an

output channel of 1. The hidden dimension is set to 64. MNIST data is normalized to the [−1, 1] range. We adopted the

consistency velocity loss from the consistency flow matching baseline used for synthetic data experiments. We train the

network for 100,000 iterations using the AdamW optimizer with a learning rate of 1× 10−3 and batch size of 256.

In our variational flow matching approach, the velocity network vθ includes an additional latent encoding module consisting

of a sinusoidal positional encoding layer followed by two MLP layers with SiLU activation. The conditional latent

embedding z is concatenated with the embeddings for time t and data x. The decoder structure mirrors the baseline, with the

first in-projection layer adjusted to handle the increased channel input. The posterior model qφ follows a similar architecture,

with separate encoders for each input [x0, x1, xt]. The resulting embeddings are concatenated and passed through a decoder

consisting of a convolutional in-projection layer, followed by three consecutive interleaving ResNet blocks and average

pooling layers. The final hidden activation is flattened and processed by two linear MLP layers to predict the 1D latent

z with a dimension of 2. The two networks are trained jointly for 100,000 iterations using the AdamW optimizer with a

learning rate of 1× 10−3 and a batch size of 256. The KL loss weight is set to 1× 10−3.

D.3. CIFAR-10

For the rectified flow baseline, we directly use the OT-FM and I-CFM models from (Tong et al., 2024) and evaluate their

performance under different NFEs. For the consistency flow matching model, we take the public implementation from

(Yang et al., 2024) and integrate the consistency loss into the same I-CFM model, naming it Consistency-FM. Additionally,

we evaluate the original model from (Yang et al., 2024) with a larger parameter count, referring to it as Consistency-FM-XL.

For our V-RFM model variants, we adopt the I-CFM model from (Tong et al., 2024) and add modules to incorporate
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Variational Rectified Flow Matching

Figure 16: Randomly selected samples generated from our model trained on CIFAR-10 data.
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Variational Rectified Flow Matching

Figure 17: Randomly selected samples generated from our model trained on ImageNet data.
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