2502.17436v2 [cs.LG] 1 Mar 2025

.
.

arxiv

Published as a conference paper at ICLR 2025

TOWARDS HIERARCHICAL RECTIFIED FLOW

Yichi Zhang!, Yici Yan!, Alex Schwing!, Zhizhen Zhao!
'University of Illinois Urbana-Champaign

ABSTRACT

We formulate a hierarchical rectified flow to model data distributions. It hierarchi-
cally couples multiple ordinary differential equations (ODEs) and defines a time-
differentiable stochastic process that generates a data distribution from a known
source distribution. Each ODE resembles the ODE that is solved in a classic recti-
fied flow, but differs in its domain, i.e., location, velocity, acceleration, etc. Unlike
the classic rectified flow formulation, which formulates a single ODE in the loca-
tion domain and only captures the expected velocity field (sufficient to capture a
multi-modal data distribution), the hierarchical rectified flow formulation models
the multi-modal random velocity field, acceleration field, etc., in their entirety.
This more faithful modeling of the random velocity field enables integration paths
to intersect when the underlying ODE is solved during data generation. Inter-
secting paths in turn lead to integration trajectories that are more straight than
those obtained in the classic rectified flow formulation, where integration paths
cannot intersect. This leads to modeling of data distributions with fewer neural
function evaluations. We empirically verify this on synthetic 1D and 2D data
as well as MNIST, CIFAR-10, and ImageNet-32 data. Our code is available at:
https://riccizz.github.io/HRF/.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2021a;b) and particularly also flow matching (Liu
et al., 2023; Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Albergo et al., 2023) have
gained significant attention recently. This is partly due to impressive results that have been reported
across domains from computer vision (Ho et al., 2020) and medical imaging (Song et al., 2022) to
robotics (Kapelyukh et al., 2023) and computational biology (Guo et al., 2024). Beyond impressive
results, flow matching was also reported to faithfully model multimodal data distributions. In ad-
dition, sampling is reasonably straightforward: it requires to solve an ordinary differential equation
(ODE) via forward integration of a set of source distribution points along an estimated velocity field
from time zero to time one. The source distribution points are sampled from a simple and known
source distribution, e.g., a standard Gaussian.

The velocity field is obtained by matching velocities from a constructed “ground-truth” integration
path with a parametric deep net using a mean squared error (MSE) objective. See Fig. 1(a) for the
“ground-truth” integration paths of classic rectified flow. Studying the “ground-truth” velocity dis-
tribution at a distinct location and time for rectified flow reveals a multimodal distribution. We derive
an analytic expression for the multimodal velocity distribution in case of a mixture-of-Gaussian data
distribution in Section 3.1. It is known that the MSE objective used in classic rectified flow does not
permit to capture this multimodal distribution. Instead, classic rectified flow leads to a model that
aims to capture the mean of the velocity distribution. This is illustrated in Fig. 1(b).

We do want to emphasize that capturing the mean of the velocity distribution is sufficient for charac-
terizing a multimodal data distribution (Liu et al., 2023). However, only capturing the mean velocity
also leads to unnecessarily curved forward integration paths. This is due to the fact that integration
paths cannot intersect when using an MSE objective, as can be observed in Fig. 1(b).

In this paper, we hence wonder whether it is possible to capture the velocity distribution in its en-
tirety. This enables integration paths to intersect during data generation, as illustrated in Fig. 1(c).
Intuitively, and as detailed in Section 3.2, we can capture the velocity distribution by formulating a
rectified flow objective in the velocity space rather than the location space. Hence, instead of training

Published as a conference paper at ICLR 2025

1.09 =m

0.8

0.6

Time

0.4

0.2

0.0 /8

(a) Linear Interpolation

(b) Rectified Flow

1.01 =

0.8

0.6

Time

0.4

0.2

0.0

i/

(c) Ours

Figure 1: Particles flow from starting points (grey) to endpoints (blue) as time increases from 0 to
1. Ideally, the trajectories (green) are straight lines connecting two ends as shown in (a). Rectified
Flow captures the expected velocity field while our Hierarchical Rectified Flow can model the true
velocity field thus generating intersecting and more straight paths.

a deep net to estimate the velocity for integration in location space, as done in classic rectified flow,
we train a deep net that estimates the acceleration for integration in velocity space. Sampling can
then be done by forward integrating two hierarchically coupled processes: first, forward integrate in
velocity space to obtain a sample from the velocity distribution; then use the velocity sample to per-
form a step in location space. While this nested integration of two processes seems computationally
more demanding at first, it turns out that fewer integration steps are needed, particularly in the latter
process. This is due to the fact that the integration path is indeed less curved, as shown in Fig. 1(c).
We also show in Section 3.3 that capturing the velocity distribution in its entirety permits to capture
a multimodal data distribution. The data generation process is governed by a random differential
equation (RDE) (Han, 2018) with learned random velocity field.

Going forward, instead of using ‘just’ two hierarchically coupled processes we can extend the for-
mulation to an arbitrary depth, which is detailed in Section 3.4. Using a depth of one defaults to
classic rectified flow (deep net captures the expected velocity field), while a depth of two leads to a
deep net that captures the acceleration, etc. We refer to this construction of hierarchically coupled
processes as a ‘hierarchical rectified flow.’

Empirically, we find that the studied hierarchical rectified flow leads to samples that better fit the
data distribution. Specifically, we find that this hierarchical rectified flow leads to slightly better
results than the vanilla rectified flow.

2 PRELIMINARIES

Given a dataset D = {(x1)} consisting of samples z; ~ p1, e.g., images, drawn from an unknown
target data distribution p;, the goal of generative modeling is to learn a model that faithfully captures
the unknown target data distribution p; and permits to sample from the learned distribution.

Since we focus primarily on rectified flow, we provide its formulation in the following. At inference
time, rectified flow starts from samples xg ~ po drawn from a known source distribution pg, €.g., a
standard Gaussian. The source distribution samples are pushed forward from time ¢ = 0 to target
time ¢ = 1 via integration along a trajectory specified via a learned velocity field v(z¢,t). This
learned velocity field depends on the current time ¢ and the sample location z; at time ¢. Formally,
we obtain samples by numerically solving the ordinary differential equation (ODE)

telo,1]. (1)

Notably, this sampling procedure is able to capture multimodal dataset distributions, as one expects
from a generative model.

dzy = v(z, t)dt, with zg ~ po,

To learn the velocity field, at training time, rectified flow constructs random pairs (z, 1), consisting
of a source distribution sample x¢ ~ pg and a target distribution sample x; ~ D. The latter is drawn
from a given dataset D consisting of samples which are assumed to be drawn from the unknown
target distribution p;. For a uniformly drawn time ¢ ~ UJ0, 1], the time-dependent location x; is
computed from the pair (z, 1) using linear interpolation of (z¢, 1), i.e.,

xy = (1 —t)xg +tay, wherexzg ~ pg, r1 ~ D. 2)

Published as a conference paper at ICLR 2025

At this location z; and time t, the “ground-truth” velocity vy (z¢,t) = Ox; /Ot = x1 — x is readily
available. It is then matched during training with a velocity model v(x¢,t) via a standard ¢5 loss,
i.e., during training we address

H;f Ezowpg,xler,tNU[O,l] [”xl — X — ’U(T/t,t)”%] 5 3)

where the optimization is over the set of all measurable velocity fields. In practice, the func-
tional velocity model v(x,t) is often parameterized via a deep net with trainable parameters 6,
i.e., v(xe,t) = vg(xy,t), and the infimum resorts to a minimization over parameters 6.

Considering the training procedure more carefully, it is easy to see that different random pairs
(20, x1) can lead to different “ground-truth” velocity directions at the same time ¢ and at the same
location z;. The aforementioned /5 loss hence asks the functional velocity model v(x;, t) to regress
to different “ground-truth” velocity directions. This leads to averaging, i.e., the optimal functional
velocity model v* (w4, t) = Ef (20,2, ,6):(1=t)zo+tar =2} [V(Te,)]

According to Theorem 3.3 by Liu et al. (2023), if we use v* for the ODE in Eq. (1), then the
stochastic process associated with Eq. (1) has the same marginal distributions for all ¢ € [0, 1] as the
stochastic process associated with the linear interpolation characterized in Eq. (2).

Nonetheless, to avoid the averaging, in this paper we wonder whether it is possible to capture the
multimodal velocity distribution at each time ¢ and at each location x;, and whether there are any
potential benefits to doing so.

3 TOWARDS HIERARCHICAL RECTIFIED FLOW

In the following Section 3.1, we first discuss the multimodality of the velocity distribution and pro-
vide a case study with Gaussian mixtures. The case study is designed to provide insights regarding
the velocity distribution. We then discuss in Section 3.2 a simple way to capture the multimodal
velocity distribution and how to use it to sample from the data distribution. Then, we show in
Section 3.3 that the proposed procedure indeed faithfully captures the data marginals. Finally, we
discuss in Section 3.4 an extension towards a hierarchical rectified flow formulation.

3.1 VELOCITY DISTRIBUTION AND CASE STUDY WITH GAUSSIAN MIXTURES

The linear interpolation in Eq. (2) defines a time-differentiable stochastic process with the random
velocity field v(xy,t) = x1 — xo, where xg ~ pp and 1 ~ p;. Note, the source and target
distributions are independent. The following theorem characterizes the distribution of the velocity
at a specific space time location (x4, t):

Theorem 1 The velocity distribution 71 (v; x4, t) at the space time location (x4, t) induced by the
linear interpolation in Eq. (2) is

po(ze — tv)pi(xe + (1 — t)v)

(v 2,) = pyx, (v|Te) = pu(70)) “4)
Jor pe(x¢) # 0 with (“** denotes convolution)
po(o) fort =0,
pu(w) = srgeo (25) +p1 (%) fort € (0,1), 5)
p1(z1) fort =1.

The distribution 71 (v; x4, t) is undefined if py(x) = 0.

The proof of Theorem 1 is deferred to Appendix A. Note that since p; is typically multimodal,
the resulting 7 (v; 2, t) is also multimodal. At ¢ = 0, we have 71 (v; x¢,t) = p1(x¢ + v), which
corresponds to the data distribution shifted by —xz;. Att = 1, we have w1 (v; z,t) = po(xs — v),
which corresponds to the flipped source distribution shifted by z;.

To illustrate the multimodality of the velocity distribution, we consider a simple 1-dimensional
example. The source distribution is a standard Gaussian (zero mean, unit variance). The target
distribution is a Gaussian mixture. The following corollary provides the “ground-truth” velocity
distribution at any location x;.

Published as a conference paper at ICLR 2025

14 A 1\ 08 ‘. \ ,'\ — analylt\cal A 0.40 ‘/--‘ — :::‘I::\:Sal
12 [\ I f I 10 samples \ 035 /
[\ | \ / [\ 0.30] \
1.0 | [\ 06| | [l 08 | - f
2 [- [\ [z [l zos / |
G08{ | \ @ [| £ [go-
g [\ [\ 504 | | 506 [\ 50.20 ;
Qo6 [| | e | [a [e \
[\ [\ | | [| 04 [0.15 / \
04 | | en |\ o2l |\ — o | 0.10)
/ | — analytical | \ —— analytical | \ . / y.
02 samples \ / \ samples | \ / \ 0.05 /
0. - 0.04 = 0. 0.00—
265 00 05 10 15 20 25 2 1 0 i 3 2 3 2 1 6 1 2 2 1 6 1 3 3 4
Velocity Velocity Velocity Velocity

Figure 2: We verify the derived velocity distribution by comparing its probability density function
(blue) to the empirical sample histogram (orange) at different times ¢ and locations z;.

Corollary 1 Assume pg = N (2;0,1) and p1 = Zszl wiN (z; g, o), then

K
1—t) (g — to? ;
my(v; @y, t) = Zwk’t/\[(v; (V(e —) + O'kCCt7 ka) , (6)
k=1

~9
Ot Ol t

wp N (4;tpn, 57)
SR weN(@etu 62,)

where 63 , = (1 — t)* + t*0}, and Wy, =

We defer the proof of Corollary 1 to Appendix B. To empirically check the fit of Corollary 1, in
Fig. 2, we compare the derived velocity distribution with empirical estimates at different locations
(2¢,1). We observe a great fit and very clearly multimodal distributions.

It is very much worthwhile to study these distributions a bit more. In particular, we observe that
the velocity distribution at time ¢ = 1 collapses to a single Gaussian, more specifically a shifted
source distribution. This can be seen from Fig. 2(d). Further, at time ¢ = 0, we observe the velocity
distribution to be identical to a shifted data distribution. This can be seen from Fig. 2 (a).

This is valuable to know as it suggests that the velocity distribution is at least as complex as the data
distribution. Indeed, at t = 0, the velocity distribution is identical to a shifted data distribution.

3.2 MODELING THE VELOCITY DISTRIBUTION

The previous section showed that the velocity distributions can be multimodal. Knowing that the
optimal velocity model v*(z¢,t) of classic rectified flow averages “ground-truth” velocities, we
can’t expect classic rectified flow to capture this distribution. We hence wonder: 1) is it possible to
capture the multimodal velocity distribution at each time ¢ and at each location z; 2) are there any
benefits to capturing the multimodal velocity distribution as opposed to ‘just’ capturing its mean as
done by classic rectified flow.

Intuitively, an accurate characterization of the velocity distribution might be beneficial because we
obtain straighter integration paths, which in turn may lead to easier integration with fewer neu-
ral function evaluations (NFE). In addition, capturing the velocity distribution provides additional
modeling flexibility (an additional time axis), which might yield to improved results. Notably, mod-
eling of the velocity distribution does not lead to modeling of a simpler distribution. As mentioned
in Section 3.1, at time ¢ = 0 the velocity distribution is identical to a shifted data distribution.

To accurately model the “ground-truth” velocity distribution, we can use rectified flow for velocities
rather than locations, which are used in the classic rectified flow formulation. This is equivalent to
learning the acceleration. To see this, first, consider classic rectified flow again: we construct a time-
dependent location x; from pairs (zo, 21), compute the “ground-truth” velocity vg; (2, t) = Oz /0t,
and train a velocity model vg(x, t) to match this “ground-truth” velocity vg (¢,).

To learn the acceleration, we introduce a source velocity sample vg ~ my drawn from a known
source velocity distribution my. We also construct a target velocity sample vy (24, t) ~ 71 (v; 24, t)
at time ¢ and at location x;, which follows the target velocity distribution 71 (v; x4, t) at time ¢ and
at location z;. Note, the target velocity sample at time ¢ and at location x; = (1 — ¢)xg + ta; is
obtained via vy (z¢,t) = 21 — 2o, when considering a rectified flow. The samples v; (24, t) follow
the “ground-truth” velocity distribution 71 (v; x, t) at time ¢ and at location z;.

T

Published as a conference paper at ICLR 2025

Algorithm 1: Hierarchical Rectified Flow Training

The source distributions pg and 7y and the dataset D
while stopping conditions not satisfied do
Sample x¢ ~ pg,x1 ~ D, and vy ~ 7y ; //better to sample a mini-batch
Samplet ~ U[0,1] and 7 ~ U[0,1]; //different t and 7 for each mini-batch
sample
Compute loss following Eq. (8);
Perform gradient update on 6
end

Using both the source velocity sample vy and the target velocity sample v1 (¢, t), and following clas-
sic rectified flow, we introduce a new time-axis 7 € [0, 1] and construct a time-dependent velocity
vr(zg,t) = (1 — 7)vg + Tv1 (24, t) at time ¢ and at location ;. Using it, we obtain the “ground-
truth” acceleration from the time-dependent velocity v, (z¢,t) via ag(z¢, ¢, v7,7) = v, /0T =
vy (g, t) — v9 = T1 — To — Vo

Note, for a specific (x,t), we can get the following ODE induced from the linear interpolation of
the target velocity distribution to convert wg ~ 7o to uy ~ 1 (v; ¢, t),

dur(x4,t) = a(zy, t,ur, 7)dT, With ug ~ mg. @)

Here, CL(!L‘t, t, Ur, T) :Eﬂg,ﬂ'l (vize,t) [Vl - Vb‘v’r :’LL-,—} :Eﬂ'o,p(),pl [Xl —Xo _%‘VT =Ur, X :xt] is
the expected acceleration vector field.

Our approach aims to learn the acceleration vector field a though flow matching for all (x4, t), i.e.,
matching the “ground-truth” acceleration by addressing

iI;f EIUNPO»IlND,tNU[Oal}7U0~W057NU[051] [”(371 — ZTo — UO) - a(xt’ t,vr, 7')”%] : (®)

In practice, we use a parametric model ag(z;,t,v,,7) to match the target “ground-truth” accel-
eration by minimizing the objective w.r.t. the trainable parameters §. Training of the parametric
acceleration model is straightforward. It is summarized in Algorithm 1.

It remains to answer how we use the trained acceleration model ag(x¢, ¢, v, 7) during sampling. We
have the following coupled ODEs induced from the coupled linear interpolations:

{dUT(Zt7 t) = CL(Zt, tv Ur, T)dT7 with UO(Zt, t) ~ TQ, TE [03 1]7 (9)

dzy = up(z, t)dt, with zg ~ pg, t € [0,1].

Those coupled ODEs convert 2y € pg to 21 € p1. After training, the ODEs in Eq. (9) are simulated
using the vanilla Euler method and ag, as detailed in Algorithm 2. We first draw two random
samples: vy ~ my from the source velocity distribution and x¢y ~ po from the source location
distribution. We then integrate the velocity forward to time 7 = 1 to obtain a sample from the
modeled velocity distribution vy (2, 0). Subsequently, we use this sample to perform one integration
step on the location. We continue this procedure until we arrive at a sample x.

Remark. The generation of data is governed by a random differential equation (RDE) with the
random velocity field, where Eq. (9) can be viewed as

dZt = g(Zt, ta ’LLO(Zt, t))dt7 where UO(Ztv t) ~ T, 20 ~ PO, (10)

and g is a deterministic function. The randomness comes from the initial conditions for data and
velocity. This is different from the sampling process governed by a stochastic differential equation
(SDE) used in diffusion models (Song et al., 2021b), where the randomness comes from the Wiener
process and the initial condition for data.

Note that our use of the term acceleration is not due to second-order derivatives of the location, but
rather due to two hierarchically coupled linear processes. We hence refer to this construction as a
hierarchical rectified flow.

It remains to show that the obtained samples indeed follow the target data distribution. We will dive
into this topic next.

® 9 o s W

Published as a conference paper at ICLR 2025

Algorithm 2: Hierarchical Rectified Flow Sampling

Input : The source distributions pg and 7, the number of ¢-discretization steps .J, the number
of T-discretization steps L, and the trained network parameters 6.

Sample zg ~ pg and ug ~ mp;
Compute At = 77 and AT = 715;
forj=1,...,Jdo

fori=1,...,Ldo

‘ Compute U = uj—1 + ae(th71 , tjfl, Ur—1, Tlfl) - AT

end

Compute z; = zj_1 +ur, - At
end

3.3 DISCUSSIONS ON THE GENERATED DATA DISTRIBUTION

We discuss below the property of the hierarchical rectified flow defined in Eq. (9). According to
rectified flow theory, we can generate samples from the velocity distribution using the expected
acceleration field. The following theorem states that the generation process defined in Eq. (9), which
uses the velocity distribution, leads to correct marginals for all times ¢ € [0, 1].

Theorem 2 The time-differentiable stochastic process Z = {Z; : t € [0,1]} generated by Eq. (9)
has the same marginal distribution as the time-differentiable stochastic process X = {X; : t €
[0, 1]} generated by the linear interpolation in Eq. (2).

We defer the proof of Theorem 2 to Appendix C. Intuitively, the marginal preserving property is
because at each time ¢ € [0, 1], we can express z; as the linear interpolation of an 2y ~ pg and an
x1 ~ pp according to Eq. (2).

A key benefit of our approach is that the process Z can be piece-wise straight. Starting with samples
z from p, for ¢ € [0,1], we propagate each sample by v(z, t)At, where v(z,t) ~ 71 (v; 2, t).
Since v(z¢,t) = x1 — xo, where tz1 + (1 — t)zg = 2, the straight path following v(z¢, t) will lead
to a sample from the data distribution. In other words, At can be chosen arbitrarily in the interval
(0,1 — ¢]. In practice, the learned velocity distribution is not perfect. Therefore, instead of one-step
generation from the initial distribution, we choose to propagate the samples for a couple of steps. As
shown in Section 4, we typically only use 2-5 steps in the numerical integration for data generation.
Computationally, straight paths are very attractive as trajectories with nearly straight paths incur
small time-discretization error in numerical simulation.

3.4 EXTENDING TOWARDS HIERARCHICAL RECTIFIED FLOW

Consider the training objective for acceleration matching discussed in Eq. (8), and further consider
the coupled ODE solved when sampling from the constructed process as specified in Eq. (9). It is
straightforward to extend both to an arbitrary depth. Le., instead of modeling the velocity distribu-
tion by matching accelerations, we can model the acceleration distribution by matching jerk or go
even deeper towards snap, crackle, pop, and beyond.

Formally, the training objective of a hierarchical rectified flow of depth D is given by
. 2
lI}fEwoNpo,Ilel,tNU[O,l}D |:H(‘T1 - 1%3}0) - f(:l:t’t)HQ:I N (11)

Here, 1p is the D-dimensional all-ones vector and ¢ = [t(1)7 ... ,t(D)]T is a D-dimensional

vector of time variables drawn from a D-dimensional unit cube U[0,1]P. Moreover, we use
the D-dimensional vector of source distribution samples g = [:cél), e ,xéD)]T, drawn from
a D-dimensional source distribution pg, e.g., a D-dimensional standard Gaussian. We further
use the D-dimensional location vector x; = [xgl), . ,xiD)]T, with its d-th entry given as
2\ = (1 = @)D 4 1@ (2 — 3971 2F). In addition, we refer to f as the functional field
of directions. Note that Eq. (11) is identical to Eq. (3)if D = 1 or Eq. (8) if D = 2.

Published as a conference paper at ICLR 2025

—— analytical 0.5
[5 steps WD=0.143
[10 steps WD=0.074 0.4
1.25 20 steps WD=0.038

1 100 steps WD=0.023

5{ — analytical " ~—— analytical

[5 steps WD=0.095 [5 steps WD=0.157

1 10 steps WD=0.048 10 [10 steps WD=0.088
20 steps WD=0.031 20 steps WD=0.058

1 100 steps WD=0.019 08 [100 steps WD=0.031

—— analytical
0.3{ £ 5steps WD=0.135
[10 steps WD=0.048
20 steps WD=0.011
0.21 =) 100 steps WD=0.040

Density
Density

o—().5 00 05 1.0 15 20 25 : -2 -1 0 1 2 . -4 -3 -2 -1 0 1 2 -2 -1 0 1 2 3 4
Velocity Velocity Velocity Velocity

Figure 3: Numerical estimation of 71 (z;,¢) in HRF2 with different number of v integration steps.
The blue line shows the ground-truth 71, where py is a standard Gaussian and p; is a mixture of two
Gaussians. The 1-Wasserstein distances (WD) for the estimates w.r.t. 1 are shown in the legend.

Before discussing inference we want to highlight the importance of the first term in Eq. (11). Sub-
tracting a large number of Gaussians from a data sample z; leads to a smoothed distribution. This
is another potential benefit of a hierarchical rectified flow formulation.

Given a trained functional field of directions f we sample from the defined process via numerical
simulation according to the following coupled ODE:s:

dZéD) zil:Dfl),t(l;D—l) :f(zht)dt(D), with Z(()D) Np(()D)7

dZéDil) (z§1:D72)7t(1:D—2)) _ ziD) (zél:Dfl)yt(lzD—l)) dtP=D_ with Z(()Dfl) - péDfl)g

axf) = 2 (4, 10)), with 2§ ~ pf!).

(12)
Note that Eq. (12) is identical to Eq. (1) if D = 1 or Eq. (9) if D = 2.

Again, note that our use of the terms acceleration, jerk, etc. is not due to second, third, and higher-
order derivatives of the location, but rather due to hierarchically coupled linear processes.

4 EXPERIMENTS

The studied hierarchical rectified flow (HRF) formulation couples multiple ODEs to accurately
model the multimodal velocity distribution. To assess efficacy of this formulation, we first vali-
date the approach in low-dimensional settings, where the analytical form of the velocity distribution
is straightforward to compute. This allows us to verify that the model can indeed capture the veloc-
ity distribution accurately. We then investigate whether fitting the velocity distribution enhances the
model’s ability to fit the data distribution in generative tasks. We perform experiments on 1D data
(Section 4.1), 2D data (Section 4.2), and high-dimensional image data (Section 4.3) with depth two
HRF (HRF2) models: the models not only fit the velocity distribution but also enhance the quality of
the generative process. We also include results for depth three HRF (HRF3) models on low dimen-
sional data to show the potential for exploring deeper hierarchical structures. Importantly, for all
experiments we report total number of function evaluations (NFEs), i.e., the product of the number
of integration steps at all HRF levels.

4.1 SYNTHETIC 1D DATA

For the 1D experiments, we first consider a standard Gaussian source distribution and a target dis-
tribution represented by a mixture of two Gaussians. Using Eq. (6), we can compute the analytical
form of the velocity distribution. As shown in Fig. 3, our model captures the analytic velocity distri-
bution with high accuracy. As expected, an increasing number of velocity integration steps increases
the accuracy of the estimated velocity. The only exception occurs when ¢ approaches 1. The model
performance deteriorates, and excessive steps accumulate errors, leading to less accurate results.

Next, we examine the data generation quality. We use a mixture of five Gaussians as illustrated
in Fig. 4(a) and compare HRF to a baseline rectified flow (RF). We use the 1-Wasserstein distance
(WD) as a metric to assess the quality of the generated data. As shown in Fig. 4(b), for the same

Published as a conference paper at ICLR 2025

H

0.8

0.6{ — Ground Truth
RF WD=0042
HRF2 WD=0.022
0.4 1 HRF3 WD=0,014

Density
°
>

Time

— RF
w0t —— HRF2Svsteps S

—— HRF210 v steps

—— HRF220 v steps

—— HRF3 02

—2.0-1.5-1.0-0.50.0 0.5 1.0 1.5 2.0 0 25 50 75 100 125 150 175 200
x Total NFEs 0.0 < =

Wasserstein Distance
ime

0.2

0.0

s=- 00

(a) Data distribution (b) Metrics (c) RF trajectories (d) HREF?2 trajectories

Figure 4: Results on 1D example, where py is a standard Gaussian and p; is a mixture of 5 Gaussians.
(a) Histograms of generated samples and p;. (b) The 1-Wasserstein distance vs. NFE. (c) and (d)
The trajectories of particles flowing from source distribution (grey) to target distribution (blue).

10

1

— e
—— HRF25vsteps

4x10{ —— HRF210 v steps

—— HRF220 v steps

—— HRF3

Sliced Wasserstein Distance

0 25 50 75 1ou 125 150 175 200
Total

—— RF

—— HRF2 5V steps
—— HRF210 v steps
—— HRF2 20 v steps
— HRF3

0 25 50 75 100 125 150 175 200
Total

(a) Metrics (b) RF trajectories (c) HRF2 trajectories (d) HRF3 trajectories

o

Sliced Wasserstein Distance

Figure 5: Results on 2D data. Top row: py is a standard Gaussian and p; is a mixture of 6 Gaussians.
Bottom row: pg is a mixture 8 Gaussians and p; is represented by the moons data. (a) Sliced
2-Wasserstein distance with respect to NFE. (b) and (c) show the trajectories (green) of sample
particles flowing from source distribution (grey) to target distribution (blue).

neural function evaluations (NFEs), the HRF models outperform the baseline, producing data distri-
butions with a lower WD, indicating superior quality. In Fig. 4’s legend, the term “v steps” refers to
the number of velocity integration steps. In this 1D experiment, HRF3 demonstrates better perfor-
mance compared to HRF2. More 1D results are provided in Appendix H.1.

Additionally, we observe a fundamental difference in the generated trajectories. Since rectified flow
estimates only the mean of the velocity distribution, it tends to move towards the center of the target
distributions initially. In contrast, the HRF model determines the next direction at each space-time
location based on the current velocity distribution. As shown in Fig. 4(d), the HRF2 trajectories are
nearly linear and can intersect, which permits to use fewer data sampling steps during generation.

For the deep net, we use simple embedding layers and linear layers to first process the space and
time information separately. Afterward, we concatenate these representations. This combined input
is then passed through a series of fully connected layers, allowing the model to capture complex
interactions and extract high-level features essential for accurate velocity prediction. We use the
same architecture for the baseline model but increase the dimension of the hidden layers to opti-
mize its performance. In contrast, the HRF2 model contains only 74,497 parameters compared to
297,089 parameters for the baseline model. This demonstrates the potential efficiency of HRF in
handling higher-dimensional data while maintaining a more compact architecture. More details of
the experiments are provided in Appendix F.

4.2 SYNTHETIC 2D DATA

For the 2D experiments, we consider two settings: 1) a standard Gaussian source distribution and a
target distribution consisting of a mixture of six Gaussians; and 2) a mixture of eight Gaussians as
the source distribution and the moons dataset as the target distribution. We employ the same network
architecture as used in the 1D experiments. Due to the 2D data, we now have 76,674 parameters for

Published as a conference paper at ICLR 2025

—— RF (1.08M) 35 —— RF(35.75M) —— RF (37.06M)
17.5 —— HRF2 (1.07M) —— HRF2 (44.81M) —— HRF2 (46.21M)

FID

10 100 10 100 10 100
Total NFEs Total NFEs Total NFEs

(a) MNIST (b) CIFAR-10 (c) ImageNet-32

Figure 6: Experimental results on (a) MNIST, (b) CIFAR-10, and (c) ImageNet-32 datasets. Top
row: samples of generated images, bottom row: FID scores with respect to total NFEs.

the HRF2 model and 329,986 parameters for the baseline RF model. We measure the quality of data
generation using the sliced 2-Wasserstein distance (SWD). Fig. 5 shows the results. It is evident
that on these more complex datasets, the performance gap between an HRF model and the rectified
flow baseline is more pronounced. The trajectories demonstrate similar patterns to those observed in
the 1D experiments: HRF2 produces significantly straighter paths, while the rectified flow baseline
often exhibits large directional changes. Additionally, the HRF models consistently achieve higher
quality in data generation compared to the baseline. HRF3 outperforms HRF2 for generating the
moon data from a mixture of 8 Gaussians. However, HRF2 works better for the simpler mixture
of Gaussian target. There is room to improve the training and scheduling of the integration steps
among different layers for deeper HRF models.

4.3 IMAGE DATA

In addition to low-dimensional data, we also conduct experiments on high-dimensional image
datasets including MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky, 2009), and ImageNet-
32 (Deng et al., 2009). We employ the Fréchet Inception Distance (FID) as the metric for evaluating
image generation quality. For the baseline, we use the same U-Net architecture as Lipman et al.
(2023) and successfully reproduced the state-of-the-art results across all datasets. The HRF model
builds upon this U-Net structure. We follow the parameter settings and training procedures from
Tong et al. (2024) and Lipman et al. (2023). Further details on the architecture and training setup
are provided in Appendix F.

As shown in Fig. 6, for the same total NFEs, the HRF2 model demonstrates better performance on
MNIST and CIFAR-10, and on-par performance on ImageNet-32 when compared to the baseline.

5 RELATED WORK

Generative Modeling: GANs (Goodfellow et al., 2014; Arjovsky et al., 2017), VAEs (Kingma &
Welling, 2014), and normalizing flows (Tabak & Turner, 2013; Rezende & Mohamed, 2015; Dinh
etal., 2017; Huang et al., 2018; Durkan et al., 2019) are classic methods for learning deep generative
models. GANSs excel in generating high-quality images but face challenges like training instability
and mode collapse due to their min-max update mechanism. VAEs and normalizing flows rely on
maximum likelihood estimation (MLE) for training, which necessitates architectural constraints or
special approximations to ensure manageable likelihood computations. VAEs often employ a con-
ditional Gaussian distribution alongside variational approximations, while the discrete normalizing
flows utilize specifically designed invertible architectures and require costly Jacobian matrix cal-
culations. Extending the discrete normalizing flow to continuous cases enabled the Jacobian to be
unstructured yet estimatable using trace estimation methods (Hutchinson, 1990; Chen et al., 2018;
Grathwohl et al., 2019). However, using maximum likelihood estimation (MLE) for this mapping

Published as a conference paper at ICLR 2025

requires costly backpropagation through numerical integration. Regularizing the path can mini-
mize solver calls (Finlay et al., 2020; Onken et al., 2021), but it doesn’t resolve the fundamental
optimization challenges. Rozen et al. (2021); Ben-Hamu et al. (2022) considered simulation-free
training by fitting a velocity field, but still present scalability issues (Rozen et al., 2021) and biased
optimization (Ben-Hamu et al., 2022).

Recent research has utilized diffusion processes, particularly the Ornstein-Uhlenbeck (OU) process,
to link the target distribution p; with a source distribution py. This involves a stochastic differential
equation (SDE) that evolves over infinite time, framing generative model learning as fitting the
reverse evolution of the SDE from Gaussian noise to p; (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021b). This method learns the velocity field by estimating the score function
Vlog(p:(x)) using the Fischer divergence instead of the maximum likelihood estimation (MLE)
objective. Although diffusion models have demonstrated significant potential for modeling high-
dimensional distributions (Rombach et al., 2022; Hoogeboom et al., 2022; Saharia et al., 2022), the
requirement for infinite time evolution, heuristic time step parameterization (Xiao et al., 2022), and
the unclear significance of noise and score (Bansal et al., 2024; Lu et al., 2022) pose challenges.
Notably, the score-based diffusion models typically require a large number of time steps to generate
data samples. In addition, calculating the actual likelihoods necessitates using the ODE probability
flow linked to the SDE (Song et al., 2021b). These highlight the need for further exploration of
effective ODE-driven methods for learning the data distribution.

Flow Matching: Concurrently, Liu et al. (2023); Lipman et al. (2023); Albergo & Vanden-Eijnden
(2023) presented an alternative to score-based diffusion models by learning the ODE velocity
through a time-differentiable stochastic process defined by interpolating between samples from the
source and data distributions, i.e., z; = ¥4 (xg, x1), wWith xg ~ pg and z1 ~ p1, instead of the OU
process. This offers greater simplicity and flexibility by enabling precise connections between any
two densities over finite time intervals. Liu et al. (2023) concentrated on a linear interpolation with
Ye(xo,21) = (1 — t)xo + txy, i.e., straight paths connecting points from the source and the target
distributions. Lipman et al. (2023) introduced the interpolation through the lens of conditional prob-
ability paths leading to a Gaussian. Extensions of Lipman et al. (2023) were detailed by Tong et al.
(2024), generalizing the method beyond a Gaussian source distribution. Albergo & Vanden-Eijnden
(2023); Albergo et al. (2023) introduced stochastic interpolants with more general forms.

Straightening Flows: Liu et al. (2023) outlined an iterative process called ReFlow for coupling the
points from the source and target distributions to straighten the transport path and demonstrated that
repeating this procedure leads to an optimal transport map. Other related studies bypass the iterations
by modifying how noise and data are sampled during training. For example, Pooladian et al. (2023);
Tong et al. (2024) calculated mini-batch optimal transport couplings between the Gaussian and data
distributions to minimize transport costs and gradient variance. Note that these approaches are
orthogonal to our approach and can be adopted in our formulation (see Appendix H).

Modeling Velocity Distribution: Concurrently, Guo & Schwing (2025) also study a method to
model multi-modal velocity vector fields. In this paper, we discuss use of a hierarchy of ordinary
differential equations. Differently, Guo & Schwing (2025) study how to use a lower-dimensional
latent space to enable modeling of the velocity distribution via a variational approach. The hierarchy
of ordinary differential equations permits to more accurately model the velocity distribution while
use of the variational approach enables to capture semantics.

6 DISCUSSION & CONCLUSION

We study a hierarchical rectified flow formulation that hierarchically couples linear ODEs, each
akin to a classic rectified flow formulation. We find this formulation to accurately model multi-
modal distributions for velocity, etc., which in turn enables integration paths to intersect during data
generation. As a consequence, integration paths are less curved leading to compelling results with
fewer neural function evaluations. Currently, our sampling process is relatively simple, relying on
the Euler method for multiple integrations. We have only performed a basic grid search regarding
possible integration schedules and we have not explored other solvers. We suspect, better strategies
exist and we leave their exploration to future work.

Acknowledgements: Work supported in part by NSF grants 1934757, 2008387, 2045586, 2106825,
MRI 1725729, NIFA award 2020-67021-32799, and the Alfred P. Sloan Foundation.

10

Published as a conference paper at ICLR 2025

REFERENCES

M. Albergo and E. Vanden-Eijnden. Building normalizing flows with stochastic interpolants. In
Proc. ICLR, 2023.

M. Albergo, N. Boffi, and E. Vanden-Eijnden. Stochastic interpolants: A unifying framework for
flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In Proc.
ICML, 2017.

A. Bansal, E. Borgnia, H.-M. Chu, J. Li, H. Kazemi, F. Huang, M. Goldblum, J. Geiping, and
T. Goldstein. Cold diffusion: Inverting arbitrary image transforms without noise. In Proc.
NeurlPS, 2024.

H. Ben-Hamu, S. Cohen, J. Bose, B. Amos, M. Nickel, A. Grover, R. Chen, and Y. Lipman. Match-
ing normalizing flows and probability paths on manifolds. In Proc. ICML, 2022.

P. Bromiley. Products and convolutions of gaussian probability density functions. Tina-Vision Memo,
2003.

R. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary differential equations. In
Proc. NeurIPS, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real nvp. In Proc. ICLR, 2017.

John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of
computational and applied mathematics, 6(1):19-26, 1980.

C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios. Neural spline flows. In Proc. NeurIPS,
2019.

C. Finlay, J.-H. Jacobsen, L. Nurbekyan, and A. Oberman. How to train your neural ode: the world
of jacobian and kinetic regularization. In Proc. ICML, 2020.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Proc. NeurIPS, 2014.

W. Grathwohl, R. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud. FFJORD: Free-form con-
tinuous dynamics for scalable reversible generative models. In Proc. ICLR, 2018.

W. Grathwohl, R. Chen, J. Bettencourt, and D. Duvenaud. Scalable reversible generative models
with free-form continuous dynamics. In Proc. ICLR, 2019.

P Guo and A. G. Schwing. Variational Rectified Flow Matching. In
https://arxiv.org/abs/2502.09616, 2025.

Z. Guo, J. Liu, Y. Wang, M. Chen, D. Wang, D. Xu, and J. Cheng. Diffusion models in bioinformat-
ics and computational biology. Nature Reviews Bioengineering, 2024.

Xiaoying. Han. Random Ordinary Differential Equations and Their Numerical Solution. Springer,
2018.

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Proc. NeurIPS, 2020.

E. Hoogeboom, V. G. Satorras, C. Vignac, and M. Welling. Equivariant diffusion for molecule
generation in 3d. In Proc. ICML, 2022.

C.-W. Huang, D. Krueger, A. Lacoste, and A. Courville. Neural autoregressive flows. In Proc.
ICML, 2018.

11

Published as a conference paper at ICLR 2025

M. Hutchinson. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing
splines. Communications in Statistics-Simulation and Computation, 1990.

I. Kapelyukh, V. Vosylius, and E. Johns. DALL-E-Bot: Introducing web-scale diffusion models to
robotics. IEEE Robotics and Automation Letters, 2023.

D. Kingma and M. Welling. Auto-Encoding Variational Bayes. In Proc. ICLR, 2014.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 1998.

Y. Lipman, R. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow matching for generative modeling.
In Proc. ICLR, 2023.

X. Liu, C. Gong, and Q. Liu. Flow straight and fast: Learning to generate and transfer data with
rectified flow. In Proc. ICLR, 2023.

C. Lu, K. Zheng, F. Bao, J. Chen, C. Li, and J. Zhu. Maximum likelihood training for score-based
diffusion ODEs by high order denoising score matching. In Proc. ICML, 2022.

D. Onken, S. W. Fung, X. Li, and L. Ruthotto. OT-Flow: Fast and accurate continuous normalizing
flows via optimal transport. In Proc. AAAI, 2021.

A.-A. Pooladian, H. Ben-Hamu, C. Domingo-Enrich, B. Amos, Y. Lipman, and R. Chen. Multisam-
ple flow matching: Straightening flows with minibatch couplings. In Proc. ICML, 2023.

D. Rezende and S. Mohamed. Variational inference with normalizing flows. In Proc. ICML, 2015.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis
with latent diffusion models. In Proc. CVPR, 2022.

N. Rozen, A. Grover, M. Nickel, and Y. Lipman. Moser flow: Divergence-based generative modeling
on manifolds. In Proc. NeurIPS, 2021.

C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, K. Ghasemipour, R. Gontijo Lopes,
B. Karagol Ayan, T. Salimans, J. Ho, D. J. Fleet, and M. Mohammad Norouzi. Photorealistic
text-to-image diffusion models with deep language understanding. In Proc. NeurIPS, 2022.

J. Skilling. The eigenvalues of mega-dimensional matrices. Maximum Entropy and Bayesian Meth-
ods, 1989.

J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In Proc. ICML, 2015.

J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In Proc. ICLR, 2021a.

Y. Song, J. Sohl-Dickstein, D. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based generative
modeling through stochastic differential equations. In Proc. ICLR, 2021b.

Y. Song, L. Shen, L. Xing, and S. Ermon. Solving inverse problems in medical imaging with score-
based generative models. In Proc. ICLR, 2022.

E. Tabak and C. Turner. A family of nonparametric density estimation algorithms. Communications
on Pure and Applied Mathematics, 2013.

A. Tong, N. Malkin, G. Huguet, Y. Zhang, J. Rector-Brooks, K. Fatras, G. Wolf, and Y. Bengio. Im-
proving and generalizing flow-based generative models with minibatch optimal transport. TMLR,
2024.

Z. Xiao, K. Kreis, and A. Vahdat. Tackling the generative learning trilemma with denoising diffusion
GAN:Ss. In Proc. ICLR, 2022.

12

Published as a conference paper at ICLR 2025

APPENDIX: TOWARDS HIERARCHICAL RECTIFIED FLOW

The appendix is organized as follows. We first provide a proof of Theorem 1 (the velocity distribu-
tion given ;) in Appendix A. We then provide a proof of Corollary 1 (velocity distribution for the
special case of a mixture of Gaussians target distribution) in Appendix B. Afterwards we provide
the proof of Theorem 2 (correctness of the marginals) in Appendix C. Then we discuss density es-
timation for HRF models in Appendix D. Next we provide more details regarding the hierarchical
rectified flow formulation in Appendix E. Subsequently, we discuss experimental and implemen-
tation details in Appendix F. Finally, we provide additional ablation studies in Appendix G and
additional experimental results in Appendix H.

A PROOF OF THEOREM 1

Proof of Theorem 1: The velocity at location z; and time ¢ is v = x1 — 29 = % The last
equality holds because (1 — t)xg + tz; = x;. Recall that for a random variable Y = aX +
with a,, 8 € R and o # 0, we have py (y) = épx (%) Since the random variable V" is a linear

transform of the random variable X7, we get
m1(v; 24, 1) = pyx, (v]2e) = (1= 8)px, x, (1= t)v + z¢2s) - (13)

Therefore, we need to evaluate px, X, - Using Bayes’ formula,
Px,|x, ($t|$1)PX ($1)
Py, (@ |zg) = =4 S (14)
px, (T4)

assuming that px, (z;) # 0. It is undefined if px, (z¢) # 0. Now it remains to find px,|x, and we
have

-1 1—1
Plugging Eq. (14) and Eq. (15) into Eq. (13) and using 1 = x; + (1 — t)v, we have

1 T —tx
Px,|x, (w¢|x1) Zp(17t)xo+m1($t) = 1 Px, (L 1) . (15)

T — tv z+ (1 —t)v
T (v @, t) = pyx, (v]ze) — Pxo(T Jpx, (@ + (o)
pXt(l‘t)

_ po(xt—tv)pl(xt—&-(l—t)v). (16)

pi(we)

Since the random variable X, is a linear combination of two independent random variables X and
X1 as defined in Eq. (2), we have

pe(xt) = P1—1)x, (Tt) * Pex, (v1) = /p(l—t)Xo (2)pex, (¢ — 2)dz

_ 1 z 1 Ty — 2 d
= 71_tho 1-¢ thI P z

1 Tt xt)
= LY, fort € (0,1). 17
Att =0, pr = po since x; = xo. Att = 1, py = p1, since x; = x1. m1(v; x4, t) is undefined if
pt(x¢) = 0. This completes the proof. |

B PROOF OF COROLLARY 1

Bromiley (2003) summarizes a few useful properties for the product and convolution of Gaussian
distributions. We state the relevant results here for our proof of Corollary 1.

Lemma 1 For the linear transform of a Gaussian random variable, we have

_ 2
N(aw+b;u,a2>=1/v(x;“ab i)

L
a a?

13

Published as a conference paper at ICLR 2025

Lemma 2 For the convolution of two Gaussian distributions, we have
N (@5 p1,07) % N (5 p2, 03) = N'(5 p1 + pia, 05 + 03).

Lemma 3 For the product of two Gaussian distributions, we have

1 _ 2 2 2 2 2
N (@; p1, 07)-N (5 p2, 03) = —)exp {—M} N <x; p105 201 010)) ,

2 2 2 2 ’ 2 2
2n(0% + 03 o1 +03 oy toy 01+ 03

The proofs of the Lemmas are detailed by Bromiley (2003).

Proof of Corollary 1: We first compute the density of X, using Theorem 1 with the specific py and
pP1:

o = sy (125) o (5

K
t(11—t)N<1—t) (2“”‘/\/(’“"’0’2“)> (18)

By applying Lemma 1 and Lemma 2 to Eq. (18), we get

K
pe(ze) =N (240, (1 — t)? <Z weN (243 tpg, t ak)>

k=1

W (./\/ (xt;O, (1-— t)2) * N (xt;tuk,tza,z))

M 11>

weN (45 tug, 67 4) - (19)

=
Il
—

Using Theorem 1 and Eq. (19), we have
N (2 — tv;0,1) (Zkl,(zl wpN (2 + (1 = t)v; py, 0,%))
>y W N (l“t% thw, &if,t)

a N (v %, %) (Zk 1wkN(P 7(10215)2))
- Zk’:l wp N (ﬂft;t#k/a&k/¢>

Zk L weN (s t7t2)N(U o= ft’(liit)"’)

t(1—1t) Zk, L W N (;vt;tuk/ﬁ,%,_’t)
S b ity o (g) A (v (g e)
t1 =) Sn_ wp N (mt; g, 6,%%)
Zle wN (xt;tuk,ffit) N (U; (14)(%(;2“)“02“’ ‘Z—i)

Pvix, (v|ze) =

< k.t Tkt
Yy wirN (xt;t'“k”&/%xt)
K
1—t)(ur — toj P
:Zwk,t/\/ v;()(Uk~2$t)+ kat7 gk _ (20)
1 Okt Okt

The equality a holds by applying Lemma 1. The equality b is derived by applying Lemma 3 to the
product of two Gaussian distributions. Simplifying the expressions, we get equality ¢ and the final
expression of py| x, (v|z). This completes the proof. [|

14

Published as a conference paper at ICLR 2025

C PROOF OF THEOREM 2

According to Theorem 3.3 of Liu et al. (2023), the ODE in Eq. (7) generates the samples from the
ground-truth velocity distributions at space time location (¢, t). In other words, the random variable
V~m 1-

Now we consider the characteristic function of Z; 4 ar = Z;+V At fort € [0, 1] and At € [0,1—1¢],
assuming that Z; has the same distribution as X;. If the characteristic functions of Z; A; and X;4 A
agree, then Z;4 A+ and X;4 A, have the same distribution.

To show this, we evaluate the characteristic function of Z;, Ay,

E |:e7,<k7Zt+At>:| — Ept . [eﬂk,Xt-ﬁ—VAt)}

://ez<k’“+”m>7r1(v;xt,t)pt(xt)dvdxt

o //ez(k,rH—UAt) po(@ — tv)pr(xe + (1 — t)v)
()

= //el<k’(r‘+”m)>p0(mt —tv)p1(zr + (1 — t)v)dvda,

g//ez(k,(lftht)onHAt)xl)po(xo)pl(xl)dxodxl

=E,, o, [e!Xesa0] @

pe(ze)dvday

We use the notation (-, -) to denote the inner product. The equality a is valid due to Theorem 1. The
equality b holds because o = x¢—tv and 21 = x4 (1 —t)v with the linear interpolation. Therefore,
we find that Z; A; and X4 A follow the same distribution. In addition, since Z and X follow the
same distribution pg, we can conclude that Z; and X; follow the same marginal distribution at ¢ for
t € [0,1]. This completes the proof.

D DENSITY ESTIMATION

In the following, we describe two approaches for density estimation. The resulting procedures are
summarized in Algorithm 3 and Algorithm 4. To empirically verify the correctness of the density
estimation procedures, we train an RF baseline and an HRF2 model using a bimodal Gaussian target
distribution and a standard Gaussian source distribution (see Appendix H.1 for more details). In
Fig. 7 we compare 1) the ground truth density, 2) the density estimated for the RF baseline model,
and 3) the densities estimated for the HRF2 model with both procedures. We also report bits per
dimension (bpd) for experiments on the 1D 1IN — 2\, 2D 8/ — moon, CIFAR-10, and ImageNet-
32 data. The results are shown in Table 1. We observe that HRF2 consistently outperforms the RF
baseline.

To estimate the density, according to Eq. (4) in Theorem 1, we have

21 — &t

log p1(21) = log w1 (u; 2¢,t) + log pe(2¢) — log po (2 — tu), with u = (22)

This implies that for any given ¢ € [0, 1], we can use Eq. (22) to estimate the density for a generated
sample z1. We can choose z; using the linear interpolation in Eq. (2) with zg ~ pg.

For t = 0, we observe that p;(z1) = 71 (21 — 20; 20, 0), where 2o ~ po. In this case, we can directly
evaluate the likelihood of the generated sample via the velocity distribution. We discuss evaluation
of the likelihood below. The procedure to compute the density is summarized in Algorithm 3.

For t = 1, the right-hand side of Eq. (22) becomes log p1 (z1) because log 71 (u; 21, 1) = log po (21—
u), which cancels out with the last term in Eq. (22). Hence, ¢ = 1 can’t be used to estimate the
density.

For ¢t € (0,1), we need to evaluate p;(z;) to estimate the likelihood of z;. Considering a one step
linear flow from 2 at time O to z; at ¢, we have z; = zo + vt and p;(2¢|20) = %m(v; 20, 0). Using

15

Published as a conference paper at ICLR 2025

Algorithm 3: Density Estimation 1 (¢t = 0)

Input : Generated sample z; and the source distribution pg.
Sample zg ~ po ;

Compute u = 21 — 2p

Compute p1(z1) = 71 (u; 20, 0) according to Eq. (24) ;
(Optional) Compute py(21) = + vazl 71 (u(?; z((f), 0
Output: p1(z1)

), with u® = z; — 2{7 and 2" ~ py ;

Algorithm 4: Density Estimation 2 (¢ € (0, 1))

Input : Generated sample z; and the source distributions pg and .

Draw random ¢ ~ Unif(0,1) ;

Sample zg ~ po ;

Compute z; = tz; + (1 —t)zp and u = 5=+ ;

Evaluate pg(z; — tu), pt(2¢) according to Eq. (23), and 71 (u; 2¢, t) according to Eq. (24) ;
Compute the log likelihood according to Eq. (22) ;

Output: py(z1)

it, the density at time ¢ can be computed according to

N (1)
1 2t — 2 1 1 2t — 2 i
pt(2t) :/;m <tto;zo,0> po(20) dzo = N;gm <tto;zé),0> , (23)

where zéi) ~ po. Algorithm 4 outlines the procedure for the likelihood computation with a randomly

drawn t € (0, 1). Optionally, we can average across randomly drawn ¢ € (0, 1).

To evaluate the (log-)likelihood of a velocity w at location z; and time ¢, which is needed in both
cases (t = O and ¢t € (0,1)), we follow the approach introduced by Chen et al. (2018); Song et al.
(2021b) and numerically evaluate

0
log m1 (u; ¢, t) = log mo (uo; 2¢,t) — / Vu, - ao(zt, t,ur, 7)dr. (24)
1

Here, the random variable u, as a function of 7 can be obtained by solving the ODE in Eq. (7)
backward with a fixed v at 7 = 1. The term V,,_ - ag(z¢, t, u, 7) is computed by using the Skilling-
Hutchinson trace estimator E,, () [e7 V., a(z, t, ur, 7)e] (Skilling, 1989; Hutchinson, 1990; Grath-
wohl et al., 2018). The vector-Jacobian product eTVUTa(zt, t,ur,7) can be efficiently computed
by using reverse mode automatic differentiation, at approximately the same cost as evaluating
(Z(Zt, tv Ur, T)'

In our experiments, we use the RK45 ODE solver (Dormand & Prince, 1980) provided by the
scipy.integrate.solve_ivp package. We use atol = 1le—5 and rtol = le—5. When imple-
menting Algorithm 4, we use N = 1000 to evaluate p;(z;).

As mentioned above, to empirically verify the correctness of the density estimation procedures, we
train an RF baseline and an HRF2 model using a bimodal Gaussian target distribution and a standard
Gaussian source distribution. We compare the density estimated for the RF baseline model and the
densities estimated for the HRF2 model with both Algorithm 3 and Algorithm 4. Fig. 7(a) compares
the results obtained with Algorithm 3 to the RF baseline and the ground truth. Fig. 7(b) compares
the density estimated for different times ¢ with Algorithm 4 to the RF baseline and the ground truth.
Regardless of the choice of algorithm and time, we observe that the HRF2 model obtains a better
estimation of the likelihood. Importantly, both procedures provide a compelling way to estimate
densities.

In Table 1, we report bits per dimension (bpd) for experiments on the 1D 1N — 2A/, 2D 8N —
moon, CIFAR-10, and ImageNet-32 data. For 1D data, zy = 0 suffices for compelling results. For
higher dimensional data, we use 20 samples of 2 as shown in the optional line 4 of Algorithm 3 to
compute the bits per dimension. We observe that HRF2 consistently outperforms the RF baseline.

16

Published as a conference paper at ICLR 2025

1.4 — GT 1.4 — GT
— RF —— RF
1.2 HRF2 1.2 HRF2 t=0.2
—— HRF2t=0.4
Lo Lo —— HRF2t=0.6
bl o
o o
208 208
e g
=06 0.6
04 0.4
0.2 k \ 0.24
0.0 0.0
=15 -1.0 -0.5 0.0 0.5 1.0 15 -15 -1.0 -0.5 0.0 0.5 1.0 15
Data Data
(a) Algorithm 3 (b) Algorithm 4

Figure 7: Density estimation results and comparison to ground truth. Irrespective of the choise of
algorithm and the choice of time, we observe compelling density estimation results. We also note
that the HRF2 model improves upon the RF baseline.

NLL (BPD)) 1N — 2N 8N — moon CIFAR-10 ImageNet-32

Baseline (RF) 0.275 2.119 2.980 3.416
Ours (HRF2) 0.261 2.113 2.975 3.397

Table 1: Density estimation on 1D 1A — 2/, 2D 8N — moon, CIFAR-10, and ImageNet-32 data
using bits per dimension (bpd). We observe a consistently better density estimation with the HRF2
model.

E HIERARCHICAL RECTIFIED FLOW FORMULATION DETAILS

In this section, we show how Eq. (8) can be derived from Eq. (11). For convenience we re-state
Eq. (11):

0 Bo 1o 010,17 {H(zl —1%a0) — f(a;t,t)Hﬂ . 25)

For D = 2, we note that 21 — 1%&:0 is equivalent to 1 — mgl) — 2@, Letting o = 21 and

0
2 . "
vy = 1;[()). we obtain z, — 1Exq =21 — 29 — vo.

Further note that we obtain the time variables ¢ = [t(1),+(2)] = [t,7] ~ U][0,1]?, since ¢ and T are

drawn independently from a uniform distribution U[0, 1]. Also, x¢ = [xél),xgz)] = [zo,v0] ~ po,
where x(and vy are drawn independently from standard Gaussian source distributions pg and 7
because pg is a D-dimensional standard Gaussian.

Based on the general expression xid) =(1- t(d))xéd) + D (2 — ZZ: xék)) and the previous
results, we have z; = xil) =(1- t(l))mgl) +tWa; = (1 — t)zo + tog and v, = xf) =

(1- t(2))x82) + @) (zy — :cgl) = (1 — 7)vg + 7v;. This is identical to the computation of z; and
v,. Combining all of these results while renaming the function from f to a, we arrive at

igfEIEONPO7.’IJ1N'D,tNU[O,l},’UoNﬂ'g,TNU[O,l} [”(Tl — 2o — 7)0) - (1(.’[3,5, t,vr, T)Hg] . (26)

This program is identical to the one stated in Eq. (8).

F EXPERIMENTAL AND IMPLEMENTATION DETAILS

F.1 Low DIMENSIONAL EXPERIMENTS

For the 1D and 2D experiments, we use the same neural network. It consists of two parts. The first
part processes the space and time information separately using sinusoidal positional embedding and

17

Published as a conference paper at ICLR 2025

linear layers. In the second part, the processed information is concatenated and passed through a
series of linear layers to produce the final output. Compared to the baseline, our HRF model with
depth D takes D times more space and time information as input. Therefore, the first part of the
network has D times more embedding and linear layers to handle spatial and temporal information
from different depths. However, by adjusting the dimensions of the hidden layers, we reduced the
network size to just one-fourth of the baseline, while achieving superior performance. For each
dataset in the low-dimensional experiments, we use 100,000 data points for training and another
100,000 data points for evaluation. For each set of experiments, we train five different models using
five random seeds. During the evaluation, we performed a total of 125 experiments and averaged
the results to ensure the fairness and validity of our findings.

F.2 HIGH DIMENSIONAL EXPERIMENTS

In the high-dimensional image experiments, we used the U-Net architecture described by Lipman
et al. (2023) for the baseline model. To handle extra inputs v and 7, we designed new U-Net-based
network architectures for MNIST, CIFAR-10, and ImageNet-32 data.

MNIST. For MNIST, we use a single U-Net and modify the ResNet block. Similar to the neural
network used in our low-dimensional experiments, each ResNet block has two parts. In the first
part, we handle two sets of space-time information, i.e., (x4, t) and (v, 7), separately with 2 distinct
pathways: convolutional layers for spatial data and linear layers for time embeddings. In the second
part, all the spatial data and time embeddings are added together and passed through a series of
linear layers to capture the space-time dependencies. For a fair evaluation, we adjusted the number
of channels such that the model sizes approximately match (ours: 1.07M parameters vs. baseline:
1.08M parameters). We note that the HRF formulation significantly outperforms the baseline. The
results were shown in Fig. 6. More results are provided in Appendix H.3.

CIFAR-10. For CIFAR-10, we use two U-Nets with the same number of layers but different channel
sizes. We use a larger U-Net with channel size 128 to process the velocity v, and time 7. We use
another smaller U-Net with channel size 32 to process the location z; and time ¢t. We merge the
output of each ResNet block of the smaller U-Net with the corresponding ResNet block of the bigger
U-Net. The size of this new U-Net structure is 1.25x larger than the baseline (44.81M parameters in
our model and 35.75M parameters in the baseline). Our model achieves a slightly better generation
quality (see Fig. 6 in Section 4 and Table 7 in Appendix H.3).

ImageNet-32. For ImageNet-32, we adopt the same architectural setup as for CIFAR-10 but modify
the attention resolution to “16,8” instead of just “16” to better capture the increased multimodality
of the ImageNet-32 dataset. Our U-Net model has a parameter size of 46.21M, compared to 37.06M
for the baseline. It demonstrates slightly improved generation quality (see Fig. 6 in Section 4 and
Table 7 in Appendix H.3).

For training, we adopt the procedure and parameter settings from Tong et al. (2024) and Lipman
et al. (2023). We use the Adam optimizer with 81 = 0.9, S = 0.999, and ¢ = 10~8, with no
weight decay. For MNIST, the U-Net has channel multipliers [1, 2, 2], while for CIFAR-10 and
ImageNet-32, the channel multipliers are [1,2,2,2]. The learning rate is set to 1 x 10~* with a
batch size 128 for MNIST and CIFAR-10. For ImageNet-32, we increase the batch size to 512 and
adjust the learning rate to 2 x 10~*. We train all models on a single NVIDIA RTX A6000 GPU. For
MNIST, we train both the baseline and our model for 150,000 steps while we use 400,000 steps for
CIFAR-10.

G ABLATION STUDIES

G.1 ABLATION STUDY FOR NFE

The sampling process of HRF with depth D involves integrating D ODEs using Euler’s method.
The total number of neural function evaluations (NFE) is defined as NFE = [] a N (d) where N ()
is the number of integration steps at depth d. Note, for a constant NFE budget, varying the N (%)
values can lead to different results. Therefore, we conduct an ablation study to understand suitable
choices for N(4).

18

Published as a conference paper at ICLR 2025

Total NFEs Sampling Steps A" — 2N N — 5N 2N — 2N N — 6/N(2D) 8N — moon

1-WD 1-WD 1-WD 2-SWD 2-SWD
100 (1,100) 0.020 0.031 0.045 0.070 0.172
100 (2,50) 0.025 0.019 0.011 0.037 0.107
100 (5,20) 0.022 0.020 0.010 0.045 0.119
100 (10,10) 0.025 0.019 0.017 0.053 0.163
100 (20,5) 0.026 0.017 0.030 0.062 0.201
100 (50,2) 0.047 0.030 0.075 0.081 0.222
100 (100, 1) 0.032 0.030 0.050 0.085 0.177

Table 2: HRF2 performance for low dimensional experiments under the same NFE = 100 budget
with different choices of sampling steps. Sampling steps (J, L) indicates that we use .J steps to
integrate and L steps to integrate v. 1-WD refers to the 1-Wasserstein distance and 2-SWD refers
to the Sliced 2-Wasserstein distance. Bold for the best. Underline for the runner-up.

4.0 1
— RF
3.51 —— HRF2
—— HRF3
3.0 —— HRF4
HRF5
2.5
@
3
2.0 ||
15l | AR ST Ao YO A I
N LR] R R Y AP RANT I L) LW R R TR AV S ASRT S Y YO) A
1.0
0.5

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

Figure 8: Training losses of HRF with different depths on 1D data, a standard Gaussian source
distribution to a mixture of 2 Gaussians target distribution. We observe training to remain stable.

As shown in Fig. 3, increasing the number of integration steps improves the sampling of the velocity
distribution. However, beyond a certain threshold, the benefit of additional steps does not justify the
increased computational cost. Table 2 further illustrates that, for a fixed NFE budget, a compelling
strategy is to allocate a sufficient number of steps to accurately sample v for a precise velocity
distribution while using fewer steps to integrate over .

G.2 ABLATION STUDY FOR DEPTH

Our HRF framework can be extended to an arbitrary depth D. Here, we compare the training loss
convergence of HRF with depths ranging from 1 to 5, where HRF1 corresponds to the baseline
RF. As illustrated by the training losses shown in Fig. 8, training stability remains consistent across
different depths, with higher-depth HRFs demonstrating comparable stability to lower-depth models.
Importantly, note that Fig. 8 mainly serves to compare convergence behavior and not loss magnitudes
as those magnitudes reflect different objects, i.e., velocity for a depth of 1, acceleration for a depth of
2, etc. Moreover, the deep net structure for the functional field of directions f depends on the depth,
which makes a comparison more challenging. Table 3 and Table 4 indicate that increasing the depth
results in manageable model size, training time, and inference time. These trade-offs are justified
by the significant performance improvements observed in Fig. 4 and Fig. 5. See Appendix H.1 for
details regarding the training data.

19

Published as a conference paper at ICLR 2025

Training 1D data 2D data
RF (0.30M) HRF2 (0.07M) HRF3 (0.67M) RF (0.33M) HRF2 (0.08M) HRF3 (0.71M)
Time (x 1072 s/iter) 1.292 0.736 2.202 1.503 0.737 2.252
Memory (MB) 2011 1763 2417 2091 1803 2605
Param. Counts 297,089 74,497 673,793 329,986 76,674 711,042

Table 3: Computational requirements for training on synthetic datasets. All models in this table are
trained for 15000 iterations with a batch size of 51200.

Inference Time (s) 1D data 2D data
Total NFEs RF (0.30M) HRF2 (0.07M) HRF3(0.67M) RF (0.33M) HRF2 (0.08M) HRF3 (0.71M)
5 0.030+0.014 0.014 +0.005 0.037+£0.030 0.035+0.017 0.017 £ 0.006 0.041 £ 0.034
10 0.069 £0.020 0.033 +0.000 0.128 £0.001 0.078 £0.025 0.039 £+ 0.000 0.145 £ 0.001
50 0.372+£0.024 0.164 +0.000 0.642 £0.001 0.440+0.001 0.193 +0.000 0.727 £ 0.001
100 0.755+£0.001 0.327 £ 0.000 1.291£0.002 0.884 +£0.001 0.385 +0.000 1.455 £ 0.003

Table 4: Inference time comparison for synthetic data using a varying NFE budget. For HRF2, we
used sampling step combinations: (1, 5), (2,5), (5, 10), (10, 10). For HRF3, we used sampling step
combinations: (1,1,5),(1,2,5),(1,5,10), (2,5, 10). For all experiments, we set our batch size to
100,000.

H ADDITIONAL EXPERIMENTAL RESULTS

H.1 ADDITIONAL 1D RESULTS

The results for experiments used in Fig. 1 and Fig. 3 are shown in Fig. 9.

H.2 HIERARCHICAL RECTIFIED FLOwW WITH OTCFM

As mentioned in Section 5, various approaches for straightening the paths in flow matching models
exist. These approaches are orthogonal to our work and can be easily incorporated in the HRF
formulation. To demonstrate this, we incorporate the minibatch optimal transport conditional flow
matching (OTCFM) (Tong et al., 2024) into the two layered hierarchical rectified flow (HRF2).

In OTCEM, for each batch of data ({azél)}fil, {x(ll)}f;l) seen during training, we sample pairs
of points from the joint distribution Ypaen (o, 1) given by the optimal transport plan between the
source and target points in the batch. We follow the same procedure to couple noise with the data
points and use the batch-wise coupled xy and x; to learn the parameters in ag. We refer to this
approach as HOTCFM2. We test its performance on two synthetic examples: 1) a 1D example with
a standard Gaussian source distribution and a mixture of two Gaussians as the target distribution;
and 2) a 2D example with a mixture of eight Gaussians as the source distribution and the moons
dataset as the target distribution. Fig. 10 and Fig. 11 show that hierarchical rectified flow improves
the performance of OTCFM.

H.3 ADDITIONAL RESULTS ON MNIST, CIFAR-10, AND IMAGENET-32

Here we show additional results for experiments with MNIST, CIFAR-10, and ImageNet-32 data.
From Tables 5 to 7, we can observe the following: For MNIST, our model is comparable in size,
comparable in training times, and comparable in inference times, while outperforming the baseline.
For CIFAR-10 and ImageNet-32, our model is 1.25x larger and has a slower inference time. How-
ever, as shown in Table 7, it still outperforms the baseline. We believe that the modest trade-off in
model size and inference time is acceptable given the performance gains.

20

Published as a conference paper at ICLR 2025

E

16

—— Ground Truth .
1.4 RF
12 1 HRF axa0t
210 o
£)
208 -
So6
——RF .
04 —— HRF2 5 vsteps
0.2 | — wrF2 10V steps
o 1071 . HRF220 v steps 0.2

7 -2.0-1.5-1.0-0.50.0 0.5 1.0 1.5 2.0 0 25 50 75 100 125 150 175 200

E

Wasserstein Distance

x Total NFEs 0.0 0.0
14 — Ground Tt o N 0 10
1.2 RF
] HRF o
1.0 H P 08 0.8
2 2
708 2 06 , 06
gos H £ £
04 % [Foa Foa
= 10?2 { —— HRF2 5 v steps
02 T e vaen 02 02
0'0;2.0—1.5—1.0—0.5 0.0 05 1.0 1.5 2.0 0 25 50 75 100 125 150 175 200 B i
x Total NFEs 0.0 .- J 0.0 . ..
(a) Data distribution (b) Metrics (c) RF trajectories (d) HREF trajectories

Figure 9: More experiments on 1D data: top row shows results for a standard Gaussian source
distribution and a mixture of 2 Gaussians target distribution; bottom row shows results for a mixture
of 2 Gaussians source distribution and the same mixture of 2 Gaussians target distribution.

—— Ground Truth 1 —— OTCFM
OTCFM WD=0.069 \ —— HOTCFM2 5 v steps
1.4 1 HOTCFM2 WD=0.025 L —— HOTCFM2 10 v steps
—— HOTCFM2 20 v steps

Den
o o o
2o

Wasserstein Distance
I
Ti

10t
-2.0-1.5-1.0-0.50.0 05 1.0 1.5 2.0 0 25 50 75 100 125 150 175 200
X Total NFEs Space Space

(a) Data distribution (b) Metrics (c) OTCFM trajectories (d) HOTCFM2 trajectories

Figure 10: Results for 1D data, with py being a standard Gaussian and p; being a mixture of 2
Gaussians. (a) Histograms of generated samples and p;. (b) The 1-Wasserstein distance vs. total
NFEs. (c,d) The trajectories of particles flowing from source distribution (grey) to target distribution
(blue).

—— OTCFM

—— HOTCFM2 5 v steps

—— HOTCFM2 10 v steps
1 —=— HOTCFM2 20 v steps

Sliced Wasserstein Distance
5
L

0 25 50 75 100 125 150 175 200
Total NFEs

(a) Metrics (b) OTCFM trajectories (c) HOTCFM2 trajectories

Figure 11: Results for 2D data, with py being a mixture of 8 Gaussians and p; being represented by
the moons data. (a) Sliced 2-Wasserstein distance vs. total NFEs. (b) and (c) show the trajectories
(green) of sample particles flowing from source distribution (grey) to target distribution (blue).

Training MNIST CIFAR-10 ImageNet-32
RF (1.08M) HRF2 (1.07M) RF (35.75M) HRF2 (44.81M) RF (37.06M) HRF2 (46.21M)
Time (s/iter) 0.1 0.1 0.3 0.4 0.7 0.8
Memory (MB) 3935 3931 8743 10639 27234 33838
Param. Counts 1,075,361 1,065,698 35,746,307 44,807,843 37,064,707 46,210,083

Table 5: Computational requirements during training on image datasets.

21

Published as a conference paper at ICLR 2025

Inference time (s) MNIST CIFAR-10 ImageNet-32

Total NFEs RF (1.08M) HRF2 (1.07M) RF (35.75M) HRF2 (44.81M) RF (37.06M) HRF2 (46.21M)

5 0.084 £0.001 0.085 +0.001 0.221 £+ 0.000 0.295 £ 0.000 0.229 £ 0.000 0.301 £ 0.000

10 0.168 £ 0.000 0.169 + 0.000 0.441 £ 0.001 0.589 +0.001 0.458 + 0.000 0.601 £ 0.000

20 0.336 £ 0.000 0.339 £ 0.000 0.889 +0.001 1.176 £ 0.001 0.918 £ 0.001 1.207 £ 0.001

50 0.843 £0.001 0.851 £0.002 2.229 +£0.001 2.953 +£0.004 2.302 £0.002 3.029 £ 0.004

100 1.693 £0.002 1.706 + 0.003 4.471 +£0.004 5.921 £0.003 4.618 £ 0.003 6.100 £ 0.014

500 8.538+£0.030 8.598+0.010 22.375+0.011 29.701 £0.011 23.110+0.005 30.863 + 0.083

Table 6: Inference time comparison for MNIST, CIFAR-10, and ImageNet-32 datasets using
a varying total NFEs budget. For HRF2 on MNIST we used sampling step combinations:
(1,5),(2,5), (5,4), (5,10), (5,20), (5,100). For HRF2 on CIFAR-10 and ImageNet-32 we used
sampling step combinations: (1,5),(1,10), (1,20),(1,50),(2,50), (2,250). All experiments are
conducted with a batch size of 128.

Performance (FID) MNIST CIFAR-10 ImageNet-32

Total NFEs RF (1.08M) HRF2 (1.07M) RF (35.75M) HRF2 (44.81M) RF (37.06M) HRF2 (46.21M)

5 19.187 £ 0.188 15.798 £ 0.151 36.209+0.142 30.884 + 0.104 69.233 +0.166 48.933 + 0.177

10 7974 +£0.119 6.644 £0.076 14.113+£0.092 12.065 +0.024 21.744 +0.045 20.286 + 0.022

20 6.151£0.090 3.408 £ 0.076 8.355 £ 0.065 7.129 +0.027 12.411 £0.002 12.492 +0.100

50 5.605+£0.057 2.664 £0.058 5.514 +0.034 4.847 + 0.028 8.910 + 0.137 9.024 £0.112

100 5.563 £0.049 2.588+0.075 4.588+0.013 4.334 + 0.054 7.873 £0.110 7.679 = 0.022

500 5.453 +£0.047 2.574 £ 0.121 3.887 £0.035 3.706 + 0.043 6.962 + 0.087 6.503 + 0.035

Table 7: Performance comparison for MNIST, CIFAR-10, and ImageNet-32 datasets using
a varying total NFEs budget. For HRF2 on MNIST we used sampling step combinations:
(5,1),(10,1), (5,4),(10,5), (10, 10), (100, 5). For HRF2 on CIFAR-10 and ImageNet-32 we used
sampling step combinations: (1,5), (1,10), (1, 20), (1,50), (2, 50), (2, 250). Bold for lower mean.

22

	Introduction
	Preliminaries
	Towards Hierarchical Rectified Flow
	Velocity distribution and case study with Gaussian Mixtures
	Modeling the Velocity Distribution
	Discussions on the generated data distribution
	Extending Towards Hierarchical Rectified Flow

	Experiments
	Synthetic 1D Data
	Synthetic 2D Data
	Image Data

	Related Work
	Discussion & Conclusion
	Proof of the:pvgivenxt
	Proof of clm:velocitydistribution
	Proof of the:1
	Density estimation
	Hierarchical Rectified Flow Formulation Details
	Experimental and Implementation Details
	Low Dimensional Experiments
	High Dimensional Experiments

	Ablation Studies
	Ablation Study for NFE
	Ablation Study for Depth

	Additional Experimental Results
	Additional 1D Results
	Hierarchical Rectified Flow with OTCFM
	Additional results on MNIST, CIFAR-10, and ImageNet-32

