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ABSTRACT

We study lower semi-continuity properties of the volume, i.e., the surface

area, of a closed Lagrangian manifold with respect to the Hofer- and γ-

distance on a class of monotone Lagrangian submanifolds Hamiltonian

isotopic to each other. We prove that volume is γ-lower semi-continuous

in two cases. In the first one the volume form comes from a Kähler metric

with a large group of Hamiltonian isometries, but there are no additional

constraints on the Lagrangian submanifold. The second one is when the

volume is taken with respect to any compatible metric, but the Lagrangian

submanifold must be a torus. As a consequence, in both cases, the volume

is Hofer lower semi-continuous.

1. Introduction and main results

1.1. Introduction. In this paper we are concerned with lower semi-continuity

properties of the volume, i.e., the surface area, of a closed Lagrangian manifold

with respect to the distance of a purely symplectic topological nature, e.g., the

Hofer- and γ-distance, on a class of monotone Lagrangian manifolds Hamilton-

ian isotopic to each other.

We conjecture that volume is γ-lower semi-continuous in general, and we

prove this in two situations. The first one is fairly close to the standard setting

of integral geometry. This is the case where the volume form comes from a

Kähler metric with a very large group of Hamiltonian isometries, but there are

no additional constraints on the Lagrangian submanifold. The second one is

in some sense much more general: the volume form is taken with respect to

any compatible metric, but the Lagrangian submanifold must be a torus. As

a consequence, in both cases, the volume is lower semi-continuous with respect

to the Hofer metric.

The question is inspired by the key result from [AM] asserting that in dimen-

sion two the topological entropy of a Hamiltonian diffeomorphism is Hofer lower

semi-continuous. We find results of this type quite interesting because they con-

nect seemingly unrelated entities existing in completely different realms: pure

dynamics or metric invariants such as topological entropy or volume on one side

and symplectic topological features on the other.
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The second motivation for the question comes from [ÇGG24a] where topolog-

ical entropy of compactly supported Hamiltonian diffeomorphisms is connected

with Hamiltonian or Lagrangian Floer theory via the so-called barcode en-

tropy which is determined by the growth of the number of not-too-short bars

in the filtered Floer complex of the iterates. That paper also provides a natu-

ral framework to study the question by connecting Crofton’s type (in)equalities

from integral geometry with Floer theory. Here we use the notion of Lagrangian

tomograph introduced in that paper to show that for a large class of n-densities

on a 2n-dimensional symplectic manifold the integral over a Lagrangian sub-

manifold is γ-lower semi-continuous. Then these densities are used to match or

at least approximate from below the metric n-density.

One can pose a similar question about other metric (or dynamics) invariants,

but the choice of volume is quite natural for it already enjoys strong C0-lower

semi-continuity properties; see [Ce, Fe52] and also [BI, Iv]. It is then only

reasonable to ask if there is an analogue in the symplectic setting. In some sit-

uations the γ-norm is known to be continuous with respect to the C0-topology

(see [BHS, Ka, KS]), and hence, at least on the conceptual level, γ-lower semi-

continuity is a refinement of C0-lower semi-continuity in the symplectic frame-

work.

Another interpretation of our results is that the volume function extends to a

lower semi-continuous function on the Humilière completion, i.e., the completion

with respect to the γ-distance (see [Hu]), of the class of Lagrangians Hamiltonian

isotopic to each other, whenever γ-lower semi-continuity is established.

Acknowledgements. Parts of this work were carried out while the second

and third authors were visiting the IMJ-PRG, Paris, France, in May 2022 and

also during the Symplectic Dynamics Beyond Periodic Orbits Workshop at the

Lorentz Center, Leiden, the Netherlands in August 2022. The authors are

grateful to these institutes for their warm hospitality and support. The authors

would also like to thank Leonid Polterovich and the referee for useful comments.

1.2. Main results. Let (M2n, ω) be a monotone symplectic manifold which

is either closed or sufficiently nice at infinity (e.g., convex) to ensure that the

relevant filtered Floer homology is defined; see Section 2.1 and Remark 2.1.

Furthermore, let L be a class of closed monotone Lagrangian submanifolds L

of M , Hamiltonian isotopic to each other. We require in addition that the

minimal Chern number of L is at least 2.
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Recall that the γ-norm of a compactly supported Hamiltonian diffeomor-

phism ϕ is

γ(ϕ) := inf
H
(c(H) + c(H inv)),

where the infimum is taken over all compactly supported HamiltoniansH gener-

ating ϕ as the time-one map ϕH of the Hamiltonian isotopy ϕt
H , the Hamilton-

ian H inv generates the isotopy (ϕt
H)−1 and c is the spectral invariant associated

with the fundamental class [M ] (relative infinity when M is not compact); see

[Oh05, Sc, Vi92].

The (ambient) γ-distance on L is defined as

dγ(L,L
′) := inf{γ(ϕ) | ϕ(L) = L′}.

This is indeed a distance on L; see, e.g., [KS] and references therein.

Example 1.1: Two loops L and L′ which are dγ-close need not be close with

respect to the Hausdorff distance. This is the case for instance when L′ is

obtained from L by growing long but narrow tongues (or tentacles) and, if

needed, by a small perturbation to keep L and L′ Hamiltonian isotopic.

Alternatively, when the Lagrangian submanifolds L from L are wide in the

sense of [BiC], i.e., HF(L) = H(L) ⊗ Λ, where Λ is the Novikov ring, one has

the (interior) γ-distance. It is defined in a similar fashion but now by using

Lagrangian spectral invariants; see, e.g., [Le, LZ, KS, Vi92] for further details

and references. Among wide Lagrangian submanifolds are the zero section of a

cotangent bundle and the “equator” RPn ⊂ CPn. On the other hand, displace-

able Lagrangian submanifolds have HF(L) = 0 and hence are not wide.

In general, the interior γ-distance is bounded from above by the ambient γ-

distance which in turn is bounded from above by the Hofer distance. We are not

aware of any example where the two γ-distances are different. Our results hold

for both the ambient γ-distance and the interior γ-distance, when the latter

is defined. We will not distinguish the two distances and will use the same

notation dγ .

Finally, fix a Riemannian metric compatible with ω. Then we have the volume

or, to be more precise, the surface area function:

vol: L → (0,∞)

sending L to its surface area, which we refer to as the Lagrangian volume.
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We conjecture that vol is lower semi-continuous on L with respect to the

γ-distance, and here we prove this conjecture in two disparate cases. The first

of these is where M is Kähler and has a large symmetry group (e.g., M = Cn

or CPn).

Theorem 1.2: Let M be Kähler and the Riemannian metric be the real part

of the Kähler form. Assume furthermore that the group of Hamiltonian Kähler

isometries acts transitively on the Lagrangian Grassmannian bundle over M .

Then vol is lower semi-continuous on L with respect to the γ-distance.

This theorem is proved in Section 3.

When L = Tn, the restrictive condition that M has a large symmetry group

can be dropped. In fact, we have a more precise result asserting roughly speak-

ing that for a fixed Lagrangian submanifold L0 from L and another Lagrangian

submanifold L ∈ L, which is dγ-close to L0 (depending on L0), the part of L

situated C0-close to L0 is at least almost as large as L0.

Theorem 1.3: Assume that L0 = Tn ∈ L and let U be an arbitrary open

subset containing L0. Then the function

volU : L → [0,∞)

sending L to the surface area of U ∩L is lower semi-continuous on L at L0 with

respect to the γ-distance.

The proofs of Theorems 1.2 and 1.3 rely on a result of independent inter-

est, Theorem 3.1, asserting dγ-lower semi-continuity of the integral of certain

densities and based on a connection between Floer barcodes and Lagrangian

tomographs; cf. [ÇGG24a, ÇGG24b].

In Theorem 1.3, U and L0 are tied up by the requirement that L0 ⊂ U .

Although we do not have a proof of this, we expect this requirement to be

unnecessary, i.e., that the function volU is lower semi-continuous at every point

of L for any open set U ⊂ M . In any event, as an immediate consequence of

Theorem 1.3, we have

Corollary 1.4: Assume that L = Tn. Then vol is lower semi-continuous on L
with respect to the γ-distance.

Note that since the γ-distance is bounded from above by the Hofer distance,

in the setting of this corollary or of Theorem 1.2, the vol function is also lower

semi-continuous with respect to the Hofer distance.
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Remark 1.5: Another consequence of Theorem 1.3 is that L∩U �= ∅. Here, how-
ever, a much more precise and general result is available, which, in particular,

does not require L to be a torus. Namely, when L is dγ-close to L0, for every

point of L0 the submanifold L intersects a small ball centered at that point.

This is an immediate consequence of, for example, [KS, Thm. F]; see also, e.g.,

[BaC, BiC, Vi22b] for some relevant results.

Example 1.6: The function vol is automatically lower semi-continuous at L

when L ⊂ M is a global volume minimizer in L. For instance, as is easy to see,

this is the case for the zero section of the cotangent bundle equipped with the

Sasaki metric. Likewise, the standard RPn ⊂ CPn is a volume minimizer with

respect to the Fubini–Studi metric on CPn; [Oh90]. In contrast, Theorem 1.2

and Corollary 1.4 assert lower semi-continuity at every point of L and in the

case of the corollary for a broad class of metrics on M .

Denote by L̂ the Humilière completion of L, i.e., its completion with respect

to the γ-distance; cf., [Hu]. Corollary 1.4 and Theorem 1.2 are equivalent to

the following result.

Corollary 1.7: Assume that L = Tn or that M is as in Theorem 1.2. Then

vol extends to a lower semi-continuous function on L̂.

Remark 1.8: We do not know if in general the function vol is bounded away

from zero on L or equivalently on L̂. This is obviously so when vol has a

global minimizer as in the setting of Example 1.6. Furthermore, lower bounds

for vol(L) in terms of the displacement energy of L are obtained in [Vi00]

when M = R2n or CPn or a cotangent bundle.

2. Preliminaries

2.1. Notation and conventions. Throughout this paper we use conventions

and notation from [ÇGG24a] and [ÇGG24b]. Referring the reader to [ÇGG24a,

Sect. 3] for a much more detailed discussion, here we only touch upon several

key points.

All Lagrangian submanifolds L are assumed to be closed and monotone, and

in addition we require that the minimal Chern number of L is at least 2. The

ambient symplectic manifold M is also assumed to be monotone but not neces-

sarily compact. In the latter case, we assume thatM is sufficiently well-behaved
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at infinity (e.g., convex) so that the filtered Floer complex and homology can be

defined for the pair (L,L′) of Hamiltonian isotopic Lagrangians; see Remark 2.1

below and [ÇGG24a, Rmk. 2.8] for more details.

For the sake of simplicity Floer complexes and homology and also the ordi-

nary homology are taken over the ground field F = F2. When L and L′ are

Hamiltonian isotopic and intersect transversely, we denote by CF(L,L′) the

Floer complex of the pair (L,L′). This complex is generated by the intersec-

tions L ∩ L′ over the universal Novikov field Λ. This is the field of formal

sums

λ =
∑
j≥0

fjT
aj ,

where fj ∈ F and aj ∈ R and the sequence aj (with fj �= 0) is either finite

or aj → ∞.

Due to our choice of the Novikov field, the complex CF(L,L′) is not graded.

However, fixing a Hamiltonian isotopy from L to L′ and “cappings” of inter-

sections we obtain a filtration on CF(L,L′) by the Hamiltonian action. The

differential on the complex is defined in the standard way.

Note that the complex breaks down into a direct sum of subcomplexes over

homotopy classes of paths from L to L′. Then to define the action filtration

on CF(L,L′) we also need to pick a reference path in every homotopy class.

To an R-filtered, finite-dimensional complex C over Λ one then associates

its barcode B. In the most refined form this is a collection of finite or semi-

infinite intervals, defined in general up to some shift ambiguity. The number of

semi-infinite intervals is equal to dimΛ H(C). A construction of B most suitable

for our purposes is worked out in detail in [UZ] and also briefly discussed in

[ÇGG24a]. For our goals, it is convenient to forgo the location of the intervals

and treat B as a collection (i.e., a multiset) of positive numbers including ∞.

Setting C = CF(L,L′) we obtain the barcode B(L,L′). With this convention

the barcode B(L,L′) is independent of the choices involved in the definition of

the action filtration.

The actual definition of B is not essential for our purposes and its only feature

that matters is that it is continuous in the Hamiltonian or the Lagrangian with

respect to the C∞-topology and even the Hofer norm or the γ-norm. To be more

precise, denote by bε = bε(L,L
′) the number of bars in the barcode of length

greater than ε. This is the main ingredient in the definition of barcode entropy;

see [ÇGG24a]. Assume furthermore that Lagrangian submanifolds L, L′ and L′′
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are Hamiltonian isotopic, and dγ(L
′, L′′) < δ/2, and L′ and L′′ are transverse

to L. Then

(2.1) bε(L,L
′′) ≥ bε+δ(L,L

′).

This is a consequence of [KS, Thm. G]; see also [Vi22a]. This property allows

one to extend the definition of the barcode and of bε “by continuity” to the case

where the manifolds are not transverse.

Furthermore, assuming that L � L′ note that

(2.2) dimΛ CF(L,L′) ≥ 2bε(L,L
′)− dimΛHF(L).

This inequality turns into an equality when ε is smaller than the shortest bar,

i.e., bε is the total number of bars b(L,L′):

(2.3) dimΛCF(L,L′) = 2b(L,L′)− dimΛHF(L).

Remark 2.1 (Conditions on M at infinity): In this remark we touch upon the

conditions, in addition to being monotone, that M must satisfy at infinity when

it is not compact. If L is wide in the sense of [BiC], i.e., HF(L) = H(L) ⊗ Λ,

we can work with the interior γ-norm and it is sufficient to assume that M is

geometrically bounded. Otherwise, we use the ambient γ-norm. In this case

we need to have the filtered Floer homology and the fundamental class spectral

invariant defined for compactly supported Hamiltonians H on M . To this end,

we can requireM to be geometrically bounded and wide in the sense of [Gü], i.e.,

admitting a proper function F : M → [0,∞) without non-trivial contractible

periodic orbits of period less than or equal to one. Indeed, such a function can

then be found vanishing on any compact set and used to perturb H at infinity.

The resulting Floer (co)homology is well-defined and isomorphic to H∗
c(M)⊗Λ.

Hence the required spectral invariant is also defined. Alternatively, we may

require M to be convex at infinity; [FS].

2.2. Input from integral geometry.

2.2.1. Densities. Let P be the Stiefel bundle over a manifold Mm, i.e., P is

formed by k-frames v̄ = (v1, . . . , vk). Recall that a k-density d on M is a

function d : P → R such that

(2.4) d(v̄′) = | detA|d(v̄),

where A is the linear transformation of the span of v̄ sending v̄ to v̄′;

see, e.g., [APF98]. Sometimes it is convenient to drop the condition that the
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vectors from v̄ = (v1, . . . , vk) are linearly independent by setting d(v̄) = 0 oth-

erwise.

Here are several examples of densities: A Riemannian or Finsler metric on

M or, more generally, any homogeneous degree-one function TM → R is a

one-density. For instance, in self-explanatory notation, the functions |dx|, |dy|,
|dx|+ |dy| and

√
dx2 + dy2 are 1-densities on R

2. Furthermore, for every k ≤ m

a Riemannian metric gives rise to a k-density gk defined by the condition

that gk(v̄) is the volume of the parallelepiped spanned by v̄. Thus gm is the Rie-

mannian volume. For a differential k-form α its absolute value |α| is a k-density.

The sum of two k-densities is again a k-density.

A k-density d can be integrated over a compact k-dimensional submanifold L

without requiring L to be oriented or even orientable. Similarly to differen-

tial forms, densities can be pulled back and, under suitable additional condi-

tions, pushed forward. When it is defined, the push-forward Ψ∗d of d by a

map Ψ: M ′ → M is characterized by the condition that∫
L

Ψ∗d =

∫
Ψ−1(L)

d.

2.2.2. Lagrangian tomographs and Crofton’s formula. Among the key tools en-

tering the proofs of our results are Lagrangian tomographs. In this section

we briefly discuss the notion following with minor modifications [ÇGG24a,

ÇGG24b], which in turn is loosely based on [APF98, APF07, GeSm] and also

[GuSt05, GuSt13].

For our purposes, a tomograph T comprises the following data:

• a fiber bundle π : E → B with fiber K;

• a map Ψ: E → M , which is required to be a submersion onto its image

and an embedding of every fiber π−1(s), s ∈ B;

• a smooth measure ds on B.

Here the fiber K is required to be a closed manifold; the base B may have

boundary and need not be compact, but if it is not, and hence E is not compact,

the submersion Ψ must be proper. Finally, the measure ds is required to be

supported away from ∂B. It is essential for what follows that ds is a genuine

measure, but not a signed measure, i.e., the integral of a non-negative function

is non-negative. The key difference of this definition from the references above is

that there Ψ is also a fiber bundle and hence a tomograph is a double-fibration.

(The term “tomograph” is not used there.)
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Set Ls := Ψ(π−1(s)) and Ψs := Ψ|π−1(s) for s ∈ B. Then Ls is a smooth

closed submanifold ofM and dimLs = dimK. We call d = dimB the dimension

of the tomograph. The pull-back/push-forward density

(2.5) dT := Ψ∗π
∗ ds

is a smooth k-density on M with k = codimLs. We call supp dT ⊂ Ψ(E) the

support of the tomograph T .

Next, let L be a closed submanifold of M such that codimL = dimK. Set

N(s) := |Ls ∩ L| ∈ [0, ∞].

Since Ψ is a submersion, Ψs � L for almost all s ∈ B. Hence N(s) < ∞ almost

everywhere and N is an integrable function on B. We refer the reader to, e.g.,

[APF98] for the proof of the following simple but important result.

Proposition 2.2 (Crofton’s formula; [APF98]): We have∫
B

N(s) ds =

∫
L

dT .

Remark 2.3: It is useful to keep in mind that the measure ds does not essentially

enter in any of the tomograph requirements: it can be any smooth measure on B

supported away from ∂B. The latter condition is imposed to ensure that dT is

smooth. In particular, one can always localize the support of T near Ls with s

in the interior of B by localizing the support of ds near s.

Remark 2.4: This interpretation of classical Crofton’s formula, which utilizes

densities and ultimately goes back to [GeSm], is conceptually quite different

from the one based on the surface area or, more generally, the Hausdorff measure

associated with a metric as in [Fe69, Thm. 3.2.26]. The latter, of course, can be

applied to a much bigger class of subsets than submanifolds. We also note that

the term tomograph might be misappropriated here because our tomographs

have a limited functionality, determining only the volume but not the shape of

the subset; cf. [Ga].

Assume now that M is symplectic of dimension m = 2n. We call T a La-

grangian tomograph when all submanifolds Ls = Ψ(π−1(s)) are Lagrangian

and Hamiltonian isotopic to each other. Thus a Lagrangian tomograph is a

family of Lagrangian submanifolds Ls which are parametrized by B and meet

some additional requirements. Note that dimLs = dimK = n = k.
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Example 2.5 (Classical Lagrangian tomographs): Assume that M is Kähler and

that the group G of Hamiltonian Kähler isometries acts transitively on M .

LetK be any closed Lagrangian submanifold ofM . Set E = K×G with π being

the projection to the second factor B = G and Ψ(x, s) := s(x), where x ∈ K

and s ∈ G. Finally, we let ds be a Haar measure on G. Then, as is easy to

see, we obtain a Lagrangian tomograph. This is essentially the classical setting

of Crofton’s formula—see the reference cited above. (Usually one replaces the

base B = G by the space G/ Stab(K) formed by all images of K in M under G.

Here, however, we prefer to keep B = G.) This construction applies to M = Cn

and CP
n and, more generally, to any simply connected homogeneous Kähler

manifold.

Example 2.5 produces tomographs with support equal to M and requires M

to have a large symmetry group. Here, as in [ÇGG24a, ÇGG24b], we are also

interested in tomographs supported in a small tubular neighborhood U of a

Lagrangian submanifold L ⊂ M and having L as one of the submanifolds Ls.

(Hence, K ∼= L.) In the setting of the example, this can be achieved by local-

izing ds as in Remark 2.3. However, local tomographs exist in a much more

general setting. Indeed, first note that by the Weinstein tubular neighborhood

theorem we can set M = T ∗L. Furthermore, to construct a local tomograph

near L we can, essentially without loss of generality by shrinking the support

of ds, assume that E = L × B, where B is a d-dimensional ball, and L = L0

is the image of the fiber over center 0 ∈ B. It turns out that such localized

Lagrangian tomographs always exist.

Lemma 2.6 (Lemma 5.6; [ÇGG24a]): A Lagrangian tomograph of dimension d

supported in U exists if and only if L admits an immersion into R
d.

Remark 2.7: In fact, the proof of the lemma shows slightly more: on the infin-

itesimal level such tomographs (without ds fixed) are in one-to-one correspon-

dence with immersions of L into Rd.

3. Tomographs and barcodes

The proofs of Theorems 1.2 and 1.3 are based on automatic dγ-lower semi-

continuity of the integral of the pull-back/push-forward density associated with

a Lagrangian tomograph, which is in turn a consequence of a connection between

Floer barcodes and tomographs.
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Thus fix a class L of Lagrangian submanifolds of M as in Section 1.2 and

let T be a Lagrangian tomograph such that Ls ∈ L. Denote by dT the pull-

back/push-forward density of T given by (2.5).

Theorem 3.1: The function

IT : L 
→
∫
L

dT

is dγ-lower semi-continuous on L.

Proof. Fix L ∈ L and η > 0. Our goal is to show that

IT (L̃) ≥ IT (L)− η

when dγ(L, L̃) is small.

Let Σ ⊂ B be the set of all points such that Ψs is not transverse to L. Since Ψ

is a submersion, this is a closed zero-measure subset of B. Thus there exists a

compact subset B′ ⊂ B \ Σ such that in the notation from Section 2.2.2

(3.1)

∫
B′

N(s) ds ≥
∫
B

N(s) ds− η = IT (L)− η,

where the equality follows from Crofton’s formula (Proposition 2.2). The set B′

is obtained by removing from B a sufficiently small neighborhood of Σ.

By construction, Ls � L for all s ∈ B′. Since B′ is compact, for all s ∈ B′ the

shortest bar in the barcode of CF(L,Ls) is bounded away from zero by some

constant β > 0. Furthermore,

N(s) = dimΛ CF(L,Ls).

Take now ε > 0 and δ > 0 so small that ε+ δ < β. In particular,

bε+δ(L,Ls) = b(L,Ls)

and thus, by (2.3),

(3.2) N(s) = 2bε+δ(L,Ls)− h,

where we set h = dimΛ HF(L) for the sake of brevity.
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Assume next that dγ(L, L̃) < δ/2 and set

Ñ(s) := |L̃ ∩ Ls|.

We have L̃ � Ls, and hence Ñ(s) = dimΛCF(L̃, Ls), for almost all s ∈ B. Then

IT (L̃) =

∫
B

Ñ(s) ds by Crofton’s formula

≥
∫
B

(2bε(L̃, Ls)− h) ds by (2.2)

≥
∫
B′
(2bε(L̃, Ls)− h) ds since B′ ⊂ B

≥
∫
B′
(2bε+δ(L,Ls)− h) ds by (2.1)

=

∫
B′

N(s) ds by (3.2)

≥ IT (L)− η, by (3.1)

which completes the proof of the theorem.

Proof of Theorem 1.2. In the setting of the theorem consider the Lagrangian

tomograph T from Example 2.5. Both the push-forward/pull-back density dT
and the metric n-density g are invariant under the group G of (Hamiltonian)

Kähler isometries. Since G acts transitively on the Lagrangian Grassmannian

bundle, these two densities agree up to a factor on the frames spanning La-

grangian subspaces; cf. [APF07, Lem. 5.4]. Hence, the function

L 
→
∫
L

g

is also dγ-lower semi-continuous on L by Theorem 3.1.

In general, there is no hope to exactly match a Lagrangian metric density by

the push-forward/pull-back density of a localized tomograph as in the proof of

Theorem 1.2. However, to prove Theorem 1.3 it is sufficient to loosely bound

the density from below and this is done in Theorem 3.2 below.

Let L = Tn ⊂ M2n be a Lagrangian torus. Fix a compatible metric onM and

denote by g the metric density. We consider Lagrangian tomographs T with

fiber K diffeomorphic to L and a ball Bd serving as the base B. Thus E = L×B

and π is the projection to the second factor.
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Theorem 3.2: For any open set U ⊃ L and any η > 0, there exists a La-

grangian tomograph T as above with L = L0 = Ψ(π−1(0)), supported in U and

such that

(i) dT |L = g|L pointwise,

(ii) dT ≤ (1 + η)g.

We prove this theorem in Section 4.

Proof of Theorem 1.3. Set d := dT for the sake of brevity. By Theorem 3.1 and

since T is supported in U , for any δ > 0,

(3.3)

∫
L∩U

d =

∫
L

d ≥
∫
L0

d− δ

when dγ(L0, L) is small. Thus we have∫
L∩U

g ≥ (1 + η)−1

∫
L∩U

d by (ii)

≥ (1 + η)−1
(∫

L0

d− δ
)

by (3.3)

= (1 + η)−1
(∫

L0

g− δ
)

by (i).

Hence, for any ε > 0, ∫
L∩U

g ≥
∫
L0

g− ε

once η > 0 and δ > 0 and then dγ(L0, L) are small enough.

4. Proof of Theorem 3.2

We carry out the proof in three steps. In the first step we discuss some pre-

liminaries, then in the second step we introduce the Lagrangian tomographs

which are used in the proof, and the last step comprises the actual proof of

Theorem 3.2.

Step 1. Let Tn = S1 × · · · × S1 (n times), where S1 = R/2πZ, with angular

coordinates x = (x1, . . . , xn) and let M = T ∗Tn = Tn × Rn with coordi-

nates (x, y). We get a similar decomposition of T(x,y)M = Rn × Rn and we

denote the resulting coordinates on this space by (w, u).

For k ∈ Z+, set

Πk : T
n → T

n, Πk(x) = kx = (kx1, . . . , kxn)
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and

Fk = k(Π∗
k)

−1 : Tn × R
n → T

n × R
n, Fk(x, y) = (kx, y).

We note here that Π∗
k as a map from T ∗Tn = Tn × Rn to itself is not defined,

but its inverse (Π∗
k)

−1 is.

Let d be an n-density on M . Consider the density

1

kn
F ∗
k d =: dk.

Explicitly, for an n-frame v̄ = (v1, . . . , vn) at (x, y), write

vi = (wi, ui) ∈ R
n × R

n = T(x,y)M,

and

d(v̄) =: h(x,y)(w1, u1, . . . , wn, un).

Then

dk(v̄) =
1

kn
h(kx,y)(kw1, u1, . . . , kwn, un) = h(kx,y)(w1, u1/k, . . . , wn, un/k).

Hence, when d is Tn-invariant, i.e., h is independent of x, we have

dk(v̄) = h(x,y)(w1, u1/k, . . . , wn, un/k).

Setting Pk(v) := (w, u/k) for v = (w, u) and Pk(v̄) := (Pkv1 . . . , Pkvn), we can

rewrite the above expression as

dk(v̄) = d(Pk v̄) =: (P ∗
k d)(v̄).

In other words, for any invariant density d,

(4.1)
1

kn
F ∗
k d = P ∗

k d.

In a similar vein, let P∞ be the projection to the horizontal direction:

P∞(v) = (w, 0)

for v = (w, u). We conclude that

(4.2) dk = P ∗
k d → d∞ := P ∗

∞d

uniformly on compact sets. In the next step, we explain how to obtain such

sequences dk from tomographs.
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Step 2. Let T be the Lagrangian tomograph

(B, ds) B × Tn Tn × Rn,π Ψ

given by

(4.3) Ψ(s, x) = (x, ρ1 sin(x1 + φ1), . . . , ρn sin(xn + φn)),

where

s = ((ρ1, φ1), . . . , (ρn, φn))

is a point in the polydisk B = (B2)n with ρi ≤ R, for all i and some R > 0.

(Here we think of (ρi, φi) as polar coordinates in the i-th copy of the disk B2.)

In other words, Ls = Ψ(s,Tn) is the graph of the one-form

(4.4) αs =
n∑

i=1

ρi sin(xi + φi) dxi.

As the measure ds, we can take any smooth rotationally symmetric (i.e., inde-

pendent of φi) measure, which is not identically zero and supported away from

the boundary of B. Then, in particular,
∫
B ds > 0 since ds is by definition

non-negative. This data gives an ”equivariant” tomograph, and, as a result,

the pull-back/push-forward density dT = Ψ∗π
∗ds is Tn-invariant.

More precisely, consider the T
n-action on B × T

n defined by

θ(s, x) = ((ρ, φ− θ), x + θ)

for θ∈T
n. Since Ψθ=θΨ and θ∗π

∗ds = π∗ds, we also have θ∗Ψ∗π
∗ds = Ψ∗π

∗ds.

Here the identity θ∗π
∗ds = π∗ds is a consequence of the assumption that ds is

rotationally symmetric. Namely, denote by θ̄ the restriction of θ to B. Then,

π∗θ̄∗ds = π∗ds

by the symmetry and θ∗π
∗ds = π∗θ̄∗ds is easy to see since θ and θ̄ are diffeo-

morphisms (see [APF07, Thm. 6.2] for a more general statement).

Next, define Tk to be the tomograph given by the data

(B, 1/knds) B × T
n

T
n × R

n,π Ψk

where

Ψk(s, x) = (x, ρ1 sin(kx1 + φ1), . . . , ρn sin(kxn + φn)).

In other words, the tomograph Tk comprises the graphs of the differential

forms Π∗
kαs/k. Note that we scaled the measure on B by 1/kn.
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Remark 4.1: In the framework of Lemma 2.6, T corresponds to the standard

embedding j : Tn ↪→ R2n and Tk corresponds to the immersion (j ◦Πk)/k.

Lemma 4.2: We have

dTk
= P ∗

k dT .

Combining this lemma with (4.2), we observe that

dTk
→ P ∗

∞dT

uniformly on compact sets. Therefore, for any η > 0,

(4.5) dTk
≤ (1 + η)P ∗

∞dT + ηg

when k is large enough, by (2.4).

Before turning to the proof of Lemma 4.2, we note another feature of the

density dT . Namely, by Tn-invariance,

P ∗
∞dT = σ(y) |dx1 ∧ · · · ∧ dxn|

for some smooth, compactly supported, non-negative function σ on R
n. The

next lemma asserts that this function attains its maximum at the origin.

Lemma 4.3: There exists a constant c > 0 such that

P ∗
∞dT ≤ c |dx1 ∧ · · · ∧ dxn|

with equality along the zero section. In other words, c := σ(0) = maxσ.

Proof. Set Tn
y := Tn × {y} ⊂ Tn × Rn. Then

(4.6) |Ls ∩ T
n
y | ≤ |Ls ∩ T

n
0 |

for all y ∈ Rn and s ∈ B. It follows that

(4.7)

∫
Tn
y

P ∗
∞dT =

∫
B

|Ls ∩ T
n
y | ds ≤

∫
B

|Ls ∩ T
n
0 | ds =

∫
T
n
0

P ∗
∞dT

for all y ∈ Rn. We have c := σ(0) = maxy∈Rn σ(y).

The following observation we will be useful in the proof of Lemma 4.2.

Lemma 4.4: For any density d on T
n × Rn, we have F ∗

kFk∗d = kd. Moreover,

if d is Tn-invariant, then Fk∗F
∗
k d = kd.
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Proof. Let d be an m-density on M = Tn × Rn. As above, for an m-frame

v̄ = (v1, . . . , vm) at (x, y) ∈ M , we write vi = (wi, ui) ∈ Rn × Rn = T(x,y)M ,

and

d(v̄) =: h(x,y)(w1, u1, . . . , wm, um).

Then

Fk∗d(v̄) =
k−1∑
i=0

h((x+i)/k,y)(w1/k, u1, . . . , wm/k, um)

and

F ∗
kFk∗d(v̄) =

k−1∑
i=0

h(x,y)(w1, u1, . . . , wm, um) = kd(v̄).

Now suppose that d is Tn-invariant. Then

Fk∗F
∗
k d(v̄) =

k−1∑
i=0

h(x+i/k,y)(w1, u1, . . . , wm, um),

which is equal to kd(v̄) since h is independent of x.

Next, we prove Lemma 4.2. We will partially follow the argument given in

[APF07, Thm. 6.2].

Proof of Lemma 4.2. Consider the commutative diagram

B B × T
n Tn × Rn

B B × Tn Tn × Rn.

id

π

id×Πk

Ψk

Fk

π Ψ

Observe that π∗ds is Tn-invariant and π∗ds = (id × Πk)
∗π∗ds. For the latter

we used the commutativity of the first block. Now one can deduce from the

proof of Lemma 4.4 that

(id×Πk)∗π
∗ds = kπ∗ds.

Also, the commutativity of the second block yields

Ψ∗(id×Πk)∗π
∗ds = Fk∗Ψk∗π

∗ds.

By the above equalities and the definition of pull-back/push-forward density

and (2.5),

kdT = Fk∗k
ndTk

.
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(Recall that in the tomograph Tk the measure on B is scaled by 1/kn.) Apply-

ing F ∗
k to both sides and using Lemma 4.4, we obtain

F ∗
k dT = kndTk

.

On the other hand, since dT is Tn-invariant,

F ∗
k dT /k

n = P ∗
k dT

by (4.1). Thus

dTk
= P ∗

k dT .

Remark 4.5: The homogenization procedure described here is somewhat simi-

lar to the one from [Vi23], although we apply it to tomographs and densities

rather than Hamiltonians, and the Tn-invariance condition considerably sim-

plifies the situation. (In the setting of that paper homogenization is trivial

for invariant Hamiltonians.) We also note that Lemma 4.2 holds for any equi-

variant tomograph T , when Tk is defined as a tomograph satisfying the condi-

tion Fk ◦ Ψk = Ψ ◦ (id × Πk) with renormalized measure ds/kn. It is easy to

see that Tk exists, but it is not unique unless we require that Ψk|π−1(0) = id. In

any case, the density dTk
is independent of the choice of Tk. On the other hand,

Lemma 4.3 relies on (4.6) which is satisfied for the tomograph T given by (4.3),

but not for an arbitrary equivariant tomograph comprising the graphs of exact

forms. Finally, the reader has certainly noticed that while T and Tk are given

by simple and explicit formulas, the proof is quite indirect. The reason is that

we do not have an explicit and easy to work with expression for the densities dT
and dTk

, even for such simple tomographs. (Such an expression would depend

on ds.)

Finally, we are in a position to prove Theorem 3.2.

Step 3. Let now, as in the statement of the theorem, M be the ambient sym-

plectic manifold equipped with a compatible metric and let g be the metric

n-density. It is clear that in the proof of the theorem we may replace U by

any open subset containing L0 = T
n. Thus, without loss of generality, we can

identify U with a neighborhood of the zero section in T ∗Tn so that the fibers are

orthogonal to the zero section; this Weinstein tubular neighborhood structure

will be used in what follows. Fix some angular coordinates x = (x1, . . . , xn)

on T
n and further identify T ∗

T
n = T

n×R
n by using these coordinates as above.
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Without loss of generality, by Moser’s theorem, we can assume that

g|Tn = |dx1 ∧ · · · ∧ dxn|,

i.e., these two densities agree pointwise on the frames tangent to the zero section.

Next, note that, along the zero section (but not necessarily only on the frames

tangent to the zero section),

|dx1 ∧ · · · ∧ dxn| ≤ g.

To see this, consider the standard Euclidean metric n-density on R
2n = R

n×R
n.

Let v̄ be the image of the coordinate frame in Rn under a map of the form

(A,B) : Rn → R
n × R

n.

Then

g(v̄) =
√

det(AA∗ +BB∗) (Pythagorean theorem).

Hence,

g(v̄) ≥
√
det(AA∗) = | detA| = |dx1 ∧ · · · ∧ dxn|(v̄).

We conclude by continuity of the metric density g that for all η > 0 there exists

a neighborhood V ⊂ U of the zero section such that on V we have

|dx1 ∧ · · · ∧ dxn| ≤ (1 + η)g.

Strictly speaking, continuity only implies that the inequality holds on a compact

subset of the Stiefel bundle of TV . However, then it holds for every n-frame

tangent to V since densities are homogeneous or, to be more precise, by (2.4).

Let T be the tomograph discussed in Step 2. Shrink the support of ds so

that the density dT is supported in V . (Abusing notation, here and below,

as we modify ds and hence T , we keep the same notation.) Next, divide the

measure ds by the constant c provided by Lemma 4.3 so that we have

P ∗
∞dT ≤ |dx1 ∧ · · · ∧ dxn|

with equality along the zero section. Combining (4.5) and the previous two

inequalities, we see that when k is large

dTk
≤ (1 + η)P ∗

∞dT + ηg ≤ (1 + η) |dx1 ∧ · · · ∧ dxn|+ ηg ≤ (1 + 3η + η2)g

on V . Since dTk
vanishes outside V , we have dTk

≤ (1 + 3η + η2)g on U . Note

that dTk
= g on n-frames tangent to the zero section as well. To complete

the proof, it remains to replace T by Tk and change η so that 1 + 3η + η2

becomes 1 + η.
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in Mathematics, Vol. 232, Birkhäuser, Boston, MA, 2005, pp. 525–570.

[Sc] M. Schwarz, On the action spectrum for closed symplectically aspherical manifolds,

Pacific Journal of Mathematics 193 (2000), 419–461.

[UZ] M. Usher and J. Zhang, Persistent homology and Floer–Novikov theory, Geometry

& Topology 20 (2016), 3333–3430.

[Vi92] C. Viterbo, Symplectic topology as the geometry of generating functions, Mathe-

matische Annalen 292 (1992), 685–710.

[Vi00] C. Viterbo, Metric and isoperimetric problems in symplectic geometry, Journal of

the American Mathematical Society 13 (2000), 411–431.

[Vi22a] C. Viterbo, Inverse reduction inequalities for spectral numbers and applications,

https://arxiv.org/abs/2203.13172.

[Vi22b] C. Viterbo, On the supports in the Humilière completion and γ-coisotropic sets,

https://arxiv.org/abs/2204.04133.

[Vi23] C. Viterbo, Symplectic homogenization, Journal de l’École polytechnique.

Mathématiques 10 (2023), 67–140.

https://arxiv.org/abs/2203.13172
https://arxiv.org/abs/2204.04133

	1. Introduction and main results
	2. Preliminaries
	3. Tomographs and barcodes
	4. Proof of Theorem 3.2
	References

