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ABSTRACT

We study lower semi-continuity properties of the volume, i.e., the surface
area, of a closed Lagrangian manifold with respect to the Hofer- and -
distance on a class of monotone Lagrangian submanifolds Hamiltonian
isotopic to each other. We prove that volume is y-lower semi-continuous
in two cases. In the first one the volume form comes from a Kahler metric
with a large group of Hamiltonian isometries, but there are no additional
constraints on the Lagrangian submanifold. The second one is when the
volume is taken with respect to any compatible metric, but the Lagrangian
submanifold must be a torus. As a consequence, in both cases, the volume

is Hofer lower semi-continuous.

1. Introduction and main results

1.1. INTRODUCTION. In this paper we are concerned with lower semi-continuity
properties of the volume, i.e., the surface area, of a closed Lagrangian manifold
with respect to the distance of a purely symplectic topological nature, e.g., the
Hofer- and ~-distance, on a class of monotone Lagrangian manifolds Hamilton-
ian isotopic to each other.

We conjecture that volume is y-lower semi-continuous in general, and we
prove this in two situations. The first one is fairly close to the standard setting
of integral geometry. This is the case where the volume form comes from a
Kahler metric with a very large group of Hamiltonian isometries, but there are
no additional constraints on the Lagrangian submanifold. The second one is
in some sense much more general: the volume form is taken with respect to
any compatible metric, but the Lagrangian submanifold must be a torus. As
a consequence, in both cases, the volume is lower semi-continuous with respect
to the Hofer metric.

The question is inspired by the key result from [AM] asserting that in dimen-
sion two the topological entropy of a Hamiltonian diffeomorphism is Hofer lower
semi-continuous. We find results of this type quite interesting because they con-
nect seemingly unrelated entities existing in completely different realms: pure
dynamics or metric invariants such as topological entropy or volume on one side
and symplectic topological features on the other.
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The second motivation for the question comes from [CGG24a] where topolog-
ical entropy of compactly supported Hamiltonian diffeomorphisms is connected
with Hamiltonian or Lagrangian Floer theory via the so-called barcode en-
tropy which is determined by the growth of the number of not-too-short bars
in the filtered Floer complex of the iterates. That paper also provides a natu-
ral framework to study the question by connecting Crofton’s type (in)equalities
from integral geometry with Floer theory. Here we use the notion of Lagrangian
tomograph introduced in that paper to show that for a large class of n-densities
on a 2n-dimensional symplectic manifold the integral over a Lagrangian sub-
manifold is y-lower semi-continuous. Then these densities are used to match or
at least approximate from below the metric n-density.

One can pose a similar question about other metric (or dynamics) invariants,
but the choice of volume is quite natural for it already enjoys strong C°-lower
semi-continuity properties; see [Ce, Feb2] and also [BI, Iv]. It is then only
reasonable to ask if there is an analogue in the symplectic setting. In some sit-
uations the y-norm is known to be continuous with respect to the C°-topology
(see [BHS, Ka, KS]), and hence, at least on the conceptual level, y-lower semi-
continuity is a refinement of C°-lower semi-continuity in the symplectic frame-
work.

Another interpretation of our results is that the volume function extends to a
lower semi-continuous function on the Humiliere completion, i.e., the completion
with respect to the y-distance (see [Hu]), of the class of Lagrangians Hamiltonian
isotopic to each other, whenever y-lower semi-continuity is established.

ACKNOWLEDGEMENTS. Parts of this work were carried out while the second
and third authors were visiting the IMJ-PRG, Paris, France, in May 2022 and
also during the Symplectic Dynamics Beyond Periodic Orbits Workshop at the
Lorentz Center, Leiden, the Netherlands in August 2022. The authors are
grateful to these institutes for their warm hospitality and support. The authors
would also like to thank Leonid Polterovich and the referee for useful comments.

1.2. MAIN RESULTS. Let (M?", w) be a monotone symplectic manifold which
is either closed or sufficiently nice at infinity (e.g., convex) to ensure that the
relevant filtered Floer homology is defined; see Section 2.1 and Remark 2.1.
Furthermore, let £ be a class of closed monotone Lagrangian submanifolds L
of M, Hamiltonian isotopic to each other. We require in addition that the
minimal Chern number of L is at least 2.
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Recall that the y-norm of a compactly supported Hamiltonian diffeomor-
phism ¢ is

Y(g) i= inf(c(H) + c(H™)),

where the infimum is taken over all compactly supported Hamiltonians H gener-
ating ¢ as the time-one map ¢y of the Hamiltonian isotopy ¢, the Hamilton-
ian H'"V generates the isotopy (% )~! and c is the spectral invariant associated
with the fundamental class [M] (relative infinity when M is not compact); see
[Oh05, Sc, Vi92].

The (ambient) y-distance on £ is defined as

dy(L, L") == inf{7(¢) | p(L) = L'}.
This is indeed a distance on L; see, e.g., [KS| and references therein.

Example 1.1: Two loops L and L’ which are d,-close need not be close with
respect to the Hausdorfl distance. This is the case for instance when L’ is
obtained from L by growing long but narrow tongues (or tentacles) and, if
needed, by a small perturbation to keep L and L’ Hamiltonian isotopic.

Alternatively, when the Lagrangian submanifolds L from £ are wide in the
sense of [BiC], i.e., HF(L) = H(L) ® A, where A is the Novikov ring, one has
the (interior) v-distance. It is defined in a similar fashion but now by using
Lagrangian spectral invariants; see, e.g., [Le, LZ, KS, Vi92] for further details
and references. Among wide Lagrangian submanifolds are the zero section of a
cotangent bundle and the “equator” RP™ C CP™. On the other hand, displace-
able Lagrangian submanifolds have HF (L) = 0 and hence are not wide.

In general, the interior y-distance is bounded from above by the ambient -
distance which in turn is bounded from above by the Hofer distance. We are not
aware of any example where the two 7-distances are different. Our results hold
for both the ambient ~-distance and the interior v-distance, when the latter
is defined. We will not distinguish the two distances and will use the same
notation d.

Finally, fix a Riemannian metric compatible with w. Then we have the volume
or, to be more precise, the surface area function:

vol: £ — (0,00)

sending L to its surface area, which we refer to as the Lagrangian volume.
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We conjecture that vol is lower semi-continuous on £ with respect to the
v-distance, and here we prove this conjecture in two disparate cases. The first
of these is where M is K&hler and has a large symmetry group (e.g., M = C"
or CP").

THEOREM 1.2: Let M be Kahler and the Riemannian metric be the real part
of the Kahler form. Assume furthermore that the group of Hamiltonian Kéhler
isometries acts transitively on the Lagrangian Grassmannian bundle over M.
Then vol is lower semi-continuous on £ with respect to the ~y-distance.

This theorem is proved in Section 3.

When L = T", the restrictive condition that M has a large symmetry group
can be dropped. In fact, we have a more precise result asserting roughly speak-
ing that for a fixed Lagrangian submanifold Ly from £ and another Lagrangian
submanifold L € £, which is d-close to Lo (depending on Lg), the part of L
situated C?-close to Lg is at least almost as large as L.

THEOREM 1.3: Assume that Ly = T" € L and let U be an arbitrary open
subset containing Ly. Then the function

voly: £ — [0,00)

sending L to the surface area of U N L is lower semi-continuous on L at Ly with
respect to the y-distance.

The proofs of Theorems 1.2 and 1.3 rely on a result of independent inter-
est, Theorem 3.1, asserting d.-lower semi-continuity of the integral of certain
densities and based on a connection between Floer barcodes and Lagrangian
tomographs; cf. [CGG24a, CGG24b).

In Theorem 1.3, U and Lg are tied up by the requirement that Ly C U.
Although we do not have a proof of this, we expect this requirement to be
unnecessary, i.e., that the function voly is lower semi-continuous at every point
of £ for any open set U C M. In any event, as an immediate consequence of
Theorem 1.3, we have

COROLLARY 1.4: Assume that L = T". Then vol is lower semi-continuous on L
with respect to the vy-distance.

Note that since the y-distance is bounded from above by the Hofer distance,
in the setting of this corollary or of Theorem 1.2, the vol function is also lower
semi-continuous with respect to the Hofer distance.
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Remark 1.5: Another consequence of Theorem 1.3 is that LNU # (). Here, how-
ever, a much more precise and general result is available, which, in particular,
does not require L to be a torus. Namely, when L is d,-close to Lg, for every
point of Ly the submanifold L intersects a small ball centered at that point.
This is an immediate consequence of, for example, [KS, Thm. F]; see also, e.g.,
[BaC, BiC, Vi22b] for some relevant results.

Example 1.6: The function vol is automatically lower semi-continuous at L
when L C M is a global volume minimizer in £. For instance, as is easy to see,
this is the case for the zero section of the cotangent bundle equipped with the
Sasaki metric. Likewise, the standard RP™ C CP" is a volume minimizer with
respect to the Fubini-Studi metric on CP"; [Oh90]. In contrast, Theorem 1.2
and Corollary 1.4 assert lower semi-continuity at every point of £ and in the
case of the corollary for a broad class of metrics on M.

Denote by L the Humiliere completion of L, i.e., its completion with respect
to the y-distance; cf., [Hu]. Corollary 1.4 and Theorem 1.2 are equivalent to
the following result.

COROLLARY 1.7: Assume that L = T"™ or that M is as in Theorem 1.2. Then
vol extends to a lower semi-continuous function on L.

Remark 1.8: We do not know if in general the function vol is bounded away
from zero on L or equivalently on L. This is obviously so when vol has a
global minimizer as in the setting of Example 1.6. Furthermore, lower bounds
for vol(L) in terms of the displacement energy of L are obtained in [Vi00]
when M = R?™ or CP” or a cotangent bundle.

2. Preliminaries

2.1. NOTATION AND CONVENTIONS. Throughout this paper we use conventions
and notation from [CGG24a] and [CGG24b]. Referring the reader to [CGG24a,
Sect. 3] for a much more detailed discussion, here we only touch upon several
key points.

All Lagrangian submanifolds L are assumed to be closed and monotone, and
in addition we require that the minimal Chern number of L is at least 2. The
ambient symplectic manifold M is also assumed to be monotone but not neces-
sarily compact. In the latter case, we assume that M is sufficiently well-behaved
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at infinity (e.g., convex) so that the filtered Floer complex and homology can be
defined for the pair (L, L) of Hamiltonian isotopic Lagrangians; see Remark 2.1
below and [CGG24a, Rmk. 2.8] for more details.

For the sake of simplicity Floer complexes and homology and also the ordi-
nary homology are taken over the ground field F = Fo. When L and L’ are
Hamiltonian isotopic and intersect transversely, we denote by CF(L,L’) the
Floer complex of the pair (L, L’). This complex is generated by the intersec-
tions L N L' over the universal Novikov field A. This is the field of formal

sums
A=) fT,
Jj=0
where f; € F and a; € R and the sequence a; (with f; # 0) is either finite
or aj — 00.

Due to our choice of the Novikov field, the complex CF(L, L") is not graded.
However, fixing a Hamiltonian isotopy from L to L’ and “cappings” of inter-
sections we obtain a filtration on CF(L,L’) by the Hamiltonian action. The
differential on the complex is defined in the standard way.

Note that the complex breaks down into a direct sum of subcomplexes over
homotopy classes of paths from L to L. Then to define the action filtration
on CF(L, L") we also need to pick a reference path in every homotopy class.

To an R-filtered, finite-dimensional complex C over A one then associates
its barcode B. In the most refined form this is a collection of finite or semi-
infinite intervals, defined in general up to some shift ambiguity. The number of
semi-infinite intervals is equal to dima H(C). A construction of B most suitable
for our purposes is worked out in detail in [UZ] and also briefly discussed in
[CGG24a]. For our goals, it is convenient to forgo the location of the intervals
and treat B as a collection (i.e., a multiset) of positive numbers including oc.
Setting C = CF(L, L") we obtain the barcode B(L,L’). With this convention
the barcode B(L, L’) is independent of the choices involved in the definition of
the action filtration.

The actual definition of B is not essential for our purposes and its only feature
that matters is that it is continuous in the Hamiltonian or the Lagrangian with
respect to the C'>°-topology and even the Hofer norm or the y-norm. To be more
precise, denote by b, = b.(L, L’) the number of bars in the barcode of length
greater than e. This is the main ingredient in the definition of barcode entropys;
see [GG24a]. Assume furthermore that Lagrangian submanifolds L, L' and L”
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are Hamiltonian isotopic, and d, (L', L") < §/2, and L' and L" are transverse
to L. Then

(2.1) be(L, L") > beys(L, L').

This is a consequence of [KS, Thm. GJ; see also [Vi22a]. This property allows
one to extend the definition of the barcode and of b, “by continuity” to the case
where the manifolds are not transverse.

Furthermore, assuming that L M L’ note that
(2.2) dimy CF(L, L") > 2b(L, L") — dim HF(L).

This inequality turns into an equality when € is smaller than the shortest bar,
i.e., b is the total number of bars b(L, L’):

(2.3) dimy CF(L, L') = 2b(L, L') — dims HF(L).

Remark 2.1 (Conditions on M at infinity): In this remark we touch upon the
conditions, in addition to being monotone, that M must satisfy at infinity when
it is not compact. If L is wide in the sense of [BiC], i.e., HF(L) = H(L) ® A,
we can work with the interior y-norm and it is sufficient to assume that M is
geometrically bounded. Otherwise, we use the ambient v-norm. In this case
we need to have the filtered Floer homology and the fundamental class spectral
invariant defined for compactly supported Hamiltonians H on M. To this end,
we can require M to be geometrically bounded and wide in the sense of [Gii], i.e.,
admitting a proper function F': M — [0,00) without non-trivial contractible
periodic orbits of period less than or equal to one. Indeed, such a function can
then be found vanishing on any compact set and used to perturb H at infinity.
The resulting Floer (co)homology is well-defined and isomorphic to H: (M) ® A.
Hence the required spectral invariant is also defined. Alternatively, we may
require M to be convex at infinity; [FS].

2.2. INPUT FROM INTEGRAL GEOMETRY.
2.2.1. Densities. Let P be the Stiefel bundle over a manifold M™, i.e., P is
formed by k-frames o = (vi,...,vr). Recall that a k-density @ on M is a

function 9: P — R such that
(2.4) o(v") = | det Ald(v),

where A is the linear transformation of the span of © sending ¥ to ©';
see, e.g., [APF98]. Sometimes it is convenient to drop the condition that the
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vectors from ¥ = (v1,...,v;) are linearly independent by setting 9(7) = 0 oth-
erwise.

Here are several examples of densities: A Riemannian or Finsler metric on
M or, more generally, any homogeneous degree-one function TM — R is a
one-density. For instance, in self-explanatory notation, the functions |dx|, |dy|,
|dz| +|dy| and \/dx? 4 dy? are 1-densities on R?. Furthermore, for every k < m
a Riemannian metric gives rise to a k-density gp defined by the condition
that g (7) is the volume of the parallelepiped spanned by @. Thus g,, is the Rie-
mannian volume. For a differential k-form « its absolute value |«| is a k-density.
The sum of two k-densities is again a k-density.

A k-density 0 can be integrated over a compact k-dimensional submanifold L
without requiring L to be oriented or even orientable. Similarly to differen-
tial forms, densities can be pulled back and, under suitable additional condi-
tions, pushed forward. When it is defined, the push-forward ¥, of ? by a
map V: M’ — M is characterized by the condition that

/ V0= / 2.
L T-1(L)

2.2.2. Lagrangian tomographs and Crofton’s formula. Among the key tools en-
tering the proofs of our results are Lagrangian tomographs. In this section
we briefly discuss the notion following with minor modifications [CGG24a,
CGG24b], which in turn is loosely based on [APF98, APF(07, GeSm] and also
[GuSt05, GuSt13].

For our purposes, a tomograph 7 comprises the following data:

e a fiber bundle 7: E — B with fiber K;

e amap V: E — M, which is required to be a submersion onto its image
and an embedding of every fiber 771(s), s € B;

e a smooth measure ds on B.

Here the fiber K is required to be a closed manifold; the base B may have
boundary and need not be compact, but if it is not, and hence F is not compact,
the submersion ¥ must be proper. Finally, the measure ds is required to be
supported away from 0B. It is essential for what follows that ds is a genuine
measure, but not a signed measure, i.e., the integral of a non-negative function
is non-negative. The key difference of this definition from the references above is
that there ¥ is also a fiber bundle and hence a tomograph is a double-fibration.
(The term “tomograph” is not used there.)
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Set Ly := ¥(r~'(s)) and ¥, := W|,—1(y for s € B. Then L, is a smooth
closed submanifold of M and dim L, = dim K. We call d = dim B the dimension
of the tomograph. The pull-back/push-forward density

(2.5) O =P, 1" ds

is a smooth k-density on M with k£ = codim L,. We call suppdr C ¥(E) the
support of the tomograph 7.
Next, let L be a closed submanifold of M such that codim L = dim K. Set

N(s):=|LsNL| €0, xx].

Since ¥ is a submersion, ¥, i L for almost all s € B. Hence N(s) < oo almost
everywhere and N is an integrable function on B. We refer the reader to, e.g.,
[APF98] for the proof of the following simple but important result.

PROPOSITION 2.2 (Crofton’s formula; [APF98]): We have

[ N@as= [ or.

Remark 2.3: Tt is useful to keep in mind that the measure ds does not essentially
enter in any of the tomograph requirements: it can be any smooth measure on B
supported away from 0B. The latter condition is imposed to ensure that 07 is
smooth. In particular, one can always localize the support of 7 near L, with s
in the interior of B by localizing the support of ds near s.

Remark 2.4: This interpretation of classical Crofton’s formula, which utilizes
densities and ultimately goes back to [GeSm], is conceptually quite different
from the one based on the surface area or, more generally, the Hausdorff measure
associated with a metric as in [Fe69, Thm. 3.2.26]. The latter, of course, can be
applied to a much bigger class of subsets than submanifolds. We also note that
the term tomograph might be misappropriated here because our tomographs
have a limited functionality, determining only the volume but not the shape of
the subset; cf. [Ga).

Assume now that M is symplectic of dimension m = 2n. We call T a La-
grangian tomograph when all submanifolds Ly = ¥ (7~ !(s)) are Lagrangian
and Hamiltonian isotopic to each other. Thus a Lagrangian tomograph is a
family of Lagrangian submanifolds Ly which are parametrized by B and meet
some additional requirements. Note that dim Ly = dim K =n = k.
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Example 2.5 (Classical Lagrangian tomographs): Assume that M is K&hler and
that the group G of Hamiltonian Ké&hler isometries acts transitively on M.
Let K be any closed Lagrangian submanifold of M. Set £ = K x G with 7 being
the projection to the second factor B = G and ¥(z,s) := s(z), where x € K
and s € G. Finally, we let ds be a Haar measure on GG. Then, as is easy to
see, we obtain a Lagrangian tomograph. This is essentially the classical setting
of Crofton’s formula—see the reference cited above. (Usually one replaces the
base B = G by the space G/ Stab(K) formed by all images of K in M under G.
Here, however, we prefer to keep B = G.) This construction applies to M = C"
and CP" and, more generally, to any simply connected homogeneous Kahler
manifold.

Example 2.5 produces tomographs with support equal to M and requires M
to have a large symmetry group. Here, as in [CGG24a, CGG24b|, we are also
interested in tomographs supported in a small tubular neighborhood U of a
Lagrangian submanifold L C M and having L as one of the submanifolds L.
(Hence, K = L.) In the setting of the example, this can be achieved by local-
izing ds as in Remark 2.3. However, local tomographs exist in a much more
general setting. Indeed, first note that by the Weinstein tubular neighborhood
theorem we can set M = T*L. Furthermore, to construct a local tomograph
near L we can, essentially without loss of generality by shrinking the support
of ds, assume that £ = L x B, where B is a d-dimensional ball, and L = Lg
is the image of the fiber over center 0 € B. It turns out that such localized
Lagrangian tomographs always exist.

LEMMA 2.6 (Lemma 5.6; [CGG24a]): A Lagrangian tomograph of dimension d
supported in U exists if and only if L admits an immersion into R?.

Remark 2.7: In fact, the proof of the lemma shows slightly more: on the infin-
itesimal level such tomographs (without ds fixed) are in one-to-one correspon-
dence with immersions of L into R<.

3. Tomographs and barcodes

The proofs of Theorems 1.2 and 1.3 are based on automatic d.-lower semi-
continuity of the integral of the pull-back/push-forward density associated with
a Lagrangian tomograph, which is in turn a consequence of a connection between

Floer barcodes and tomographs.
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Thus fix a class £ of Lagrangian submanifolds of M as in Section 1.2 and
let 7 be a Lagrangian tomograph such that Ly € £. Denote by 97 the pull-
back/push-forward density of T given by (2.5).

THEOREM 3.1: The function

IT:LH/UT
L

is d.-lower semi-continuous on L.

Proof. Fix L € £ and 1 > 0. Our goal is to show that

Ir(L) > I7(L) —n

when d., (L, L) is small.

Let 3 C B be the set of all points such that W is not transverse to L. Since ¥
is a submersion, this is a closed zero-measure subset of B. Thus there exists a
compact subset B’ C B\ ¥ such that in the notation from Section 2.2.2

(3.1) N(s)ds > / N(s)ds —n=Iy(L) —n,
B B

where the equality follows from Crofton’s formula (Proposition 2.2). The set B’
is obtained by removing from B a sufficiently small neighborhood of X.

By construction, L, th L for all s € B’. Since B’ is compact, for all s € B’ the
shortest bar in the barcode of CF(L, L;) is bounded away from zero by some
constant 8 > 0. Furthermore,

N(s) = dimp CF(L, Ly).
Take now € > 0 and J > 0 so small that e + § < 8. In particular,
beys(L, Ls) = b(L, L)
and thus, by (2.3),
(3.2) N(s) = 2beys(L, Ls) — h,

where we set h = dimy HF(L) for the sake of brevity.
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Assume next that d., (L, L) < §/2 and set
N(s) :=|LN Ly
We have L th Ly, and hence N(s) = dima CF(L, L), for almost all s € B. Then

= / N(s)ds by Crofton’s formula

2/(2b5(i,Ls)7h)ds by (2.2)
B

> / (2b.(L,Ls) —h)ds  since B' C B

> [ @hslLiL) - hyds by (2)

= N(s)ds by (3.2)
B

> (L) -, by (3.1)

which completes the proof of the theorem.

Proof of Theorem 1.2. In the setting of the theorem consider the Lagrangian
tomograph 7 from Example 2.5. Both the push-forward/pull-back density d7
and the metric n-density g are invariant under the group G of (Hamiltonian)
Kahler isometries. Since G acts transitively on the Lagrangian Grassmannian
bundle, these two densities agree up to a factor on the frames spanning La-
grangian subspaces; cf. [APF07, Lem. 5.4]. Hence, the function

-

is also d,-lower semi-continuous on £ by Theorem 3.1.

In general, there is no hope to exactly match a Lagrangian metric density by
the push-forward/pull-back density of a localized tomograph as in the proof of
Theorem 1.2. However, to prove Theorem 1.3 it is sufficient to loosely bound
the density from below and this is done in Theorem 3.2 below.

Let L = T" C M?" be a Lagrangian torus. Fix a compatible metric on M and
denote by g the metric density. We consider Lagrangian tomographs 7 with
fiber K diffeomorphic to L and a ball B serving as the base B. Thus E = L x B
and 7 is the projection to the second factor.
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THEOREM 3.2: For any open set U D L and any n > 0, there exists a La-
grangian tomograph T as above with L = Lo = ¥(n~1(0)), supported in U and
such that

(i) 07| = g|L pointwise,
(ii) o7 < (1 +n)g.

We prove this theorem in Section 4.

Proof of Theorem 1.3. Set 0 := 07 for the sake of brevity. By Theorem 3.1 and
since T is supported in U, for any § > 0,

(3.3) /mUa/Laz/Looé

when d., (Lo, L) is small. Thus we have

/ g> (1+n)‘1/ 0 by (ii)
LNU LNU
> (1+n)-1(/L 075) by (3.3)

0

=~ ([ a=d) by

0

/ 92/9—6
LNU Lo

once n > 0 and § > 0 and then d, (Lo, L) are small enough.

Hence, for any € > 0,

4. Proof of Theorem 3.2

We carry out the proof in three steps. In the first step we discuss some pre-
liminaries, then in the second step we introduce the Lagrangian tomographs
which are used in the proof, and the last step comprises the actual proof of
Theorem 3.2.

STEP 1. Let T* = S x .-+ x S (n times), where S! = R/27Z, with angular
coordinates © = (z1,...,x,) and let M = T*T" = T™ x R with coordi-
nates (x,y). We get a similar decomposition of T(, , M = R"™ x R™ and we
denote the resulting coordinates on this space by (w, u).

For k € Z*, set

Op: T = T, Ig(z) = kx = (kx1, ..., kxy)
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and
Fp = k()71 T x R® = T x R™,  Fy(z,y) = (kz,y).
We note here that II; as a map from 7*T" = T" x R" to itself is not defined,

but its inverse (I1})~? is.
Let ? be an n-density on M. Consider the density

1

knF;D =: 0.

Explicitly, for an n-frame v = (vy,...,v,) at (x,y), write

Vi = (wuuz) e R" xR" = T(z,y)Mv

and
() =2 hgy) (w1, u1,. .., Wn, Up).
Then
1
01(0) = | B(gay) (kwi, un, .. kW, Un) = W) (w1, ur /K, o We, un /K).

kn
Hence, when 0 is T™-invariant, i.e., h is independent of x, we have
05(0) = Mgy (w1, ur/k, .. wn,un k).

Setting P (v) := (w,u/k) for v = (w,u) and Py(?) := (Pyv1 ..., Pyvy,), we can
rewrite the above expression as

0x(0) = 0(Pyv) =: (P}0)(v).

In other words, for any invariant density 0,

1 * *

In a similar vein, let P, be the projection to the horizontal direction:

(4.1)

Poo(v) = (w,0)
for v = (w,u). We conclude that
(4.2) 0 = Pp0 — 0 := PLD

uniformly on compact sets. In the next step, we explain how to obtain such
sequences 0y from tomographs.
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STEP 2. Let T be the Lagrangian tomograph
(B,ds) «+"— B x T" —2— T" x R",
given by
(4.3) U(s,z) = (2, p1sin(z1 + ¢1), ..., posin(@, + ¢n)),
where
s = ((p1,¢1), - (Pns )
is a point in the polydisk B = (B?)" with p; < R, for all i and some R > 0.

(Here we think of (p;, ¢;) as polar coordinates in the i-th copy of the disk B2.)
In other words, Ly = ¥(s, T™) is the graph of the one-form

n
(4.4) s = Z pisin(x; + ¢;) dx;.
i=1
As the measure ds, we can take any smooth rotationally symmetric (i.e., inde-
pendent of ¢;) measure, which is not identically zero and supported away from
the boundary of B. Then, in particular, f pds > 0 since ds is by definition
non-negative. This data gives an ”equivariant” tomograph, and, as a result,
the pull-back/push-forward density 07 = U,n*ds is T"-invariant.
More precisely, consider the T"-action on B x T™ defined by

9(85 (E) = ((p7 ¢ - 9)) x+ 9)
for #€T™. Since ¥O=0V and 0, 7*ds = w*ds, we also have 0,V . n*ds = ¥, ,m*ds.
Here the identity 6,7*ds = 7*ds is a consequence of the assumption that ds is
rotationally symmetric. Namely, denote by 6 the restriction of § to B. Then,

7*0,ds = 7" ds

by the symmetry and 6,7*ds = 7*f.ds is easy to see since § and 6 are diffeo-
morphisms (see [APF07, Thm. 6.2] for a more general statement).
Next, define T to be the tomograph given by the data

(B,1/k"ds) +=— B x T —2 T x R™,
where
Uy(s,z) = (x, p1sin(kxy + ¢1), ..., pnsin(kz, + ¢n)).
In other words, the tomograph 7; comprises the graphs of the differential
forms IT} v, /k. Note that we scaled the measure on B by 1/k™.
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Remark 4.1: In the framework of Lemma 2.6, 7 corresponds to the standard
embedding j: T™ < R2" and 7T}, corresponds to the immersion (j o IIx)/k.

LEMMA 4.2: We have

o7, = Pior.
Combining this lemma with (4.2), we observe that
o, — PLor
uniformly on compact sets. Therefore, for any n > 0,
(4.5) o7, < (L+n)PXdT + g

when k is large enough, by (2.4).
Before turning to the proof of Lemma 4.2, we note another feature of the
density 0. Namely, by T"-invariance,

Pror=o(y)|der A+ Aday|

for some smooth, compactly supported, non-negative function ¢ on R™. The

next lemma asserts that this function attains its maximum at the origin.
LEMMA 4.3: There exists a constant ¢ > 0 such that

Prlor <cldzy A+ Adxy|
with equality along the zero section. In other words, ¢ := 0(0) = maxo.
Proof. Set Ty :=T" x {y} C T" x R™. Then
(4.6) |Ls NTy| < |Ls N Ty

for all y € R™ and s € B. It follows that

(@7) P;OT:/ |LSQTZ|ds§/ |Lsﬁ’}1‘3|ds:/ Pror
i B B v

for all y € R™. We have ¢ := 0(0) = maxyern 0(y).
The following observation we will be useful in the proof of Lemma 4.2.

LEMMA 4.4: For any density 0 on T" x R", we have F}F},0 = kd. Moreover,
if 0 is T"-invariant, then Fy,,F;0 = k0.
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Proof. Let 0 be an m-density on M = T" x R™. As above, for an m-frame
0= (v1,...,0m) at (z,y) € M, we write v; = (w;,u;) € R" x R" = T(, , M,
and

0(1_)> = h(w,y)(wh ULy -y W, Um)-
Then
k—1
Fk*a(l_)) = Z h((m-{-i)/k,y)(wl/ka U, - .- ,’LUm/k, Um)
=0
and

k—1
F]:Fk*a(@) = Z h(z,y)(wla ULy ooy Win, Up) = KO(D).
=0

Now suppose that 0 is T"-invariant. Then

k—1

Fk*FI:O(T)) = Z h(achi/k,y) (wl, ULy e v oy Win, um),
1=0

which is equal to kd(9) since h is independent of x.

Next, we prove Lemma 4.2. We will partially follow the argument given in
[APF07, Thm. 6.2].

Proof of Lemma 4.2. Consider the commutative diagram

B+ BxT" —Y:, T xR®

idl lid x I le,

B+T BxTt Y, Tn xR

Observe that 7*ds is T"-invariant and 7*ds = (id x II;)*n*ds. For the latter
we used the commutativity of the first block. Now one can deduce from the
proof of Lemma 4.4 that

(id x Ig)7*ds = kn*ds.
Also, the commutativity of the second block yields
U, (id x IIg)7m*ds = Fj Vg, 7" ds.

By the above equalities and the definition of pull-back/push-forward density
and (2.5),

kor = Fk*k"an.
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(Recall that in the tomograph 7Ty the measure on B is scaled by 1/k™.) Apply-
ing Fy; to both sides and using Lemma 4.4, we obtain

Eyor =k op,.
On the other hand, since 07 is T"-invariant,
Eor/k" = Pior

by (4.1). Thus

o, = Por.

Remark 4.5: The homogenization procedure described here is somewhat simi-
lar to the one from [Vi23], although we apply it to tomographs and densities
rather than Hamiltonians, and the T"-invariance condition considerably sim-
plifies the situation. (In the setting of that paper homogenization is trivial
for invariant Hamiltonians.) We also note that Lemma 4.2 holds for any equi-
variant tomograph 7T, when Ty is defined as a tomograph satisfying the condi-
tion Fj o Uy, = ¥ o (id x II}) with renormalized measure ds/k™. It is easy to
see that 7}, exists, but it is not unique unless we require that Wy | -1y = id. In
any case, the density 07, is independent of the choice of 7. On the other hand,
Lemma 4.3 relies on (4.6) which is satisfied for the tomograph 7 given by (4.3),
but not for an arbitrary equivariant tomograph comprising the graphs of exact
forms. Finally, the reader has certainly noticed that while 7 and 7 are given
by simple and explicit formulas, the proof is quite indirect. The reason is that
we do not have an explicit and easy to work with expression for the densities 01
and d7;,, even for such simple tomographs. (Such an expression would depend
on ds.)

Finally, we are in a position to prove Theorem 3.2.

STEP 3. Let now, as in the statement of the theorem, M be the ambient sym-
plectic manifold equipped with a compatible metric and let g be the metric
n-density. It is clear that in the proof of the theorem we may replace U by
any open subset containing Ly = T™. Thus, without loss of generality, we can
identify U with a neighborhood of the zero section in T*T" so that the fibers are
orthogonal to the zero section; this Weinstein tubular neighborhood structure
will be used in what follows. Fix some angular coordinates x = (x1,...,zy)
on T" and further identify T*T™ = T™ x R™ by using these coordinates as above.
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Without loss of generality, by Moser’s theorem, we can assume that
glre = |dx1 A -+ Aday],

i.e., these two densities agree pointwise on the frames tangent to the zero section.
Next, note that, along the zero section (but not necessarily only on the frames
tangent to the zero section),

|dzy A - Adxy| < g.

To see this, consider the standard Euclidean metric n-density on R?" = R" x R™,
Let © be the image of the coordinate frame in R™ under a map of the form

(A4,B): R" - R" x R™.
Then
a(v) = \/det(AA* + BB*) (Pythagorean theorem).
Hence,
9(7) > v/det(AA*) = |det A| = |dz1 A -+ A da, | (D).
We conclude by continuity of the metric density g that for all > 0 there exists
a neighborhood V' C U of the zero section such that on V' we have

|[dzy A - Adxy) < (1+1)g.

Strictly speaking, continuity only implies that the inequality holds on a compact
subset of the Stiefel bundle of T'V. However, then it holds for every n-frame
tangent to V since densities are homogeneous or, to be more precise, by (2.4).
Let 7 be the tomograph discussed in Step 2. Shrink the support of ds so
that the density 07 is supported in V. (Abusing notation, here and below,
as we modify ds and hence 7, we keep the same notation.) Next, divide the
measure ds by the constant ¢ provided by Lemma 4.3 so that we have

Pror <|dzy A--- Adxy)|

with equality along the zero section. Combining (4.5) and the previous two
inequalities, we see that when k is large

or, < (L +n)PLdr+ng < (1 +n)|dey A+ Adan| +n1g < (L+3n+1%)g

on V. Since 07, vanishes outside V, we have 07, < (1+ 31+ n?)g on U. Note
that 97, = g on n-frames tangent to the zero section as well. To complete
the proof, it remains to replace 7 by 7 and change n so that 1 4+ 3n + n?
becomes 1 + 7.
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