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Abstract. As transistor-based memory technologies like dynamic ran-
dom access memory (DRAM) approach their scalability limits, the need
to explore alternative storage solutions becomes increasingly urgent. Phase-
change memory (PCM) has gained attention as a promising option due
to its scalability, fast access speeds, and zero leakage power compared to
conventional memory systems. However, despite these advantages, PCM
faces several challenges that impede its broader adoption, particularly its
limited lifespan due to material degradation during write operations, as
well as the high energy demands of these processes. For PCM to become a
viable storage alternative, enhancing its endurance and reducing the en-
ergy required for write operations are essential. This paper proposes the
use of a neural network (NN) model to predict critical parameters such
as write latency, energy consumption, and endurance by monitoring real-
time operating conditions and device characteristics. These predictions
are key to improving PCM performance and identifying optimal write
settings, making PCM a more practical and efficient option for data stor-
age in applications with frequent write operations. Our approach leads
to significant improvements, with NN predictions achieving a Mean Ab-
solute Percentage Error (MAPE) of 0.0073% for endurance, 0.23% for
total write latency, and 4.92% for total write energy.

Keywords: Phase Change Memory (PCM) · Neural Networks (NN) ·
Multi-Layer Perceptron (MLP) · Write Energy · Write Latency · En-
durance.
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1 Introduction

With DRAM and other transistor-based memory technologies reaching their
scalability constraints, the search for new storage alternatives is becoming more
critical. Phase Change Memory (PCM) has emerged as a strong candidate,
leveraging chalcogenide materials like Ge2Sb2Te5 (GST) [1] to toggle between
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low-resistance crystalline and high-resistance amorphous states for data storage.
PCM presents several advantages, including high scalability, non-volatility, low
leakage power, and competitive read latency, making it a promising contender
for future main memory systems [2] – [5]. PCM operates primarily through two
processes: SET and RESET operations [6]. The SET operation involves heating
the material below its melting point and then gradually cooling it to achieve
a crystalline state, which represents a "1" in memory. Conversely, the RESET
operation heats the material above its melting point and then rapidly cools it,
creating an amorphous state, which represents a "0". These operations demand
significant electrical power due to the necessary heating and cooling.

However, PCM is not without challenges, particularly regarding write en-
durance. Typically, PCM cells endure only about 107 to 109 write cycles before
degradation, leading to potential data retention issues such as "stuck-at" faults
where cells remain permanently in a specific state [3, 5]. This limitation impacts
reliability and longevity, especially in applications with frequent write opera-
tions. Additionally, PCM write operations are more energy-intensive compared
to DRAM, contributing to higher power consumption. The latency of write op-
erations also poses a concern, as the material requires cooling time between
operations, which can affect overall system performance.

To address these challenges, a novel approach involves integrating neural
network (NN) models, with potential future enhancements. The NN model is
designed to predict key metrics such as write energy, latency, and endurance
based on parameters like voltage, current, and pulse duration under varying
conditions, including voltage fluctuations. In parallel. This innovative application
of machine learning represents a new approach to overcoming critical limitations
in PCM technology.

The remainder of this paper is structured as follows: Section 2 explores the
related works. Section 3 presents the proposed method, detailing the integra-
tion of the NN model for optimizing write parameters. Section 4 discusses the
evaluation of our results, illustrating the simulator we will be implementing to
generate our data and compare our results, and highlighting the accuracy of our
NN. Section 5 dives deep into the future works. Finally, section 6 concludes the
paper, summarizing our contributions and the potential impact of our proposed
methods on the development of PCM as a next-generation memory technology.

2 Related Works

In recent years, several studies have explored the optimization of write cycles
and power efficiency in Non-Volatile Memory (NVM), especially Phase Change
Memory (PCM) using various machine learning techniques.

Lim et al.[7] introduced a novel workload-aware and optimized write cycle
management system for NVRAM. Their approach focused on improving en-
durance and performance by dynamically adjusting write strategies based on
workload characteristics, which helps to distribute write operations more evenly
across memory cells, thereby prolonging the lifespan of the memory and en-
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hancing overall performance. Another significant contribution presented in [8]
demonstrates the effectiveness of power-aware reinforcement learning in manag-
ing memory power consumption. Their method leverages reinforcement learning
algorithms to predict and adjust power states dynamically, thus significantly re-
ducing energy usage while maintaining performance. The proposed system learns
from historical power consumption patterns and optimizes the power states ac-
cordingly, leading to substantial energy savings without compromising the per-
formance of the memory system.

In [9], authors proposed a deep neural network model designed for accurate
and efficient performance prediction in memory systems. Their model emphasizes
the ability to handle complex memory access patterns and predict performance
metrics with high accuracy. By utilizing a deep neural network, the model can
capture intricate relationships within the memory access patterns, enabling more
precise performance predictions and, consequently, better optimization strategies
for memory management. The work by Chen et al.[10] highlighted the poten-
tial of distributed reinforcement learning for optimizing power consumption in
large-scale memory systems. Their approach involves deploying reinforcement
learning agents across a distributed memory architecture to collaboratively op-
timize power usage. This method not only improves power efficiency but also
enhances computational performance by balancing the load and reducing bot-
tlenecks in the memory system. The distributed nature of the solution ensures
scalability and robustness, making it suitable for large-scale implementations.

Additionally, in [11], the authors present a technique to eliminate redun-
dant writes, reducing energy use by up to 50% and doubling endurance. Their
method shows minimal performance impact, enhancing PCM’s reliability and
efficiency for future systems. The modular reinforcement learning approach pre-
sented by Kim et al. [12] provides a flexible framework for integrating various
reinforcement learning models to manage different aspects of memory systems.
This approach allows for the simultaneous optimization of multiple parameters,
such as power consumption, latency, and endurance, by utilizing specialized re-
inforcement learning agents for each task.

The self-optimizing memory controller in [13] demonstrates that by dynam-
ically adjusting scheduling decisions based on past behaviors, memory access
latencies can be significantly reduced, thereby improving overall system perfor-
mance. For modern memory systems,[14] introduces Memory Cocktail Therapy
(MCT), which leverages machine learning techniques and architectural insights
to optimize memory system performance. By employing gradient boosting and
quadratic lasso models, MCT dynamically selects the best memory management
policy based on runtime conditions. This approach has been shown to signif-
icantly improve instructions per cycle (IPC), extend memory system lifetime,
and reduce overall energy consumption compared to static policies, making it a
highly effective method for modern memory systems.

Furthermore, reinforcement learning-based methods have also shown promise
in the domain of adaptive caching and refresh optimization. These methods
use reinforcement learning algorithms to make real-time decisions about cache
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management and refresh operations, learning from access patterns to minimize
refreshes and improve cache hit rates. This adaptive approach allows for a more
efficient and responsive memory system that can better handle the dynamic
nature of workload demands [15], [16].

3 Proposed Method

In this section, we provide a detailed explanation of our proposed ML-PCM
approach. We start by discussing the data collection process for the write opera-
tion, followed by an overview of the data preprocessing techniques used to clean
and prepare the data for training machine learning models.

3.1 Parameter Generation

To optimize write energy and latency, we generated parameters for the NVMain
simulator [17, 18], focusing on various voltage levels and pulse durations for both
set and reset operations, as well as different read:write ratios. The set operation
parameters included discrete voltage values of 1.5 V, 2.0 V, and 2.5 V, and pulse
durations of 150 ns, 155 ns, and 160 ns. For the reset parameters, the voltage
was varied discretely with values 2.5 V, 3.0 V, and 3.5 V, and the pulse durations
considered were 100 ns, 105 ns, and 110 ns. These ranges were selected because
we obtained consistent results across different ranges, demonstrating robustness
in our findings.

We also generated trace files as inputs to the NVMain simulator, varying the
read:write ratios, including 9 : 1, 8 : 2, 7 : 3, and others. Specifically, we created
20 trace files where read operations outnumber write operations (R > W ), 20
files for balanced operations (R = W ), and 20 files where write operations exceed
read operations (R < W ). A comprehensive dataset was built by combining and
permuting all these variables to cover a broad range of operational conditions.

The next section will outline our methodology, with the flow between each
section visualized in Figure 1.

3.2 Simulation Process

The simulation process in NVMain starts by reading the first row from the
dataset file, which includes parameter combinations. These parameters, such as
set voltage, reset voltage, set pulse duration, and reset pulse duration, are then
updated in NVMain according to the values read. NVMain is executed using
the corresponding trace file for that parameter set, and the simulation runs
until 100,000 operations are completed, equating to approximately 7.5 million
simulation cycles. The results are stored in a designated folder, and the process
is repeated for each row in the dataset until all rows are processed.
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Fig. 1. ML-PCM Overview.

3.3 Data Preprocessing

Post-simulation, we gathered the raw output data corresponding to the input
values in NVMain. This raw data was cleaned to extract key metrics such as
write energy, total energy, write latency, total latency, and endurance.

To prepare the data for the predictive model, several preprocessing steps
were undertaken. Discrete input variables were One-Hot Encoded to eliminate
ordinality during model training. After preprocessing, we had 4,860 rows of data,
which were split into training, testing, and validation sets. 60% of the data was
allocated for training, 20% for testing, and 20% for validation, ensuring the
model’s robustness and generalization to new data, avoiding overfitting on the
simulation data.

3.4 NN Model

ML-PCM leverages neural networks (NN) for prediction due to their superior
capabilities in addressing the complexities of phase-change memory (PCM) sys-
tems. Neural networks excel in modeling complex, non-linear relationships and
capturing intricate patterns in data, which is crucial for accurate write energy
predictions. They outperform alternatives like decision trees, linear regression
and polynomial regression which struggle with non-linearity, and support vector
machines (SVMs), which lack the depth required for nuanced predictions.

After data collection from NVMain, we separated the data into inputs (fea-
tures) and outputs (targets). We selected voltage and pulse duration for set
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Table 1. Input Features with Linked Output Features.

Input Features Output Features
SET/RESET Voltage

SET/RESET Pulse Duration Total Write Energy
Read:Write Ratio

SET/RESET Pulse Duration Total Write Latency
Read:Write Ratio
Read: Write Ratio Endurance per Bank

and reset operations, along with the total reads and writes from a trace file
as features, while the targets were total write energy, total write latency, and
endurance. The model was developed using a Multi-Layer Perceptron (MLP)
architecture with these input features and output targets.

The MLP Neural Network (NN) was structured as a multi-output regression
model using Keras’s Functional API [19] and optimized using the Keras Tuner
[19]. By analyzing NVMain’s method of calculating write energy, latency, and
endurance per bank, we isolated the relevant inputs to train the model for the
respective outputs.

Table 1 outlines the output features along with their corresponding input
features.

This model took multiple features and separated them into 6, 5, and 5 dense
layers to predict the corresponding targets (write energy, write latency, and
endurance per bank).

Hyperparameter tuning was performed using the Keras [19] tuner for the
following aspects: the number of hidden layers, the number of neurons per layer,
the loss function, L1 and L2 values for the kernel regularizer, batch size, and
the optimizer. These hyperparameters, which are adjustable during training,
were tuned by running multiple combinations until the combination with the
lowest mean absolute error (MAE) and validation loss was identified. The model
settled on the Adam optimizer, Huber loss function, and a batch size of 160.
The resulting differences in model structure when separating into different dense
layers are shown in Table 2, and a diagram of the MLP NN structure is depicted
in Figure 2.

Table 2. Neural Network Architecture For Each Output.

Model Hidden Neurons Kernel Regularization
Output Layers per Layer L1, L2 Weights

Write Energy 6 28,28,14,6,6,16 0.001,0.001
Write Latency 5 30,14,24,16,12 0.01,0.001

Endurance 5 30,14,24,16,8 0.01,0.001
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Fig. 2. Multi-Layer Perceptron Neural Network Architecture.

During training, two callbacks were used to optimize training performance
and minimize validation loss. The learning rate for the Adam optimizer was
initially set to 0.001 and reduced by 0.1 whenever the validation loss plateaued
for three epochs. Training was stopped if the validation loss did not improve for
four consecutive epochs, preventing overfitting.

4 Evaluation

In this section, we describe our simulation environment, methodology, and present
the results of evaluating the proposed method against a baseline PCM configu-
ration.

4.1 Simulation Environment

Our proposed method was implemented in NVMain [17, 18], a comprehensive,
cycle-accurate memory simulator capable of modeling both traditional DRAM
and emerging non-volatile memory (NVM) technologies, including phase change
memory (PCM). NVMain provides detailed simulations of memory performance,
energy consumption, and NVM-specific characteristics such as limited write
endurance and multi-level cells. Additionally, NVMain supports hybrid mem-
ory architectures, fine-grained bank/subarray-level parallelism, and allows for
the customization of memory controllers and address mapping schemes. For
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PCM simulations, NVMain effectively captures critical attributes like asymmet-
ric read/write latencies, write energy, and cell endurance, making it well-suited
for evaluating PCM optimization strategies [17, 18]. NVmain’s simulation process
is as shown in Figure 3.

The simulation configuration is detailed in Table 3. The setup consists of a
20nm, 1.8V, 8Gb PRAM with a 40MB/s programming bandwidth. Other pa-
rameters include clock frequency, bus width, CPU frequency, and more, which
were maintained in their default settings within NVMain to accurately simu-
late PCM. These parameters are vital for thoroughly evaluating memory system
performance and energy consumption under various scenarios.

Table 3. Simulation Configuration.

Parameter Value
Memory Specifications

Technology node 20nm
Operating voltage 1.8V
Device capacity 8Gb

Program bandwidth 40MB/s
Interface Specifications

Clock frequency in MHz 400
Bus width in bits 64

Number of bits per device 8
CPU frequency in MHz 2000

MLC Parameters
Number of MLC levels 2
Memory Controller Parameters

Memory controller type FRFCFS
Address mapping scheme R:RK:BK:CH

Read queue size 32
Write queue size 32

Endurance Model Parameters
Endurance model type BitModel

Endurance distribution type Normal
Endurance distribution mean 1000000

Endurance distribution variance 100000

4.2 Evaluation of NN Models

Given that the NN’s objective was regression, measuring accuracy involved more
than simply calculating the proportion of correct predictions. Thus, we employed
Mean Absolute Percentage Error (MAPE) to assess the model’s performance.
MAPE is calculated as the mean of the absolute differences between the actual
and predicted values, divided by the actual values. This metric gives a percentage
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Fig. 3. NVMain Simulation Process.

Fig. 4. Regression of Predicted vs. Actual Write Energy.
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Fig. 5. Regression of Predicted vs. Actual Write Latency.

Fig. 6. Regression of Predicted vs. Actual Endurance.
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indicating the closeness of the predicted values to the actual values, with lower
percentages indicating a better fit.

During the training phase, as discussed in the Section 3.3, we divided the
data into separate sets for training, testing, and validation. Specifically, 60% of
the data was allocated for training, while 20% was set aside for both testing
and validation. Initially, we evaluated how well the model fit the training data,
followed by an assessment of how well it generalizes to new data, ensuring the
model’s adaptability to various datasets. This required evaluating both the train-
ing loss MAPE (model fit to training data) and validation loss MAPE (model
fit to unseen data).

Table 4. MAPE For Each Output.

Output MAPE
Endurance 0.0073%

Total Write Latency 0.23%
Total Write Energy 4.92%

The trends for loss in both the training and validation sets showed a signifi-
cant initial decrease, followed by gradual reductions, thanks to the learning rate
suppression callback implemented during model fitting. Since the validation loss
closely mirrored the training loss, we inferred that the model did not overfit to
the training data.

After ensuring the model was not overfitted, we proceeded to evaluate the
NN’s accuracy. We utilized MAPE to assess the testing data, achieving the
results shown in Table 4.

Subsequently, we generated regression plots, shown in Figures 4, 5, and 6,
which depict the deviation of predicted values from actual values.

Overall, these results demonstrate the effectiveness of the model in predict-
ing key performance metrics, such as endurance, write latency, and energy con-
sumption, with impressive accuracy. This provides valuable stepping stone to-
wards optimizing Phase Change Memory (PCM), enabling more low energy and
faster write operations while maintaining endurance levels, contributing to the
advancement of PCM technology as main memory.

5 Future Works

In future research, we plan to enhance the proposed method by incorporating
the following aspect:

Integration of Temperature Model Incorporate a temperature model that
accounts for variations in Ge2Sb2Te5 (GST) which affect resistance and optimal
operational parameters.
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Recent studies on chalcogenide glass materials (GST) used in PCM have
made progress in modeling the relationship between ambient temperature and
the energy required for a RESET operation. According to [20], a linear relation-
ship was identified between power density and ambient temperature, expressed
by the equation 1

P = g − hTambient (1)

where g = (32.9 ± 0.1) MW/cm2 and h = (0.04 ± 0.0003) MW/cm2K
[20]. This equation allows us to determine the energy required for a RESET
operation based on ambient temperature. By incorporating these temperature-
dependent discrete input variables into the NN model, we can optimize the total
write energy and latency, adapting the model to account for system temperature
variations.

6 Conclusion

In conclusion, this paper introduces an innovative approach to optimizing PCM
write energy consumption and performance using neural networks (NN). By
predicting key write parameters based on real-time operational conditions and
device characteristics, our proposed method aims to reduce write energy con-
sumption and latency while improving PCM endurance. Initial findings from
our evaluation involved comprehensive parameter generation, simulation pro-
cesses using NVMain, and modeling a predictive NN model, which achieved a
Mean Absolute Percentage Error (MAPE) of 0.0073% for endurance, 0.23% for
total write latency, and 4.92% for total write energy. Future works include inte-
grating a temperature model to better predict write parameters.
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