q

Check for
updates

WIRE: Write Energy Reduction via Encoding
in Phase Change Main Memories (PCM)

Mahek Desail, Apoorva Rumale!, Marjan Asadinia! ®_ and Sherrene Bogle2

1 California State University, Northridge, USA
{mahek-trushit.desai.849, apoorva-sanjay.rumale.462}@my.csun.edu,
marjan.asadinia@csun.edu
2 California State Polytechnic University, Humboldt, USA
sherrene.bogle@humboldt.edu

Abstract. Phase Change Memory (PCM) has rapidly progressed and surpassed
Dynamic Random-Access Memory (DRAM) in terms of scalability and standby
energy efficiency. Altering a PCM cell’s state during writes demands substantial
energy, posing a significant challenge to PCM’s role as the primary main memory.
Prior research has explored methods to reduce write energy consumption, includ-
ing the elimination of redundant writes, minimizing cell writes, and employing
compact row buffers for filtering PCM main memory accesses. However, these
techniques had certain drawbacks like bit-wise comparison of the stored values,
preemptive updates increasing write cycles, and poor endurance. In this paper, we
propose WIRE, a new coding mechanism through which most write operations
force a maximum of one-bit flip. In this coding-based data storage method, we look
at the frequent value stack and assign a code word to the most frequent values such
that they have a hamming distance of one. In most of the write accesses, writing a
value needs one or fewer bit flips which can save considerable write energy. This
technique can be augmented with a wear-leveling mechanism at the block level,
and rotating the different bit in the assigned codes, increasing the lifetime of the
PCM array at a low cost. Using a full-system evaluation of our method and com-
paring it to the existing mechanisms, our experimental results for multi-threaded
and multi-programmed workloads revealed considerable improvement in lifetime
and write energy as well as bit flip reduction.

Keywords: Phase change memory - Write energy - Data encoding

1 Introduction

Among all Non-Volatile Memories (NVMs), PCM is considered the leading contender
for the next generation of main memory systems [1—4]. PCM cell exploits Chalcogenide
material (GST) and shows a low resistive crystalline state (set state) and a high resistive
amorphous state (reset state). PCM has appealing characteristics such as high scalability,
non-volatility, low leakage power, and reasonable read latency. Despite its benefits,
PCM suffers from limited write endurance and can only tolerate a limited number of
write operations (which is about 107—10° writes per cell before wearing out). Upon

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
K. Arai (Ed.): FTC 2024, LNNS 1156, pp. 599-615, 2024.
https://doi.org/10.1007/978-3-031-73125-9_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-73125-9_38&domain=pdf
https://doi.org/10.1007/978-3-031-73125-9_38

600 M. Desai et al.

reaching the lifetime limit, it becomes stuck-at “1” or “0” and results in low cell reliability
[2, 4]. To overcome PCM lifetime limitation, existing solutions are grouped into two
categories: 1) bit flip reduction schemes which can be orthogonally used with wear-
leveling techniques. These techniques try to reduce the number of bit flips per write
request and can reduce the write rate to PCM cells by uniformly spreading write traffics
among cells. 2) handling cell failures when faults occur (using error detection and error
correction codes) and postponing the wearing out of PCM cells [1-3, 14, 15]. For the
first category, the simplest bit flip reduction scheme is presented in study [7] and called
a differential write. This method relies on a bit-by-bit comparison between the currently
stored data in the memory and new data to be written. In the case that stored bit values
differ from the new bit values, writing to the cell is invoked. Otherwise, differential
write skips unnecessary bit programming. Clearly, if there is more similarity between
the new data and the currently stored data, less bits are needed to change and power
consumption can be saved. So, differential write faces a problem in the case of either
low similarity or no similarity. Flip-N-Write is proposed in study [6] to further reduce
bit flips and solve the lower similarity problem in differential write scheme. This method
exploits one additional bit, called a flip bit per each word, to identify which part of the
data is inverted and which one is not inverted. It then calculates the hamming distance
of the stored data and new data to be written. In this method, N is the data bit width
and the input data is inverted if the calculated hamming distance is more than N/2. This
approach selectively inverts the blocks of data to be written, and thus provides more
similarity. The major overhead of Flip-N-Write is extra read for issuing the exact data
as well as the additional bit flip associated with each PCM word. To this effect, a cost
model, CAFO [8], is presented to compute the cost of servicing write requests through
assigning different costs to each cell that requires programming. CAFO encodes the data
to be written into a form that imposes less cost through its encoding module.

To address the shortcoming of existing methods, we demonstrate that the PCM
write mechanism as well as the bit flip problem bring negative impacts on write access
energy when reliable and dense PCM memories are required. We propose a novel coding
mechanism for bit flip reduction and lifetime extension of PCM with data encoding,
named WIRE, Write Energy Reduction via Encoding in Phase Change Main Memories
(PCM). Based on our observation, there is a non-uniform data pattern distribution of
memory transactions known as frequent value locality. Therefore, we develop a frequent
value finder logic that can identify the relative occurrence frequency of data patterns and
detect the most frequent value locality stack (MFVs). Based on frequent value locality
phenomenon, a small set of distinct values spans a large fraction of fetched/stored data
within a memory system and there is a high degree of replication for accessed values
within a storage system. We then design a new coding mechanism that assigns specific
codes to the identified MFVs with the hamming distance of one. The proposed code
guarantees fast access and reduces the bit flip problem. On the other hand, a high-
level interface for value translation is presented to facilitate value translation in the
operating system. We are optimizing our coding mechanism by partitioning and rotating
the assigned codes with the goal of finding more similarity between the data patterns
and get more improvement in bit flip reduction.

WIRE: Write Energy Reduction via Encoding in Phase Change Main 601

The rest of the paper is organized as follows: Background information on PCM
reliability, along with a review of the efficiency and overheads of prior fault-tolerant
schemes in PCM, are given in Sect. 2. Section 3 introduces the PCM main memory
architecture with our proposed frequent value finder logic, assigning specific codewords
to the most frequent values, and OS support. Section 4 presents the evaluation results
of the proposed architecture. Section 5 discusses the cost overhead of our method and
shows how it can be generalized for high-density N-bit MLC PCMs without hardware
overhead. Finally, conclusion is given in Sect. 6.

2 Related Works

In the expansive domain of computer architecture research, a diverse range of energy-
saving methodologies has been developed, with particular emphasis on Phase-Change
Memory (PCM) systems. These methodologies encompass a broad spectrum of inno-
vations, spanning from foundational advancements in phase-changing states to intricate
approaches in data management and system optimization [2, 5]. Notably, the applica-
tion of machine learning and predictive analytics has emerged as a promising avenue to
forecast and prefetch frequently accessed values, thereby effectively minimizing unnec-
essary energy expenditure [7]. However, it’s crucial to recognize certain limitations
within these methodologies. While machine learning and predictive analytics offer the
potential to forecast and prefetch data, their accuracy heavily relies on the quality of
training data and the complexity of the workload patterns. Moreover, the computational
overhead associated with training and inference processes may offset the energy savings
achieved through prefetching [11, 13].

Beyond these advancements, significant attention has been directed towards refining
the operational intricacies of PCM systems, particularly in minimizing write cycles and
optimizing energy consumption during write operations. Strategies such as buffering
small writes and combining adjacent writes have been extensively investigated, show-
casing the potential to significantly reduce write energy consumption [4, 6]. However, it’s
important to note that these strategies may introduce additional latency and complexity
to the write process, potentially impacting overall system performance.

Additionally, innovative techniques like the Partial Write and Multi-Read (PWMR)
method have further augmented efforts towards enhancing energy efficiency and over-
all system throughput [4, 12]. Despite their promise, these techniques may face chal-
lenges in implementation complexity and compatibility with existing memory architec-
tures, potentially limiting their widespread adoption and effectiveness in heterogeneous
computing environments.

Moreover, other research endeavors have proposed innovative schemes such as the
three-stage-write scheme with flip-bit technique [10], dynamic modification of write
modes based on data characteristics through compiler-guided optimization [11], and the
implementation of write operation batching techniques to exploit parallelism effectively
within PCM-SSD architecture [11-15]. However, these schemes may encounter chal-
lenges in terms of implementation overhead, compatibility with existing software stacks,
and scalability across diverse computing platforms. In addition to these efforts, a concen-
trated effort is observed in optimizing write operations through techniques such as data

602 M. Desai et al.

grouping and write coalescing for efficient storage, all aimed at further mitigating write
energy consumption [16, 17]. While these techniques offer potential energy savings, they
may introduce complexity in memory management and data organization, potentially
increasing overhead in terms of memory access latency and system resource utiliza-
tion. Additionally, their effectiveness may vary depending on workload characteristics
and system configurations, making their adoption and deployment non-trivial in real-
world computing environments [10—16]. Collectively, while these multifaceted research
endeavours represent significant progress towards minimizing write energy and enhanc-
ing overall performance in PCM main memory systems, it’s essential to acknowledge
the inherent challenges and limitations associated with each method. Addressing these
weaknesses will be critical in advancing the field towards more efficient and scalable
energy-saving solutions in computer architecture research.

3 Proposed Method

In this section, we first present our frequent value finder logic to detect the most frequent
values within a memory system. We then explain our coding mechanism.

3.1 Frequent Value Finder Logic

We first study the behavior of multi-threaded PARSEC-2 benchmarks [20] to establish
the existence of frequent value locality in real programs. We use the main memory
traces of PARSEC-2 and capture them from a full-system simulation (we show the
system specification in Table 1). After program execution, we identify the frequently
encountered values by tracking the execution of all fetch and store instructions. In this
experiment, we examine values that are frequently accessed by memory operations and
show the frequency of those values from most to least frequent. To better understand,
we use 4-bit granularity and show the percentage of 16 different values read/written
from/into main memory.

100%

S

80%

60%

40%

20%

Percentage of Acces

0%

Fig. 1. Frequency of accessed values from most to least accessed for 16 different values

As shown in Fig. 1, five leftmost programs exhibit about 80% contribution of most
frequent values, the next four studied programs contain 65%—70% of such values, while

WIRE: Write Energy Reduction via Encoding in Phase Change Main 603

the last three programs contain about 65% frequent values. Since we want to extract
frequent values during the initial phases of the program, a monitoring scheme is a
necessity of our approach.

Based on past observations, we found that single-threaded workloads follow stable
and similar frequency at different run time intervals. On the other hand, multiprogram
workloads consist of two types of patterns. One type has common patterns, like all-zero
and all-one patterns. The second type has different values among various applications
and, most frequent values change from application to application. Indeed, multiprogram
workloads follow dynamic and variable frequency during the occurrence of different
values. Figure 2 shows the data pattern distribution in benchmark programs.

4%
4%
a% M num_00
Hnum_01
num_10
mnum_11

Fig. 2. Data pattern distribution in benchmark programs

To this end, we need a fast and low-overhead PCM access circuitry to support the
extraction of the most frequent value locality stack without negative effects on the
memory access critical path.

The Most Frequent Value Logic (MFV) consists of two separate entities. The first
is the FIFO buffer, which filters out transient occurrences of non-frequent values and
retains only the frequent ones. The buffer has three fields: a value field, a data field and a
saturation counter field to track and distinguish data. When a data pattern is encountered
this FIFO buffer is searched and if the data is found (hit), the corresponding counter is
increased and can be considered a frequent value if saturation is met. Conversely, if the
data is not found (miss), all counters are decremented by one and if a counter is less than
a threshold value, its entry is replaced by a new pattern.

To store the value and code word of the frequent patterns another table called Frequent
Value (FV) table is used. The table has four fields: a value field, a counter field, a pointer
field and a used bit field. The counter is inherently an incrementing one that increases on
each frequent value access. A line in the table is marked as a Gap that does not refer to
any frequent value i.e. used bit = 0. If a value in the FIFO buffer is marked as a frequent
pattern and subsequently there is a Gap in the frequent value table then the value from
the FIFO buffer is replaced in the Gap line with the used bit set to 1. As the memory
blocks are transferred in and out, the pointer field of the Gap line decreases, and its used
bit is reset when the pointer field becomes zero. Note that for efficient operation of the
MFYV logic, the counter field of the frequent value table must be longer than the FIFO

604 M. Desai et al.

buffer. Synthesis shows frequent value finder logic imposes a negligible power overhead
of 22 mW (about 1%) to the overall power consumption of the PCM main memory array.

Table 1. FIFO table

Entry Value Saturation counter
hit Entry O 1
miss Entry n 0 < threshold

Table 2. FV table

Entry Value | Counter field | Pointer field | Used bit

Gap line Entry 0 0

Victim; if CTR < threshold | Entry n

All of the above explanations are summarized in Table 1 shows the FIFO table and
its different fields. Table 2 shows the operation and different fields of the frequent value
table.

3.2 Assigning Specific Codeword to Most Frequent Values

Upon detection of Frequent Values (MFVs), and subsequent assignment of specific
codewords to them based on their data patterns, our coding-based data storage scheme,
known as Write Energy Reduction via Encoding (WIRE), facilitates access to other
upcoming and new data patterns through the assigned codewords to the MFVs of the
stored data. To minimize bit flips, WIRE only accepts a Hamming distance of one
between two codewords for different data patterns.

For example, we consistently designate the codeword “0” to represent all zero data
patterns and the codeword “1” for all one data patterns. When confronted with a combina-
tion of zero and one data patterns, our coding mechanism explores various permutations
and assigns the codeword based on the previously stored MFV. Should the codeword of
stored MFVs fail to grant access to other data patterns with a Hamming distance of one
for writing in the memory, our memory controller initiates partitioning and rotation of
the codewords.

WIRE: Write Energy Reduction via Encoding in Phase Change Main 605

In this process, the memory controller first evaluates the Hamming distance between
the new data and the stored data to ascertain any similarity. Based on this distance, it
determines the number of rotations required for codeword adjustment. We adopt fixed
and static partitioning, typically in partitions of 8 for a 64-byte data block, to circumvent
the complexities and power consumption associated with dynamic partitioning. Addi-
tionally, we cap the number of rotations at 8 bits, a value determined through sensitivity
analysis to ensure reasonable storage overhead. More precisely, we can use this rotation
scheme in each partition for the currently stored value such as the MFV1 pattern; and
can achieve the MFV?2 data pattern or other MFVs by up to 8 bits rotation.

To better understand, assume that we have only a 4-bit data pattern, in the first memory
transaction the data pattern with the value of “1001” comes up, and our frequent value
finder logic detects it as one of the frequent data patterns which have a combination of
zeros and ones. So, it considers MFV 1 for this data pattern and assigns the specific code
word to MFV1. Since we have only a 4-bit data pattern in this example, assume our
assigned codeword is also “1001”. After a while, some memory blocks are transferred
in and out of memory, some of them can be selected as frequent values and frequent
value finder logic assigns MFVs to the corresponding data patterns. At this time, assume
another data pattern is transferred to the memory controller with the data pattern of ‘1000’
and requests a write process. Our memory controller assigns the new codeword to this
data, compares its codeword to the stored codeword of the frequent data pattern (other
MFVs), and then detects that it has the hamming distance of one with MFV1 because
they have a difference of only one-bit. Therefore, we can easily write this data pattern
in the memory blocks with low write energy and the low number of bit flips by using
MFV 1. In the next memory transaction, if we get another data with the pattern of ‘0010’,
our memory controller again searches to find some MFVs that match this upcoming data
pattern, or some MFVs with a hamming distance of one to this current data pattern. If
it fails and the memory controller cannot find a matching option, it invokes our rotation
mechanism. Based on checking the hamming distance of the stored data pattern and the
new data pattern to be written, a 2-bit difference is determined. Therefore, our coding
scheme rotates the stored data by up to 2 bits to reach the new data pattern. If we have
more than 4-bit data patterns, like a 64 B data block, we should partition the data block
and then exploit the rotation in each partition, same as we do in the above assumption.

By augmenting the rotation scheme to our coding mechanism, we can get more
savings in write energy due to the reduction of bit flips. All of the assumptions and the
validity of this proposed technique will be demonstrated through our sensitivity analysis.
This low overhead scheme prevents non-uniformity in bit flips across memory blocks.
Also, we can remove the stress from hot locations and relax the worst-case bit flip rates
in each block.

During read operations, if a read request is issued to the memory controller, it initially
determines whether the data block corresponds to the MFV. If affirmative, a standard
read iteration suffices to deliver the data; otherwise, the read circuit retrieves the content
of the previous block and, based on its codeword, obtains the correct content of the
block.

For write operations, upon receiving a write request, the scheme checks the frequent
value finder logic to ascertain whether it is the MFV. It then determines the codeword

606 M. Desai et al.

of the block and rotates it based on the Hamming distance to find a similar or nearly
identical codeword. Once a suitable rotated codeword is identified, the original codeword
is retrieved, and the data is sent to the write circuit to complete the operation.

WIRE assign » Memory Controller »(Write Operation
codeword to it
'y A
=
2
2 v
Write Data in Memor
Read Previous MFVS
Codeword
Pattern Formed -
Generate Nev
Codeword
2
tea

Fig. 3. WIRE logic block

Our WIRE scheme employs the rotation mechanism when encountering new data
patterns without similar codewords with a Hamming distance of one. By partitioning
the stored codeword and rotating it based on the Hamming distance between the new
data and the stored data, we can identify similarities with a tolerable amount of rotation.
The logical blocks of WIRE are illustrated in Fig. 3. It is notable that we use the rotation
scheme when we have the new data pattern and cannot find any similar codewords with
a hamming distance of one. Then, we first partition the stored codeword and rotate it
based on the hamming distance of new data and stored data. By a tolerable amount of
rotation, we can find some similarities between the new data to be written and the stored
data.

WIRE: Write Energy Reduction via Encoding in Phase Change Main 607

3.3 OS Support

We require operating system support for our proposed approach. Specifically, a
workload-based value translation mechanism is essential to accommodate variations
in the most frequent values. Let’s consider a scenario where the first most frequent value
(MFV1) for workload1 is ‘100’ and for workload?2 it’s ‘101°. If both are assigned to the
same PCM cell with identical resistance levels, we need a translation mechanism. This
process can be managed by the operating system when multiple applications are running.
The operating system maintains awareness of the owner of each physical memory page
in the memory management system. This ownership mechanism ensures privacy at the
OS level.

4 Evaluation

In this section, we provide a brief overview of simulation parameters, workloads, and
selected performance metrics.

4.1 Evaluation Environment

Table 3. Simulation environment

Processor 4-core SPARCIII, 4.0 GHz

L1 Cache Split I and D cache; 32 KB private; 4-way; 64 B line size; LRU; write-back;
1 port; 2 ns latency

L1 Coherency | MOESI directory; 4 x 2 grid packet switched NoC; XY routing; 3 cycle
router; 1 cycle link

L2 Cache 4 MB; UCA shared; 16-way; 64 B line size; LRU; write-back; 8 ports; 4 ns
latency

DRAM Cache 16 MB; 4-way; 64 B line size; LRU; write-back; 8 ports; 26 ns latency

Main Memory | 8 GB: 16 banks, 64 B, open page, SLC: Read Latency 80 ns (6 ns tPRE +
69 ns tSENSE + 5 ns tBUS), Write Latency 250 ns

Flash SSD 25 s latency

We implemented our proposed method in GEMS5+NVMain hybrid full system sim-
ulator [18]. A 4-core 2 GHz CMP system with three levels of caches and 8 GB PCM
main memory with 16 banks are modelled in our simulator. Our simulation parameters
are shown in Table 3.

Real Workload. We use multi-programmed workloads from SPECCPU-2006 [19] and
a complete set of parallel workloads provided in PARSEC-2 [20], as shown in Tables 4
and 5 respectively, as multi-threaded workloads to evaluate different methods.

608 M. Desai et al.

Table 4. Characteristics of the SPEC-CPU workload

Workload WPKI RPKI Workload WPKI RPKI
Mix 1 2.4 2.23 Mix 6 6.64 10.11
Mix 2 3.69 3.08 Mix 7 1.99 0.64
Mix 3 2.2 0.8 Mix 8 1.91 248
Mix 4 0.27 0.25 Mix 9 0.53 1.08
Mix 5 0.53 0.66

Table 5. Characteristics of the PARSEC-2 workloads

Workload WPKI RPKI Workload WPKI RPKI
Blackscholes 0.003 0.03 Bodytrack 0.003 0.03
Ceneal 1.12 1.13 Dedup 0.41 0.43
Facesim 0.65 0.24 Ferret 0.65 0.67
Fluidanimate 0.76 0.47 Freqmine 0.04 0.07
Raytrace 0.008 0.02 Streamcluster 0.01 0.07
Swaptions 0.002 0.02 Vips 0.05 0.07
X264 0.04 0.04

Evaluated Architectures. We compare our proposed method against two bit flip reduc-
tion schemes, Differential Write method [9] and Flip-N-Write mechanism [8]. Our
evaluation metrics include memory capacity degradation, write energy and IntraV [21].

4.2 Analysis Under Real Application

Capacity Degradation (Lifetime). We define the lifetime as time to failure metric.
We measure the elapsed time between the start time and the time when half of memory
pages are worn out and the memory capacity degrades to 50%. So, we simulate each
application to the defined time and measure the elapsed time for the evaluated systems.
Figure 4 illustrates our method provides better memory capacity since it improves the
bit flip reduction and postpones the wear out of PCM block by using coding mechanism.

Bit Flip Reduction. For evaluating the bit flip reduction, we use the parameter, called
IntraV which is defined in study [21].

IntraV = —1 X ZN /531 (BFij — /221 ;VTU)Z
BFaver. N i=1 511

where, the write count of cell j in block i is shown as BFjj, the average bit flips count

is BF,ver and the total number of blocks is N. Where BFj; is the write count of cell j in

block i, and BF,e is the average bit flips count and N is total number of blocks.

(D

WIRE: Write Energy Reduction via Encoding in Phase Change Main 609

100
g «-Differential Write
cC
= o Flip-N-Write
S
8 o «-WIRE
o
v
-
o}
g 2
U
=

0 16409 26409 36409 4E+09 SE+09 6£+09

Writes Per Page
Fig. 4. Lifetime of WIRE compared to other techniques
G-mean

Mix 9 Il Baseline] WIRE

Vips
Streamcluster
Fregmine
Ferret
Dedup
Bodytrack
X-246
Swaptions
Raytrace
Fluidanimate
Facesim
Canea
Bickscholes

~N

0s
001

¢
Sl
001

Fig. 5. IntraV comparison of WIRE and baseline

Figure 5 shows the IntraV of the workloads before and after using WIRE. We con-
sider the amount of reduction in bit flips for different multi-thread and multi-program
workloads by using this parameter. Indeed, our scheme can reduce the variation of bit
flips in each block by 25%, on average.

Write Energy. Figure 6 shows energy consumption improvement of our proposed
method compared to the other techniques. Since we use frequent value locality phenom-
ena in our coding-based scheme, we have better write energy due to bit flip reduction
and presence of more similarity in the data patterns. However, differential write imposes

610 M. Desai et al.

high write energy because it uses a bit-by-bit comparison technique. Conversely, Flip-N-
write has a better write energy against differential write technique (inversion technique
of Flip-N-Write provides this improvement compared to the differential write). WIRE
results in an improvement of 24% - 32% in write energy.

-

B Differential Write O Flip-N-Write “ WIRE

o
»

o
)

o
N

s\\\\\\\\\\\\\\\\\\\"
SN SNNARARRARRANY
’\\\\\\\\\\\\\\\\\\\\‘ ¥
b\\\\\\\\\\\\\\\\\\'
.‘ | SANNAARRRAAARANAY
IOCOTYYICCCOIICCCTYIICTH
LSS NNARR AR
\\\\\\\\\\\\\\\\\‘
SN N NN NN AR NN
k\\\\\\\\\\\\\\\\\\\
[ANNARRRRARARARAARANNRAN
LSS SANANAANA NN AN
k\\\\\\\\\\\\\\\\\\\\
‘\\\\\\\\\\\\\\\\\\\\\‘ e
h\\\\\\\\\\\\\\\\\\\\\‘
\\\\\\\\\\\\\\\\\\\\‘
x\\\\\\\\\\\\\\\\\\\\\\'
k\\\\\\\\\\\\\\\\\\\\\‘
K\\\\\\\\\\\\\\\\'

Normalized Write Encrgy
(=]
L

s. R —s
‘ | SSSSNRNRRARANRNNNNRNN <
e
"' e —

% [ASNAANNAANANAAANN AN NN

f{gﬁr" *";’ ‘**'K.r¢¢~v‘r¢¢¢¢’

Fig. 6. Total write energy of WIRE and other techniques normalized to the conventional PCM

Sensitivity Analysis on Partition Size and Meta-data Information. When the
assigned codeword to the stored data has the hamming distance greater than one, we opti-
mize our coding scheme and use the partition and rotation for the codeword to achieve
more similarity and closer hamming distance. We believe that the best partitioning size
in WIRE plays an important role in determining the storage overhead and IntraV value.
So due to the limitation of write energy consumption, we use fixed partitioning instead of
dynamic partitioning. On the other hand, larger partitions have a smaller number of units
which reduces IntraV parameter, and it is not desirable. Based on the impact of partition
size on IntraV. We select eight partitions for each data block of 64 B which provides a
good trade-off for IntraV. In fact, for the rotation part, we may need a 6-bit counter for
every partition. This configuration facilitates our shift-based mechanism, aimed at find-
ing more similarity with the reasonable hamming distance. Additionally, these counters
serve to indicate the number of shifts applied to block content when encountering no
match with the assigned codeword. Consequently, we require 6 x 8 = 48 additional bits
per block, resulting in a storage overhead of 48/512 = 9%.

In this case, the shifting mechanism assumes a pivotal role in overhead. However, to
ensure practicality during read or write operations, we have refrained from enlarging the
row size of the memory to accommodate counter values for each line. Instead, we opt to
store counter values in alternative memory lines, necessitating an extra read operation
to retrieve these values. Alternatively, one could integrate counter values into a memory
line, thereby extending its length through additional memory banks, allowing for the
simultaneous read or write of an entire line (data block and meta-data counter values)
within one memory cycle. Nevertheless, storing counter values in separate memory lines
introduces latency overhead due to the additional read operation required to obtain these
values.

To mitigate the adverse effects of this arrangement, we can employ a caching mech-
anism akin to the Failed-Cache concept in previous proposals. This mechanism aims to

WIRE: Write Energy Reduction via Encoding in Phase Change Main 611

reduce the latency overhead resulting from the extra read operation required to access
counter values. Essentially, a fraction of our meta-data is stored in a small cache within the
memory controller. This ensures that for the majority of memory accesses, counter values
are readily available in the cache, thereby minimizing latency overhead. For instance,
with a 48-bit overhead per block, a 2 KB cache can accommodate the meta-data of
(2048/6) = 341 blocks, which proves satisfactory.

4.3 Analysis Under Synthetic Application

We conducted experiments to measure the total energy consumption of PCM under
various read and write conditions by using synthetic trace files generated by NVMain.
We considered three cases in our evaluation: 1) when the number of read operations is
greater than write operations, 2) when we have equal demands for both read and write
operations and 3) when there is a heavy bias towards writes over reads.

[Baseline PCM] WIRE

W
R=W R>W R<W

Fig. 7. Write energy comparison under various read and write conditions

Write Energy Analysis. We evaluated the energy dedicated solely to write operations.
Through detailed analysis, we observed significant reductions in write energy consump-
tion with WIRE compared to the baseline PCM, as seen in Fig. 7. This reduction in
write energy is attributed to the innovative encoding scheme proposed in WIRE PCM,
which optimizes write operations to minimize energy consumption while ensuring data
integrity.

Total Energy Analysis. Figure 8§ indicates a substantial reduction in total energy con-
sumption when employing WIRE PCM compared to the baseline PCM. Specifically,
we observed reductions in total energy across all scenarios, demonstrating the effective-
ness of our proposed method in improving energy efficiency in synthetic application
environments.

612 M. Desai et al.

I Baseline PCM il WIRE I
R=W R>W R<W

Fig. 8. Total energy comparison under various read and write conditions

5 Hardware Overhead and Extension for N-bit MLC PCM

In Fig. 9, the schematic illustrates the access logic supporting Single-Level Cell (SLC)
and 2-bit Multi-Level Cell (MLC) read/write operations. Primarily, two components sig-
nificantly contribute to the area of the access circuit: (1) sense amplifiers and (2) NMOS
transistors within the write circuit. Notably, NMOS transistors hold greater significance
in Phase Change Memory (PCM) systems due to their role in driving substantial currents
into cell arrays. Area calculations conducted for the access circuit in a 45 nm technology,
utilizing HSPICE and CACT]I, reveal that incorporating additional logic to accommodate
MLC operations incurs a 30.4% overhead compared to SLC’s access logic. However,
this overhead represents less than 0.5% of the PCM chip’s total area. Given the escalat-
ing demand for larger main memory capacities across various computing domains, SLC
PCM memory might become inadequate, consequently fostering a preference for PCM
memory systems with higher bit densities. Numerous prior studies have advocated for
2-bit MLC PCM as the preferred technology for main memory systems.

Contrarily, the WIRE model posits a memory system commencing with SLC storage
but remains adaptable to transitioning to a 2-bit MLC storage level, thereby ensuring
scalability. Consequently, read/write circuits must support both SLC and 2-bit MLC
accesses, resulting in a minor circuit overhead. As depicted in Fig. 9, executing an MLC
PCM write necessitates a full-sweep RESET pulse (for programming into RESET state
or initializing the GST for a Program and Verify process), a full-sweep SET pulse (for
programming into SET state), and a Programmable pulse (PGM) facilitating partial SET
pulses during Program and Verify operations. The PGM unit integrates a current Digital-
Analog Converter (DAC) capable of generating SET pulses with specified widths but
varying amplitudes. To elevate the density of an N-bit MLC PCM to that of a 2 N-bit
MLC PCM, the PGM control logic determines the amplitude of intermediate SET pulses.
Conversely, for reads, the controller adjusts the sequential Analog-to-Digital Converter
(ADC) iterations according to the targeted storage level. Therefore, transitioning from
an N-bit MLC to 2 N-bit MLC density does not necessitate additional circuitry but rather
involves configuring specific values within the control logic.

WIRE: Write Energy Reduction via Encoding in Phase Change Main 613

MEMORY BANK :
: GWL
ﬂ Lﬂﬂ ﬂ
; L ORDG
B/ L : TR 2]
: i =9 |
HLSH A
: - W) :
: i =
! : SSR i
/ o _ \ e |
/ e o i VAN i
/ - i L“"‘| i
] Y s l] | GO/ :
3 Qo ! Buffer :
‘ Read :

z>u\f1

Write
ii\—é i EPCM stlect .
I\ L : sCe|| i ‘
E e A

Set Reset PGM

Fig. 9. The PCM cell that supports N-bit to 2 N-bit MLC operations

It’s noteworthy that while N-bit MLC PCMs for N = 3, 4,... may hold promise
for future applications, they might encounter reliability issues such as reduced wear-
out endurance and heightened soft error rates due to resistance drift. Consequently,
contemplating N-bit MLC PCMs (N > 4) for future product integration proves
challenging.

6 Conclusion

To improve bit flip reduction and write energy in Phase Change Memory (PCM), we
proposed an efficient coding-based data storage mechanism named WIRE, in this paper.
WIRE relies on using frequent value locality phenomena. To identify relative occurrence
frequency of data patterns, we developed a frequent value finder logic and detected most
frequent value locality stack (MFVs). We then design a new coding mechanism that
assigns specific codes to the identified MFVs with the hamming distance of one. The
proposed code guarantees fast access and reduces the bit flip problem. We also optimized
our coding mechanism by exploiting partitioning and rotation of the assigned codes with
the goal of finding more similarity between the new data to be written and the stored
data. Compared to the other bit flip reduction methods, our experimental results showed
considerable improvement in IntraV (up to 25%), write energy (up to 32%), and PCM
lifetime (up to 20%).

As afuture work, we plan to train machine learning algorithms to predict and mitigate
bit flips in PCM-based memory systems. By analyzing historical data and identifying

614 M. Desai et al.

patterns associated with bit flip occurrences, machine learning models can proactively
adjust write parameters to reduce the likelihood of bit flips during write operations. This
can help us predict optimal write parameters for minimizing energy consumption while
ensuring data integrity and reliability.

Acknowledgment. This material is based upon work supported by the National Science
Foundation under Award Number-2318553.

Any opinions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

1. Azevedo, R., Davis, J.D., Strauss, K., Gopalan, P., Manasse, M., Yekhanin, S.: Zombie
Memory: Extending Memory Lifetime by Reviving Dead Blocks. ISCA (2013)

2. Luo, H., et al.: Write energy reduction for PCM via pumping efficiency improvement. ACM
Trans. Storage 14(3), 1-21 (2018)

3. Fan, J, Jiang, S., Shu, J., Zhang, Y., Zhen, W.: Aegis: Partitioning data block for efficient
recovery of stuck-at-faults in phase change memory. In: Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 433—444. ACM (2013)

4. Zhou, P, Zhao, B., Yang, J., Zhang, Y.: Throughput enhancement for phase change memories.
IEEE Trans. Comput. 63(8), 2080-2093 (2014)

5. Lee, T.H., Loke, D., Huang, K.J., Wang, W.J., Elliott, S.R.: Tailoring transient-amorphous
states: towards fast and power-efficient phase-change memory and neuromorphic computing.
Adv. Mater. 26(44), 7493-7498 (2014)

6. Jiang, L., Zhao, B., Yang, J., Zhang, Y.: A low power and reliable charge pump design for
phase change memories. Comput. Archit. News 42(3), 397-408 (2014)

7. Wang, Q., Li, J.R., Wang, D.H.: Improving the performance and energy efficiency of phase
change memory systems. J. Comput. Sci. Technol. 30(1), 110-120 (2015)

8. Cho, S., Lee, H.: Flip-N-Write. In: International Symposium on Microarchitecture (2009)

9. Lee, B., Zhou, P., Yang Zhao, J., Ipek, E., Mutlu, O., Burger, D.: Pahsechange technology
and the future of main memory. Micro 30, 143 (2010)

10. Li, Y, Li, X,, Ju, L., Jia, Z.: A Three-Stage-Write Scheme with Flip-Bit for PCM Main
Memory (2015)

11. Li, Q. Jiang, L., Zhang, Y., He, Y., Xue, C.J.: Compiler Directed Write-Mode Selection for
High Performance Low Power Volatile PCM (2013)

12. Rodriguez,R.R., Castro, F., Chaver, D., Pinuel, L., Tirado, F.: Reducing writes in phase-change
memory environments by using efficient cache replacement policies. In: Design, Automation,
and Test in Europe Conference (DATE) (2013)

13. Salinga, M., et al.: Monatomic phase change memory. Nat. Mater. 17(8), 681-685 (2018)

14. Wang, Y., et al.: Scandium doped Ge;SbyTes for high-speed and lowpower-consumption
phase change memory. Appl. Phys. Lett. 112(13), 133104 (2018)

15. Mohseni, M., Novin, A.H.: A survey on techniques for improving phase change memory
(PCM) lifetime. J. Syst. Archit. 144, 103008 (2023)

16. Oh, H., et al.: Enhanced write performance of a 64-Mb phase-change random access memory.
IEEE J. Solid State Circuits 41(1), 122—-126 (2006)

17. Gaspard, J.P.: Structure of covalently bonded materials: from the peierls distortion to phase-
change materials. C. R. Phys. 17(3), 389—405 (2016)

19.
20.

21.

WIRE: Write Energy Reduction via Encoding in Phase Change Main 615

. Martin, M.M.K., et al.: Multifacet’s general execution-driven multiprocessor simulator

(GEMS) toolset. SIGARCH Comput. Archit. News 33, 92 (2005)

Spradling, C.D.: SPEC CPU2006 benchmark tools. In: CAN, pp. 130-134 (2007)

Bienia, C., Kumar, S., Singh, J.P,, Li, K.: The parsec benchmark suite: characterization and
architectural implications. In: PACT (2008)

Wang, J., Dong, X., Xie, Y., Jouppi, N.P.: i2WAP: improving nonvolatile cache lifetime by
reducing inter- and intra-set write variations. In: High-Performance Computer Architecture
(2013)

	 Editor’s Preface
	 Contents
	Automatic Detection of Common Gastroenterological Diseases Using a Small Dataset: A Two-Phase Image Processing Method
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Pre-processing
	3.2 Modelling and Training
	3.3 Result Combination

	4 Experiment
	4.1 Experimental Design
	4.2 Result for GLCM Classifier
	4.3 Result for LBP Classifier
	4.4 Combined Results

	5 Discussion
	6 Conclusion
	References

	Times Square: A Time Series Dataset for Semi-supervised Crowd Counting
	1 Introduction
	2 Related Work
	2.1 Semi-supervised Based Crowd Counting
	2.2 Crowd Counting Datasets

	3 Methodology
	3.1 Times Square Dataset Collection
	3.2 Crowd Counting Using a Semi-supervised Approach
	3.3 Crowd Counting Time Series Dataset Extraction

	4 Experimental Results and Discussion
	4.1 Results of Semi-Supervised Crowd Counting
	4.2 Results of Crowd Counting Time Series Dataset Extraction

	5 Conclusion
	References

	A Machine Learning-Based Household Robot
	1 Introduction
	2 Literature Review
	3 Design and Implementation
	3.1 The High Level Design
	3.2 The Low Level Design
	3.3 The Software

	4 Discussion and Analysis
	5 Experiments and Results
	5.1 Heavy Stain Experiment
	5.2 Light Stain Experiment

	6 Advantages and Limitations
	7 Conclusion and Future Work
	References

	HAT: Homography-Based Alternate Training for Pose-Invariant Face Recognition
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Overview
	3.2 Pose Representation by Homography
	3.3 Pose Discriminator
	3.4 Alternate Training Strategy
	3.5 Effectiveness

	4 Experiments
	4.1 Evaluation on Multi-PIE
	4.2 Evaluation on IJB-A
	4.3 Evaluation on Other Datasets

	5 Conclusion
	References

	Object Detection for Autonomous Vehicles in Urban Areas Using Deep Learning
	1 Introduction
	2 Literature Review
	3 Dataset
	4 Proposed Method
	4.1 Pre-processing of Dataset
	4.2 Deep Learning Model Used for Object Detection

	5 Results and Discussion
	6 Conclusion
	References

	Utilizing Transfer Learning, Graph Matching, and Spatial Attention with CARLA Pre-trained Models
	1 Research Innovation and Objective(s)
	2 Introduction
	3 Related Work
	4 Method
	4.1 Pre-trained Models
	4.2 Transformers
	4.3 Regression
	4.4 Attention-Based Object Queries
	4.5 Graph Matching Loss Function

	5 Results and Discussion
	5.1 Aerial View Dataset

	6 Results of Testing with Real Images
	6.1 Effects of Class Imbalance

	7 Comparison of Model Architectures
	8 Contributions
	8.1 Research Problems Addressed in the Current Paper
	8.2 Contributions and Future Work

	9 Conclusion
	References

	Towards Digital Zen: A Systematic Review of Emerging Digital Interventions for Mental Wellness
	1 Introduction
	2 Method
	2.1 Research Questions and Objectives
	2.2 Eligibility Criteria
	2.3 Inclusion Criteria
	2.4 Exclusion Criteria
	2.5 Information Sources
	2.6 Search Queries
	2.7 Data Extraction and Analysis

	3 Result
	3.1 Included Articles Publication Year
	3.2 RQ.1 Technologies of Intervention
	3.3 RQ2. How Do Digital Interventions Enhance Wellbeing?
	3.4 RQ3. Which Methods Are Utilized for the Development of Technologies?
	3.5 RQ4. Context of the Technology Development
	3.6 RQ5. What are the Types of Contributions ?

	4 Discussion
	4.1 Design Methods for Developing Personal Mental Wellness Intervention
	4.2 Personalization and Inclusivity in Mental Wellness Interventions
	4.3 Trends in Digital Mental Wellness Interventions
	4.4 Limitations of Reviewed Studies
	4.5 Synergistic Potential of AI and VR in Mental Wellness
	4.6 Proposed Future Work: A Crowd-Sourced Persona Repository
	4.7 Limitations

	5 Conclusion
	References

	A Neuromarketing Approach to Identify Consumer's Ties and Preferences Through Multivariate Data
	1 Introduction
	2 Method
	2.1 Related Work
	2.2 Neuromarketing: First Steps
	2.3 Principal Component Analysis
	2.4 Acquiring EEG Signal
	2.5 Methodology Used in the Experiment

	3 Results
	3.1 EEG Data Base
	3.2 Principal Component Analysis (PCA) Examination

	4 Discussion
	4.1 Digital Signal Processing
	4.2 Principal Component Analysis

	5 Conclusions
	References

	Analyzing E-Commerce Dynamics: Customer Satisfaction, Revenue Prediction, and Sentiment Analysis in Retail
	1 Introduction
	2 Literature Review
	3 Methods and Experiments
	3.1 E-Commerce Dataset
	3.2 Brazilian E-Commerce Dataset
	3.3 Women's E-Commerce Clothing Reviews Dataset

	4 Results
	4.1 E-Commerce Dataset
	4.2 Brazilian E-Commerce Dataset
	4.3 Women's E-Commerce Clothing Reviews Dataset

	5 Discussion
	5.1 E-Commerce Dataset
	5.2 Brazilian E-Commerce Dataset
	5.3 Women's E-Commerce Clothing Reviews Dataset

	6 Conclusion
	References

	Fast and Scalable Multi-Kernel Encoder Classifier
	1 Introduction
	2 Graph Encoder Embedding for Kernel
	3 Fast Multi-Kernel Encoder Classifier
	4 Population Theory
	5 Experiments
	5.1 Simulations
	5.2 Real Data

	6 Conclusion
	References

	Security Analysis in Ecuador: Advanced Integration of Geo-Positioning and Named Entity Recognition (G-NER) in X Platform Publications
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Description of the Architecture

	4 Results
	4.1 MISC Histogram
	4.2 Keyword Density Maps
	4.3 Risk and Vulnerability Mapping

	5 Discussion
	6 Conclusions
	References

	Lake Water Level Forecasting Using LSTM and GRU: A Deep Learning Approach
	1 Introduction
	2 Study Area Description
	3 Related Works
	4 The Process Steps of the Study
	4.1 Pearson Correlation Analysis
	4.2 Augmented Dickey-Fully Test and Lagged Correlation Analysis
	4.3 Cyclical Feature Encoding
	4.4 Feature Selection
	4.5 Bayesian Optimization Based Hyperparameter Tuning
	4.6 Model Construction and Prevention of Overfitting
	4.7 Performance Evaluation Using Testing Data

	5 Experiments
	5.1 Design of Experimental Groups
	5.2 Data Collection and Preprocessing
	5.3 Feature Selection and Hyperparameter Tuning
	5.4 Constructing Models and Comparing the Results

	6 Result and Discussion
	6.1 Forecasting Results
	6.2 Model Performance Analysis
	6.3 Best Models

	7 Conclusion
	8 Limitations and Future Research
	9 Author Contribution Statement and Acknowledgment
	References

	Optimization of Few-Shot Learning NER Models Through Grammatical Conditioning of Training Data
	1 Introduction
	2 Problem Description
	3 Implementation Concept
	3.1 Data Distribution and Structure
	3.2 Used NER Basic Models
	3.3 Training and Evaluation Considerations

	4 Results
	5 Discussion
	6 Conclusion and Further Work
	References

	Training-Testing Data Ratio Selection for Accurate Time Series Forecasting: A COVID-19 Case Study
	1 Introduction
	2 Literature Survey
	3 Project Workflow: Key Steps and Phases
	3.1 Data Collection and Preparation
	3.2 Selection of Representative States for In-Depth COVID-19 Analysis
	3.3 Ratio Selection and Data Partitioning
	3.4 Model Implementation
	3.5 Data Preprocessing
	3.6 Forecasting Models

	4 Analysis Results
	4.1 Accuracy Assessment

	5 Conclusion
	6 Future Work
	References

	Emotions and Customer Satisfaction in the Mobile Banking Era: An Empirical Analysis
	1 Introduction
	2 Materials and Methods
	2.1 Materials
	2.2 Google Forms Survey CSV
	2.3 Methods

	3 Results
	4 Conclusions
	References

	A Comparative Study of Machine Learning Algorithms on Datasets of Varying Sizes
	1 Introduction
	2 Related Work
	3 Method and Experiments
	3.1 Datasets
	3.2 Data Preprocessing
	3.3 Model Construction

	4 Results
	5 Discussion
	6 Conclusion
	Appendix A
	Evaluation Metrics Math Equations

	References

	City Recommender System: A Comparative Study of AI-Driven Approaches
	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 Data Collection and Description
	3.2 Methodological Approach
	3.3 Evaluation Metrics and Model Assessment

	4 Results
	4.1 Data Visualization
	4.2 Logistic Regression
	4.3 Support Vector
	4.4 Naïve Bayes
	4.5 Deep Neural Network
	4.6 Model Comparison

	5 Discussion
	6 Conclusion
	References

	Global Warming’s Influence on Temperature Increase
	1 Introduction
	2 Literature Review
	3 Temperature Analysis
	3.1 Analysis of the Last 30 Years of US Temperature Data
	3.2 Monthly Temperature Distribution

	4 Forecasting Temperatures
	4.1 Forecasting the Monthly Temperatures Until 2033
	4.2 Annual Temperature Distribution

	5 Conclusion
	6 Recommendations for Future Research
	References

	An Approach for House Price Prediction Using Bayesian Regression
	1 Introduction
	2 Related Works
	3 Bayesian Regression
	3.1 The Key Idea of Bayesian Regression
	3.2 Why Bayesian Regression?
	3.3 Some Dependent Concepts for Bayesian Regression
	3.4 Need for Bayesian Regression
	3.5 Implementation of Bayesian Regression

	4 Experiment
	4.1 Dataset
	4.2 Model Configurations and Evaluation Metrics
	4.3 Experimental Results
	4.4 Discussion

	5 Conclusion
	References

	Pricing Data Based on Value: A Systematic Literature Review
	1 Introduction
	2 Theoretical Background
	3 Methodology
	4 Results
	4.1 Methods to Enable Pricing of Datasets
	4.2 Value Drivers of Datasets

	5 Recommendation and Conclusion
	5.1 Three-Step Pricing Approach for Practitioners
	5.2 Summary, Limitations, and Future Research Outlook

	Appendix 1
	References

	Using Mixed Exponentials for Unsupervised Discretization
	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 Fitting a Mixed Exponential Distribution Using the Expectation-Maximization Method
	3.2 Proposed Unsupervised Discretization Method
	3.3 Computation and Tools

	4 Evaluation
	4.1 Mutual Information (MI)
	4.2 Classification Accuracy
	4.3 Stability
	4.4 Data

	5 Results
	6 Discussion
	7 Conclusion
	8 Future Work
	References

	Strategic Selection of ITIL V4 Services for Cybersecurity Defense: An AHP and TOPSIS Approach for Moroccan Universities
	1 Introduction
	2 Theoretical Background
	2.1 It Governance
	2.2 Digital Transformation and Cyberattacks
	2.3 ITIL V4
	2.4 AHP

	3 Research Methodology
	4 Result
	5 Discussion
	6 Conclusion and Perspectives
	References

	GenDatr: Visualizing Probabilistic Data Generation in Medical Data Science
	1 Introduction
	2 Literature Review
	3 Methodology
	4 Framework, Architecture, and Technology Stack
	5 Productions and Results
	6 Conclusion
	References

	Systematic Literature Review and Bibliometric Analysis of Low-Resource Speech-to-Text Translation
	1 Introduction
	2 Review of the Literature on Bibliometric Analysis
	2.1 Planning the Review
	2.2 Identification of Source
	2.3 Search Criteria
	2.4 PRISMA Data Analysis Process

	3 Results
	3.1 Annual Scientific Production
	3.2 Country Scientific Production
	3.3 Words Co-occurrence Networks

	4 Second Stage Analysis
	4.1 Encoder-Decoder Architecture
	4.2 Encoder Mechanism
	4.3 Decoder Mechanism
	4.4 Attention Mechanism
	4.5 Transformer Architecture
	4.6 Wav2vec2.0 Architecture
	4.7 HuBERT
	4.8 An Overview of Pretraining
	4.9 Fine-Tuning
	4.10 Construction Algorithms

	5 Discussions
	5.1 Toolkits Employed

	6 Futures Directions
	6.1 Enhanced Post-processing Techniques
	6.2 Efficient Data Collection Strategies
	6.3 Accessible Tools for Researchers
	6.4 Parameter Efficiency Techniques
	6.5 Phonetic Transcription and Augmentation
	6.6 Improve Dataset Quality

	7 Conclusion
	References

	Data Property Mitigator: Empowering Pneumonia Detection Using Deep Learning Models and Chest X-Rays
	1 Introduction
	2 Methodology
	2.1 Datasets
	2.2 Architecture
	2.3 Evaluation

	3 Results
	4 Discussion and Conclusion
	References

	Speech Enhancement: Data Manipulation Techniques for Augmenting Existing Datasets
	1 Introduction
	1.1 Speech Enhancement Techniques
	1.2 Early Approaches
	1.3 Neural Network Approach
	1.4 Current State-of-the-Art Approaches
	1.5 Current Needs for Customized Labeled Datasets

	2 Data Augmentation Techniques
	2.1 Direct Noise
	2.2 Random Noise
	2.3 Room Impulse Response

	3 Methodology
	3.1 Data
	3.2 Experiment Configurations
	3.3 Evaluation Metric

	4 Experimental Results
	5 Conclusion and Future Directions
	References

	A Deep Learning Framework for Classifying and Mitigating Bias in News Reporting
	1 Introduction
	2 Related Work
	3 Dataset Preparation
	3.1 Dataset Structure
	3.2 Data Labelling
	3.3 Dataset Size

	4 Methodology
	4.1 Transformer Architecture
	4.2 Biased Text Classification
	4.3 Un-Biased Text Generation
	4.4 Proposed Pipeline
	4.5 Method for Pre-training

	5 Experimental Results
	5.1 Metrics for Evaluation
	5.2 Biased Text Classification Experimental Results
	5.3 Un-Biased Text Generation Experimental Results

	6 Discussion
	6.1 Advantages of the Proposed ``DABDMN'' Pipeline
	6.2 Drawbacks of the Proposed Pipeline

	7 Conclusion
	References

	Improving Analytic Approximation of Log-Normal Interest Rate Model with Neural Network
	1 Log-Normal Interest Rates
	2 Overview of Existing Methods
	3 Analysis of Analytic Approximation to Pricing Problem
	4 Solving with Neural Network
	4.1 Applying the Neural Network

	5 Conclusion
	6 Additional Findings and Further Work
	References

	Exploring the Performance of Deep Learning Models for Neutrino Direction Prediction in High-Energy Astrophysics
	1 Introduction
	1.1 Problem Statement
	1.2 Purpose of the Study

	2 Theoretical Approach
	3 Literature Review
	4 Research Methodology
	4.1 Research Approach
	4.2 Data Sampling
	4.3 Data Collection
	4.4 Data Files and Labels
	4.5 Data Preprocessing
	4.6 Detector Constants
	4.7 Detector Valid Length
	4.8 Structured Array Creation
	4.9 Target Variables
	4.10 Data Metrics
	4.11 Azimuth and Zenith Angles
	4.12 Angle One-Hot Encoding
	4.13 Conversion of Predictions to Angles
	4.14 Model Architecture
	4.15 Measures of Validity

	5 Data Analysis and Results
	5.1 Azimuth Predictions
	5.2 Zenith Predictions

	6 Findings
	6.1 Applying Deep Learning for Neutrino Direction Prediction
	6.2 Comparison with Baseline Model

	7 Conclusion
	8 Limitations
	8.1 Future Research

	References

	Simulating Extreme Precipitation Phenomena Through Generative Adversarial Networks: Advancing Hydroclimatic Understanding
	1 Introduction
	2 GAN Basic
	3 Benefits of GANs in Extreme Precipitation Studies
	4 Comparative Analysis of Diverse GANs
	5 GANs’ Applications in the Study of Extreme Precipitation
	6 Summary
	References

	Reinforcement Learning of Emerging Swarm Technologies: A Literature Review
	1 Introduction
	2 Background
	2.1 Swarm Technologies
	2.2 Unmanned Aerial Vehicles (UAVs)
	2.3 Reinforcement Learning

	3 Literature Review
	3.1 Swarm Control and Optimization
	3.2 Optimization and Decision-Making in Complex Systems
	3.3 Collision Avoidance and Path Planning
	3.4 Nature and Bio-Inspired Systems
	3.5 Communication and Networking
	3.6 Autonomous Systems and Delivery
	3.7 Military Application and AI Integration

	4 Discussion
	5 Conclusion
	References

	Advanced Traffic Safety Analysis: Leveraging Deep Learning and Large Language Models for Near-Crash Detection in Crowdsourced Videos
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data Preparation
	3.2 Model Development and Training
	3.3 Video Processing
	3.4 Feature Extraction and Analysis
	3.5 Narrative Generation Using GPT-4

	4 Experiment Setup and Model Training
	4.1 Model Training
	4.2 Evaluation Metric
	4.3 Feature Extraction
	4.4 Generate Narratives Using GPT-4

	5 Experimental Results
	5.1 Classification Performance on Test Set
	5.2 Temporal Analysis of Accident Occurrences
	5.3 Temporal Analysis of Near Misses and Crashes
	5.4 Correlation Between Extracted Features
	5.5 Comparison of Probabilities and Number of Detected Objects
	5.6 Training and Validation Performance
	5.7 Classification Examples

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	References

	ChatGPT and ChatGPT API: An Experiment with Evaluating ChatGPT Answers
	1 Introduction
	1.1 Generative AI and ChatGPT
	1.2 Bots and Natural Language Processing (NLP)
	1.3 APIs
	1.4 History of Artificial Intelligence

	2 Research Problem and Approach to Solution
	3 The Code for Using the ChatGPT API
	3.1 Test Run (Initial)
	3.2 Adding a Secret Key
	3.3 Challenges Faced During Using ChatGPT API

	4 Experiment Analysis, Discussion and Automatically Evaluating the Results
	4.1 Automatically Evaluating the ChatGPT Answers to Technological Inventors’ Names
	4.2 More About the Evaluation of the Results
	4.3 On How to Evaluate Output from ChatGPT (Methods from Literature Review)

	5 Literature Review
	6 Conclusion
	7 Future Work
	7.1 Idea One: Building a Chatbot Using ChatGPT API
	7.2 Idea Two: Mining ChatGPT Using ChatGPT API

	References

	Building Blocks to Empower Cognitive Internet with Hybrid Edge Cloud
	1 Introduction
	2 Evolution to Cognitive Internet
	2.1 Predictive Maintenance for Manufacturing Equipment
	2.2 Robotic Automation in Warehouse Logistics

	3 Digital Transformation in the Cognitive Internet ERA
	4 Understanding the Cognitive Internet
	4.1 Definition and Characteristics
	4.2 AI, Automation, and Autonomous Decision-Making
	4.3 Understanding Contextual Dimensions in the Cognitive Internet
	4.4 Dismantling Application Silos for Contextual Software Defined Systems
	4.5 Understanding Knowledge-as-a-Service (KaaS)

	5 Transforming Intelligent Service Ecosystems
	5.1 Beyond Isolated Apps and Traditional SaaS Models
	5.2 Cognitive Services at the Heart of Any Intelligent Service Ecosystem
	5.3 Collective Knowledge Sharing and Adaptation

	6 Hybrid Edge Cloud: An Indispensable Enabler for Cognitive Internet
	6.1 Rethinking Edge Computing: Beyond the Network Edge
	6.2 Hybrid Edge Cloud: Balancing Autonomy and Global Learning
	6.3 Benefits of the Hybrid Edge Cloud

	7 Case Studies
	7.1 Software-Defined Vehicles: Navigating the Cognitive Internet with Precision
	7.2 Industry 5.0: Collaborative Manufacturing with Cognitive Systems
	7.3 Healthcare: Revolutionizing Patient Care with Intelligent Devices

	8 Future Perspectives and Solutions
	8.1 Smart Cities
	8.2 Agriculture
	8.3 Industrial Automation
	8.4 Healthcare

	9 Conclusion
	References

	Spectrum Serenade: OPNET Expedition Unveiling WLAN 802.11e Performance Evaluation
	1 Introduction
	2 Literature Review
	3 A Broad Overview of IEEE Standard 802.11
	3.1 Exploring the Foundation of IEEE Networks
	3.2 Modeling and Simulation: Exploring Virtual Scenarios

	4 Designing Networks: Crafting Efficient Connectivity Solutions
	4.1 Scenario

	5 Network Designs and Implementation
	5.1 Scenario
	5.2 Result and Analysis

	6 Conclusion
	References

	Information Retrieval Systems: A Methodological Review
	1 Introduction
	2 Methodology
	2.1 Literature Profiling
	2.2 Methods of Profiling
	2.3 Research Gap Analysis

	3 Results
	3.1 Literature Profiling
	3.2 Methods Profiling

	4 Discussions
	4.1 Literature Profiling
	4.2 Methods Profiling
	4.3 Research Gap Analysis

	5 Conclusion and Future Works
	References

	Augmented Reality Storybook for Color-Blind Children: Enhancing Reading Experience
	1 Introduction
	2 Methodology
	3 Results and Discussion
	4 Conclusion
	5 Recommendations
	References

	WIRE: Write Energy Reduction via Encoding in Phase Change Main Memories (PCM)
	1 Introduction
	2 Related Works
	3 Proposed Method
	3.1 Frequent Value Finder Logic
	3.2 Assigning Specific Codeword to Most Frequent Values
	3.3 OS Support

	4 Evaluation
	4.1 Evaluation Environment
	4.2 Analysis Under Real Application
	4.3 Analysis Under Synthetic Application

	5 Hardware Overhead and Extension for N-bit MLC PCM
	6 Conclusion
	References

	A Novel OO-Based Code Complexity Metric
	1 Introduction
	2 Background Study
	2.1 Software Complexity
	2.2 Related Work and Tools

	3 The Proposed Complexity Metric
	3.1 Accommodating Complexity of the Eight Factors
	3.2 Derivation of the Complexity Calculating Formula
	3.3 Demonstration of the Proposed Metric

	4 Results and Discussion
	5 Conclusion
	References

	Tamil-Based Mobile Application for the Identification of Anthurium Plant Diseases
	1 Introduction
	2 Literature Review
	2.1 Overview of Anthurium
	2.2 Existing Plant Disease Identification Methods
	2.3 Mobile Applications in Agriculture
	2.4 Machine Learning in Plant Disease Detection
	2.5 Challenges in Non-English-Based Agricultural Solutions

	3 Methodology and Architecture
	3.1 Literature Review and Gap Analysis
	3.2 Data Collection and Analysis
	3.3 Machine Learning Model Development
	3.4 Mobile Application Development
	3.5 Localization and Information Dissemination
	3.6 User Testing and Feedback

	4 Results
	4.1 Machine Learning Model Performance
	4.2 Mobile Application Usability
	4.3 Localization Effectiveness
	4.4 Real-World Application Impact
	4.5 Feedback and Iterations

	5 Discussion
	6 Conclusion and Future Directions
	References

	TCAD Electrothermal Analysis of 3D GAAFET Structures for Future VLSI Circuits
	1 Introduction
	2 Model Setup
	3 Results and Discussion
	4 Conclusion
	References

	Practical Quantum Combinatorial String Matching
	1 Introduction
	2 Basics of Quantum Computation
	3 A Practical Implementation
	3.1 The Parameterized Cyclic Rotation Operator
	3.2 Constructing the Matching Substring Vector
	3.3 The Register Reversal Operator
	3.4 The Copy Operator with Reversal Control
	3.5 The Controlled Bitwise Conjunction Operator
	3.6 The Register Disjunction Operator

	4 Solving the Three Cases
	4.1 FPM Case
	4.2 FFM Case
	4.3 SFSC Case

	5 Conclusions and Future Works
	References

	Generation of Student’s Programming Exercises Using SCT Generator
	1 Introduction
	2 Related Work
	2.1 Automatic Assessment Systems
	2.2 Online Compilers

	3 Discussion
	4 Architecture of Student Exercises Generator
	4.1 Example
	4.2 Generated Exercises

	5 Conclusion
	References

	The Design and Development of School Cooperative System
	1 Introduction
	2 Literature Review
	2.1 Koperasi UNIKEB Berhad
	2.2 Koperasi Kakitangan USIM
	2.3 Koperasi Kakitangan FELDA Malaysia Berhad (FELKOP)

	3 The Prototype Design of School Cooperative System
	3.1 Prototype Design that Facilitates Product Transaction in School Cooperative System
	3.2 Prototype Design of User Investment and Dividend Features

	4 Prototype Testing
	5 Conclusion and Future Research
	References

	Autoadaptive Lattices of Magnetic Vortices in Coherent Domains of Condensed Matter for ``Intelligent'' Quantum Computing and Storing
	1 Introduction
	2 The QED Coherence of Water in a Nutshell
	3 The Superconductive Behaviour of Coherent Water
	4 Self-Organizing Lattices of Magnetic Vortices in Coherent Water and Their Prospects for Intelligent Computing and Storing
	4.1 Regular Lattices of Magnetic Vortices Inside a Coherent Medium Interacting with a Magnetic Field
	4.2 Intelligent Computing and Storage in QED Coherent Water

	5 Outlook and Conclusion
	References

	Author Index

