International Journal of Education and Research Vol. 12 No. 9 September 2024

Prediction of Groundwater Level in an Unconfined Aquifer with Machine Learning

Xiao Chang
College of Business and Information Science, Tuskegee University, Tuskegee, AL 36088, USA

Eniola Webster-Esho
College of Business and Information Science, Tuskegee University, Tuskegee, AL 36088, USA

Corresponding author:
Xiao Chang
xchang@tuskegee.edu

Acknowledgement

This work is supported by the National Science Foundation (NSF) EPSCoR Track-2 grant (Award #
2019561) and NSF HBCU-UP Targeted Infusion Project (TIP) program (Award # 2306141). Any opinions,
findings, conclusions, and recommendations expressed are those of the authors and do not necessarily reflect
the views of NSF.

Abstract

Water is one of the most important resources for life on Earth. Groundwater is a critical natural resource that
sustains human and ecological systems, providing essential water supplies for domestic, agricultural, and
industrial use. Groundwater level (GWL) prediction is critical for planning drinking water supply and
agriculture activities. This study investigated the approach to predicting GWL based on the data of GWL and
the environmental factors of previous days with machine learning methods, including linear regression,
decision tree, random forest, and artificial neural networks. All the machine learning methods achieved a
MAPE of 0.09 or less in the experiment except decision tree. The experimental results show the models
learned from the historical data of GWL and the environmental factors can predict GWL effectively.
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1. Introduction
One of the most important resources for life on Earth is water. Water exists in a variety of forms, including
surface water, groundwater, and atmospheric water. Each form has its own set of properties and
characteristics. The term "surface water" refers to water found in lakes, rivers, streams, and other bodies of
water visible on the earth's surface. Groundwater is beneath the earth's surface and contained in aquifers,
which are soil and rock formations. In an unconfined aquifer, groundwater is in direct contact with the
atmosphere through the open pore spaces of the overlying soil or rock. In an unconfined aquifer, the
groundwater level in a well is the same as the groundwater level outside the well.
Groundwater is a critical natural resource that supports human and ecological systems, providing essential
water supplies for domestic, agricultural, and industrial use. It provides a consistent and long-term source of
water that usually contains fewer chemical pollutants and other contaminants than surface water. It provides
a consistent and long-term source of water that is frequently of higher quality than surface water sources.
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Groundwater recharges surface water sources like rivers and lakes, keeps them flowing during dry periods,
and supports a diverse range of plant and animal life. Groundwater also helps to keep our natural
environment in balance by regulating the earth's temperature and acting as a natural filter for pollutants. The
prediction of groundwater levels is helpful for effective water management and sustainable use in the support
of life and environment.

Traditionally, physical models have been used for groundwater level prediction. However they are often
computationally intensive and require significant data inputs (Nourani et al., 2011). Calibrations of these
models are very difficult, since many parameters need to be controlled, particularly in chalky media.
Additionally, these models need an enormous amount of good data and a complete realization of the essential
physical processes in the system (Chen et al., 2009).

In the recent years, machine learning (ML) has emerged as a promising alternative for groundwater level
(GWL) prediction, as it can effectively model complex relationships between groundwater level and
environmental variables using data-driven approaches (Khedri, et al., 2020; Sahoo et al., 2017; Cho et al.;
2011; Sahoo et al., 2005). Artificial neural network (ANN) has been applied to groundwater level prediction
with rainfall and temperature (Adamowski and Chan, 2011; Adiat et al., 2020; Coulibaly et al., 2001;
Daliakopoulos et al., 2005; Juan et al., 2015). Dash et al. (2009) studied a hybrid neural model that is
combination of (ANN-GA) employing an ANN model and genetic algorithms (GA) for accurate forecasts of
groundwater levels in basin of Orissa State, India. Jalalkamali et al. (2011) studied the neuro-fuzzy (NF) and
ANN methods to forecast the groundwater levels in Kerman plain of Iran. Shiri and Kisi (2011) evaluated the
implementation of genetic programming (GP) and an adaptive neuro-fuzzy inference system (ANFIS) to
predict groundwater level fluctuations using several benchmarks. The results of their findings showed the
performance of GP was relatively better than that of the ANFIS model. Safieh et. al. (2020) evaluated a
multilayer perceptron neural network (MLPNN) and an M5 model tree (M5-MT) in modelling groundwater
level fluctuation in an Indian coastal aquifer. The evaluation results showed that the M5-MT outperformed
the MLPNN model in estimating the GWL in the aquifer case study.

In this study, we investigated the approach to predicting groundwater level in an unconfined aquifer in North
Carolina, the United States, with the observations of GWL and environmental factors, including
precipitation, temperature, evapotranspiration, and surface pressure, of the previous days using machine
learning methods. The multiple machine learning models were employed to construct GWL prediction
models. The performance of the machine learning methods were compared in the experiment.

2. Method

2.1 Data set

The area under study is Haywood County located in North Carolina, the United States. According to the U.S.
Census Bureau, Haywood county has a total area of 555 square miles (1,440 km?2), of which 554 square
miles (1,430 km2) is land and 0.9 square miles (2.3 km2) (0.2%) is water. The daily GWL data collected in
the observation well located in located in an unconfined aquifer and in Haywood County in North Carolina,
the United States, was downloaded from the USGS website (USGS 2023), which includes the GWL data
collected from January 1, 2000 to December 31, 2019. The daily data of the other four factors was also
downloaded and included in the dataset, including daily precipitation, temperature, evapotranspiration, and
surface pressure. The historical data of daily GWL and the other four factors are be used to construct GWL
forecasting models.
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2.2 Machine Learning Methods

GWL prediction is a problem of time series prediction. We convert the time series prediction to regression by
splitting the long time series into multiple short time series using a time window. The time window is slide
along the time by one time step at each shift from the oldest time to the latest time in the data set or from the
latest time to the oldest time. The GWL values and the values of other factors within the time window form a
short time series. GWL of the last time step within a time window is treated as a target variable. GWL and
environmental factors are considered as variables may have a dependent relationship with the target variable.
A new data set with short time series can be generated from original time series. Any regression methods can
be applied to construct GWL prediction models.

2.2.1 Linear Regression

Linear regression is a statistical technique for estimating the relationship between two variables by fitting a
linear equation to the observed data. Linear regression can be used to identify a linear relationship between
one dependent variable and one or more independent variables. The assumptions of multivariate analysis are
normal distribution, linearity, freedom from extreme values and having no multiple ties between independent
variables. (Gulden et al., 2013)

2.2.2 Decision Tree Regression

The structure of a decision tree (DT) is used to create regression or classification models. A DT is developed
incrementally while a dataset is broken down into smaller and smaller subsets. A DT contains a root node,
interior nodes, and leaf nodes. All the nodes of a decision tree are connected by branches. DT regressor
predicts a continuous numeric value as an output based on a set of input features. DT learning algorithm
employs a recursive binary splitting technique in which, at each split, it selects the input feature with the
greatest information gain in terms of reducing the variance of the output values. A cost function, such as the
mean squared error (MSE), is minimized at each split to reduce variance in training associated with each
node.

2.2.3 Random Forest Regression

An ensemble of decision trees is used in the Random Forest (RF) regression algorithm to make prediction.
RF regression is an extension of the DT regression, where multiple decision trees are trained on the subsets
of training data and their predictions are averaged to improve the model's performance and avoid overfitting.
Randomization is used to select the best node to split on when the individual trees in the RF are constructed.
Breiman (2001) introduced additional randomness during the process of building decision trees using the
classification and regression trees (CART). The Gini index heuristics are used to evaluate the subset of
features chosen for each interior node using this method. In each interior node, the split feature is selected
based on the feature's Gini index.

2.2.4 Artificial Neural Network (ANN)

An ANN is designed to mimic the structure and function of the human brain. It consists of interconnected
nodes that work together to process information. The input layer is the first layer. It houses the input neurons
that send data to the hidden layer. The hidden layer computes on the input data and sends the results to the
output layer. The inputs from the input layer are multiplied by the weights that are associated with the
connections between nodes. The multiplied values are added together to create the weighted sum. Then, an
appropriate activation function is applied to weighted sum of inputs for generating output.
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3. Experiment and Results

3.1. Data set

The data set contains the daily GWL data and surface pressure measured in the observation well, and the
precipitation, temperature, evapotranspiration of Haywood County in North Carolina, the United States,
from January 1, 2000 through December 31, 2019. After the rows with null values were removed, the data
set contains a total of 7280 records of daily GWL, precipitation, temperature, evapotranspiration, and surface
pressure. The daily GWL and other environmental factors are numeric variables.

3.2. Data preparation

The min-max normalization was performed to map the values of each numeric variable to a range [0, 1]. This
was used to even out the weight of the one variable with other variables in the dataset. The training data was
split into training and test sets. Training data set consists of the values of daily GWL and other factors from
January 1, 2000 through December 31, 2016 with 6187 records. The test data set contains the data from
January 1, 2017 to December 31, 2019 with 1093 records.

3.3. Evaluation Metrics
The evaluation metrics used to evaluate the performance of the models are mean absolute percentage error
(MAPE) and mean squared error (MSE). MAPE is the average or mean of absolute percentage errors of
forecast. Error is defined as the difference between actual value and predicted value. MAPE is computed by
adding percentage errors without regard to sign. It provides the error in terms of percentages, the smaller the
MAPE the better the prediction.

1 n

MAPE = —2
n

t=1
where MAPE is mean absolute percentage error, n is number of times the summation iteration happens, 4; is

A —F
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actual value, and F; is predicted value.

Mean Squared Error (MSE) is defined as mean or average of the square of the difference between actual and
predicted values. This metric indicates how close a predicted value is to the actual value, the closer to zero
the better the prediction.

n
1
MSE =~ (i - 9
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where MSE is mean squared error, n is number of data points, y; is observed values, and J; is predicted
values.

3.4. Evaluation results
The machine learning models, including linear regression, decision tree, random forest and ANN, were
trained on the GWL data included in the training set. The trained models were applied to predict the GWL
values of each day from January 1, 2017 to December 31, 2019 based on the data included in the test set. The
evaluation results of the machine learning models with MAPE and MSE are given in Table 1 by year. The
linear regression model achieved the MAPEs of 0.05, 0.08, and 0.05 in the prediction of daily GWLs in
2017, 2018 and 2019, which are lower than the MAPEs of decision tree, random forest and ANN in the
GWL prediction. The learned linear regression model achieved the MSEs of 0.13, 0.18 and 0.11 respectively
in the prediction of daily GWL values in 2017, 2018 and 2019, which are also lower than the MSEs of
decision tree, random forest and ANN in the GWL prediction. The evaluation results show that the linear
regression models outperformed the other three machine learning models tested in the GWL prediction task.
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The daily GWL values from January 1, 2017 to December 31, 2019 predicted by the learned linear regression
model are plotted in red in Figure 1. The actual daily GWL values from January 1, 2017 to December 31,
2019 are plotted in blue in Figure 1. We can see the predicted daily GWL values are close to the actual daily
GWL values on most of the days, which demonstrates the good performance of linear regression in the GWL
prediction.

Table 1. Evaluation results of the machine learning models in the GWL prediction

Year Linear Decision Random Artificial Neural
Regression Tree Forest Network
2017 0.05 0.14 0.08 0.07
MAPE 2018 0.08 0.18 0.11 0.13
2019 0.05 0.14 0.07 0.08
Average 0.06 0.15 0.09 0.09
2017 0.13 1.07 0.33 0.19
MSE 2018 0.18 0.73 0.29 0.39
2019 0.11 0.93 0.2 0.2
Average 0.14 0.91 0.27 0.26

Linear Regression For Haywood County 2017-2019

Groundwater Level

11— Predicted
— Actual

0 200 400 600 800 1000
Daily Timestamp

Figure 1. Actual daily GWLs from 2017 to 2019 and the daily GWLs predicted by the linear regression
model

4. Discussion

The dramatic weather changes in some seasons may make the GWL prediction to be more challenging and
lead to larger GWL prediction errors. The prediction results of the linear regression model were summarized
by averaging the daily MAPEs of each month in 2017, 2018 and 2019. The evaluation results by month are
shown with the bar plot in Figure 2. From the results, we can see that the average MAPEs in March of 2017,
April of 2018, and November of 2018 are much higher than the average MAPEs in other months. The
average MAPEs in March of 2017, April of 2018, and November of 2018 are 0.17, 0.38 and 0.28,
respectively. The high average MAPEs indicate that the insufficient training data or more environmental
parameters related to the GWL fluctuations in Haywood County should be incorporated into the GWL
prediction model.
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Figure 2. Monthly MAPE for Haywood County from 2017 to 2019 using Random Forest Regression

We conducted an experiment to test the impact of the training size on the performance of the GWL
prediction model constructed with linear regression. The initial training data set includes the data of 10 years
from 2000-2010. The GWL prediction model was trained on the training data set. The performance of the
trained model was evaluated on the on the daily GWLs in 2019. Then the data of the next subsequent year
was added to the training data set. The next GWL prediction model was trained on the incremental training
data set. The performance of the new GWL prediction model was also evaluated on the daily GWLs in 2019.
The training and evaluation processes were conducted repeatedly by adding the data of the next subsequent
year to the training data set. The performance evaluation of the new GWL prediction model was always
performed on the daily GWLs in 2019. In the end of the process, the last training data set consists of the data
of 18 years from 2000-2018. The pairs of the size of the training data set by number of years covered and the
MAPE achieved by the model trained on the training data set are plotted and given in Figure 3. The learning
curve given in Figure 3 indicates that the MAPE dropped dramatically after about 17 years historical data of
GWL and environmental factors were included in the training data. In addition to adding more data to the
training data set, incorporating more hydrological and meteorological factors into the GWL prediction model
may be helpful for improving the accuracy of the GWL prediction models.

Haywood County MAPE
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MAPE

01

0.05
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Figure 3. The learning curve of the GWL prediction model with the linear regression. Years Data n means
the historical data of the n+1 years from 2000 to 2010. For example, Years Data 10 means the historical data

of the 11 years from 2000 to 2010.
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5. Conclusion

In this study, we investigated the approach to the prediction of groundwater level in the observation well in
an unconfined aquifer located in Haywood County in North Carolina, United States, with machine learning.
In addition to GWL, four environmental factors were incorporated into the prediction models. Linear
regression, decision tree regression, random forest regression, and ANN regression were employed to
construct the GWL prediction models. The experimental results show that the machine learning models
learned from the historical data of GWL and the environmental factors can predict groundwater level with
good accuracy. The GWL prediction using machine learning would be useful for monitoring groundwater
conditions and informing future planning of drinking water supply and agricultural activities.
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