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Abstract
Estimating the unknown reward functions driv-
ing agents’ behavior is a central challenge in in-
verse games and reinforcement learning. This
paper introduces a unified framework for reward
function recovery in two-player zero-sum matrix
games and Markov games with entropy regular-
ization. Given observed player strategies and ac-
tions, we aim to reconstruct the underlying re-
ward functions. This task is challenging due to
the inherent ambiguity of inverse problems, the
non-uniqueness of feasible rewards, and limited
observational data coverage. To address these
challenges, we establish reward function identi-
fiability using the quantal response equilibrium
(QRE) under linear assumptions. Building on this
theoretical foundation, we propose an algorithm
to learn reward from observed actions, designed
to capture all plausible reward parameters by con-
structing confidence sets. Our algorithm works
in both static and dynamic settings and is adapt-
able to incorporate other methods, such as Maxi-
mum Likelihood Estimation (MLE). We provide
strong theoretical guarantees for the reliability and
sample-efficiency of our algorithm. Empirical re-
sults demonstrate the framework’s effectiveness in
accurately recovering reward functions across var-
ious scenarios, offering new insights into decision-
making in competitive environments.

1. Introduction

Understanding the underlying reward functions that drive
agents’ behavior is a central problem in inverse reinforce-
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ment learning (IRL) (Ng & Russell, 2000; Arora & Doshi,
2020). While traditional reinforcement learning (RL)
(Szepesvári, 2010; Sutton & Barto, 2018) focuses on solv-
ing policies based on a known reward function, IRL inverts
this process, aiming to infer the reward function from ob-
served behavior. In competitive settings, such as two-player
zero-sum games, this problem becomes even more compli-
cated, as the agents’ strategies depend not only on their own
rewards but also on their opponents’ strategies (Wang &
Klabjan, 2018; Savas et al., 2019; Wei et al., 2021). These
challenges motivate the study of inverse game theory (Lin
et al., 2014; Yu et al., 2019), which seeks to recover reward
functions from observed strategies in competitive games.

From a practical perspective, inferring the reward functions
in competitive games has wide-ranging applications in eco-
nomics, cyber security, robotics, and autonomous systems
(Ng & Russell, 2000; Ziebart et al., 2008). Understand-
ing the motivations behind players’ actions in adversarial
settings help optimize resource allocation in cyber security
(Miehling et al., 2018), model strategic interactions in eco-
nomic markets (Chow & Djavadian, 2015), or design better
AI systems for competitive tasks (Huang et al., 2019).

Meanwhile, recovering reward functions in competitive
games involves several key challenges: (i) Inverse problems
are inherently ill-posed (Ahuja & Orlin, 2001; Yu et al.,
2019), as multiple reward functions can lead to the same
optimal strategy and equilibrium solutions. A well-designed
algorithm should not merely recover a single reward func-
tion but instead identify the entire set of feasible reward
functions (Metelli et al., 2021; Lindner et al., 2022; Metelli
et al., 2023). (ii) In an offline setting (Jarboui & Perchet,
2021), insufficient dataset coverage is also a significant chal-
lenge. Observed strategies often fail to comprehensively
cover the state-action space, making it difficult to ensure ro-
bust reward function recovery. These challenges are further
amplified in Markov games (Littman, 1994), where agents’
strategies evolve dynamically over time, introducing addi-
tional complexity in reward identification and estimation.

1.1. Major Contributions

We propose a unified framework for inverse game theory
that addresses the identification and estimation of reward
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functions in competitive games in both static and dynamic
settings. Our contribution is four-fold:

• Identification of Reward Functions: We study the iden-
tification problem using the quantal response equilib-
rium (QRE) under a linear assumption. We formally
define the conditions for reward parameter identifiabil-
ity and characterize the feasible set when parameters
are not uniquely identifiable.

• Algorithm for Reward Estimation: Building on the
identification results, we propose an algorithm that
estimates reward functions by constructing confidence
sets to capture all feasible reward parameters.

• Extension to Markov Games: We extend our frame-
work to entropy-regularized Markov games, combining
reward recovery with transition kernel estimation to
handle dynamic settings. This approach is designed to
be sample-efficient and adaptable, incorporating meth-
ods like Maximum Likelihood Estimation (MLE).

• Theoretical and Empirical Validation: We provide rig-
orous theoretical guarantees to establish the reliability
and efficiency of our algorithm. Additionally, numeri-
cal experiments demonstrate the effectiveness of our
framework in accurately recovering reward functions
across various competitive scenarios.

1.2. Related Work

Zero-sum Markov Games. The zero-sum Markov game
(Shapley, 1953; Xie et al., 2020; Cen et al., 2023; Kalogian-
nis & Panageas, 2023) models the competitive interactions
between two players in dynamic environments. The solution
typically focuses on finding equilibrium strategies (Nash Jr,
1951; McKelvey & Palfrey, 1995; Xie et al., 2020) where
neither player can unilaterally improve their outcome. With
a primary focus on learning in a sample-efficient manner,
learning algorithms are proposed, including policy-based
methods (Cen et al., 2021; Wei et al., 2021; Zhao et al.,
2022; Cen et al., 2023) and value-based methods (Xie et al.,
2020; Chen et al., 2022; Kalogiannis & Panageas, 2023).

Inverse Optimization and Inverse Reinforcement Learn-
ing (IRL). Inverse optimization (Ahuja & Orlin, 2001;
Chan et al., 2022; Ahmadi et al., 2023) reverses the tradi-
tional optimization process by taking observed decisions as
input to infer an objective function (Ahuja & Orlin, 2001;
Nourollahi & Ghate, 2018) and constraints (Chan & Kaw,
2019; Ghobadi & Mahmoudzadeh, 2021) that make these
decisions approximately or exactly optimal. In practice,
inverse optimization offers a powerful framework for un-
derstanding and modeling decision-making in complex sys-
tems across fields like marketing (Chow & Djavadian, 2015;
Vatandoust et al., 2023), operations research (Brotcorne
et al., 2005; Agarwal & Özlem Ergun, 2010; Yu et al., 2021),

and machine learning (Konstantakopoulos et al., 2017; Dong
et al., 2018; Tan et al., 2019).

Inverse reinforcement learning (Ng & Russell, 2000; Ziebart
et al., 2008; Herman et al., 2016; Wulfmeier et al., 2016;
Arora & Doshi, 2020) focuses on inferring the reward func-
tion based on the observed behavior or strategy of agents and
experts, which is crucial for understanding various decision-
making processes, from single-agent processes (Boularias
et al., 2011; Herman et al., 2016; Fu et al., 2018) to compet-
itive or cooperative games (Vorobeychik et al., 2007; Ling
et al., 2018; Wang & Klabjan, 2018; Wu et al., 2024). A
popular approach within the field of IRL is the Maximum
Entropy IRL (Ziebart et al., 2008; Ziebart, 2018; Wulfmeier
et al., 2016; Snoswell et al., 2020), which is based on the
principle of maximum entropy and is provably efficient in
handling uncertainty of agent behaviors (Snoswell et al.,
2020; Gleave & Toyer, 2022) and high-dimensional obser-
vations (Wulfmeier et al., 2016; Snoswell et al., 2020; Song
et al., 2022).

Entropy Regularization in RL and Games. We use the
entropy regularization in our framework, which has be-
come a widely used technique in reinforcement learning
(Szepesvári, 2010; Ziebart, 2018) and game theory (Savas
et al., 2019; Guan et al., 2021; Cen et al., 2023). Entropy
regularization is provably effective in addressing challenges
like exploration-exploitation tradeoff (Haarnoja et al., 2018;
Wang et al., 2019; Ahmed et al., 2019; Neu et al., 2017),
algorithm robustness (Zhao et al., 2020; Guo et al., 2021)
and convergence acceleration (Cen et al., 2021; Cen et al.,
2023; Zhan et al., 2023). Importantly, entropy regularization
has also been shown to improve identifiability in inverse
reinforcement learning (IRL) problems. Recent works in
single-agent IRL, such as Cao et al. (2021) and Rolland et al.
(2022), leverage entropy-regularized policies to transform
ill-posed IRL problems into identifiable ones under mild
assumptions. Our work builds on this insight by extending
it to competitive multi-agent settings, where identifiability
becomes even more subtle due to strategic interactions.

Paper Organization. In §2, we develop the framework
of inverse game theory for entropy-regularized zero-sum
games. In §3, we extend the framework introduced in §2 to
a sequential decision-making setting, focusing on entropy-
regularized zero-sum Markov games. We provide numerical
experiments to validate the theoretical findings in §4, and
conclude the paper in §5.

Notations. We introduce some useful notation before
proceeding. Throughout this paper, we denote the set
1, 2, · · · , nby [n] for any positive integer n. For two posi-
tive sequences (an )1

n=1 and (bn )1
n=1 , we write an = O(b n )

or an . b n if there exists a positive constant C such
that an   C · b n . For any integer d, we denote the d-
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dimensional Euclidean space by Rd , with inner product
hx, yi = x > y and the induced norm kxk =

p
hx, xi.

For any matrix A = (a ij ), the Frobenius norm of A is
kAkF = (

P
i,j a2

ij )1/2 , and the operator norm (or spec-
tral norm) of A is kAkop = 1(A) , where 1(A) stands
for the largest singular value of A . For any square ma-
trix A = (a ij ), denote its trace by tr(A) =

P
i aii . For

a nonempty set X , we denote by (X ) the space of all
probability distributions on X .

2. Entropy-Regularized Zero-Sum Matrix
Games

We derive the inverse game theory for entropy-regularized
two-player zero-sum matrix games. We consider the iden-
tification problem of payoff matrices under the linear para-
metric assumption and derive a necessary and sufficient
condition for strong identification. Furthermore, we pro-
pose methods to recover identified sets and payoff matrices.

2.1. Preliminary and Problem Formulation

We consider a two-player zero-sum matrix game, which is
specified by a triple (A, B, Q), where A = {1, 2, · · · , m}
and B = {1, 2, · · · , n}are finite sets of actions that players
i 2 {1, 2} can take, and Q(·, ·) is the payoff function. The
zero-sum game can be formulated as the following min-max
optimization problem

max
µ

min
⌫

µ> Q ,⌫

where µ 2 (A) and  ⌫ 2 (B) are policies for each
player, and Q = (Q(a, b)) a2A,b2B 2 R m n⇥ denotes the
payoff matrix. The solution of this optimization problem is
also known as the Nash equilibrium (Nash Jr, 1951), where
both agents play the best response against the other agent.

Entropy-Regularized Two-Player Zero-Sum Matrix
Game. We study the entropy-regularized matrix game.
Formally, this amounts to solving the following matrix game
with entropy regularization (Mertikopoulos & Sandholm,
2016):

max
µ

min
⌫

µ> Q⌫ + ⌘1H(µ) ⌘ 1H(⌫),

where  ⌘ > 0is the regluarization parameter, and

H(⇡) =
X

i

⇡i log(⇡i )

denotes the Shannon entropy (Shannon, 1948) of⇡. Accord-
ing to the von-Neumann minimax theorem (von Neumann,
1928), there exists a unique solution (µ⇤, ⌫⇤) to this min-
max problem, denoted as the quantal response equilibrium

(McKelvey & Palfrey, 1995), which satisfies the following
fixed point equations:

8
>>>><

>>>>:

µ⇤(a) =
e⌘Q(a,·)⌫⇤

P
a2A e⌘Q(a,·)⌫⇤

, for all a 2 A,

⌫⇤(b) =
e ⌘Q(·,b)> µ⇤

P
b2B e ⌘Q(·,b)> µ⇤

, for all b 2 B.

This non-linear system is equivalent to the following m +
n 2 linear constraints: for all a 2 A and b 2 B,

(
Q(a, ·) Q(1, ·) ⌫⇤= log(µ ⇤(a)/µ ⇤(1))/ ,⌘

Q(·, b) Q(·, 1)
> µ⇤= log(⌫⇤(b)/⌫⇤(1))/ .⌘

(1)

Goal. We study the inverse game theory for this entropy-
regularized zero-sum game. To elaborate, we observe strat-

egy pairs (ak , bk ) iid⇠ (µ⇤, ⌫⇤) follows the QRE, and we aim
to recover all the feasible payoff functions Q(·, ·).

Identification of payoff matrices. To derive inverse game
theory, it is important to study the identifiability of the pay-
off matrix, i.e. if there exists a unique payoff matrix that
satisfies the QRE constraint. In this paper, we study the
identification problem under the linear structure assump-
tion (§2.2) and further generalize the analysis to the partial
identification case (§2.3).

2.2. Strong Identification

Suppose (µ⇤, ⌫⇤) are the QRE for two players and we use
the observed data to obtain an estimation denoted by (bµ, b⌫).
Next, we are going to estimate the payoff matrix from this
estimated QRE. To ensure the game is identifiable, we lever-
age the following linear parametric assumption.

Assumption 2.1 (Linear payoff functions). Suppose that
there exists a vector-valued kernel : A  B !⇥  R d and a
vector ✓⇤2 R d such that k✓⇤k  M for some M > 0 , and

Q(a, b) = h (a, b), ✓⇤i

for all (a, b) 2 A  B⇥ .

To estimate the payoff matrix Q from the observed data, our
essential goal is to estimate ✓⇤. Under Assumption 2.1, the
linear system (1) can be rewritten as follows: for all a 2 A
and b 2 B,
( ⌦

( (a, ·) (1, ·)) ⌫⇤, ✓
↵

= log(µ ⇤(a)/µ ⇤(1))/ ,⌘⌦
( (·, b) (·, 1))> µ⇤, ✓

↵
= log(⌫⇤(b)/⌫⇤(1))/ ,⌘

where ( (a, ·) (1, ·)) ⌫⇤, ( (·, b) (·, 1))> µ⇤ 2 R d .
To simplify the notation, we define matrices

A(⌫) = (( (a, ·) (1, ·)) ⌫)a2A/{1} 2 R (m 1) d⇥ ,

B(µ) = (( (·, b) (·, 1))> µ)b2B/{1} 2 R (n 1) d⇥ ,

3



Inverse Game Theory with Entropy Regularization

and define vectors

c(µ) = (log(µ(a)/µ(1))/⌘) a2A/{1} 2 R m 1 ,

d(⌫) = ( log(⌫(b)/⌫(1))/⌘)b2B/{1} 2 R n 1

Then the linear constraints would be


A(⌫⇤)
B(µ ⇤) ✓ =


c(µ⇤)
d(⌫⇤)

. (2)

Since the linear system has m + n 2 constraints and the
dimension of ✓is d. Intuitively, if d  m  + n 2 and the
linear constraints are full rank, there is at most one solution
of the above linear equations.

Proposition 2.2 (Necessary and sufficient condition for
strong identification). Under Assumption 2.1, there is a
unique  ✓ 2 Rd such that Q(a, b) = h (a, b), i✓(i.e. ✓ = ✓⇤)
for all (a, b) 2 A  B⇥ if and only if the QRE satisfies the
rank condition

rank

✓
A(⌫⇤)
B(µ ⇤)

◆
= d. (3)

Let the rank condition (3) hold, so that the game is strongly
identifiable. In an offline setting, we propose a two-step
method to estimate ✓⇤.

1. Estimate the QRE (µ⇤, ⌫⇤) from the observed data and
obtain (bµ, b⌫).

2. Leverge (2) to estimate ✓. To be specific, we conduct
the least-square estimation and obtain b✓:

b✓:= arg min
✓2Rd


A(b⌫)
B(bµ)

✓

c(bµ)
d(b⌫)

2
, (4)

If the sample size is sufficiently large and TV(bµ, µ⇤) and
TV(b⌫, ⌫⇤) are close to zero, the coefficient matrix in (4) is
of full column rank, and we can derive a closed form for b✓:

b✓ =

 
A(b⌫)
B(bµ)

> 
A(b⌫)
B(bµ)

! 1 
A(b⌫)
B(bµ)

> 
c(bµ)
d(b⌫)

. (5)

Next, we derive the estimation error of the two-step method.
Namely, given a finite sample bound for TV(bµ, µ⇤) and
TV(b⌫, ⌫⇤), we aim to derive kb✓ ✓⇤k.

Theorem 2.3 (Parameter estimation error). Let ✏1 and ✏2
be two small numbers satisfying ✏1 < min a2[m] µ⇤(a) and
✏2 < min b2[n] ⌫

⇤(b). Under Assumption 2.1 and the rank
condition in (3), suppose (µ̂, ⌫̂)satisfies TV(µ̂, µ⇤)   ✏1/2
and TV(⌫̂, ⌫⇤)   ✏2/2 , then ✓̂constructed by (4) satisfies

k✓̂ ✓⇤k2 . ✏2
1· 1 + m · (✏2

2 + 1) +✏2
2· 1 + n · (✏2

1 + 1) .

Now we present the finite sample result of the sample com-
plexity. In the two-step method, given a dataset of agent
actions following the true QRE, we first use a consistent
estimator to approximate the true QRE and obtain bµ, b⌫, then
we use the estimated QRE to conduct the least square (5).
Therefore, the sample complexity would be dependent on
the convergence rate of the QRE estimator. A natural choice
for QRE estimation is the frequency estimator.

Theorem 2.4 (Finite sample error bound). Given N sam-
ples {(a k , bk )} k2[N] following the true QRE (µ⇤, ⌫⇤), we
obtain bµ, b⌫by the frequency estimator. For any 2 (0, 1),
the estimation error bound of the payoff matrix holds with
probability at least 1

k bQ Qk2
F . O

✓
m2 + n 2 + (m + n) log(1/ )

N

◆
.

Theorem 2.4 provides a probabilistic guarantee for the accu-
racy of the reconstructed payoff matrix bQ in a finite-sample
setting. The bound explicitly depends on the sample size
N , the action space dimensions m, n, and the confidence
parameter . The estimation error decreases at a rate of
O(1/N) , which is consistent with the standard empirical
result of the frequency estimator (van der Vaart, 1998). As
the sample size N increases, the errors of bµ and b⌫decrease,
leading to a more accurate reconstruction of the reward
Q⇤. On the other hand, the bound grows with the action
space size in terms of m2 + n 2, indicating that larger action
spaces require more samples to achieve the same estimation
accuracy.

2.3. Partial Identification

If the rank condition (3) does not hold, there are infinitely
many  ✓ 2 Rd that satisfy the QRE constraint (2). Under
Assumption 2.1, the feasible set ⇥ ⇢ Rd is

⇥ =
⇢
✓ :


A(⌫⇤)
B(µ ⇤) ✓ =


c(µ⇤)
d(⌫⇤)

, k k  M .✓ 

Since the true parameter ✓⇤is partially identified, we con-
struct a confidence set that contains the identified set with
high probability. Given N strategy pairs following the true
QRE, we first estimate the QRE from the observed data by
frequency estimators bµ and b⌫. Next, we select a threshold
N > 0 and construct the confidence set as follows:

b⇥N =

(

✓ :


A(b⌫)
B(bµ)

✓

c(bµ)
d(b⌫)

2
  N , k k  M✓ 

)
.

(6)

To recover the feasible payoff functions, we simply compute
bQ(a, b) = (a, b) > b✓for all b  ✓ 2 b⇥ according to the linear
assumption.
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We demonstrate the effectiveness of our Algorithm by es-
tablishing its ability to construct accurate confidence sets.
To be specific, we show that the confidence set b⇥ is close to
the identified set ⇥ when the sample size N is large. The
key to approximating feasible set ⇥ is to identify a suitable
threshold N that makes the confidence set b⇥N “similar” to
⇥. The following theorem formalizes this intuition.

Theorem 2.5 (Convergence of confidence set). Let Assump-
tion 2.1 hold. For each N 2 N , suppose we observe N
samples {(a k , bk )} k2[N] following the true QRE (µ⇤, ⌫⇤),
and calculate (bµ, b⌫)by the frequency estimator. Set the
confidence set b⇥N as in (6), where N = O(N 1). Then
with probability at least 1 ,

dH (⇥, b⇥N ) .
m + n +

p
(m + n) log(1/ )p

N
, (7)

where dH is the Hausdorff distance corresponding to the
Euclidean distance in Rd .

Theorem 2.5 establishes the asymptotic consistency of our
confidence set b⇥N in the finite-sample setting, showing
that it converges to the true feasible set ⇥ as the number of
observed samples increases. The finite-sample bound (7)
demonstrates that the estimation error decreases at the rate
of O(N 1/2 ), which matches the standard concentration
rate for empirical frequency estimators. The dependence on
m and n highlights that larger action spaces require more
samples for the same level of confidence. This result con-
firms that our method provides both statistical consistency
and a well-characterized finite-sample error bound, making
it a robust approach for inverse game-theoretic inference.

2.4. Selection in Confidence Sets

As discussed in §2.3, the true parameter ✓⇤is partially iden-
tifiable when the rank condition (3) does not hold, and there
are infinitely many parameters that lead to the same QRE.
To avoid unnecessary large coefficients that might overfit
or lead to instability, we define the optimal solution ✓⇤as
the vector that satisfies the QRE constraints and has the
minimum Euclidean norm, i.e.,

✓⇤= argmin
✓2Rd

k k,✓ subject to


A(⌫⇤)
B(µ ⇤) ✓ =


c(µ⇤)
d(⌫⇤)

.

When the system is not full column rank, the minimum-
norm solution of least square is uniquely determined by the
Moore–Penrose inverse (Ben-Israel & Greville, 2006):

✓⇤=


A(⌫⇤)
B(µ ⇤)

†
c(µ⇤)
d(⌫⇤)

.

Therefore, to estimate the optimal parameter ✓⇤, we propose
the following plug-in estimator:

b✓ =


A(b⌫)
B(bµ)

†
c(bµ)
d(b⌫)

.

Now we derive the estimation error bound kb✓ ✓⇤k.

Theorem 2.6 (Convergence of the optimal QRE solution).
Assume that the matrix

X =


A(⌫⇤)
B(µ ⇤) 2 R (m+n 2) d⇥

is of full row rank, and its smallest singular value is bounded
from below, that is, m+n 2 (X) b for some b > 0 .
Given N samples {(a k , bk )} k2[N] following the true QRE
(µ⇤, ⌫⇤), we obtain (bµ, b⌫)by the frequency estimator. For
any 2 (0, 1), when N is sufficiently large, the following
estimation error bound of the optimal QRE solution holds
with probability at least 1 :

kb✓ ✓⇤k .
m + n +

p
(m + n) log(1/ )p

N
.

In practice, selecting the minimum-norm solution helps
avoid overfitting and promotes stability (Hastie et al., 2009).
The convergence rateO(N 1/2 ) matches standard results in
statistical estimation, showing the reliability and efficiency
of our method in practical settings.

3. Entropy-Regularized Zero-Sum Markov
Games

In this section, we follow the same methodology in §2 and
derive the inverse game theory for entropy-regularized two-
player zero-sum Markov games.

3.1. Preliminary and Problem Formulation

We briefly review the setting of a two-player zero-sum
Markov game (Littman, 1994), which is a framework that
extends Markov decision processes (MDPs) to multi-agent
settings, where two players with opposing objectives in-
teract in a shared environment. A two-player zero-sum
simultaneous-move episodic Markov game is defined by a
sextuple (S, A, B, r, P, H), where

• S is the state space, with |S| = S ,

• A and B are two finite sets of actions that players
i 2 {1, 2} can take,

• H 2 N is the number of time steps,

• r = {r h } h2[H] is a collection of reward functions, and

• P = {P h } h2[H] is a collection of transition kernels.

At each time step h 2 [H] , the players 1 and 2 simul-
taneously take actions a 2 A and b 2 B respectively
upon observing the state s 2 S , and then player 1 receives
the reward r h (s, a, b), while player 2 receives r h (s, a, b).
Namely, the gain of one player equals the loss of the other.
The system then transitions to a new state s0⇠ Ph (·|s, a, b)
according to the transition kernel Ph .
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Entropy-regularized two-player zero-sum Markov game.
We study the two-player zero-sum Markov game with en-
tropy regularization. We use (µ, ⌫)to denote the policy of
two players, where µ = {µ h } H

h=1 and ⌫ = {⌫h } H
h=1 . At

step h, the entropy-regularized V-function is

V µ,⌫
h (s) = E

HX

t=h

t h ⇥
r t (st , at , bt ) ⌘ 1 log µt (at |st )

+ ⌘ 1 log ⌫t (bt |st )
⇤

sh = s ,

where 2 [0, 1] is the discount factor and  ⌘ > 0 is the
parameter of regularization. Meanwhile,, we define the
entropy-regularized Q-function that

Qµ,⌫
h (s, a, b) = rh (s, a, b) + E Ph (·|s,a,b)

⇥
V µ,⌫

h+1 (·)
⇤

. (8)

For notation simplicity, we denote by Qµ,⌫
h (s) 2 R m n⇥ the

collection of Q-functions at the state s, which is the matrix
[Qµ,⌫

h (s, a, b)](a,b)2A B⇥ . With this notation, we may write

V µ,⌫
h (s) = µ h (s)> Qµ,⌫

h (s)⌫h (s)
+ ⌘ 1H(µ h (s)) ⌘ 1H(⌫h (s)).

(9)

The equations (8) and (9) are also known as Bellman equa-
tions for Markov games. In a zero-sum game, one player
seeks to maximize the value function while the other player
wants to minimize it:

V⇤
1 (s) = max

µ
min
⌫

V µ,⌫
1 (s) = min

⌫
max

µ
V µ,⌫

1 (s).

Definition 3.1 (Quantal response equilibrium). For each
time step h, there is a unique pair of optimal policies
(µ⇤h , ⌫⇤h ) of the entropy-regularized Markov game, i.e. the
quantal response equilibrium (QRE), characterized by the
following minimax problem:

V µ⇤,⌫⇤
h (s) = max

µ h
min
⌫h

V µ,⌫
h (s) = min

⌫h
max

µ h

V µ,⌫
h (s).

which is equivalent to

V µ⇤,⌫⇤
h (s) = max

µ h
min
⌫h

µh (s)> Qµ,⌫
h (s)⌫h (s)

+ ⌘ 1H(µ h (s)) ⌘ 1H(⌫h (s)),
(10)

where µh : S ! (A) is the policy followed by player 1
and ⌫h : S ! (B) is the policy followed by player 2, and
H(⇡) :=

P
i ⇡i log(⇡i ) denotes the Shannon entropy of

a distribution ⇡. Also, it is known that the unique solution
of this minimax problem (QRE) satisfies the following fixed
point equations:

8
>>><

>>>:

µ⇤h (a|s) =
e⌘hQ⇤h (s,a,·),⌫⇤

h (·|s)i B

P
a2A e⌘hQ⇤h (s,a,·),⌫⇤

h (·|s)i B
, 8a 2 A,

⌫⇤h (b|s) =
e ⌘hQ⇤h (s,·,b),µ ⇤

h (·|s)i A

P
b2B e ⌘hQ⇤h (s,·,b),µ ⇤

h (·|s)i A
, 8b 2 B.

(11)

Goal. We study the inverse game theory for this entropy-
regularized two-player zero-sum Markov game, where both
the rewards (r h ) and the transition kernels (Ph ) are un-
known. To elaborate, we observe i.i.d. trajectories

{(s t
1, at

1, bt
1), · · · , (stH , at

H , bt
H )} t2[T ]

following the QRE (µ⇤, ⌫⇤), and we aim to recover all the
feasible reward functions r defined as follows.

Definition 3.2 (Identified reward sets). Given state and ac-
tion space S  A  B⇥ ⇥ and quantal response equilibrium
(µ⇤, ⌫⇤), a reward function r : S  A  B !⇥ ⇥  R H is iden-
tified if µh , ⌫h is the solution of the minimax problem (10)
induced by the reward function r h for all h 2 [H] .

3.2. Learning Reward Functions from Actions

In this section, we propose an algorithm to find all the
feasible reward functions that lead to the QRE. We assume
that both the reward function and transition kernel have a
linear structure (Bradtke & Barto, 2004; Jin et al., 2020).

Assumption 3.3 (Linear MDP). For the underlying MDP,
we assume that for every reward functionr h : S A B !⇥ ⇥
[0, 1]and every transition kernel Ph : S  A  B !⇥ ⇥  (S) ,
there exist ! h 2 R d and ⇡h (·) : S ! R d such that

r h (s, a, b) = (s, a, b) > ! h ,

Ph (·|s, a, b) = (s, a, b) > ⇡h (·)

for all (s, a, b) 2 S  A  B⇥ ⇥ . In addition, the Q function is
linear with respect to . Namely, for any QRE (µ, ⌫)and
h 2 [H] , there exists a vector ✓h 2 Rd such that

Qh (s, a, b) = (s, a, b) > ✓h .

We assume k (·, ·, ·)k  1, k✓h k  R , and k⇡h (s)k 
p

d
for all h 2 [H] and s 2 S .

Remark 3.4. In Assumption 3.3, since the reward functions
r h are normalized to the unit interval [0, 1]and the number
of time steps [H] is finite, every Q-function Qh must be
bounded by some constant, and the constant R H(1 +
log m + log n)exists. Since (! h ) can be recovered by (✓h ),
we prefer to make an assumption on (✓h ) instead of (! h )
for the convenience of subsequent analysis.

We are going to find all the feasible ! h for all h 2 [H]
under Assumption 3.3. Analogous to matrix games, we
first consider the identification problem of the Q-function.
Namely, whether there is a unique ✓h corresponding to the
QRE. Given the equilibrium constraint (11), we propose the
following theorem for strong identification.

Proposition 3.5 (Strong identification of Q-function). Un-
der Assumption 3.3, for each h 2 [H] , the Q-function
Qh (s, a, b) = (s, a, b)> ✓h is feasible for all (s, a, b) 2

6
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S  A  B⇥ ⇥ if ✓h satisfies the following linear system:


Ah (s, ⌫⇤h )
Bh (s, µ⇤h )

✓h =

ch (s, µ⇤h )
dh (s, ⌫⇤h ) for all s 2 S, (12)

where

Ah (s, ⌫h ) = (( (s, a, ·) (s, 1, ·)) ⌫h (·|s))a2A\{1} ,

Bh (s, µh ) = (( (s, ·, 1) (s, ·, b)) µh (·|s))b2B\{1}

and

ch (s, µh ) =
✓
⌘ 1 log

µh (a|s)
µh (1|s)

◆

a2A\{1}

2 R m 1 ,

dh (s, ⌫h ) =
✓

⌘ 1 log
⌫h (b|s)
⌫h (1|s)

◆

b2B\{1}

2 R n 1 .

Moreover, there exists a unique✓h 2 R d if and only if the
QRE satisfies the rank condition

rank
⇥
Ah (⌫⇤h )> Bh (µ⇤h )> ⇤

= d, (13)

where

Ah (⌫h ) :=

2

6664

Ah (1, ⌫h )
Ah (2, ⌫h )

...
Ah (|S|, ⌫h )

3

7775
, Bh (µh ) :=

2

6664

Bh (1, µh )
Bh (2, µh )

...
Bh (|S|, µh )

3

7775
.

Following the Bellman equation (8), r h is a feasible reward
function iff there exists a feasible Q function Qh and V
function Vh+1 such that

r h (s, a, b) = Qh (s, a, b) EPh (·|s,a,b) [Vh+1 (·)] . (14)

Next, we propose an algorithm to recover the feasible reward
functions. For all h 2 [H] , the algorithm performs the
following four steps:

• Recover the feasible set by solving the least square
problem associated with the linear system (12):

b⇥h =
⇢

k k  R✓   :


Ah (b⌫h )
Bh (bµh )

✓

ch (bµh )
dh (b⌫h )

2
  h .

(15)

• Calculate the feasible Q and V functions (Qh and Vh )
for all b✓h 2 b⇥h .

• Estimate the transition kernel Ph from the observed
data. Since the transition kernel has a linear structure,
we employ ridge regression for estimation:

⇤h =
TX

t=1

(st
h , at

h , bt
h ) (st

h , at
h , bt

h )> + I d,

bPh bVh+1 (s, a, b) = (s, a, b) > ⇤ 1
h

⇥
TX

t=1

(st
h , at

h , bt
h ) bVh+1 (st

h+1 );

• Recover feasible set R h by the Bellman equation (14).

3.3. Theoretical Guarantees

In this section, we present the theoretical results for our
Algorithm. To begin with, we define the base metric to
measure the distance between rewards.

Definition 3.6 (Uniform metric for rewards). We define the
metric d between any pair of rewards r, r 0 as

D(r, r 0) = sup
(h,s,a,b)2[H] S A B⇥ ⇥ ⇥

|(r h r 0
h )(s, a, b)| .

We aim to recover the feasible reward set defined below.

Definition 3.7 (Feasible reward set). We say a reward func-
tion r = (r 1, r2, · · · , rH ) is feasible with respect to a
quantal response equilibrium µ and ⌫if the Q function
Q = (Q 1, Q2, · · · , QH ) satisfies the identifability condi-
tion (11) and the norm constraint k✓⇤h k  R . We denote
R as the feasible reward set corresponding to the quantal
response equilibrium µ and ⌫, namely,

R :=

(

r = (r 1, r2, · · · , rH ) : r is identified and

! h +
X

s2S

⇡h (s)Vh+1 (s)   R for all h 2 [H]

)
.

Also, we denote Q as the feasible Q function set:

Q = {(Q h )H
h=1 : Q is identified and k✓h k  R, 8h 2 [H]}.

Our formulation provides a principled way to handle partial
identifiability in Markov games. Instead of forcing a single
estimated reward function, we construct a structured set of
feasible rewards, which offers a more robust approach to
analyzing decision-making in complex multi-step strategic
settings. Intuitively, the norm constraint k✓h k  R plays
a key role in ensuring that the estimated reward functions
remain well-conditioned, and do not include arbitrarily large
coefficients. Additionally, by linking the feasible reward
set to the recursive Bellman equations (8)-(9), our defini-
tion ensures that every element of bR maintains temporal
consistency. In other words, the inferred rewards lead to
equilibrium strategies that are valid over multiple decision-
making steps.

For the sake of clarity, we fix the initial state distribu-
tion in the Markov game ⇢1 2 (S) , and define the
marginal state visitation distributions associated with poli-
cies µ, ⌫at each time step h 2 [H] as dµ,⌫

h (s) = P(s h =
s|⇢1, µ, ⌫). Also, write the state-action visitation distri-
butions as dµ,⌫

h (s, a, b) = P(s h = s, a h = a, b h =
b|⇢1, µ, ⌫).

To control the uniform metric in Definition 3.6, we require
an estimator of the QRE that performs uniformly well across

7
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all states s 2 S . When using frequency estimators to ap-
proximate the policies µ⇤h (·|s) and ⌫⇤h (·|s), the estimation
at each state is conducted independently. As a result, it is
essential that the dataset sufficiently covers all states in S
to obtain reliable estimates. To ensure this, we impose the
following assumption, which guarantees that every state is
visited with a minimum frequency throughout the horizon.

Assumption 3.8 (C-well-posedness). There exists a con-
stant C > 0 such that

dµ⇤,⌫⇤
h (s) C

for all s 2 S and h 2 [H] .

Now we are ready to present the theoretical results for the
proposed algorithm.

Theorem 3.9 (Sample complexity of constructing feasible
reward set). Under Assumptions 3.3 and 3.8, let⇢h = d⇤h be
the stationary distribution associated with optimal policies
µ⇤and ⌫⇤, where h 2 [H] . We assume that the following
d  d⇥ matrix

 h = E ⇢h

⇥
(sh , ah , bh ) (sh , ah , bh )> ⇤

is nonsingular for all h 2 [H] . Let R be the feasi-
ble reward set given in Definition 3.7. Given a dataset
D = {D h } h2[H] = {{(s t

h , at
h , bt

h )} t2[T ] } h2[H] , we set =
O(1) , h = O(T 1), and let bR be the output of our Algo-
rithm. Let ⇠ = minh2[H],s2S,a2A,b2B {µ⇤

h (a|s), ⌫⇤h (b|s)} .
For any 2 (0, 1), let T > 0 be sufficiently large, so

T max
⇢

1
C2 log

2HS , 16(m _ n)
C⇠2 log

4HS ,

512k 1
h k2

op log
2Hd

,4 k 1
h kop .

Then the following inequality holds with probability at least
1 3 :

D(R, bR) .
1p
T

✓r
S(m + n) log

HS
log T

+ S(m + n)
r

log
HS

+
p

Sd +
p

d log T log(mn)
◆

,

where D is the Hausdorff distance corresponding to the
uniform metric in Definition 3.6.

Theorem 3.9 provides a strong guarantee on the accuracy of
our reward recovery algorithm in Markov games. Our bound
shows that the distance D(R, bR) diminishes at the rate of
O(T 1/2 ), which matches the optimal statistical rate for
empirical risk minimization problems. This demonstrates
that with sufficient data, the estimated reward functions
remain close to the true feasible set, making our method

statistically reliable and sample-efficient. The explicit de-
pendence on problem parameters offers insights into how
exploration, feature representations, and action space size
affect the difficulty of inverse reward learning in Markov
games.

We also note that the condition that  h is nonsingular en-
sures that the feature representation provides sufficient in-
formation for parameter recovery (Tu & Recht, 2017; Min
et al., 2022). The norm k 1

h kop appears in the sample
complexity bound, indicating that ill-conditioned feature
matrices lead to larger estimation errors and require more
samples to achieve the same level of accuracy.

In addition, instead of relying solely on frequency estima-
tors for QRE estimation, we can extend our framework to
integrate Maximum Likelihood Estimation (MLE) into our
method and establish a convergence result with the same
T 1/2 rate.

4. Numerical Experiments

In this section, we implement our reward-learning algo-
rithm and conduct numerical experiments in both entropy-
regularized zero-sum matrix games and Markov games. All
experiments are conducted in Google Colab. In this section
we consider only two-player entropy-regularized entropy-
regularized zero-sum Markov games.

Setup. We define the kernel function : A  B !⇥  R d

with dimension d = 2 , and set the true parameter ! h that
specifying reward functions to be

! ⇤h = (0.8, 0.6)>

for all steps h 2 [H] . We set the sizes of action spaces to
be m = 5 and n = 5 , the size of state space S = 4 , and the
horizon H = 6 . The entropy regularization term is ⌘ = 0.5.

We implement the algorithm proposed in §3.2. In each
experiment, our algorithm outputs a parameter b✓h in the
confidence set b⇥h . We set the bound of feasible parameters
✓h to be R = 10 , and set the threshold h = 103/N , where
N is the sample size. The regularization term in ridge
regression is = 0.01.

Metrics. We evaluate the performance of our algorithm
using two metrics: (1) the error in the estimated reward
function (br h ), which measures how accurately the recon-
structed payoff function matches the true reward function;
and (2) the error in the estimated QRE, which quantifies
the discrepancy between the QRE (bµ, b⌫)derived from the
estimated payoff function and the true QRE (µ⇤, ⌫⇤). We
are particularly interested in the error in the estimated QRE,
which validates whether the reconstructed reward functions
interpret the observed strategy.

8
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Results. As shown in Figures 1, 2 and Table 1, the overall
error of our algorithm’s output decreases as the sample size
N increases from 104 to 105, demonstrating the improved
accuracy of our approach with more data. While the esti-
mation error of reward functions (br h )6

h=1 can be relatively
large, the corresponding QRE (bµh , b⌫h ) remains well-aligned
with the true QRE (µ⇤h , ⌫⇤h ). Although some fluctuations are
observed across time steps, the error remains small, espe-
cially for larger sample sizes. These results confirm that
our method for reward estimation in Markov games is both
statistically consistent and sample-efficient.

5. Conclusion

To conclude, we explore the challenge of recovering re-
ward functions that explain agents’ behavior in competitive
games, with a focus on the entropy-regularized zero-sum
setting. We propose a framework of inverse game theory
concerning the underlying reward mechanisms driving ob-
served behaviors, which applies to both the static setting
(§2) and the dynamic setting (§3).

Under a linear assumption, we develop a novel approach for
the identifiability of the parameter specifying the current-
time payoff. To move forward, we develop an offline algo-
rithm unifying QRE estimation, confidence set construction,
transition kernel estimation, and reward recovery, and es-
tablish its convergence properties under regular conditions.
Additionally, we adapt this algorithm to incorporate a MLE
approach and provide theoretical guarantees for the adapted
version. Our algorithms are reliable and effective in both
static and dynamic settings, even in the presence of high-
dimensional parameter spaces or rank deficiencies.

Future directions include exploring more complicated game
settings, such as partially observable games and non-linear
payoff functions, and extending the framework to online
learning setting. Meanwhile, this research contributes to
the broader effort to make competitive systems more inter-
pretable, offering valuable insights at the intersection of
game theory and reinforcement learning.

Impact Statement

This work advances the field of inverse reinforcement learn-
ing and game theory by introducing a unified framework for
reward function identification and estimation in competitive
multi-agent settings. Our findings contribute to a deeper
understanding of decision-making in strategic environments,
with potential applications in economics, automated negoti-
ation, and multi-agent AI systems.

While our research provides theoretical and methodological
advancements, we acknowledge potential ethical considera-
tions. The ability to infer reward functions from observed

Figure 1. The reconstruction error of the reward functions(br h )6
h=1 .

The X-axis represents the time step h from 1 to 6, while the Y-axis
represents the error kbr h r⇤h kF of the reward function br .

Figure 2.The discrepancy between the QRE (bµ, b⌫)correspond-
ing to the estimated reward functions(br h )6

h=1 and the true QRE
(µ⇤, ⌫⇤). The X-axis represents the time step h from 1 to 6, while
the Y-axis represents the errorsTV(bµh , µ⇤h ) + TV(b⌫h , ⌫⇤h )

Sample Size
Reward Error

Mean 95% CI
10,000 2.4611 ± 0.1596
20,000 1.9031 ± 0.1048
50,000 1.5609 ± 0.0663

100,000 1.4398 ± 0.0499

Sample Size
QRE Error

Mean 95% CI
10,000 7.08 ⇥ 103 ± 4.61 ⇥ 10 4

20,000 5.11 ⇥ 103 ± 3.11 ⇥ 10 4

50,000 3.28 ⇥ 103 ± 1.70 ⇥ 10 4

100,000 2.41 ⇥ 103 ± 1.41 ⇥ 10 4

Table 1. Mean error and 95% confidence intervals for reward and
QRE estimation over 100 repetitions in the Markov game setting,
across all time steps.
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behavior could be used both positively—to enhance trans-
parency in AI decision-making and improve algorithmic
fairness—and negatively, if applied to manipulate or exploit
agents in competitive settings. Ensuring the responsible
application of this work will require careful consideration
of ethical safeguards and alignment with societal values.

Overall, this paper aims to advance Machine Learning and
Game Theory research, and we do not foresee immediate
societal risks. However, we encourage further discussion on
the ethical implications of inverse game theory in real-world
applications.
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