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Abstract—We consider the problem of joint routing and
scheduling in queueing networks, where the edge transmission
costs are unknown. At each time-slot, the network controller
receives noisy observations of transmission costs only for those
edges it picks for transmission. The network controller’s objective
is to take routing and scheduling decisions so that the total
expected cost is minimized. This problem exhibits an exploration-
exploitation trade-off, however, previous bandit-style solutions
cannot be directly applied to this problem due to the queueing
dynamics. In order to ensure network stability, the network
controller needs to optimize throughput and cost simultaneously.
We show that the best achievable cost is lower bounded by the
solution to a static optimization problem, and develop a network
control policy using techniques from Lyapunov drift-plus-penalty
optimization and multi-arm bandits. We show that the policy
achieves a sub-linear regret of order O(T 2/3), as compared to
the best policy that has complete knowledge of arrivals and costs.
Finally, we evaluate the proposed policy using simulations and
show that its regret is indeed sub-linear.

Index Terms—Optimal network control, online shortest path
routing, stochastic bandits, Lyapunov optimization.

I. INTRODUCTION

Stochastic network optimization refers to the problem of
making routing and scheduling decisions in network systems
to optimize given objectives such as cost, utility, and through-
put. It is fundamental in designing good network resource al-
location strategies and has applications in many fields such as
communications [1], [2], cloud computing [3], [9], and content
delivery [4], [10]. Early studies on network optimization [1]–
[3] consider a static version of this problem, where traffic
rates are modeled as static flows. However, practical network
systems are not static and require queue management due to
the stochastic nature of traffic. Therefore, their control involves
maintaining high throughput to ensure low queueing delays.

In [5], [6], throughput optimal policies are designed for
power constrained wireless systems with known arrival rates.
When arrival statistics are unknown, the Lyapunov optimiza-
tion technique [7] is commonly used to develop throughput-
optimal policies. A policy that jointly optimizes energy and
throughput is proposed in [8]. It uses the Lyapunov drift-
plus-penalty minimization technique to demonstrate a trade-
off between throughput and energy consumption. This tech-
nique has since been used to design throughput-optimal and
minimum-cost policies in many other fields. For example,
Lyapunov optimization has been used to develop cost effective
battery management schemes in data centers [9] and content
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distribution strategies in cloud infrastructures [10]. A similar
power control strategy for wireless networks with batteries is
studied in [11]. Finally, [12] combines Lyapunov minimization
and shortest-path routing to design a minimum hop routing
scheme. All of the above works assume that the transmission
costs are known in advance.

In applications where costs represent quantities such as
power consumption [13], operational cost [14], server load
[15], or quality of service [16], costs may initially be unknown
and need to be learned through feedback. Moreover, the costs
are revealed only partially depending on the choice of action.
This is addressed by the multi-arm bandit techniques [17]
where, one has to pick the best arm among multiple arms
each associated with an unknown cost. Whenever an arm is
chosen, a noisy observation of its cost is received. Hence, this
exhibits an exploration-exploitation trade-off. A widely used
strategy to deal with this trade-off is the upper-confidence-
bound strategy [18], [19] where, arms are chosen based on
optimistically biased cost estimates, which allow exploration
by lowering the costs of under-explored arms.

Routing in networks with unknown costs can also be
formulated as a multi-arm bandit problem with each route
acting as an arm. However, this method is not scalable as the
number of routes (arms) grows exponentially with network
size. Alternatively, one can exploit the fact that paths share
edges in a network and hence path costs are dependent.
Consequently, an efficient exploration basis called barycentric
spanner that can be computed in polynomial time is proposed
in [20]. Using this, the confidence-bound style exploration is
extended to shortest path routing in [21]–[23].

These bandit-type solutions cannot be extended to queueing
networks directly. In the traditional bandits problem, the best
arm with the least underlying cost is optimal. The solution
involves exploring enough arms and converging onto the best
arm quickly. However, in queueing networks, the arrival rate
is often larger than the capacity of a single path. Hence,
minimizing the cost alone will cause queue backlogs to build
up in certain low cost paths, which reduces network throughput
and leads to instability. It is important that the network
controller optimizes both cost and throughput simultaneously.

The problem of optimal routing and scheduling in a single-
hop queueing system with unknown costs is considered in
[24] where, a priority scheme based on queue lengths and
upper-confidence-bound cost estimates is designed. Despite
having a logarithmic regret, this policy is limited to single-hop
systems. In multi-hop networks, the packets routed through



one path will affect queue backlogs of other overlapping paths.
Hence, extending this work to multi-hop networks is non-
trivial. Further, [25] addresses multi-hop routing through traffic
splitting at the source, by using an optimistically estimated
version of a traffic splitting metric from [12]. However, the
regret is defined as a function of only this traffic splitting
metric and not as a function of the total cost. Hence, this does
not address the total cost minimization problem.

In this paper, we consider the problem of optimal routing
and scheduling in stochastic queueing networks. We assume
that the arrival rates and edge transmission costs are unknown.
Instead, the control policy has to make transmission decisions
based only on the queue backlogs and past cost observations.
We seek to design a policy with sub-linear regret, where the
regret is defined as the gap between policy’s expected cost
and the cost of an optimal policy with complete knowledge of
arrivals and costs. We summarize our contributions below.

• We define a novel cost metric in terms of both transmis-
sion costs and queue backlogs that allows us to jointly
optimize cost and throughput. We show that the best
achievable cost of any policy is lower bounded by the
solution to a static optimization problem.

• We develop a network control policy by combining ideas
from Lyapunov drift-plus-penalty minimization technique
and the upper-confidence-bound algorithm. Further, we
show that the proposed policy has a sub-linear regret of
order O(T 2/3+

√
T log T ), where T is the time horizon.

• We evaluate the proposed policy using simulations and
show that it indeed has a sub-linear regret. We also
simulate an oracle policy that knows the underlying costs
exactly and show that the proposed policy’s backlog and
cost performance approaches the oracle’s performance.

The rest of the paper is organized as follows. We describe
our model and formulate the network control problem in
Section II. We derive a lower bound on the best achievable cost
in Section III. We discuss the proposed Drift Plus Optimistic
Penalty policy in Section IV and analyze the policy’s regret in
Section V. Finally, we present the simulation results in Section
VI and conclusions in Section VII.

II. PROBLEM FORMULATION

a) Network and Traffic Model: We consider a multi-hop
network G = (N , E), where N is the set of nodes and E is
the set of directed edges. We denote the source and destination
nodes by s and d respectively1. The network operates at
discrete time-slots t = 1, 2, ..., T , where T is the given time
horizon. At each time t, there are a(t) packets that arrive at the
source. The arrivals a(t)’s are independent random variables
with an unknown arrival rate λ := E[a(t)] packets/slot. The
network maintains a first-in-first-out queue to buffer incoming
packets at every node. We denote by Qπ

i (t) the queue backlog
at node i ∈ N and time t, and by {Qπ

i (t)}i∈N the set of all
queue backlogs at time t. A given control policy π observes the

1We consider a single s-d pair for simplicity of exposition, however
extension to multiple s-d pairs is straightforward.

queue backlogs at each time-slot and decides the number of
packets to be transmitted on each edge. We denote by µπ

ij(t)
the policy π’s planned transmission in packets/slot on edge
(i, j) ∈ E at time t, and by {µπ

ij(t)}(i,j)∈E the set of all
planned transmissions at time t. We denote the set of outgoing
neighbors of any node i ∈ N by Ni := {j ∈ N : (i, j) ∈ E}.
The queue backlog evolution can now be expressed as follows.
At the source node s, ∀t = 1, 2, ..., T ,

Qπ
s (t+ 1) =

Qπ
s (t)−

∑
j∈Ns

µπ
sj(t)

+

+ a(t) (1)

where, [·]+ = max{·, 0}. At other nodes, ∀i ∈ N , i ̸= s, d,

Qπ
i (t+ 1) ≤

Qπ
i (t)−

∑
j∈Ni

µπ
ij(t)

+

+
∑

j:i∈Nj

µπ
ji(t). (2)

Finally, we assume that packets exit the network immediately
when they reach the destination node d. Hence ∀t,

Qπ
d (t) = 0. (3)

Notice that the queue evolution expression (2) is an inequality.
This is because some queues may not have enough buffered
packets to transmit the number of packets planned by the
policy. As a result, the actual number of packets transmitted
on some edges may be less than the planned number of
transmissions. We denote by µ̃π

ij(t) the actual transmission in
packets/slot on edge (i, j) ∈ E at time t, and by {µ̃π

ij(t)}(i,j)∈E
the set of all actual transmissions at time t. Note that the actual
transmissions are constrained by

∑
j∈Ni

µ̃π
ij(t) ≤ Qπ

i (t), ∀i ∈
N and µ̃π

ij(t) ≤ µπ
ij(t), ∀(i, j) ∈ E .

b) Stability Region: We aim to keep the queue backlogs
small so that our throughput is equal to the arrival rate.
We keep track of queue backlogs using the notion of mean
rate stability from [26]. A queueing network with backlogs
{Qπ

i (t)}i∈N is said to be mean rate stable under policy π if
the queue backlogs satisfy limT→∞

1
T

∑
i∈N E[Qπ

i (T )] = 0.
Further, each edge (i, j) ∈ E has a finite capacity denoted

by µmax
ij . A policy π is feasible if its transmission decisions

satisfy ∀t, ∀(i, j) ∈ E , 0 ≤ µπ
ij(t) ≤ µmax

ij . Let Π∗ be the
collection of all feasible control policies, including the policies
with knowledge of future arrivals. We define the stability
region Λ(G) as the set of arrival rates for which there exists
a policy π ∈ Π∗ that keeps the system stable. In [27], it was
shown that the stability region Λ(G) can be characterized as
the set of all arrival rates λ for which there exists feasible
flows {µij}(i,j)∈E that satisfy the following conditions:

λ ≤
∑

j∈Ns
µsj ,∑

j:i∈Nj
µji ≤

∑
j∈Ni

µij , ∀i ̸= s, d,

0 ≤ µij ≤ µmax
ij , ∀(i, j) ∈ E .

 (4)

Formally, the stability region Λ(G) is defined as

Λ(G) :=
{
λ ≥ 0 : ∃ {µij}(i,j)∈E that satisfies (4)

}
.

Throughout this paper, we assume that the arrivals belong
to the network stability region i.e. E[a(t)] ∈ Λ(G).



c) Cost Structure: Each edge (i, j) has an unknown
transmission cost of cij per packet. Hence, a given policy
π incurs a total transmission cost of

∑T
t=1

∑
(i,j)∈E µ̃

π
ij(t)cij .

We assume that these costs are bounded by 0 ≤ cij ≤ Cmax.
Further, minimizing the transmission cost alone may cause
network instability. For example, a bad policy can attain zero
cost by simply not transmitting any packets and letting the
queues build up. To avoid this, we include the following queue
backlog penalty. The policy incurs a terminal backlog cost
CB ≥ 0 for each undelivered packet at the end of the time
horizon T . Hence, the policy incurs a total backlog cost of
CB

∑
i∈N Qπ

i (T ). Intuitively, we should pick a large terminal
cost CB so that the policy is encouraged to deliver packets to
the destination. Otherwise, the policy can let queues build up
and cause instability. This terminal cost can also be interpreted
as the cost incurred to deliver the remaining packets at the end
of time horizon T to the destination. We will discuss this in
more detail in Section III. In summary, the total cost Cπ(T )
incurred by a given control policy π is defined as follows:

Cπ(T ) :=
T∑

t=1

∑
(i,j)∈E

µ̃π
ij(t)cij + CB

∑
i∈N

Qπ
i (T ).

As actual transmissions {µ̃π
ij(t)}(i,j)∈E are constrained both

by edge capacities and queue states, working with them
complicates the analysis. Hence, we simplify our analysis by
expressing the total cost in terms of the planned transmissions
{µπ

ij(t)}(i,j)∈E instead. By definition, we have µ̃π
ij(t) ≤

µπ
ij(t). And since the costs are non-negative, we have

Cπ(T ) ≤
T∑

t=1

∑
(i,j)∈E

µπ
ij(t)cij + CB

∑
i∈N

Qπ
i (T ). (5)

This simplifies our analysis as the planned transmissions are
only constrained by edge capacities and not by the queue sizes.

As the costs cij’s are initially unknown, the policy relies on
the following semi-bandit feedback [19] it receives depending
on its actions. At each t, the policy receives a noisy observa-
tion c̃ij(t) for each edge on which it transmitted any packets,

∀(i, j) ∈ E : µπ
ij(t) > 0, c̃ij(t) := cij + ηij(t)

where, ηij(t)’s are zero mean σ-sub-Gaussian2 random vari-
ables that are independent across time slots. As discussed
before, the neighboring queues of some edges with µπ

ij(t) > 0
may not have enough packets to support the planned trans-
missions. On these edges, we assume that the policy can
send null packets, no more than µπ

ij(t), and still observe the
costs. Note that these null packets do not contribute to the
queue evolution but they do incur transmission costs. Also
note that this assumption does not affect our analysis as we
have expressed the cost as a function of planned transmissions
in (5) rather than the actual transmissions. Denote by Π∗ the

2A random variable X is σ-sub-Gaussian if E[eζ(X−E[X])] ≤ e
σ2ζ2

2 , ∀ζ.

collection of all policies, including those with knowledge of
costs and future arrivals. We define the regret of policy π as

Rπ(T ) := E[Cπ(T )]− inf
π∗∈Π∗

E[Cπ∗
(T )].

where, the expectation is taken over the randomness in arrivals
and possibly in policy’s actions. Note that, unlike the best
policy π∗, the policies we consider will not have access to the
cost values, future arrivals, and even the arrival rates. Let Π be
the collection of admissible policies that do not know the costs
{cij}(i,j)∈E , do not know the arrival rate λ, and make causal
control decisions. We now state our objective as follows.

Objective: Find a policy π ∈ Π that has sub-linear regret

lim
T→∞

Rπ(T )

T
= 0.

III. STATIC LOWER BOUND ON THE OPTIMAL COST

In this section, we obtain a lower bound on the optimal cost,
using a static flow version of the problem. This bound will be
useful in later sections when we perform regret analysis of our
proposed policy. Consider the optimization problem P .

P : min
µ

∑
(i,j)∈E

µijcij ,

subject to λ ≤
∑
j∈Ns

µsj ,∑
j:i∈Nj

µji ≤
∑
j∈Ni

µij , ∀i ∈ N \ {s, d},

0 ≤ µij ≤ µmax
ij , ∀(i, j) ∈ E .

In the following theorem, we show that for a large enough
terminal backlog cost CB , the optimal value of P lower-
bounds the best policy’s cost. Let {µstat

ij }(i,j)∈E be the optimal
solution to P . Additionally, for a given network topology G,
define by CL the maximum total cost that a packet can incur
when it travels from s to d using acyclic routes.

Theorem 1: (Static Lower Bound) For CB ≥ CL, we have

inf
π∗∈Π∗

E[Cπ∗
(T )] ≥ T

∑
(i,j)∈E

µstat
ij cij .

We prove Theorem 1 in Appendix A. Note that the theorem
suggests that a good choice of CB should be larger than CL.
Otherwise, a policy may be able to achieve lower costs by
leaving more packets in the buffers at the end of time horizon,
and fail to stabilize the network. Since our goal is to design
stabilizing policies, we assume that CB > CL for the rest
of the paper. Further, note that even though the solution to
the optimization problem P lower bounds the cost, a policy
that chooses transmissions equal to µstat

ij at all time t is not
optimal. This is because a portion of the arrived packets will
remain in the queues due to the randomness in arrivals. Hence,
including the queue backlog penalty, such a policy’s total
cost will be greater than T

∑
(i,j)∈E µ

stat
ij cij . Moreover, since

the arrival rate and costs are unknown, it is impossible to
calculate the solution to P . We only use the solution to P as
a bound to analyze our policy’s regret and our policy will not
be required to solve this optimization problem. Finally, as a



direct implication of Theorem 1, we can express the regret of
any policy as follows.

Corollary 1: For CB ≥ CL, we have

Rπ(T ) ≤
T∑

t=1

∑
ij∈E

E
[
µπ
ij(t)− µstat

ij

]
cij+CB

∑
i∈N

E [Qπ
i (T )] .

Proof of Corollary 1: The result directly follows from
the definition of regret, the cost bound (5), and Theorem 1.

It can be seen from Corollary 1 that any policy with sub-
linear regret will also be mean rate stable. Hence, our objec-
tive of finding a policy that has sub-linear regret inherently
ensures network stability. We discuss our proposed Drift Plus
Optimistic Penalty policy in the next section.

IV. DRIFT PLUS OPTIMISTIC PENALTY POLICY

We use the technique of drift-plus-penalty minimization
from [8] to derive our policy. We first define the Lyapunov
function under a given policy π at time t as

Φπ(t) :=
1

2

∑
i∈N

Qπ
i (t)

2.

We denote the Lyapunov drift at time t as ∆Φπ(t) :=
Φπ(t+ 1)− Φπ(t). Further, given queue backlogs, we define
the Lyapunov drift-plus-penalty at time t as

Lπ(t) := E[∆Φπ(t) + ν
∑

(i,j)∈E

µπ
ij(t)cij | {Qπ

i (t)}i∈N ]

where, ν is a tuning parameter that we will use to tune the
cost-backlog trade-off.

The idea behind drift-plus-penalty minimization technique
is to greedily minimize Lπ(t) at each time-slot t. However,
we cannot do this directly in our problem as the edge costs cij
are unknown. Instead, we have to estimate the costs using past
observations and make our decisions based on these estimates.
Moreover, since we get observations for only the edges we
select, we face an exploration-exploitation trade-off. We have
to simultaneously exploit past observations and explore less
observed edges to improve their cost estimates. This motivates
us to use the idea of optimism in face of uncertainty from the
multi-arm bandits literature [18], [19]. Recall that the observed
cost values until time t is given by {∀τ < t, ∀(i, j) ∈ E :
µπ
ij(τ) > 0, c̃ij(τ)}. For each edge (i, j) ∈ E , let Nij(t) be

the number of observations received until time t. Denote by
c̄ij(t) the average of observations until time t,

c̄ij(t) =
1

Nij(t)

t−1∑
τ=0

c̃ij(τ)I[µπ
ij(τ) > 0]

where, I[·] is the indicator function. Now we define the lower-
confidence-bound estimate of the cost at time t as

ĉij(t) := c̄ij(t)−

√
β log(t/δ)

Nij(t)
(6)

where, δ ∈ (0, 1) and β ≥ 0 are tuning parameters. Note
that this is an optimistic estimate of the costs, where the term

√
β log(t/δ)/Nij(t) adds a bias in favor of under-explored

edges whose Nij(t) values are small. Now, as the true costs
are unknown, we instead use these optimistic estimates in the
drift-plus-penalty expression. Formally, we use the new drift-
plus-optimistic-penalty expression L̂π(t) defined as

L̂π(t) := E |Qπ,ĉ

[
∆Φπ(t) + ν

∑
(i,j)∈E

µπ
ij(t)ĉij(t)

]
where, E |Qπ,ĉ[·] := E[· | {Qπ

i (t)}i∈N , {ĉij(t)}(i,j)∈E ] the
conditional expectation given queue backlogs and cost esti-
mates. From the queue evolution dynamics from Section II and
from the fact that ([q−b]++a)2 ≤ q2+b2+a2+2q(a−b), we
obtain the following bound on drift-plus-optimistic-penalty.

L̂π(t) ≤ B + λQπ
s (t)

+ E |Qπ,ĉ

[ ∑
(i,j)∈E

µπ
ij(t)

(
Qπ

j (t)−Qπ
i (t) + νĉij(t)

)]
where, B := 1

2

∑
i∈N [(

∑
j∈Ni

µmax
ij )2+(

∑
j:i∈Nj

µmax
ji )2]+

1
2 E[a(t)

2] is a constant that depends only on edge capacities
and the second moment of arrivals.

Now, we derive the Drift Plus Optimistic Penalty (DPOP)
policy πD by minimizing this bound as shown below. Define
the set of all feasible transmissions as M := {µ : ∀(i, j) ∈
E , 0 ≤ µij ≤ µmax

ij }. Given the backlogs {QπD
i (t)}i∈N

and the lower-confidence-bound cost estimates {ĉij(t)}(i,j)∈E
at time t, the policy πD picks edge transmission values
µπD (t) := {µπD

ij (t)}(i,j)∈E by greedily minimizing the bound
on L̂π(t). Hence, ignoring the uncontrollable terms, we get

µπD (t) = max
µ∈M

∑
(i,j)∈E

µij

(
QπD

i (t)−QπD
j (t)− νĉij(t)

)
. (7)

Algorithm 1 Drift Plus Optimistic Penalty (DPOP) Algorithm.

Input: Network G, Parameters β, δ, and ν.
at t = 0 do
1: Send a null packet on each edge, µπD

ij (0) = 1, ∀(i, j).
2: Observe noisy costs c̃ij(0), ∀(i, j) ∈ E .
3: Set c̄ij(1) = c̃ij(0), ∀(i, j) ∈ E .
4: Set Nij(1) = 1, ∀(i, j) ∈ E .
for t = 1, 2, ..., T do

5: Calculate cost estimates {ĉij(t)}(i,j)∈E using (6).
6: Pick transmissions µπD (t) according to (7).
7: Send null packets on each edge (i, j) ∈ E where
µπD
ij (t) > 0 but queue QπD

i (t) does not have sufficient
packets to support the planned transmission µπD

ij (t).
8: Update queue lengths according to (1), (2), and (3).
9: Observe noisy costs c̃ij(t) for all (i, j) : µπD

ij (t) > 0.
10: ∀(i, j) :µπD

ij (t) > 0, update average costs c̄ij(t+ 1)

c̄ij(t+ 1) = c̄ij(t) +
c̃ij(t)− c̄ij(t)

Nij(t) + 1
.

11: ∀(i, j) : µπD
ij (t) > 0, Nij(t+ 1) = Nij(t) + 1.

end for



We present the DPOP policy in Algorithm 1. We start with
an initial exploration phase at t = 0 before any packets
arrive. In this phase, we send a null packet on each edge
(line 1) to receive an initial cost observation (line 2). Using
this observation, we initialize the average cost estimates c̄ij(t)
(line 3) and Nij(t) (line 4) for t = 1. New packets arrive
starting from t = 1. At each time t ∈ {1, ..., T}, we calculate
the optimistic estimates ĉij(t) (line 5) and make transmission
decisions µπD

ij (t) by greedily minimizing the bound on Lya-
punov drift-plus-optimistic-penalty (line 6). It is possible that
for some edges, their neighboring nodes do not have sufficient
packets to support the planned transmissions. On those edges,
we send null packets such that the total transmission is no
more than the planned transmission (line 7). This allows us
to get observations for all the chosen edges. Note that the
null packets do not contribute to the queue evolution but they
do incur transmission costs just like normal packets. We then
perform the planned transmissions, which updates the queue
backlogs (line 8). We receive noisy cost observations for each
edge on which we transmitted packets (line 9). Finally, we
update the cost averages c̄ij(t) (line 10) and the number of
observations Nij(t) (line 11).

V. REGRET ANALYSIS

In this section, we analyze the regret of DPOP policy πD

and derive an upper-bound for the regret. We formally present
the policy’s regret performance in the following theorem.

Theorem 2: (DPOP Regret) The DPOP policy πD has regret

RπD (T ) = O(T 2/3 +
√
T log T )

with parameters β > 4σ2, δ = T
− 2σ2

β−2σ2 , and ν = T 1/3.
Proof of Theorem 2: The proof outline is as follows. We

first decompose πD’s regret into four components in Lemma
1. We then bound each of these components individually in
Propositions 1 to 4.

We first define event A as the event that the true edge costs
cij’s are within the confidence interval of our estimates c̄ij(t)’s
at all slots t and at all edges.

A :=

{
∀t, ∀(i, j), |cij − c̄ij(t)| ≤

√
β log(t/δ)

Nij(t)

}
.

Denote the compliment of event A by Ā. Now, in
Lemma 1, we decompose the regret into four components
RπD

1 (T ), ..., RπD
4 (T ) defined as follows.

RπD
1 (T ) :=

T∑
t=1

∑
(i,j)∈E

E
[
µπD
ij (t)(cij − ĉij(t)) | A

]
,

RπD
2 (T ) := T

∑
(i,j)∈E

µmax
ij Cmax P[Ā],

RπD
3 (T ) :=

T∑
t=1

∑
(i,j)∈E

E[(µπD
ij (t)− µstat

ij )ĉij(t) | A],

RπD
4 (T ) := CB

∑
i∈N

E[QπD
i (T )].

The first component RπD
1 (T ) corresponds to the gap be-

tween the true and estimated costs. The second component
RπD

2 (T ) captures the probability that the true cost is outside
the confidence interval of our estimate. The third component
RπD

3 (T ) corresponds to the gap between policy’s transmission
cost and the static cost. Finally, the component RπD

4 (T )
corresponds to the backlog cost.

Lemma 1: (Regret Decomposition) The regret RπD (T ) of
the DPOP policy πD can be decomposed as

RπD (T ) ≤ RπD
1 (T ) +RπD

2 (T ) +RπD
3 (T ) +RπD

4 (T ).

We prove Lemma 1 in Appendix B. The proof involves
using the regret upper bound from Corollary 1 and condi-
tioning the regret on events A and Ā. We ignore the cost of
exploration phase at t = 0 as this only adds a constant term
to the regret. Next, we bound these four components in the
following propositions.
• Proposition 1: RπD

1 (T ) = O(
√
T log T ).

• Proposition 2: RπD
2 (T ) = O(1) with δ = T

−2σ2

β−2σ2, β > 4σ2.
• Proposition 3: RπD

3 (T ) = O(T 2/3) with ν = T 1/3.
• Proposition 4: RπD

4 (T ) = O(T 2/3) with ν = T 1/3.
We prove Propositions 1 to 4 in Appendices C to F

respectively. Combining Lemma 1 and Propositions 1 to 4,
we can see that the overall regret of the policy is of order
O(T 2/3 +

√
T log T ). This proves Theorem 2 and concludes

the regret analysis.

VI. SIMULATION RESULTS

We evaluate3 our policy on a queueing network with 9
nodes and 15 edges shown in Fig. 1a. The edge capacities and
transmission costs are shown as tuples (µmax

ij , cij) marked on
their respective edges in the figure. For this network, we can
calculate the stability region using (4) to be Λ(G) = [0, 8].
New packets arrive at s according to a Poisson process with
mean λ ∈ Λ(G). The cost observations are corrupted by
independent random variables uniformly distributed in [−σ, σ].

A. Queue Backlog and Transmission Cost Performance

We simulate the DPOP policy for T = 10000, λ = 4, and
σ2 = 0.05. We use Theorem 2 to choose tuning parameters
β = 4.5σ2, δ = T−2σ2/(β−2σ2), and ν = T 1/3. This choice
of tuning parameters requires the knowledge of T , which
may not be available in some practical scenarios. Hence, we
also simulate the policy for the case of unknown T using
the doubling trick [29]. Here, we pick the tuning parameters
according to an estimated time horizon T̂ (initialized as
T̂ = 2), which we double whenever the current time-slot t
crosses the current estimate, i.e. T̂ ← 2T̂ if t > T̂ . Finally,
to benchmark our policy, we also simulate an oracle policy
that has access to the true transmission costs. The oracle
policy is similar to the DPOP policy described in Algorithm
1 except that in line 6, it uses the true costs cij’s instead of
the optimistic estimates ĉij(t)’s.

3See implementations at https://github.com/sathwikchadaga/optimistic-dpp.



(a) Network topology showing (µmax
ij , cij).
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(b) Transmission cost
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(i,j)∈E µπ
ij(t)cij .
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(c) Total queue backlog
∑

i∈N Qπ
i (t).

Fig. 1: Network topology (left) and the corresponding total transmission costs (middle) and backlogs (right) plotted against t.
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(a) Regret for λ = 2.
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(b) Regret for λ = 4.
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(c) Regret for λ = 6.

Fig. 2: Upper bound of regret Rπ(T ) plotted as a function of time horizon T for various arrival rates λ and noise levels σ.

Fig. 1b shows the plot of resulting total transmission costs∑
(i,j)∈E µ

π
ij(t)cij as a function of time-slots t. The figure has

three plots corresponding to the DPOP policy with doubling
trick (unknown T ), DPOP policy with known T , and the oracle
policy. From this figure, we can see that the DPOP policy’s
cost is large initially and reduces later to eventually approach
the oracle policy. This shows the policy’s learning process and
its ability to explore and learn the low cost routes. Similarly,
Fig. 1c shows the plot of total queue backlogs

∑
i∈N Qπ

i (t) as
a function of time-slots t. From this figure, we can see that the
queue backlogs do not grow indefinitely, which demonstrates
the DPOP policy’s ability to stabilize the network.

Further, compared to the oracle policy, we can see that
the DPOP policy has lower queue backlogs but has higher
transmission costs. This is due to the exploratory bias in
DPOP’s decision making. Indeed, as part of the exploration,
it sometimes uses higher cost paths and hence reduces some
queue backlogs. Finally, we can also see that the performance
of DPOP policy with doubling (for unknown T ) is close to
the performance of DPOP policy with known T . This shows
that the policy can also be used when the value of T is not
known in advance.

B. Regret Comparison for Varying Noise and Arrival Rates
We evaluate the DPOP policy’s regret for different values

of λ and σ. To calculate the regret, we use the upper bound

from Corollary 1. We obtain the policy costs Cπ(T ) from
simulations and calculate the solution to the static optimization
problem P using a solver. Employing the upper bound, we
calculate the regret RπD (T ) as the gap between policy cost
Cπ(T ) and T times the static optimal cost.

Fig. 2 shows the resulting regret plotted as a function of
T = {1000, 2000, ..., 20000}. Specifically, figures 2a, 2b, and
2c show the regrets for λ = 2, 4, and 6 respectively. In each of
these figures, we show the DPOP policy’s regrets for different
values of noise parameter σ2 = {0.01, 0.05, 0.1}. From the
plots, we can see that the regret increases as the noise level
increases, as expected. Further, we can see that the regret for
λ = 6 is slightly lower than the regrets for λ = 2, 4. This
is because the rate λ = 6 is close to the network’s max-flow
of 8. Due to this heavy loading, all the policies, including
the static optimal policy, are forced to use almost all of the
existing paths. Hence, the regret compared to the static optimal
policy is small. Further, we also plot a O(T 2/3) curve fitted
to the DPOP regret of σ2 = 0.1 (we omit other fits to avoid
crowding). This demonstrates that the DPOP policy indeed has
a sub-linear regret. Finally, we clarify that the oracle policy
has a non-zero regret because, even though it knows the true
costs, it still does not know the arrival rate. Therefore, due
to the stochastic nature of arrivals, the gap between oracle
policy’s cost and the static cost is non-zero.



VII. CONCLUSION

We considered the problem of making scheduling and rout-
ing decisions in queueing networks, where the transmission
costs are initially unknown. To design policies that optimize
both throughput and cost simultaneously, we defined a novel
cost metric in terms of transmission costs and queue backlogs.
We showed that any policy’s cost is lower bounded by the
solution to a static optimization problem. Using this lower-
bound, we defined any control policy’s regret as the difference
between policy’s total cost and T times the solution to
static optimization problem. Further, using techniques from
Lyapunov theory and multi-arm bandits, we designed the Drift
Plus Optimistic Penalty Policy. We showed that this policy
achieves a sub-linear regret of order O(T 2/3 +

√
T log T )

and evaluated its performance using simulations. Finally, the
transmission costs in our paper are independent of the queue
backlog states. Designing control policies when costs are a
function of queue states is a potential future research direction.

ACKNOWLEDGMENT

This work was supported by NSF grants CNS-2148183
and CNS-2106268. We also thank Xinzhe Fu for the helpful
discussions.

APPENDIX A
PROOF OF THEOREM 1 (STATIC LOWER BOUND)

Theorem 1: infπ∗∈Π∗ E[Cπ∗
(T )] ≥ T

∑
(i,j)∈E µ

stat
ij cij for

CB ≥ CL where, recall {µstat
ij }(i,j)∈E is the solution to P .

Proof: We first define some variables that will be useful for
the proof. Recall that the number of packets transmitted on any
edge (i, j) under policy π∗ at time t is µ̃π∗

ij (t). Among these
packets, let µ̂π∗

ij (t) be the number of packets that got delivered
to the destination by the end of time horizon T . We define the
average effective rate as µ̄π∗

ij = E
[
1
T

∑T
t=1 µ̂

π∗

ij (t)
]

and define

the average final backlog as Q̄π∗

T = E
[∑

i∈N Qπ∗

i (T )
]
. We

show certain properties of these quantities in the lemma below.
Lemma 2: The average effective rates {µ̄π∗

ij }(i,j)∈E and the
average final backlog Q̄π∗

T satisfy

λ =
∑
j∈Ns

µ̄π∗

sj + Q̄π∗

T /T, (8)∑
j:i∈Nj

µ̄π∗

ji =
∑
j∈Ni

µ̄π∗

ij , ∀i ∈ N \ {s, d}. (9)

Lemma 2 can be proved by exploiting the fact that µ̄π∗

ij

satisfies flow constraints. We omit the proof for brevity. Now,
we express the best policy’s cost in terms of {µ̄π∗

ij }(i,j)∈E and
Q̄π∗

T . Since the packets counted by µ̂π∗

ij (t) is a subset of the
packets counted by µ̃π∗

ij (t), we have µ̃π∗

ij (t) ≥ µ̂π∗

ij (t). Hence,
using CB ≥ CL, we have

E[Cπ∗
(T )] ≥ E

T∑
t=1

∑
(i,j)∈E

µ̂π∗

ij (t)cij + CL E
∑
i∈N

Qπ∗

i (T )

= T
∑

(i,j)∈E

µ̄π∗

ij cij + CLQ̄
π∗

T (10)

Now, if the average final backlog Q̄π∗

T is zero, then the
average effective rates {µ̄π∗

ij }(i,j)∈E lie within the feasibility
region of P and the result holds trivially. However, when there
are undelivered packets at the end of time horizon, we can see
from (8) that the source node rates {µ̄π∗

sj }j∈Ns
violate the first

constraint of P . Therefore, this requires a careful analysis.
When there are undelivered packets left at T , the policy

incurs a non-zero final backlog cost of CLQ̄
π∗

T . To further
bound this backlog cost, we show in Lemma 3 that there
exists a feasible flow {fij}(i,j)∈E that can be used to route
these backlogged packets to the destination only using the
residual edge capacities. Since this flow uses only the residual
capacities, we will be able to show that the sum of flows
{µ̄π∗

ij +fij}(i,j)∈E lies within the feasibility region of P . This
will allow us to bound the cost further and conclude the proof.

Lemma 3: There exists a cycle-free flow {fij , ∀(i, j) ∈ E}
that satisfies the following constraints.∑

j∈Ns

fsj = Q̄π∗

T /T, (11)∑
j:i∈Nj

fji =
∑
j∈Ni

fij , ∀i ∈ N \ {s, d}, (12)

0 ≤ fij ≤ µmax
ij − µ̄π∗

ij , ∀(i, j) ∈ E . (13)

Note that (13) ensures that the flow {fij}(i,j)∈E can be
routed on the residual link capacities after accounting for the
traffic {µ̄π∗

ij }(i,j)∈E that actually reached the destination.
Proof of Lemma 3: Define the residual network G′ as

follows. G′ is the same as G in all properties except that its
edge capacities are reduced as µ′max

ij = µmax
ij − µ̄π∗

ij . Now, to
show that there exists a flow that satisfies (11), (12), and (13),
it is enough to show that Q̄π∗

T /T ≤ max-flow(G′). Indeed,

max-flow(G′) = min-cut-capacity(G′)

= min-cut-capacity(G)−
∑
j∈Ns

µ̄π∗

sj

= max-flow(G)−
∑
j∈Ns

µ̄π∗

sj

≥ λ−
∑
j∈Ns

µ̄π∗

sj = Q̄π∗

T /T.

where, the first equality is due to the max-flow min-cut
theorem, the second equality is due to the fact that any cut
in the graph will have equal total flow, the inequality is due to
the fact that λ ∈ Λ(G), and the final equality is from Lemma
2’s equation (8). Therefore, we have shown that there exists a
valid flow such that (11), (12), and (13) are satisfied. Let such
a flow be {fij}(i,j)∈E . Further, from the flow decomposition
theorem, we know that any flow can be decomposed into s-
d flows and cycles. This means that, by decomposing and
removing any cycles, the flow {fij}(i,j)∈E can easily be made
cycle-free while keeping all the previous properties.

Proof of Theorem 1, Continued: In Lemma 3, we showed
the existence of a cycle-free flow {fij}(i,j)∈E . Now, recall
that CL was defined as the per-packet-cost of the longest s-d
path in the network. Since {fij}(i,j)∈E is a cycle-free flow



that adheres to flow conservation at every node (12), each
of the packets in this flow can at most incur a total cost
of CL. Further, from (11), we know that the flow volume
or the amount of packets in the flow is Q̄π∗

T /T . Therefore,
we have

∑
(i,j)∈E fijcij ≤ CLQ̄

π∗

T /T. Plugging this in
(10), we can bound the best policy’s cost as E[Cπ∗

(T )] ≥
T
∑

(i,j)∈E(µ̄
π∗

ij + fij)cij . Now, to bound the cost further, we
can easily verify from Lemmas 2 and 3 that {µ̄π∗

ij +fij}(i,j)∈E
lies within the feasibility region of P . Therefore, we get

E[Cπ∗
(T )] ≥ T

∑
(i,j)∈E

(µ̄π∗

ij + fij)cij ≥ T
∑

(i,j)∈E

µstat
ij cij .

APPENDIX B
PROOF OF LEMMA 1 (REGRET DECOMPOSITION)

From Corollary 1, we can bound the regret as RπD (T ) ≤∑
t

∑
ij∈E E

[
(µπD

ij (t)− µstat
ij )cij

]
+ CB

∑
i E[Q

πD
i (T )].

Now, we analyze the term inside first summation by
conditioning it on the event A and its compliment Ā.

E[(µπD
ij (t)−µstat

ij )cij ] = E
[
(µπD

ij (t)− µstat
ij )cij | A

]
P[A]

+ E
[
(µπD

ij (t)− µstat
ij )cij | Ā

]
P[Ā]. (14)

We first bound the expectation conditioned on A as follows.
Under event A, by definition, ∀t, ∀(i, j), cij ≥ c̄ij(t) −√

β log(t/δ)/Nij(t) = ĉij(t). Also since µstat
ij ≥ 0, we get

(µπD
ij (t)− µstat

ij )(cij − ĉij(t)) ≤ µπD
ij (t)(cij − ĉij(t)). Hence,

Adding and subtracting the optimistic estimates ĉij(t)’s to cij’s
inside E[(µπD

ij (t)− µstat
ij )cij | A], we get

E[(µπD
ij (t)−µstat

ij )cij | A] ≤ E
[
µπD
ij (t)(cij − ĉij(t)) | A

]
+ E

[
(µπD

ij (t)− µstat
ij )ĉij(t) | A

]
.

Now, we bound the expectation conditioned on Ā. Since
µπD
ij (t)− µstat

ij ≤ µπD
ij (t) ≤ µmax

ij and since cij ∈ [0, Cmax],

E
[
(µπD

ij (t)− µstat
ij )cij | Ā

]
≤ Cmaxµ

max
ij .

Plugging these back in (14) and using P[A] ≤ 1,

E
[
(µπD

ij (t)− µstat
ij )cij

]
≤ E

[
µπD
ij (t)(cij − ĉij(t)) | A

]
+ E

[
(µπD

ij (t)− µstat
ij )ĉij(t) | A

]
+ Cmaxµ

max
ij P[Ā].

Plugging this in the RπD (T ) bound completes the proof.

APPENDIX C
PROOF OF PROPOSITION 1

Proposition 1: RπD
1 (T ) = O(

√
T log T ).

Proof: Starting from the definition of RπD
1 (T ) =∑

t

∑
(i,j)∈E E

[
µπD
ij (t)(cij − ĉij(t)) | A

]
, adding and sub-

tracting c̄ij(t)’s to cij’s, we obtain

RπD
1 (T ) ≤

T∑
t=1

∑
(i,j)∈E

E[µπD
ij (t)(|cij − c̄ij(t)|

+ |c̄ij(t)− ĉij(t)|) | A].

Under the event A, we have |cij − c̄ij(t)| ≤√
β log(t/δ)/Nij(t) ≤

√
β log(T/δ)/Nij(t). Also, from

the definition of ĉij(t), we have |ĉij(t) − c̄ij(t)| =√
β log(t/δ)/Nij(t) ≤

√
β log(T/δ)/Nij(t). Hence,

RπD
1 (T ) ≤ 2

T∑
t=1

∑
(i,j)∈E

E
[
µπD
ij (t)

√
β log(T/δ)

Nij(t)

∣∣∣∣ A]. (15)

Lemma 4:
∑T

t=1

∑
ij∈E µ

πD
ij (t)/

√
Nij(t) = O(

√
T log T ).

Plugging Lemma 4’s result in (15), we can further bound
RπD

1 (T ) and obtain the desired result. To conclude the propo-
sition’s proof, we are only left with proving Lemma 4.

Proof of Lemma 4: Let xij(t) := µπD
ij (t)/µmax

ij . Express-
ing in terms of xij(t) and using Cauchy–Schwarz,

T∑
t=1

∑
(i,j)∈E

µπD
ij (t)√
Nij(t)

=
T∑

t=1

∑
(i,j)∈E

µmax
ij xij(t)√
Nij(t)

≤

√√√√ T∑
t=1

∑
(i,j)∈E

(µmax
ij )2

√√√√ T∑
t=1

∑
(i,j)∈E

x2
ij(t)

Nij(t)
.

Further, by definition, xij(t) ∈ [0, 1] and Nij(t) ≥ 1, hence
x2
ij(t)

Nij(t)
∈ [0, 1]. Using the fact ∀y ∈ [0, 1], y ≤ 2 log(1 + y),

we can see that
x2
ij(t)

Nij(t)
≤ 2 log

(
1 +

x2
ij(t)

Nij(t)

)
. Plugging this in

the above inequality,

T∑
t=1

∑
(i,j)∈E

µπD
ij (t)√
Nij(t)

≤ B1

√√√√T
∑

(i,j)∈E

T∑
t=1

log

(
1 +

x2
ij(t)

Nij(t)

)
(16)

where, B1 =
√
2
∑

(i,j)∈E(µ
max
ij )2. Now, using Nij(t) ’s

update equation, Nij(t + 1) = Nij(t) + I[µπ
ij(t) > 0] ≥

Nij(t) + x2
ij(t) = Nij(t)(1 +

x2
ij(t)

Nij(t)
). Taking log(·) and

telescoping over time t = 1, 2, ..., T − 1, we have ∀(i, j),

logNij(T + 1) ≥ logNij(1) +
T∑

t=1

log

(
1 +

x2
ij(t)

Nij(t)

)
.

Finally, using the fact that Nij(1) = 1 and Nij(T+1) ≤ T+1

for all (i, j), we have
∑T

t=1 log
(
1 +

x2
ij(t)

Nij(t)

)
≤ log(T + 1).

Plugging this back in (16) completes the proof.

APPENDIX D
PROOF OF PROPOSITION 2

Proposition 2: RπD
2 (T ) = O(1) with δ = T

−2σ2

β−2σ2, β > 4σ2.
Proof: To bound RπD

2 (T ), we analyze the probability term
P(Ā). Using the union bound,

P(Ā) = P
[
∃t, ∃(i, j) : |cij − c̄ij(t)| >

√
β log(t/δ)

Nij(t)

]

≤
T∑

t=1

∑
(i,j)∈E

P
[
|cij − c̄ij(t)| >

√
β log(t/δ)

Nij(t)

]
. (17)

Define Tij(t) = {τ ∈ {0, 1, ..., t − 1} : µπ
ij(τ) > 0} as

the set of time-slots until t in which a feedback value was
received. It follows that |Tij(t)| = Nij(t). Moreover, the noisy



feedback values received until time t for each edge (i, j) are
∀τ ∈ Tij(t), c̃ij(τ) = cij + ηij(τ). Hence, for t ≥ 1, the
average cost estimate c̄ij(t) is given by

c̄ij(t) =

∑
τ∈Tij(t)

c̃ij(τ)

|Tij(t)|
= cij +

∑
τ∈Tij(t)

ηij(τ)

Nij(t)
.

where, the second equality is valid since Nij(t) ≥ 1, ∀(i, j)
and t ≥ 1. Denoting θt :=

√
β log(t/δ)/Nij(t), we now have

P
[
|cij − c̄ij(t)| > θt

]
= P

[ |∑τ∈Tij(t)
ηij(τ)|

Nij(t)
>

√
β log t

δ

Nij(t)

]
≤

t−1∑
n=1

P
[
|
∑

τ∈Tij(t)

ηij(τ)| >
√
nβ log(t/δ)

]
where, in the last inequality we have conditioned on number
of observations Nij(t) = |Tij(t)| = n. Now, since ηij(t) are
independent σ-sub-Gaussian, Hoeffding’s bound [28] gives us

P
[
|cij − c̄ij(t)| > θt

]
≤

t−1∑
n=1

2e−
β

2σ2 log t/δ = 2(t/δ)1−β/2σ2

.

Plugging this in (17), taking β > 4σ2, and δ = T
− 2σ2

β−2σ2 , we
have P[Ā] ≤

∑
t

∑
ij∈E 2(t/δ)

1−β/2σ2

= O(1/T ). Hence,
RπD

2 (T ) = T
∑

(i,j)∈E µ
max
ij Cmax P[Ā] = O(1).

APPENDIX E
PROOF OF PROPOSITION 3

Proposition 3: RπD
3 (T ) = O(T 2/3), with ν = T 1/3.

Proof: We start with the following lemma to bound the
conditional drift-plus-optimistic-penalty.

Lemma 5: Given {QπD
i (t)}i∈N and {ĉij(t)}(i,j)∈E , policy

πD’s conditional drift-plus-optimistic-penalty is bounded as

E|Q,ĉ

[
∆ΦπD (t)+ν

∑
(i,j)∈E

µπD
ij (t)ĉij(t)

]
≤B+ν

∑
(i,j)∈E

µstat
ij ĉij(t).

where, B is a constant independent of T and we denote
E|Q,ĉ[·] := E[· | {QπD

i (t)}i∈N , {ĉij(t)}(i,j)∈E ].
Taking E[·|A] on both sides of Lemma 5’s result and

using total law of expectations, we get E[∆ΦπD (t) +
ν
∑

ij∈E µ
πD
ij (t)ĉij(t) | A] ≤ B + ν

∑
ij∈E E[µstat

ij ĉij(t) | A].
Rearranging and summing over t = 1, 2, ..., T , we get

RπD
3 (T ) =

T∑
t=1

∑
(i,j)∈E

E[(µπD
ij (t)− µstat

ij )ĉij(t) | A]

≤ BT/ν − E[ΦπD (T + 1) | A]/ν ≤ BT/ν.

where, the last inequality is because ΦπD (t) ≥ 0, ∀t. Plugging
in ν = T 1/3, we get the desired result. We are only left with
proving Lemma 5 to complete the proof of Proposition 3.

Proof of Lemma 5: Recall from Section IV that policy πD

minimizes the bound on drift-plus-optimistic-penalty L̂πD (t).
Therefore, by comparing πD’s drift-plus-optimistic-penalty
L̂πD (t) against {µstat

ij }(i,j)∈E , the solution to P , we get

EQ,ĉ

[
∆ΦπD (t) + ν

∑
(i,j)∈E

µπD
ij (t)ĉij(t)

]
≤ B + λQπD

s (t)+
∑
ij∈E

µstat
ij (QπD

j (t)−QπD
i (t) + νĉij(t))

= B + ν
∑

(i,j)∈E

µstat
ij ĉij(t) +QπD

s (t)

[
λ−

∑
j∈Ns

µstat
sj

]

+
∑

i∈N\{s}

QπD
i (t)

[ ∑
j:i∈Nj

µstat
ji −

∑
j∈Ni

µstat
ij

]
.

The equality above is obtained by rearranging the summation.
From the constraints of P , we have λ ≤

∑
j∈Ns

µstat
sj and∑

j:i∈Nj
µstat
ji ≤

∑
j∈Ni

µstat
ij , ∀i ∈ N \ {s, d}. Using these

in the above inequality concludes the proof of lemma.

APPENDIX F
PROOF OF PROPOSITION 4

Proposition 4: RπD
4 (T ) = O(T 2/3) with ν = T 1/3.

Proof: Using Cauchy–Schwarz and Jensen’s inequalities,
we have

∑
i∈N E[QπD (T )2] ≥ 1

|N | (
∑

i∈N E[QπD
i (T )])2.

Combining this with the definition of Lyapunov function
E[ΦπD (T )] = 1

2

∑
i∈N E[QπD (T )2], we have

RπD
4 (T ) = CB

∑
i∈N

E[QπD
i (T )] ≤ CB

√
2|N |E[ΦπD (T )].

Lemma 6: E[ΦπD (T )] = O(T 4/3) with ν = T 1/3.
From the lemma, we can get the desired result as RπD

4 (T ) ≤
CB

√
2|N |E[ΦπD (T )] = O(T 2/3). We are left with proving

Lemma 6 to conclude the proof of Proposition 4.
Proof of Lemma 6: To prove this lemma, we use the result

from Lemma 5 from Proposition 3’s proof. Taking expectation
E[·] on both sides of Lemma 5’s result, using total law of
expectations, rearranging, and summing over t = 1, 2, ..., T −
1, we obtain E[ΦπD (T )] ≤ B + ν

∑
t

∑
ij∈E E[µstat

ij ĉij(t)]−
ν
∑

t

∑
ij∈E E[µ

πD
ij (t)ĉij(t)].

Since E[ĉij(t)] = E[c̄ij(t)−
√

β log(t/δ)/Nij(t)] ≤ Cmax

and 0 ≤ µstat
ij ≤ µmax

ij , we have

T−1∑
t=1

∑
(i,j)∈E

E[µstat
ij ĉij(t)] ≤ T

∑
(i,j)∈E

µmax
ij Cmax = O(T ).

Further, we have ĉij(t) = c̄ij(t) −
√

β log(t/δ)/Nij(t) ≥
−
√

β log(t/δ)/Nij(t) ≥ −
√
β log(T/δ)/Nij(t). Therefore,

T−1∑
t=1

∑
ij∈E

E[µπD
ij (t)ĉij(t)] ≥ −

T−1∑
t=1

∑
ij∈E

E
[
µπD
ij (t)

√
β log T

δ

Nij(t)

]
≥ −O(

√
T log T ) ≥ −O(T )

where, the second inequality above follows from Lemma 4 in
Proposition 1’s proof. Finally, plugging these back in the drift
bound and taking ν = T 1/3, we get E[ΦπD (T )] = O(νT ) =
O(T 4/3). This concludes the proof of lemma.
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