Journal of Machine Learning Research 25 (2024) 1-77 Submitted 4/23; Revised 8/24; Published 10/24

Sample Complexity of
Variance-Reduced Distributionally Robust Q-Learning

Shengbo Wang
Department of Management Science and Engineering
Stanford University

Nian Si
Department of Industrial Engineering and Decision Analytics
The Hong Kong University of Science and Technology

Jose Blanchet
Department of Management Science and Engineering
Stanford University

Zhengyuan Zhou
Stern School of Business
New York University

Editor: Zhihua Zhang

Abstract

SHENGBO.WANG@QSTANFORD.EDU

NIANSIQUST.HK

JOSE.BLANCHET@STANFORD.EDU

7Z26QSTERN.NYU.EDU

Dynamic decision-making under distributional shifts is of fundamental interest in theory
and applications of reinforcement learning: The distribution of the environment in which
the data is collected can differ from that of the environment in which the model is de-
ployed. This paper presents two novel model-free algorithms, namely the distributionally
robust Q-learning and its variance-reduced counterpart, that can effectively learn a robust
policy despite distributional shifts. These algorithms are designed to efficiently approx-
imate the g-function of an infinite-horizon ~y-discounted robust Markov decision process
with Kullback-Leibler ambiguity set to an entry-wise e-degree of precision. Further, the
variance-reduced distributionally robust Q-learning combines the synchronous Q-learning
with variance-reduction techniques to enhance its performance. Consequently, we establish
that it attains a minimax sample complexity upper bound of O(|S||A|(1 —~)~*e~2), where
S and A denote the state and action spaces. This is the first complexity result that is
independent of the ambiguity size J, thereby providing new complexity theoretic insights.
Additionally, a series of numerical experiments confirm the theoretical findings and the
efficiency of the algorithms in handling distributional shifts.

Keywords: sample complexity, reinforcement learning, distributional robustness, Q-
learning, stochastic approximation.

1. Introduction

Reinforcement learning (RL) (Sutton and Barto, 2018) focuses on how agents can learn to
make optimal decisions in uncertain and dynamic environments. It is based on the principle
of trial-and-error learning, where the agent interacts with the environment, receives rewards
or penalties for its actions, and adjusts its behavior to maximize the expected long-term

reward.
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A significant obstacle in RL is the limited interaction between the agent and the environ-
ment, often due to factors such as data-collection costs or safety constraints. To overcome
this, practitioners often rely on historical datasets or simulation environments to train the
agent. However, this approach can suffer from distributional shifts (Quinonero-Candela
et al., 2008) between the real-world environment and the data-collection/simulation envi-
ronment, potentially leading to suboptimal learned policies when deployed in the actual
environment. It is also observed in RL environments that an agent trained this way could
be vulnerable to adversarial attacks (Lin et al., 2017; Pan et al., 2019).

To tackle these challenges, distributionally robust reinforcement learning (DR-RL) (Zhou
et al., 2021; Yang et al., 2021; Liu et al., 2022; Shi and Chi, 2022; Wang et al., 2023b) has
emerged as a promising approach. DR-RL seeks to learn policies that are robust to distribu-
tional shifts in the environment by explicitly considering a family of possible distributions
that the agent may encounter during deployment. This approach allows the agent to learn
a policy that performs well across a range of environments, rather than just the one it was
trained on.

These benefits of distributionally robust policies motivate the exploration of a criti-
cal question: Can we construct efficient reinforcement learning algorithms that achieve the
desired Tobustness properties while also providing provable guarantees on their sample com-
plexity?

A growing body of literature aims to understand the sample complexities of distribu-
tionally robust reinforcement learning. Specifically, we are interested in a robust tabular
Markov Decision Process (MDP) with state space S and action space A, in the discounted
infinite-horizon setting with discount factor +v. To account for uncertainty, we use an am-
biguity set based on Kullback-Leibler (KL) divergence with ambiguity size ¢, which is
arguably the most natural and challenging divergence in distributionally robust literature.
Previous research has mainly focused on the model-based approach, where a specific model
of the environment is estimated, and value iteration (VI) is run on the estimated model.
Table 1 shows the worst-case sample complexity of model-based distributionally RL, with
Shi and Chi (2022) proposing a method with state-of-the-art sample complexity in terms
of [S],|A],1 —~,e.

Algorithm Sample Complexity Origin

DRVI O(IS|2|A [P0 (1 —~)~4e72572)  Zhou et al. (2021)
REVI/DRVI  O(|S|2|A[e?0=1""(1 —~)%¢2572) Panaganti and Kalathil (2021)
DRVI O(ISIP|A|(1 — ~) % 2pr2672) Yang et al. (2021)

DRVI-LCB  O(IS||A|(1 — ) 2prto—2) Shi and Chi (2022)

Table 1: Summary of sample complexity upper bounds for finding an e-optimal robust
policy in model-based distributionally robust RL (p, is the minimal support probability of
the nominal MDP; see, Def. 6).
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1.1 Our Motivation

The emerging line of work mentioned above reflects the growing interest and fruitful results
in the pursuit of sample-efficient distributionally robust reinforcement learning. At the same
time, a closer scrutiny of the results suggests that two fundamental aspects of the problem
are inadequately addressed.

For one thing, the complexity bounds of existing results exhibit O(6=2) dependence
as 0 | 0. This increase in the complexity bounds appears to reflect an increased need for
learning the training environment as the training and adversarial environments become more
alike. At the surface level, this makes sense: in the extreme case where ¢ is approaching
oo, then (assuming known support of the distributions) no sample is needed to find an
optimal distributionally robust policy. Nevertheless, such bounds have failed to align with
the continuity property of the robust MDP: the robust value function should converge to
the non-robust optimal cumulative reward as § | 0. Therefore, for all sufficiently small
0 that may depend on the training environment and e, the robust value function can be
approximated by the output of a classical RL algorithm. Specifically, we expect an algorithm
and analysis with a O(l) dependence as ¢ | 0. This is presently absent in the literature.

Additionally, with the exception of Wang et al. (2023b) (discussed in more detail in the
next subsection), all the existing distributionally robust policy learning algorithms that have
finite-sample guarantees (such as the ones mentioned above (Zhou et al.. 2021; Panaganti
and Kalathil, 2021; Yang et al., 2021; Shi and Chi, 2022)) are model-based, which estimates
the underlying MDP first before provisioning some policy from it. Although model-based
methods are often more sample-efficient and easier to analyze, their drawbacks are also
well-understood (Sutton and Barto, 2018; Francois-Lavet et al., 2018): they are compu-
tationally intensive; they require more memory to store MDP models and often do not
generalize well to non-tabular RL settings. These issues limit the practical applicability
of model-based algorithms, which stand in contrast to model-free algorithms that learn to
select actions without first learning an MDP model. Such methods are often more compu-
tationally efficient, have less storage overhead, and better generalize to RL with function
approximation. In particular, Q)-learning (Watkins and Dayan, 1992), as the prototypical
model-free learning algorithm, has widely been both studied theoretically and deployed in
practical applications. However, Q-learning is not robust (as demonstrated in our simu-
lations), and the policy learned by Q-learning in one environment can perform poorly in
another under a worst-case shift (with bounded magnitude).

As such, the above discussion naturally motivates the following research question:

Can we design a variant of Q-Learning that is distributionally robust, where the sample
complexity has the right scaling with 0 ¢

1.2 Our Contributions

We answer the above question affirmatively and contribute to the existing literature on the
worst-case sample complexity theory of model-free distributionally robust RL. We propose
two distributionally robust variants of the Q-learning algorithm (Watkins and Dayan, 1992),
namely DR Q-learning (Algorithm 1) and variance-reduced DR Q-learning (Algorithm 2),
which effectively solve the DR-RL problem under the KL ambiguity set.
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The proposed algorithms operate efficiently under the assumption of limited power of
the adversary (as per Assumption 1), which is realistic in many real-world applications. We
prove that both algorithms have near-optimal worst-case sample complexity guarantees in
this regime. Additionally, the variance-reduced version exhibits superior complexity depen-
dence on the effective horizon (1 —+)~!, as shown in Table 2. To the best of our knowledge,
both algorithms and their worst-case sample complexity upper bounds represent state-of-
the-art results in model-free distributionally robust RL. Moreover, our sample complexity
upper bound for variance-reduced DR Q-learning matches the best-known upper bound for
this DR-RL problem in Shi and Chi (2022) in terms of 2 and (1 — v)~* dependence.

Algorithm Sample Complexity Origin

MLMC DR Q-learning O(|S||A|(1 —~) B¢ 2p;%~*) Wang et al. (2023b)
DR Q-learning O(IS||A|(1 — ~) P 2p?) Theorem 9
Variance-reduced DR Q-learning  O(|S||A|(1 — 7) % 2p?) Theorem 13

Table 2: Summary of sample complexity upper bounds for finding an e-optimal robust
policy in model-free distributionally robust RL (pa is the minimal support probability of
the nominal MDP; see, Def. 6).

The DR Q-learning Algorithm 1 is a direct extension of mini-batch Q-learning. Com-
pared to the MLMC DR Q-learning method proposed by Wang et al. (2023b), Algorithm 1
is easier to implement in real-world applications. Additionally, this approach allows for the
design of a more sophisticated variant, the variance-reduced DR Q-learning, which provides
a provable enhancement of the worst-case sample complexity guarantee of DR Q-learning.
To achieve this improvement, we leverage Wainwright’s variance reduction technique and
algorithm structure (Wainwright, 2019a), adapting it to the DR-RL context and redesigning
the variance reduction scheme accordingly.

Both the DR Q-learning and its variance-reduced version use a stochastic approximation
(SA) step to iteratively update the estimator of the optimal DR g-function towards the fixed
point of the population DR Bellman operator. However, both algorithms involve a bias that
must be controlled at the algorithmic and iterative update levels. Our contribution to the
literature lies in the near-optimal analysis of the biased SA resulting from DR Q-learning
and its variance-reduced version. This analysis also generalizes to settings where the biased
stochastic version of the contraction mapping is a monotonic contraction.

We highlight that these are the first algorithmic complexity results showing that the
worst-case complexity dependence on the uncertainty set size § is O(1) as § — 0 for the
DR-RL problem with a KL ambiguity set. This resolves the issue of worst-case complexity
bounds blowing up as ¢ approaches 0, a problem present in all previous works, including
both model-based and model-free approaches (Yang et al., 2021; Panaganti and Kalathil,
2021; Shi and Chi, 2022; Wang et al., 2023b).

The significance of this characteristic lies in its theoretical illustration that as the adver-
sary’s power ¢ approaches 0, not only does the solution to the DR-RL problem converge to
that of the non-robust version, but so does the sample complexity required to solve it. This
sheds light on the connection between robust and non-robust RL problems, indicating that
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in more general settings and real-world applications, DR-RL problems with function ap-
proximation may be efficiently addressed by utilizing variants of the corresponding approach
for non-robust RL problems.

1.3 Literature Review

This section is dedicated to reviewing the literature that is relevant to our work. The lit-
erature on RL and MDP is extensive. One major line of research focuses on developing
algorithms that can efficiently learn policies to maximize cumulative discounted rewards.
When discussing RL and MDP problems, we will concentrate on this infinite horizon dis-
counted reward formulation.

Minimax Sample Complexity of Tabular RL: Recent years have seen significant
developments in the worst-case sample complexity theory of tabular RL. Two principles,
namely model-based and model-free, have motivated distinct algorithmic designs. In the
model-based approach, the controller aims to gather a dataset so as to construct an empirical
model of the underlying MDP and solving it using variations of the dynamic programming
principle. Research (Azar et al., 2013; Sidford et al., 2018; Agarwal et al., 2020; Li et al.,
2022) have proposed model-based algorithms and proven optimal upper bounds for achiev-
ing €, with a matching lower bound Q(|S||A|(1 — 7)3¢~2) proven in Azar et al. (2013). In
contrast, the model-free approach involves maintaining only lower-dimensional statistics of
the transition data, which are iteratively updated. As one of the most well known model-
free algorithm, the sample complexity of Q-learning been extensively studied (Even-Dar
et al., 2003; Wainwright, 2019b; Chen et al., 2020; Li et al., 2021). However, Li et al. (2021)
have shown that the Q-learning has a minimax sample complexity of O(|S||A|(1—~)*e~2),
which doesn’t match the lower bound Q(|S||A|(1—~)"3¢~2). Nevertheless, variance-reduced
variants of the Q-learning, such as the one proposed in Wainwright (2019a), achieve the
aforementioned sample complexity lower bound. Other algorithmic techniques such as
Polyak-Ruppert averaging (Li et al., 2023) has been shown to result in optimal sample
complexity.

Finite Analysis of SA: The classical theory of asymptotic convergence for SA has been
extensively studied, as seen in Kushner and Yin (2013). Recent progress in the minimax and
instant dependent sample complexity theory of Q-learning and its variants has been aided
by advances in the finite-time analysis of SA. Traditional RL research focuses on settings
where the random operator is unbiased. Wainwright (2019b) demonstrated a sample path
bound for the SA recursion, which enables the use of variance reduction techniques to
achieve optimal learning rates. In contrast, Chen et al. (2020, 2022) provided finite sample
guarantees for SA only under a second moment bound on the martingale difference noise
sequence. Additionally, research has been conducted on non-asymptotic analysis of SA
procedures in the presence of bias, as documented in (Karimi et al., 2019; Wang, 2022).

Robust MDP and RL: Our work draws upon the theoretical framework of classi-
cal max-min control and robust MDPs, as established in previous works (Gonzalez-Trejo
et al., 2002; Iyengar, 2005; Nilim and El Ghaoui, 2005; Wiesemann et al., 2013; Xu and
Mannor, 2010; Shapiro, 2022; Wang et al., 2024). These works have established the con-
cept of distributional robustness in dynamic decision making. In particular, Gonzéalez-Trejo
et al. (2002); Iyengar (2005); Nilim and El Ghaoui (2005) established the distributionally
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robust dynamic programming principles for SA-rectangular adversaries under symmetric in-
formation structures, while Wiesemann et al. (2013); Wang et al. (2024) studies asymmetric
settings, leading to the same the DR Bellman equation.

Recent research has shown great interests in learning DR policies from data (Si et al.,
2020; Zhou et al., 2021; Yang et al., 2021; Liu et al., 2022, Shi and Chi, 2022; Wang et al.,
2023b; Yang et al., 2023). For instance, (Si et al., 2020) studied the contextual bandit
setting, while (Zhou et al., 2021; Panaganti and Kalathil, 2021; Yang et al., 2021; Shi and
Chi, 2022) focused on the model-based tabular RL setting. On the other hand, (Liu et al.,
2022; Wang et al., 2023b; Yang et al., 2023) tackled the DR-RL problem using a model-free
approach! Before our work, the best worst-case sample complexity upper bound for DR-RL
under the KL ambiguity set was established for the model-based DRVI-LCB algorithm, as
proposed and analyzed by Shi and Chi (2022). Their analysis showed that the worst-case
sample complexity has an upper bound of O(|S||A|(1 —~) e 26 2p1).

2. Distributionally Robust Reinforcement Learning

2.1 Classical Tabular Reinforcement Learning

Let My = (S, A, R, Py, Ny, ) be a Markov decision process (MDP), where S, A, and R C
R are finite state, action, and reward spaces?, respectively. Let P(U), where U = S, A, R,
denote the set of probability measures on the power set 2Y. Then Py = {ps. € P(S),s €
S,a € A} and Ny = {vs, € P(R),s € S,a € A} are the sets of transition and reward
distributions, respectively. v € (0,1) is the discount factor. Define rpax = max{r € R} as
the maximum reward.

At each time t, given the state process is at S; and the decision maker takes action A,
the subsequent state is determined by the conditional distribution S;41 ~ ps, 4,. Then, a
randomized reward R; ~ vg, 4, will be collected, independent of the history.

Let II be the history-dependent policy class (see (Wang et al., 2024) for a rigorous
construction). For 7 € II, the value function v™(s) is defined as:

o
Z y 'R,
=0

v (s) :=F So=s

The optimal value function is

* ._ T
v*(s) = max v (s),

Vs € S. It is well known that the optimal value function is the unique solution of the
following Bellman equation:

v*(s) = max (Ev, . [R] + 7vEp, . [v*(S)]) -

where the expectations are taken over R ~ vg4 and S ~ ps 4, Tespectively.

1. Liu et al. (2022)’s algorithm is infeasible: it requires an infinite number of samples in expectation for
each iteration, and only asymptotic convergence is established with an infinite number of iterations.

2. We assume a finite reward space for simplicity. However, our results can be extended to continuous
reward spaces by imposing a minimum density assumption, as described in Si et al. (2020).



VARIANCE-REDUCED DISTRIBUTIONALLY ROBUST Q-LEARNING

An important implication of the Bellman equation is that it suffices to optimize within
the stationary Markovian deterministic policy class.
We define the optimal g-function as

¢ (s,a) := Ey, ,[R] +vEp, ,[0"(S5)].

It is well-know that ¢* satisfies its Bellman equation
* =k, . |[R E,, *(S,b)] .
q (87 a’) a,u[ ] + 7 s,a [Igéagiq ( ):|

An optimal policy can be constructed as 7*(s) = argmaxgea ¢*(s,a). Therefore, policy
learning in RL environments can be achieved if we can learn a good estimate of ¢*.

2.2 Kullback-Leibler Divergence Constrained DR-RL

We consider a DR-RL setting where the adversary is constrained to perturb both transition
probabilities and rewards within a KL divergence ball of radius §. Specifically, for probabil-
ity measures @ is absolutely continuous w.r.t. P on some measurable space (2, F), denoted
by Q < P, define

Dra@IP) = [ 1og (§26) Pla), (2.1)

where % is the Radon-Nikodym derivative.
For each (s,a) € S x A and § > 0, we define KL ambiguity set that are centered at
Ps,a € Po and v, 4 € Ny of radius § by

Ps,a((s) = {p : D1, (pHps,a) < 5}7

Nia(8) = {v: DxL(v|vsa) < 6} (2.2)

These ambiguity sets represent the possible distributional shifts from the reference model
Py, Ny. In particular, the parameter § > 0 controls the size of the ambiguity sets, quantifying
the power of the adversary.

With these definitions in mind, we define the DR optimal value function as the solution
to a fixed point equation—a.k.a. the DR Bellman equation—which serves as the learning
objective of this paper.

Definition 1 The DR Bellman operator Bs for the value function is defined as the mapping

Bs(v)(s) := gle%peggf(é)’ (Ey[R] +vEp [v(S)]) .- (2.3)
vEN;,a(8)

Define the DR optimal value function vy as the solution of the DR Bellman equation:
vy = Bs(vy) (2.4)

Moving forward, we will suppress the explicit dependence on §.
The DR Bellman equation has a unique solution as the fixed point of B, which is a
consequence of B being a contraction operator. Furthermore, the solution is equal to the
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max-min control optimal value of a SA-rectangular distributionally robust MDP (DRMDP)
(Iyengar, 2005; Nilim and El Ghaoui, 2005; Wiesemann et al., 2013). Specifically, this max-
min optimal value is given by

oo
u*(s) == TSrlelg ég}f{ E™" tz_;'tht so = 5] (2.5)

where II is the history-dependent policy class, and the adversary chooses a policy s from
an adversarial ambiguity set K that is induced by the KL ambiguity sets in (2.2).

Intuitively, this value represents the optimal reward in the following adversarial envi-
ronment: When the controller selects a policy w, an adversary observes this policy and
then chooses a counter-policy that determines the sequence of reward and transition distri-
butions. The adversary’s choice is constrained such that the reward and transition distri-
butions induced by the counter-policy lie within the ambiguity set (2.2) of radius §. The
decisions made by both the controller and the adversary uniquely specify the law of the
state-action-reward process, thereby determining the value of the policy pair (7, k).

The equivalence of the max-min control optimal value (2.5) and the solution to the DR
Bellman equation (2.4) shows the optimality of stationary deterministic Markov control
policies and stationary Markovian adversarial distribution choices. This equivalence, known
as the dynamic programming principle (DPP), is explored in detail in Wang et al. (2024),
where the adversary and controller can have asymmetric information structures. For those
interested, we refer you to this paper.

We note that Wang et al. (2024 ) considers a setting where the reward is not randomized,
i.e., Nsa = {0(s,a)} for some reward function r : S x A — [0, 1]. However, it is straightfor-
ward to generalize the DPP to include randomized rewards in the SA-rectangular setting.

2.3 Dual and ¢-Function Formulations

The right-hand side of (2.3) can be challenging to work with because the measure underlying
the expectations is not directly accessible. To address this, we use strong duality to reveal
the dependence of the value on the reference transition and reward distributions, Py and
Ny. Specifically, we consider the dual representation:

Lemma 2 (Hu and Hong (2013), Theorem 1) Let X be a random variable and ug be
a probability measure on (2, F) s.t. X has a finite moment generating function in a neigh-
borhood of zero. Then for any 6 > 0,

inf E, X =su {—alo 1) [e*X/O‘} —aé}.
w:Dxr (pllpo) <o a CYZ% 8 Fu

Since the reward and values are bounded, directly apply Lemma 2 to the r.h.s. of (2.4), the
DR value function v* in fact satisfies the following dual form of the DR Bellman’s equation.

v*(s) = max {sup {—alog Ey,, [eiR/a] - oaS} + ysup {—Blog Ey, . {e*”*(s)/ﬁ} - ﬁé}} .

a€A | a>0 B8>0

Similar to the traditional RL policy learning approach, we utilize the optimal DR state-
action value function, also known as the g-function, to address the DR-RL problem. The
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g-function assigns real numbers to pairs of states and actions, and can be represented as a
matrix ¢ € RS*A, From now on, we will assume this representation. To simplify notation,
let us define

v(q)(s) :== max q(s,b), (2.6)

which is the value function induced by the g-function ¢(-,-).
We proceed to rigorously define the optimal g-function and its Bellman equation.

Definition 3 The optimal DR q-function is defined as

* = inf E,|R E,[v*(S 2.7
)= nt (BB 425 (5)) g
veNs,q(8)

where v* is the DR optimal value function in Definition 1.

Similar to the Bellman operator, we can define the DR Bellman operator for the g-function
as follows:

Definition 4 Given 6 > 0 and ¢ € RS*A, the primal form of the DR Bellman operator
T : RSXA 5 RS*XA s defined as

T(a)(s,a) ;= _inf . (Ey[R] +7Ep [v(g)(S)]) (2.8)
];EAZ,Z(S

The dual form of the DR Bellman operator is
T(Q)(Sa a) = Sup {—alog EVs,a |:€*R/a:| _ 055}
a>0

o Zg% {_5 log Ep, , [e—v(qu)/ﬁ] _ 66} .

(2.9)

The equivalence of the primal and dual form follows from Lemma 2. We remark that
the dual form is usually easier to work with, as the outer supremum is a 1-d optimization
problem and the dependence on the reference measures vs, and p,, are explicit.

Note that by definition (2.7) and the Bellman equation (2.4), we have v(¢*) = v*. So,
our definition implies that ¢* is a fixed point of 7 and the following Bellman equation for
the ¢*-function holds:

¢ =T(q) (2.10)

The uniqueness of the fixed point ¢* of T follows from the contraction property of the
operator T; c.f. Lemma 19.

The optimal DR policy can be extracted from the optimal g-function by 7*(s) =
argmaxgecA ¢*(s,a). Hence the goal the DR-RL paradigm is to learn the DR g-function
and extract the corresponding robust policy.
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2.4 Synchronous Q-Learning and Stochastic Approximation

The Q-learning estimates the optimal g-function by iteratively update the estimator {q; : £ > 0}
using samples generated by the reference measures. The classical synchronous Q-learning
proceeds as follows. At iteration k € Z>o and each (s,a) € S x A, we draw samples
Ryi1 ~ Vs q and Siy1 ~ pse. Then perform the Q-learning update

qk+1(8, CL) = (1 — )\k)qk(s,a) + )\k(Rk—H + ’yv(qk)(SkH)) (2.11)

for some chosen step-size sequence {\y}.

The synchronous Q-learning can be analyzed as a stochastic approximation (SA) algo-
rithm. SA for the fixed point of a contraction operator L refers to the class of algorithms
using the update

X1 = (1= M) X + M L(Xg) + Wi (2.12)

{Wk} is a sequence satisfying E[Wi|Wg_1,...,Wi] = 0 and some higher order moment
conditions, thence is known as the martingale difference noise. The asymptotics of the
above recursion are well-understood in the literature, as discussed in Kushner and Yin
(2013). The recent developments of finite-time/sample behavior of SA is discussed in the
literature review. The Q-learning recursion in (2.11) can be represented as an SA update if
we notice that given any ¢-function, R+~v(q)(S) is an unbiased estimator of the population
Bellman operator applied to g. However, the DR Q-learning and the variance-reduced
version cannot be formulated in the same way as (2.12) with martingale difference noise, as
there is bias present in the former algorithms. Consequently, to achieve the nearly optimal
sample complexity bounds, we must conduct a tight analysis of these algorithms as biased
SA, as we will explain in the subsequent sections.

3. The DR Q-Learning and Variance Reduction

This section introduces two model-free algorithms, the DR Q-learning (Section 3.1) and its
variance-reduced version (Section 3.2), for learning the optimal g-function of a robust MDP.
We also present the upper bounds on their worst-case sample complexity. In addition, we
outline the fundamental ideas behind the proof of the sample complexity results in Section
3.3.

Prior to presenting the algorithms, we introduce several notations. Let v 4, and psan
denote the empirical measure of y, and ps, formed by n ii.d. samples respectively; i.e.
for f : U — R, where U could be the S or R,

Bpand (0) = 23 F(T) (31)

for p =v,p and U; = R;, S; are i.i.d. across 1.
Assuming access to a simulator, we are able to draw samples and construct an empirical
version of the DR Bellman operator.

10
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Definition 5 Define the empirical DR Bellman operator on n i.i.d. samples by

T(q)(s,a) = zgpo {—alog Ey,on [e*R/a] — a5}

i 7?;% {—Blog Ep... [e—v(q)(s)/ﬁ} _ 55} _

(3.2)

Note that T is a random operator whose randomness is coming from on the samples
that we used to construct {vs g n,Dsan : (s,a) €S x A}

Definition 5 presents the empirical DR Bellman operator in its dual form. Lemma 2
establishes that this definition is equivalent to the DR Bellman operator 7 in (2.8) where the
sets Ps (0) and N () are replaced with their empirical counterparts: {p : Dr,(p||ps,an) <
0} and {v : Dk, (v||vsan) < 6}

The dual formulation of the empirical DR Bellman operator implies that it is generally a
biased estimator of the population DR Bellman operator T in the sense that F [T(q)] # T (q)
for a generic ¢ € RS*A . This bias poses a significant challenge in the design of model-free
algorithms and the analysis of sample complexities. Previous works Liu et al. (2022) and
Wang et al. (2023b) eliminates this bias by using a randomized multilevel Monte Carlo
estimator. However, the randomization procedure requires a random (and heavy-tailed)
sample size. Therefore, the complexity bound is stated in terms of the expected number of
samples. Also, this complex algorithmic design limits its generalizability. In contrast, this
paper takes a different approach by directly analyzing the DR Q-learning and its variance-
reduced version as biased SA. To achieve near-optimal sample complexity guarantees, the
bias of the empirical DR Bellman operator and the propagation of the systematic error it
causes are tightly controlled, and samples are optimally allocated so that the stochasticity
is in balance with the cumulative bias. A detailed discussion of this approach is provided
in Section 3.3.

To state the key assumption which constraint the operating regime of our algorithm, we
introduce the following complexity metric parameter:

Definition 6 Define the minimum support probability as

Pa = s,alt}:‘légA min {TGR:{ELI%T)>O I/Sﬂ(T‘), s’GS:]EIsl,iaI%s’)>0ps7a(S/)} . (33)
The intuition behind the dependence of the MDP complexity on the minimal support
probability is that in order to estimate the DR Bellman operator with high accuracy in
the worst case, it is necessary to know the entire support of the transition and reward
distributions. As a result, at least 1/p, samples are required, as discussed in Wang et al.
(2023b).
We are now prepared to present the main assumption that defines the operating regime
for which our algorithms are optimized.

Assumption 1 (Limited Adversarial Power) Suppose the adversary’s power § satisfies
§ < 2Pn.
24

It should be noted that the constant 1/24 is only for mathematical convenience and can
potentially be improved.

11
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Under this assumption, the adversary cannot collapse the support of the transition or
reward distributions to a singleton, preventing them from completely restricting possible
transition events under Fy. This assumption regime is of practical significance because
overly conservative policies can be produced if ¢ is large. Furthermore, the support of
the reward and transition measures often encode physical constraints intrinsic to the real
environment, which the adversary should not be allowed to violate.

We also make the following simplifying assumption.

Assumption 2 (Reward Bound) The reward R C [0, 1].

This assumption is straightforward to remove given that the results of the empirical Bellman
operator hold for R C R>y. We assume it so as to clarify our presentation.

3.1 The Distributionally Robust Q-learning

First, we proposed the DR Q-learning Algorithm 1, a robust version of the classical Q-
learning that is based on iteratively update the ¢g-function by applying the n-sample empir-
ical Bellman operator.

Algorithm 1 Distributionally Robust Q-Learning

Input: the total times of iteration kg and a batch size ng.

Initialization: ¢ =0; k = 1.

for 1 <k <kydo
Sample T the ng-sample empirical DR Bellman operator as in Definition 5.
Compute the Q-learning update

Gt1 = (1 = Ae)ae + MeTrg1(qr) (3.4)

with stepsize A\, = 1/(1+ (1 —y)k).
end for
return g 41.

Algorithm 1 can be viewed as a biased SA: We can rewrite the update (3.4) as

Q1 = (1= M) ar + M T (ar) + M Trgr(ar) — T (ar))-

This is in the form of (2.12). However, notice that F[Txy1(qx) — T (qx)|qr] # 0. Moreover,
we note that the update (3.4) involves computing Ty11(gr)(s, a) for all (s,a) € S x A. Un-
like a model-based algorithm, which requires storing the entire empirical kernel and reward
distributions {psan,Vs,an : (5,a) € S x A}, the update rule (3.4) can be implemented sep-
arately for each state-action pair. This allows ps 4, and v, 4, to be discarded immediately
after the update, significantly reducing the memory requirements for running Algorithm 1
when the state space is large.

It turns out that, by leveraging the fact that the empirical Bellman operators are mono-
tone contractions w.p.1 (as proven in Lemma 19), we can perform a stronger pathwise
analysis of Algorithm 1 instead of treating it as a variant of the SA update in (2.12). As a
result, we will prove in Section B.2 that the DR Q-learning algorithm satisfies the following
error bound in Proposition 7

12
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To simplify notation, we define the dimensionality parameter d := |S||A[(|S|V |[R]). It
will only show up inside the log(:) term in our complexity bounds because of the use of
union bound techniques.

Proposition 7 Suppose that Assumptions 1 and 2 are satisfied. The output qr,+1 of the
distributionally robust Q-learning satisfies

1 1 1
+ +
(T=7)3ko  pR(1—=7)%n0  pa(l —7)52/noko

with probability at least 1 —n, where c is an absolute constant.

) (log (3dko/n))?.

M%H—quSc(

By “absolute constant”, we mean a constant that does not depend on the complexity metric
parameters €, pa, (1 —)~%,n,d. Although the logarithmic term in the above proposition
can be further improved, we will not focus on optimizing the logarithmic dependence in this
paper. For clarity, we adjust the constant in the logarithmic factor using the inequality for
Cy > 1,Cy > e, log(C1Cy) = log(Cy) + log(C2) < Cilog(Cs), and incorporate Cy into c.
These adjustments are applied to all subsequent convergence results.

The proof of this Proposition, which is outlined in Section 3.3, will be postponed to
Section B.2.

Proposition 7 provides an upper bound on the terminal error in the estimator after kg
iterations of Algorithm 1. This bound is given by three terms that decay with rate O(/{a b,
O(ngt), and O((kong)~'/?), respectively, where the first and third terms resemble the upper
bounds for standard Q-learning and the second term arises because of the bias. We optimize
the algorithm parameters to balance these three terms and ensure that the right-hand side
of the probability bound in Proposition 7 is less than e. One way to achieve this is by
selecting the parameters ng and kg as follows:

Corollary 8 Assume Assumptions 1 and 2. Running Algorithm 1 with parameters

k ! lg< 3d >2 d ! log (3dko/n)?
= C 0O, an ngo=C6)——-——"—= 10 n
PP P\ —)ne C R )% ’

will produce an output qrg+1 St ||Qko+1 — ¢l < € w.p. at least 1 —n, where ¢ is an
absolute constant.

An immediate consequence of Corollary 8 is the following the worst-case sample com-
plexity upper bound of the robust Q-learning.

Theorem 9 Assume Assumptions 1 and 2. Then the distributionally robust Q)-learning
Algorithm 1 with parameters specified in Corollary 8 computes a solution qry+1 S.t. ||qrg+1—

4"l w.p. at least 1 —n using
5 |S[|A|
O -=h=
<pi(1 — 7)€

13
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Proof The total number of samples used is |S||A|noko, implying the sample complexity
upper bound. |

Theorem 9 provides a near-optimal worst-case sample complexity guarantee that matches
and beats the expected sample complexity upper bound in Wang et al. (2023b) in all
parameter dependence. In particular, we have shown that the dependence on ¢ is O(1) as
0 | 0. This resolves the issue of the worst-case complexity bound blowing up as ¢ | 0 for
KL divergence based DR-RL that present in all prior works (Yang et al., 2021. Panaganti
and Kalathil, 2021; Shi and Chi, 2022; Wang et al., 2023b).

3.2 The Variance-Reduced Distributionally Robust Q-learning

We adapt Wainwright’s variance-reduced Q-learning (Wainwright, 2019a) to the robust RL
setting. This is outlined in Algorithm 2.

Algorithm 2 Variance-Reduced Distributionally Robust Q-Learning

Input: the number of epochs [,,, a sequence of recentering sample size {ml}f":rl, an epoch
length k,, and a batch size ny;.
Initialization: o =0;1=1; k = 1.
for 1 <[ <, do
Compute ’i‘l, my-sample empirical DR Bellman operator as in Definition 5.
Set q1.1 = @1—1-
for 1 <k <k, do
Sample T ;11 an ny,-sample empirical Bellman operator.
Compute the recentered Q-learning update

Q1 = (1= Ae)q i + M (Tl,k+1((ﬂ,k) — Tir1(Gi-1) + Tz(dz&)) (3.5)

with stepsize A\, = 1/(1+ (1 — v)k).
end for
Set @i = Qi ky+1-
end for
return ¢,

As in the Q-learning case, the update rule (3.5) can be implemented separately for each
state-action pair. Thus, Algorithm 2 does not require storing or performing computations
using the entire empirical kernel and reward distribution.

Before delving into the convergence rate theory of the DR variance-reduced Q-learning,
we provide an intuitive description of this variance reduction scheme. The basic idea is
to partition the algorithm into epochs. During each epoch, we perform a “recentered”
version of stochastic approximation recursions with the aim of eliminating the variance
component in the SA iteration ((2.12)). Specifically, instead of approximating ¢* by one
stochastic approximation, in each epoch, starting with an estimator ¢;_1, we recenter the
SA procedure so that it approximates 7 (¢;—1). However, since T is not known, we use
’i‘l (¢1—1) as an natural estimator. By choosing a sequence of empirical DR Bellman operators

14
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with exponentially increasing sample sizes, we expect that the errors ||§; — ¢*||~ decrease
exponentially with high probability.

This indeed holds true for Algorithm 2. The outer loop produces a sequence of estimators
qi,1 > 1. We will show that if ¢;_; is within some error from the optimal ¢*, then ¢ will
satisfy a better concentration bound by a geometric factor. This result is summarized in
Proposition 10.

Denote the o-field generated by the random samples used until the end of epoch [ by
Fi. We define the conditional expectation Ej_1[-] := EJ[-|F;—1] and probability measure
Pi() = B[ {}].

Proposition 10 Assuming that Assumptions 1 and 2 are satisfied. On{w : ||¢1—1 — ¢*||cc < b}
for some b < 1/(1 —+~), under measure P_1(-)(w), we have that there exists numerical con-
stant ¢ s.1.

b b b )
a4 — q*[lc < ¢ + + log (3dky: /1)
TN P )ik 0 (1 )y
1
+er log(3d/n)

pA (1 —)2y/my
w.p. at least 1 —n, provided that m; > 8px2log(24d/n) and ny, > py°.

Proposition 10 implies that if the variance reduced algorithm finds an approximation of
¢* with infinity norm b, then the error after one epoch is improved accordingly with high
probability. This and the Markovian nature of the sequence {¢;} would imply a high proba-
bility bound for trajectories satisfying the pathwise property {w : VI <y : |G — ¢*|| < b}
This is formalized by the next theorem where we use b = 27/(1 — )~

Let us define the parameter choice: for sufficiently large c,, absolute constant that
doesn’t depend on the complexity metric parameters €, pa, (1 — )71, 9, d, define

e )]

1 3dl 2
kvr = Cyr IOg ( = > s
(1 - ’7)2 (1 - ’Y)n (36)
1
Nyr = Cyr——— log(3dkyely: /1),
ph(1—7)2

4l
m; = cy—— log(3dly, 77)2.
pi(1—7)2 /

Notice that evidently m; > 8p,2log(24d/n) and n., > p.', satisfying the requirement of
Proposition 10.

Proposition 11 Assume Assumptions 1 and 2. For e < (1 — )71, define parameters
according to(3.6). Then, the sequence {G;,0 <1 <l } produced by Algorithm 2 satisfies the
pathwise property that ||§ — q*[|ec <2711 — )7 for all 0 <1 < 1y, w.p. at least 1 —n. In
particular, the final estimator qy,. satisfies ||Gr,. — q¢*|loo < 27 (1 —~)"' w.p. at least 1 — .

15
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Remark 12 The base of geometric growth in our choice of m; in (3.6) can be modified.
The same proof as in Proposition 11 suggests that with m; = o0 (p3(1 — ~)2) and
Ly = [log, (€711 —=~)™1)] for some o > 1, we have |G — ¢*[|c < a™'(1 =)~ for all
0 <1 < lyy with probability at least 1 —n. Running Algorithm 2 with this new parameter
choice will yield the same sample complexity as in Theorem 13. The choice of base /4 in

(3.6) was made only for clarity in our presentation.

Proposition 11 immediately implies the following worst-case sample complexity upper
bound.

Theorem 13 Assume Assumptions 1 and 2. For ¢ < (1 — )7L, the variance-reduced

DR Q-learning Algorithm 2 with parameters specified in (3.6) computes a solution g, s.t.
G, — ¢*llco < € w.p. at least 1 —n using

5 SIIA
pA(L — ) min(L, €2)
number of samples.

Proof Given the specified parameters, the total number of samples used is

l

vr _ 1 4lvr
SI|A| [ Loneker + S m :0<s A < + >>
sl '( 2 l) SIA bz " w2

This simplifies to the claimed result. |

Theorem 13 establishes an upper bound of O (IS||A|(1 - 'y)_4e_2p,_\3) when € < 1, which
is superior to the upper bound O (IS||Af(1 - ’}/)_56_2]3/_\3) for Algorithm 1 (see Theorem
9) in terms of 1 — ~. This represents the best-known upper bound for DR-RL problems in
the KL case, including both model-free and model-based algorithms (Shi and Chi, 2022).
Although Shi and Chi (2022) achieve a similar rate of O ((1 — 7)_4), their result suffers
from a O (5_2) dependence, which becomes problematic as § — 0. In contrast, our upper
bound is free from J-dependence.

We recall that the information-theoretical lower bound for the sample complexity of the
classical tabular RL problem is Q (IS[|AJ(1 —v)73¢™2) (Azar et al., 2013). In this setting,
the variance-reduced Q-learning algorithm in Wainwright (2019a) is minimax optimal. For
distributionally robust RL, Shi and Chi (2022) recently showed that the minimax lower
bound dependence on |S||A|, (1 —~)~!, and e remains (IS[|A[(1 —v)3¢2) when § is
small. Furthermore, Shi et al. (2024) showed the information-theoretical lower bound may
be Q (|S||A|(1 — )% 2) when § = O(1) for x*divergence uncertainty sets. However,
their construction of hard instances violates our Assumption 1. It is currently unknown
whether variance-reduced DR Q-learning can achieve those rates. Further refinement of
this bound is left for future research.

Notice that the variance-reduced Algorithm 2 has the property that kyy, nyy, and m; only
depend on % through log(ly;) = ©(loglog %) Therefore, within a reasonable range of €, the
algorithm can operate with the sample complexity guarantee in Theorem 13 without needing
to tune ky;, nyr, and my; based on e. This introduces significant versatility in application:
for example, we can continue to run the algorithm beyond termination epoch I, without
losing sample efficiency.
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3.3 Overview of the Analysis of Algorithms

In this section, we provide a road map to proving the key results, Proposition 7 and 10.

Definition 14 We say that L is a monotonic y-quasi-contraction with center ¢’ if

1£(q) = L£(d)loe <7lg — [0 (3.7)

and entrywise
a1 > q = L(q1) > L(q2) (3.8)

for all q,q1,q2 € RISXIAL " Moreover, a monotonic y-contraction is such that the above
identities hold for all ' € RISIXIAL

The term quasi refers to the fact that the relation 3.7 is only required for a single ¢
(Wainwright, 2019b). Therefore, a monotonic -contraction is a quasi-contraction with
center ¢’ for any ¢’ € RS*4,

The successive application of monotonic y-contractions under the rescaled linear stepsize

Ak = m will satisfy the following deterministic bound:

Proposition 15 (Corollary 1, Wainwright (2019b)) Let {Ly, k > 2} be a family of mono-
tonic y-quasi-contractions with center q'. Let Hy(q) = Li(q)—Lr(q") the recentered operator.
Then, for the sequence of step sizes {\r,k > 1} the iterates of

Ghr1 — 4 = (1= M) gk — ¢') + M [Hra1(qr) + wia] (3.9)

satisfies

’ k
a —49q
lgrt1 — q'lloo < Ak H)q”oo + 'YZ 1Pjlloc | + [1PE+1ll0

j=1

for all k > 1, where the sequence {py,k > 1} is defined by p1 = 0 and
Prt1 = (1 — Ap)pk + Akwr 1.

A key observation is that the empirical robust Bellman operators T}y, ':A[V‘“C used in the
iterative updates of Algorithms 1 and 2 are monotonic ~y-contractions (see Lemma 19).

In the proof of the main results, we apply the deterministic bound for contraction
mappings from Proposition 15 to each sample path of the distributionally robust Q-learning
and the inner loop of the variance-reduced version. We illustrate this by considering the
distributionally robust Q-learning. Since {Tj1,k > 0} are monotonic y-contractions, they
are quasi-contractions with center ¢*. We can define Hy11(q) := Tr11(q) — Txy1(q*) for all
q € RS*A Then, the update rule of Algorithm 1 can be written as

Q1 — ¢ = (1= Me)(ak — ¢°) + M [(Trr1(gr) — Try1(¢7)) + (Trra(g™) — T(q))]
= (1 = Me)(gk — ¢°) + M [Hir1(qr) + W] -

where Wy 1 := Tr11(¢*) — T (¢*) and we used the Bellman equation (2.10) that ¢* = T (¢*).
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This representation allow as to apply Proposition 15 to bound the error of the ¢g-function
estimation using the sequence P; = 0 and

Pk+1 = (]. - )\k)Pk + >\ka+1.

Note that the only source of randomness in Wy, is from T1(¢*), which are i.i.d.. There-
fore, the process P is a non-stationary auto-regressive (AR) process. It follows that the
concentration properties of Py can be derived from that of Tx1(g").

While standard Q-learning updates utilize an unbiased empirical Bellman operator, the
DR empirical Bellman operator is biased due to its non-linearity in the empirical measure
(c.f. (3.2)), resulting in E[W;] # 0. To achieve a canonical error rate of O(n~1/2), it is
necessary that both the bias and standard deviation of the n-sample DR empirical Bellman
operator are O(n_l/ 2). However, our DR Q-learning algorithms require an additional con-
dition: the one-step bias must be of the order O(n~!). This is because the final bias, which
is the systematic error resulting from the repeated use of the DR Bellman estimator, is
compounded by the one-step bias through the model-free Q-learning updates. We illustrate
this algorithmic behavior using a simple biased SA instance in Appendix B.1. This imposes
significant challenges on the design and analysis of our model-free algorithms.

Fortunately, we are able to establish tight bounds (in ny and ¢) on the bias, c.f. Proposi-
tion 22, in the important regime when § is small, as stated in Assumption 1. These bounds
are central to our sample complexity analysis. We summarize the relevant bounds on the
variance and bias of the empirical DR Bellman operator in Section A. By utilizing these
variance and bias bounds, we can efficiently allocate samples such that the systematic error
due to bias is balanced with the stochasticity in the estimator at the termination of the
algorithm. With this optimal sample allocation, we can establish the worst-case sample
complexity bounds as claimed.

The theory for the convergence rate of the variance-reduced DR Q-learning is more
complex. In order to achieve the geometric convergence in Proposition 11, an O(n™!)
bias bound of the empirical DR Bellman operator is not enough. However, by introducing
a recentered dynamics, a similar recursion can be derived in this context if we consider
the conditionally recentered noise Hy p41(Gi—1) — E[Hj p1+1(q1—1)|¢i—1] and a “random bias”
(denoted by D; in Appendix B.3). For details, please refer to Appendix B.3.

4. Numerical Experiments

This section presents a numerical validation of our theoretical findings regarding the conver-
gence properties of the proposed algorithms. We conduct a comparative analysis between
our algorithms and MLMC DR, Q-learning, as studied in Wang et al. (2023b). Additionally,
we investigate the complexity of Algorithm 2 as the adversary’s power ¢ | 0.

Section 4.1 demonstrates convergence and compares the proposed algorithms with mul-
tilevel Monte Carlo distributionally robust (MLMC DR) Q-learning. We use the hard MDP
instances constructed in Li et al. (2021), where standard Q-learning performs at its worst-
case complexity dependence of Q((1 — v)~%e~2). Both algorithms in this paper show the
canonical convergence rate of O(e~2), with the variance-reduced version displaying superior
performance.
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In Section 4.2, we test the stability of sample complexity of the variance-reduced DR
Q-learning Algorithm 2 as ¢ | 0 using a simple DRMDP instance.

In the subsequent developments, we use m; = 2!(1 — «)~2 for the variance-reduced
Algorithm 2. As explained in Remark 12, this choice (up to a log factor) yields the same
complexity guarantee as stated in Theorem 13. An advantage of this parameter choice
is that it allows us to run more epochs for the plots, thereby clarifying the convergence
behavior.

4.1 Hard MDPs for the Q-learning

—

Figure 1: Hard MDP for the Q-learning transition diagram.
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First, we demonstrate the convergence of the proposed algorithms using the MDP in-
stance shown in Figure 1. This MDP has 4 states and 2 actions, with transition probabilities
given for actions 1 and 2 labeled on the arrows between states. Constructed in Li et al.

(2021), it is shown in that when p = 4?,)—;1, standard non-robust Q-learning will have a
sample complexity of O((1 — ) 4e~2).
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(a) DR Q-learning (b) variance-reduced DR Q-learning

Figure 2: Convergence of Algorithm 1 and 2 on the MDP instance 1

Figures 2a and 2b depict the convergence properties of the two algorithms for v =
{0.93,0.95} and 6 = 0.1. These figures show the (4000 samples) averaged error of the
output g-function in the infinity norm plotted against the (4000 samples) averaged number
of samples used, both on a log-log scale. The parameters for DR Q-learning in Figure 2a
are set according to 8. On the other hand, Figure 2b plots the averaged error achieved by
the variance-reduced algorithm after each epoch against the total number of samples used.
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The figures indicate that both algorithms converge to the optimal robust ¢*, with the
variance-reduced algorithm outperforming DR Q-learning. Additionally, when comparing
the log-log error plot with a reference line having a slope of —1/2, we observe that the log
error for both algorithms decays at a rate of —1/2 as the log of the samples increases. This
behavior aligns with the €2 dependence of the sample complexity bounds in Theorems 9
and 13, corresponding to the canonical convergence rate of Monte Carlo estimations, which
is O(n=1/2).

Remark 16 With § = 0.1 and v = 0.93 or 0.95, the DRMDP instances do not satisfy
Assumption 1. However, the figures still show the canonical n=/? convergence rate, sug-
gesting that our proposed algorithms might perform well even outside the regime prescribed
by Assumption 1.

y=0.6 y=0.7
L MLMC MLMC
1074 — QL — QL
—— VRQL —— VRQL
o ---- slope: -1/2 ---- slope: -1/2
I
3
o))
= e (R
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10724 el T e T T

avg #sample avg #sample

Figure 3: Comparing the performance of Algorithm 1, 2 and the MLMC DR Q-learning on
the MDP 1.

Figure 3 compares the performance of the algorithms proposed in this paper with the
MLMC DR Q-learning in Wang et al. (2023b). We observe the performance comparison of
three Q-learning methods: MLMC DR, DR, and DR-VR, for v € {0.6,0.7}. The results
indicate that the distributionally robust variance-reduced Q-learning approach achieves the
smallest errors. Although our DR Q-learning method shows slightly lower expected per-
formance than the MLMC DR Q-learning, it is worth noting that the line corresponding
to MLMC DR Q-learning is considerably rougher. This suggests that the MLMC DR Q-
learning approach has a higher degree of variability in terms of performance.

4.2 Testing the Small § Regime

We proceed to empirically demonstrate the stability of the sample complexity of Algorithm
2asd 0.

First, we introduce a family of MDPs instance. Define reference MPDs with S = {1, 2},
A = {ai, a2}, transition kernel

P = o= [112 172, m
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Figure 4: Testing the sample complexity behavior as § | 0.

and deterministic reward function r(1,-) = 1 and r(2,-) = 0. For any positive adversarial
power level 0, the worst-case transition kernel chosen by the adversary is

[0 1-q)
Fons = Piea= 45 12000

where ¢(0) < 1/2 and ¢(6) T1/2 as 6 | 0. In a classical tabular RL setting, this worst-case
MDP (6 > 0) should be easier to learn compared to (4.1), c.f. (Khamaru et al., 2021; Wang
et al. 2023a).

Using this DRMDP instance, we plot the average number of samples required to achieve
a fixed error € while varying §, as shown in Figure 4. We observe that the average number of
samples increases as ¢ |} 0, because the worst-case MDP converges to the instance in (4.1),
which is more challenging to learn. Additionally, the number of samples needed to reach
the target error level becomes insensitive to increasingly small § when 6 < 10~2, confirming
the theoretical results presented in this paper.

5. Extension: y,; Divergence Ambiguity Sets

We extend the variance-reduced version of the Q-learning Algorithm 2 to the setting where
the adversary is constrained to perturbations within xs divergence balls of radius §. The
x2 divergence is defined for () < P as

pu@ir)= [ (Zg(w)l)zP(dw). (5.1)

Note that we follow the convention in Duchi and Namkoong (2021) to include an 1/2 in
(5.1).

We reuse the notation for the KL case in the discussion of this section. In particular,
for each (s,a) € S x A and § > 0, we define x2 ambiguity sets analogous to (2.2) as

Ps,a(6) = {p : Dy, (pllps.a) < 6},

Naa(8) = {v: Dy, (v]|vsa) < 8} (5.2)
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For xo divergence defined in (5.1), we have the following strong duality.

Lemma 17 (Duchi and Namkoong (2021), Lemma 1) Let X be a random wvariable
and po a probability measure on (2, F). Then, for any § > 0,

1
inf E,X =supia—c(0)E,, [(a— X)2]? 53
1:Dxo (1l o) <6 K aeﬁ{ (9) o [( )+] } (5.3)

where ¢(6) =1+ 20 and (-)4 := max{-,0}.

We note that the dual variable o can be optimized within a > essinf,; X.

We wish to learn the optimal g-function as defined in (2.7). To achieve this, we use the
DR Bellman equation for the g-function (2.10) where the dual form of the Bellman operator
T : RSXA 5 RSXA ip the yo case is given by

T(6)(5,0) 1= sup {a— e(9)Bu, [(o— ]} +7v5p {8~ e(0) By, (6~ vla)($)2]F}-

aceR

(5.4)

Then, the empirical Bellman operator T is similarly defined as in (3.2) using this dual
representation as

T(q)(s.0) = sup {a = c(9) B, [(0 = R3]}

[NIES

+ v sup {/8 — C(é)Eps,a,n [(ﬁ - U(Q)(S))i]
BeR

L

where the empirical measures and expectations are defined in (3.1).
Recall the definition of the minimum support probability pa in (3.3). As in the KL case,
we also consider the regime § = O(J):

Assumption 3 (Limited Adversarial Power) Suppose the adversary’s power § < %pA.

In this context, we will apply the variance-reduced Q-learning Algorithm 2 with the

following parameters.
1
lvr =11 1 N )
{OgQ (e(l - v)ﬂ

., 1 log( 3dly, >2
vr — “Vr _ 2 _ 9

1
= cor—5—— s log(3dkwler /1),
pA(1 —7)? ( /)

!
mp = Cyr——= 10g(3dlvr /7 2,
ITEEER

Noyr

Notice that, compare to the specifications in (3.6), (5.6) has a pXQ dependence instead
of pr®. Running Algorithm 2 with these parameters will yield an estimate qi,, of ¢* with
an error of at most € with high probability, leading to the following theorem.
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Theorem 18 Assume Assumptions 2 and 3. For e < (1 —~)~!, the variance-reduced
DR Q-learning Algorithm 2 with parameters specified in (3.6) computes a solution ¢y, s.t.
Gty — @*|loo < € w.p. at least 1 —n using

A [SI|A]
¢ <p%(1 —7)*min(1, 62)>

number of samples.

The proof of Theorem 18 closely follows the proof of Theorem 13. We first establish the
analog of Proposition 10 and then apply it to achieve the statement in Proposition 11 using
the parameters in (5.6) for the x2 divergence ambiguity set case. The sample complexity
is then derived by summing the number of samples used in each epoch. This procedure is
carried out in Appendix G
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Appendices

Appendix A. The Empirical Robust Bellman Operator: KL Case

In this section, we establish the bias and concentration properties of the empirical DR
Bellman operator. As pointed out in the previous sections, they are the key ingredients for
proving our near-optimal sample complexity bounds. Let ’i‘n be the empirical DR Bellman
operator formed by n samples defined in Definition 5. To simplify the notation, we will
omit the subscript n and only keep T when there is no confusion.

Even though the main results of this paper restrict R C [0, 1] to simplify notation and
align with convention in the literature, in this section, we consider R C [0, ryax]. This
allows our results to be directly applied to contexts beyond RL, such as supervised learning
where ry,,x may vary.

In order to employ the analysis outlined in the previous section, the empirical Bellman
operators need to be contraction mappings. Indeed, we have

Lemma 19 T is a monotonic y-contraction.
Direct consequences of T being a ~y-contraction with v < 1 are the following bounds:

Lemma 20 The following two bounds hold with probability 1:

IT(q)(s,a) = T(q)(5,a)lloo < 2(rmax + llalloc);

and
Tnlax

< —.

As motivated in the paper, to obtain a desired complexity dependence on problem
primitives, we need to develop good bounds on the bias and the variance of the em-
pirical Bellman operator. We define the span seminorm of the g-function as |q|span =

max, q ¢(s,a) — ming 4 q(s,a) and |q|span < (1 —«)~!. The proofs of the following proposi-
tions are in Appendix C.

Proposition 21 The empirical DR Bellman operator satisfies the following variance bound:

2
Trznax + 72 ’q‘span
2

Var(T(q)(s,a)) < 104 7

(log(e(|R| v [S])))-
We note that here p, can be replaced by mingeg min {ps 4(s'), vso(s")}. In particular, the
variance upper bound can depend on the state and action. However, since we are interested
in a minimax complexity bound, such distinction will not make a difference if we consider
an example with only O(1) number of states and actions.

We also have the following bound on the bias:

Proposition 22 Under Assumption 1, the empirical DR Bellman Operator satisfies the
following bias bound:

Bias(T(q)(s, )| = | E[T(q)(s,a)] — T(g)(s.a)| < 4480~

4
max 3'Yn|q,span log(e\S] v ’R’)

N
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Again, the dependence on p, can be replaced by mingeg min {ps o(s'), vsq(s')}.
By Lemma 20, the DR empirical Bellman operator is bounded. This along with the
uniform (across s,a € S X A) variance bound in Proposition 21 yields:

Proposition 23 The empirical DR Bellman operator

17<rmax + F)/ IQ‘span \/l
pavn

w.p. at least 1 —n, provided that n > 8p7%log (12|S||A|(|S| V |R|) /7).

IT(q) = T(@)low < (6IS[IA[(IS[ v [R])/n)

Recall that for fixed ¢, we haved defined the recentered DR Bellman operators

~

H(G) :==T(¢) — T(¢") and H(q) = T(4) - T(q"). (A1)

For the variance-reduced algorithm, we instead consider the bias and concentration prop-
erties of the recentered operator H. As we will observe, the recentering allows the con-
centration bounds to depend on the residual error in the g¢-function ||§ — ¢*||c instead of
llglloo- As a consequence, one can imagine that as the algorithm progresses, ||§; — ¢*||co Will
progressively become smaller, making H having much better concentration properties than
T.

We start with bias and variance bounds.

Proposition 24 Suppose Assumption 1 is enforced. Then

~ 6|16 —
(E[E(§)(s0) — H(@)(s.a)] < W" log(elS]).

provided n > pxl, and

var(H(g)(s,0) < —

for allmn > 1.

Similar to the extension from Proposition 21 to Proposition 23, we can obtain the
following concentration bound for the recentered operator by extending the variance bound
in Propositon 24.

Proposition 25 Assume Assumption 1. Then w.p. at least 1 —n

1H(@) — F(@) e < Wwogwsrw/m

provided that n > 8p 2 log(4|S|?|A|/n)

We emphasize that all of the propositions are O(1) when ¢ | 0. This is due to a more
thorough analysis, which allows us to remove the dual variable a (see Lemma 2) in the
bounds, as explained in Lemma 37 in detail.
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Appendix B. Proofs for the Analysis of Algorithms: KL Case

Before we prove the main results in this paper, we illustrate the necessity of requiring the n-
sample empirical Bellman operator to exhibit a bias of O(n~1) to achieve an overall sample
complexity of O(e~2).

B.1 An Illustrative Example for the Necessity of the Bias Requirement

To understand our requirement that the bias of the empirical Bellman operator (3.2) decay
like O(n™1), we consider the following simple example. We use stochastic approximation
to find the fixed point 0 of the equation z = ~x, v € (0,1). In the notation of (2.12),
L(xz) = yx. We generate biased noisy observation of x — yx; i.e. L, p(x) = v + Uy + Bn,
where {Up,k : k =1,...} are i.i.d., each requires n-sample to compute, with EU,, , = 0 and
VarU, = o2. The U,, k and f3, are analogous to the noise and bias associated with an
n-sample empirical Bellman operator. B

For simplicity, we consider a constant stepsize setting where the stepsize A = O(e), ig-
noring the dependence on 1/(1—+). We note that similar phenomena happen for discounted
stepsize as well. We consider the stochastic approximation:

Xip1 = (1= N)Xe + My Xy + Unyer1 + Bn)

with Xy = 1. Then, it is not hard to see that
t—1

Xe= (1= ML=+ A (1= A1 =) (Ungt + Bn).
k=0

To achieve a statistical error of € in mean squared, we need

ol (0) -2 ()

and
t—1 t—1
Var (AD (1= A1 =) Tng| =013, BAY (1= A1 =7)F = O().
k=0 k=0

The variance requirement suggests

M- (A=)
NI )@ A1) =)

So, with the choice of ¢ earlier, we need o2 = O(e2/A) = O(e). On the other hand, the bias
requirement implies

AL = (1 =21 =)

& A1 —7)

= O(e);

ie. B, =0(e).
Assume that the variance 02 = ©(n~!), which is the canonical variance decay rate of
Monte Carlo estimation. Then, to guarantee o2 = O(e), we need n = Q(1/€). Yet, if
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B = O(n~1/2), we also need n = Q(1/€?) so as to have 3, = O(e). In this case, the total
number of samples used until iteration ¢ is nt = Q(e~3).

On the other hand, if we managed to show that 3, = é(n‘l), we see that we only need
n = Q(1/e€), and hence nt = Q(¢~2), the correct rate.

Having explained the necessity of 5(71_1) bias and equipped with the key bias and con-
centration bounds, we are ready to carry out the proofs of the worst-case sample complexity
bounds for Algorithm 1 and 2. We will follow the proof outlined in Section 3.3.

B.2 The Distributionally Robust Q-learning Algorithm 1
B.2.1 PROOF OF PROPOSITION 7

Proof
Recall that the update rule for Algorithm 1 can be written as

1 — ¢ = (1 =) (@ — @) + M [Trpr(ar) — Trg1(q") + Trg1(¢") — T(q")]

= (1= M) (qx — q*) + M [Hipa(qr) + Wiyd] By

where we define Wy11 := T11(¢")—T (¢*). Since T,41(g*) is ai.i.d. sequence of estimators

to 7(q%),
B := Bias(Tk(q")) = E[Tk(q")] — T(q")

is independent of k. We can write Wyy1 = 8 + Ugy1 where Ugiq := Tri1(q*) — T(¢*) — 3
has zero mean.

Next, we would like to apply Proposition 15. Define the auxiliary sequences

Pry1 = (1= M) Pr + M Wiyt
Qi1 = (1= M) Qk + MeUpia (B.3)

—~
=
[\

~—

with Qo = Py = 0. Notice that since {Ug, k > 1} has mean zero, E[Qx] = 0 for all k£ > 0.
It is easier to analyze the process {Qx, k > 0} than {Py, k > 0} which correspond to {p}
in Proposition 15.

To use {Qx, k > 0}, we first show that

Py = Qi+ 8.

We prove this by induction. The base case P} = \gW1 = @1 + 8 as A\g = 1. Next we check
the induction step. By the iterative updates (B.2) and (B.3) and the induction hypothesis,
we have that

Pry1 = (1= M) Pe + MWy
= (1 = \e)(Qk + B) + A (Upy1 + B)
= Q41+ 5. (B.4)
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By Algorithm 1, ¢; = 0. We have that by Lemma 20, ||¢1 —¢*[|cc < (1—7)~!. Therefore,
by Proposition 15

[ k
' g1 — " |loo
Jaess =l < 2 | LS 0 SR |+ Pl
i j=1
- 1 .
S)\k T T Y Q'oo +7kﬁoo +Ql,k oo T+ Boo
M=) ; 1Qj 18]l 1Quk+1lloo + 18]l
R 28]
< | =+ 7D 1Qilloo | + 1Qks1lloc + 52
1-v 43 1—x
i (B.5)
w.p.1, where we used kA, =1/(1/k+ (1 —7)) <1/(1—7).
Next, we bound the sequence {Q, k > 1}.
Lemma 26 The {Qx,k > 1} sequence satisfies
2
P(||Qrs1|loo >t SQSAexp<— )

where 02(q*)(s,a) = Var(Tk(q*)(s, a)).

The proof of Lemma 26 is in Appendix B.4. By applying Lemma 26, we have that

8\
-y

(18i\j,y + 2\/¥||U(q*)”oo> log (2|S||A|/n)

N

1Qj o log (2[S[|A /1) + 2v/Ajllo(4") [l v/og (2IS[|A]/n)

IN

w.p. at least 1 —n.

To establish high probability bound using (B.5), we also need the following properties
of the stepsize:

Lemma 27 (Proof of Corollary 3, Wainwright (2019b)) The following inequalities hold:

k
2 ' log(1+ (1 —~v)k)
RVAT RS PV o
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We have that by Lemma 27 and the union bound,

ko
Y Ako Z 1Qjllo0 + |Qko+1l0c

j=1
< gy [ Aolog(t+ (L —)ko) lo(7) llso /A
=7 (1—7)? -~

8A .
(£ + 200l ) o (48] Al /)

Ao log(L+ (1= 7)ko)  [l0(q") oo/ Ako
=1 ( (1 =) T

) log (4|S||A|ko/n)

) log (4|S||Alko/n)

1 20
<16 +
<(1 —7)3ko  pa(l —7)%2V/noko

w.p. at least 1 — ), where we utilize Proposition 21 to bound |o(¢*)||ec-
We use Proposition 22 to bound 5. Then, from (B.5) we conclude that there exists
constant c s.t.

) log (4dko/n)?

1 1 9 Tmax +'7|q,s an
— ¢l < ¢ + log (4dk +c—— P Jog(e|S| V IR
1 1 1 2
<c + + log (4dky/n
(T * w7k * s g o ko)

where ¢ can change from line to line.
Finally, note that for C; > 1,Cy > e, log(C1C2) = log(C1) + log(C2) < Cjlog(Cs). So,
log (4dko /n)? < Blog (3dko/n)?. This completes the proof. |

B.3 The Variance-Reduced Distributionally Robust Q-learning Algorithm 2
B.3.1 PrROOF OF PROPOSITION 11

Proof Recall that F; be the o-field generated by the random samples used until the end
of epoch [ and

Ey[] = E[|A], B[] = P[-|A], and Var,(-) = Var(:|F7).
In the following proof, the probabilities are w.r.t. Pj_1(-). Recall that
H; = Tix(q) — Tig(g") and Hy = Ty (q) — Tik(q”).

From the variance-reduced DR-RL (Algorithm 2) update rule, we have at epoch I,
Qi1 — ¢ = (1= e)(qr —q°) + M {Tl,kJrl(QI,k) — Tyges1(Gi—1) + To(G—1) — T(q*)}

=1 =)@ —q")+ M [Hz,k+1(QZ,k) + Tipr1(q) = Trrra (@) + Ti(G-1) — T(q¥)

=1 =)@k — ")+ e Higr1(qir) + Wiges1]
(B.6)
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where we define W p11 = Ty p41(¢") — Trpg1(di—1) + ’f‘l(q},l) — T(q*). Notice that only
the first two terms is dependent on k. We can write
Wikt = Tirr1(q*) = Tirrr (@) + Tuldir) — T(q")
= —Hpr1(@-1) + Hi(G—1) +Ti(q") — T(q")
= —[Hikt+1(Gi-1) — Br-1[Hy g1 (@)1 + Hi(G—1) + Ti(q") = T(¢") — Er—1[Hik41(Gi-1)]

= —Upgs1+ Dy
(B.7)
where

U1 = Hypr1(—1) — Er—1[Hy g1 (G—1)] (B.8)
Dy :=H(Gi—1) + Ti(q") = T(¢") — BEr—1[Hi k41(G-1)]- (B.9)

Note that Ej_1[H;j k+1(gi—1)] is constant in k.

We will apply Proposition 15. Define the auxiliary sequences

Prer1= 1= )P+ MWigit (B.10)
Qui+1 = (1 —X)Qui + Me(=Uig41) (B.11)

with Q0 = Po = 0. Note that Uj ;41 under Ej_; arei.i.d. and has mean 0. So E;_1[Q 1] =
0 for any k£ > 0. It is easier to analyze the process {Q;,k > 0} than {P;;,k > 0} which
correspond to {px} in Proposition 15.

As in the DR Q-learning case (Equation (B.4)), the same induction argument implies
that P = Qi+ Dy.

By the algorithm, ¢;; = §;—1, we have that ||¢;1 — ¢*||« < b. Therefore, by Proposition
15

[ k
a1 —q
s — " lloo < N (122 = Ll 5~y

oo | + [[Pk+1lloc

[ k
b
<0 |y | 7 21 @uslloe + 9Dl | |+ 1@k lloc + 1 Dill- (B.12)
I i=1
¢ 21D
l
< (2547 3 1Quglhe | + I Quesalloe + 5

j=1

w.p.1, where we used kA, = 1/(1/k+ (1 —7)) < 1/(1 —~).
Next, we prove bounds for {||Q; x|,k > 0} and || D;|sc-

Lemma 28 Under measure P,_;(-),

t2
0o > t) < 2[S||A -
)< 28| \exp( 4Aj<7u<l_1uoot+\a?_lnoo))

Bia(lQug

where (_1 = §i—1 — q" and 012_1(3, a) = Var;_1(H; 1 (qi—1)(s,a)).
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The proof of this Lemma is deferred to Appendix B.4. Apply Lemma 28, we have that

1Qujllc0 < 4Xj[IG-1llc0 log (2[SI|A[/1) + 24/ Ajllo1-1]l00 v/ 10g (2IS[[A] /7).

w.p. at least 1 —n.

Recall the definition of 012_1 and Proposition 24. We have that by Lemma 27 and the
union bound,

k

P PN Qujlloo + 1Qukr+1ll00

=1

1 1 1-— vr —11joco —1llco A
SM(AM 08(L+ (L= kwr)[Gotlloe |, 1011 lloov/ P
v

log (4|S|| A |kvx
— e >og<\ 1Ak /)

Akvr log(e + (1 B ’Y)kvr)HCZ*IHOO Ho—lleOO Akvr
<8 + ,;

log (4]S|| A |kyy
— e )ogusu e/ )

b 26p 9
<8 + log (4[S||Alky:/n)
<(1 - P)/)Qk‘vr p?\/2(1 - 7)3/2 Vv nVI‘]{;VI‘>

w.p. at least 1 —n.
For Dy, recall the definition in (B.9). We add and subtract H(§;—1) and write:

D, = (ﬁl(éz—ﬂ - H(Ql—ﬁ) + (Tl(q*) - T(q*)) + (H(G1—1) — E1—1[Hy g1 (qi—1)])

_ ~ (B.14)
= (HZ(QZ—D - H((il—l)) + (Tl(q*) - T(q*)) + By [H(Gi—1) — Hy g1 (G-1)] -

Recall Propositions 23, 24, and 25, we have that by union bound,

Tmax + ’q*|span + Hqu—l - q*HOO

[Diffoc < € 3/2 Vieg (12d/n) + Ei—1 (H(qi-1) — Hik41(G-1))
Pa /Y
<c 572 Vlog (12d/n) + Cgm—— log(e|S|)
L NIRVALL! PA A/ Tovr

(B.15)

w.p. at least 1 — 7, provided that ¢ is a large enough constant m; > 8px2log(24d/7), and
—1
Nyr 2 PA~-
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Finally, recall that ¢; = ¢ x,,+1 and rpax = 1, combine (B.12), (B.13), and (B.15) we
conclude that there exists absolute constant ¢ s.t.

b b 2
||le - q*Hoo <c + log (8dkvr/n)
(1 - 7)2kvr ]Ji/Z(l - 7)3/2 Vyrkvr

Tmax + |¢* span T b
373 7] log(24d/n) + ¢ 37 b log(e|S|)
pa (1 =7)v/mu pA (1 =)y

b b b 2
<c + log (8dky:/n)
(<1 S TR N S T V)WW)
1
log(24d/n)
B )2y

w.p. at least 1 —n, where we used [¢"| ., < 2[¢"[|c <2/(1 —7) and b <1/(1—7), ¢ can
change from line to line.

Finally, note that for C; > 1,Cy > e, log(C1C2) = log(C1) +1og(C2) < Cjlog(Cs). This
completes the proof of Proposition 10. |

B.3.2 PROOF OF PROPOSITION 11

Proof By the definition of conditional probability

lor
P (ﬂ {la - ¢l <2701 - ’y)l}>
=0

lon
ZHP<||C]zq*Hoo§2‘l(1’V)_1 ﬂ {lldn — ¢*lloo <27 })
1=0

Lon 1
ZHP(Hdz—q*Hoo<2‘l(1—’y)_1 () {lldn — ¢*llec <277 1})

=1 n=1

where we note that o = 0 and Lemma 20 implies that |Gy — ¢*|| < (1 —v)~! w.p.1, so the
conditioned intersection and product can start from s = 1. Let

-1

A= {llds =g loe <27°(1L =7}

s=1
We analyze the probability for [ > 1

P (lla = 4"lloo <27 (1 =77 |Ai-1)

sy E [ {20 1
:P(;_QE :]1 {IIC]H — [l <27V (1 - 7)‘1} E {]1 {qu — glle <271 - 7)—1}‘5_1} ]1AH}
:p@i_l)E 1 {lla ="l <270 — ) Py (Tl gulloo <270 =) ) 1,
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By Proposition 10, we recall conditioned on ||Gi—1 — ¢*[|ec <2~ ¢ V(1 — 7)1 =: b

b b b )
4 — q%[lc < ¢ + + log (3dky: /1)
- L=k 9321 = )32k pY2(1 =) /ier
1
+c log(3d/n)
Y2 (1 =52

w.p. at least 1 —n.
Therefore, by the parameter choice (3.6), we have that for sufficiently large c,; and for
events w € {H(jl,l — ¢*lo < 2*(1*1)(1 — fy)*l},

P (1{la - el <270 - ) ) @) 21 - (B.10)
i.e.
1l = e <270 =) Ao (1l - gl <270 ) 210

Therefore, we have
P (”‘jl — e <271 - 7)*1’14[_1) >1- li
vr
which further gives us

Lyr lyr
P (ﬂ {la— 'l <270 wl}) > (-1 (B.17)

=0

To finish the proof, we consider the function

!
e(n) == (1 — 7) .
Clearly, e(n) is C? with derivatives

U i

Note that ¢” > 0 if [ > 1. So €/(n) is non-decreasing. Hence for all n > 0, €'(n) > €'(0).
This implies that

>1-—n.

Assumption € < (1 —~)~! implies that I, > 1. Therefore, we plug in this to (B.17) and
conclude that

lVI‘
P (ld, = a'lloe <27M(1=7)71) > P (ﬂ {la-al <271 —w-l}) >1-1.

=0
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B.4 Proof of Lemma 26 and 28

To prove these two lemma, we introduce the following result:

Lemma 29 (Wainwright (2019b), Lemma 2) Let {Y);, € R,k > 1} be a sequence of i.i.d.
zero mean (-bounded r.v.s with variance 0. Define { Xy, k > 0} by the recursion Xo = 0

Xpr1 = (1 = M) Xk + MeYis1,
where A\, =1/(1 4+ (1 —v)k). Then

202\, >

Elexp(tXg41)] < exp (1_4‘)%|t|

for all |t] < 1/(CAg)-

We first prove Lemma 28.
Proof We use the same steps. Recall (B.11), where U} is an i.i.d. sequence under E;_;
given by (B.8). By Lemma 20

U klloo < N T1k(di—1) = Tir(q") loo + 1 E1-1[T1(Gi—1) — Tix(q")]lloo
< 29)|di—1 — ¢"|loo
= 291G=1]]0-

Notice that by construction, Ty (¢*)(s,a) are independent across s € S, a € A. Therefore,
by Lemma 29,

E1exp(A|Qui+1lloc) = Ei-1 ( ?UP max {exp(AQy k+1(s, @), exp(—=AQuk+1(s,a))}
s,a)ESXA

< Z Ei_1exp(AQuk+1(8,a)) + Eexp(=AQpx+1(s,a))

(s,a)eSxA
N2lo7 1 llocAn
L= 29[G-1llcc A&lAl )7

< 2ISHA6XP<

for any A\ < 1/(27]|¢—1||coAk)- Therefore, by the Chernoff bound

)‘2”0?—1"00)% oMt
1 — 29|G=1lloo A&| Al ’

Pia(Quiillc > 1) < 2[S[[A]exp <

for any A € (0,1/(27||(;-1]|ccAk)). Choose

t
)\ == 2 )
29[|G=1lloo Akt + 2[| o7 [[oo Ak

we conclude that

t2
Ba(|@usilleo > 1) < 2[S[|Alexp | — -
AN (YIG-1lloot + llo7 4 lloo)

37



WANG, Si, BLANCHET, ZHOU

Next, we prove Lemma 26 Notice that we only need to modify the bounds on ¢ and 2.
Proof Recall that {Q;x, k > 0} is given by recursive relation (B.3), where U}, has mean 0.
By Lemma 20

[Uklloo < 2[Tkt1(q") 0o
< 274n1ax+27||q*Hoo
< Y
=125

and Var(Tr11(q¢%)(s,a)) = 02(q¢*)(s,a). Therefore, using the same arguments, we conclude
that

t2
P(|Qrslloe > t) < 2IS||Alexp <_)\k(8'y(1 T 4||02<q*>||oo>> |

Appendix C. Proofs of Properties of the Empirical Bellman Operator:
KL Case

C.1 Glossary of Notations and Basic Properties

Before we present our proofs, we first define some technical notations. For finite discrete
measurable space (Y,2Y), fixed u € m2Y, and signed measure v € M. (Y,2Y), let

yey

denotes the integral.
For generic probability measure p on (Y,2Y) and random variable u : ¥ — R, let
w = w(a) = e~*/*; define the KL dual functional under the reference measure s

F s uy @) == —alog ple ™/ — aé. (C.1)

We clarify that f(u,u,0) = limayo f(p, u, @) = essinf, u. We present two basic properties
of the dual functional f for which the proofs are deferred to Appendix E.

Lemma 30 For any v < p, the dual functional is bounded

—[lullpoe(py < Slipof(%ua @) < [Jullpeo ()
Lemma 31 The following bound holds w.p.1.:

sup f(/'L? u, Oé) — Sup f(#n’ u, Oé) S 2 |u”span ’
a>0 a>0

where |uly,,, = maxses u(s) — mingeg u(s).
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Let uy, be the empirical measure form by n i.i.d. samples drawn from p. In the following
development, we need to consider the perturbation analysis on the line of center measures
{tu+ (1 —t)pp : t €]0,1]}. So, it is convenient to define for ps, = psa, Vs,

,Us,a,n(t) = t,us,a + (1 - t)ﬂs,a,n
Msan = Hs,a — MUs,an (02)
gs,a,n(ta a) = f(,us,a,n(t)a u, a)-

Note that we will not explicitly indicate the dependence of u for the function g, because it
will always be the identity function when p = v and the value function when py = p. We
will also drop the dependence on (s,a) when clear.

Our analysis involves many derivative computations. We use three type of derivative
notations, two of which is explained here and the Radon-Nikodym derivative is introduced
in the following paragraph. For a smooth function of multiple arguments g(t, os ;) where
o could be dependent on parameters s, ¢, denote the partial derivatives by 0, 0 i.e.

Org(t, s t) := lim M, O0ag(t, asy) := lim w.
e—0 € e—0 €
On the other hand, when o is also smooth in ¢, denote the total derivative w.r.t. t by dy;
ie. .
deg(t, o) == 15% W = 0ig(t, ast) + 0ag(t, as ) Orars s

The intuition behind our ability to remove the 1/§ dependence stems from the mutual
absolute continuity (also known as equivalence) between the empirical worst-case transition
kernel and reward distribution and the true ones. This holds if § is sufficiently small and
the empirical centers of the uncertainty sets are equivalent to the true centers.

As aresult, our techniques rely on the absolute continuity between the empirical measure
tn and p. We say that p is absolute continuous w.r.t. another measure v, denoted by v > pu,
if for A € 2¥, v(A) = 0 implies that u(A) = 0. We say that u is equivalent to v, denoted
by u~ v,if v > p and v < . Note that the empirical measure u,, always satisfies p, < u
w.p.1. For absolutely continuous measures v < pu, the Radon-Nikodym derivative is well

defined: J (s)
v v(s
—=(y) == =<1 {uls) # 0} .
dp 1(s)
The proof strategy we will implement is to consider separately the “good events” on which
tn and p are close (so that we have u, ~ u) and the “bad events” where the empirical

measure is not close to the reference model. This motivates us to define for p > 0

Oy 1) = {500 i () 0) — )] < 9} (©.3)

Then, in the DR-RL setting, define

Qpp= ﬂ Qmp(ps,a) N ﬂ Qn,p(Vs,a)

s,a s,a

= {w * sup sup |ps,a,n(w)(3/) - ps,a(sl)’ S P, sup sup |Vs,a,n(w)(r) - Vs,a(r)’ S p} .
s,a T

s,a s’

39



WANG, Si, BLANCHET, ZHOU

We frequently make use of the minimum support probability of certain measures such

as [, flsq- This is denoted by pa := min {u(s) : p(s) > 0}, prsan = min{u(s) : u(s) > 0}.
It is easy to see that the following lemma holds:

Lemma 32 Suppose p < pp, then on Qn (1), p ~ pn and infy., )0 pn(y) > pn —p
Moreover, the empirical measures are satisfies the following concentrations:

Lemma 33 Let ju be any probability measure on finite measure space (Y,2Y). Then, for
any k=1,2,3,,...

c 1 —
P(S1p(1)%) € g oa(e V)

In particular, if we choose k =1,
1
P((4)%) < = log(elY ).

This lemma follows from the subgaussian property of empirical measures on finite measure
space; i.e. Lemma 39 holds.

For absolutely continuous empirical measures, we also have the following lemma, again
as a consequence of subgaussianity and hence Lemma 39.

Lemma 34 Let &, be another random measure on (Y,2Y). Let (Q,F, P) be the probability
space that supports &n, pin. Suppose that p, < &, u < &, and §,(y) > p for all y s.t.
&n(y) # 0. Then, for all A € F, the following bounds hold:

dmy, 1
1y < ——=+/log(elY
5| % o 1 S VIR
and
dmn 1
14 < ——log(elY]).
B | % o TS g sV

The proofs of these results are deferred to Appendix D.

C.2 Proof of Proposition 21

Proof By definition, we have

~

T(q)(57 a’) - T(Q)(S, a’) < sup |f(VS7a,n7 id? /8) - f(l/s,aa id? /B)|
p=0 (C.4)
+ 7sup |f(Ps,ams (), @) — f(Ps,a,v(q), )]

We will drop the s,a dependence for simplicity. This motivates us to look at the dual
functional applied to generic measureable v : Y — R. Let’s Define w = eu/e,

|f(,una u,a) - f(/ﬁ,u» a)| = |gn(0a a) - gn(17a)|

8tgn(t7 Oé)

t=1

_ m[wJ’
fin (T)[w]
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for some random variable 7 € (0,1). To bound this, we introduce the following lemma for
which the proof is deferred to E.

Lemma 35 Let m = juy — po with py, iy < 1 and w = e~“/*, we have that

Im[w]? ’
sup

a>0 N[w]z 2

| : d
<37 inf [|u— Al ‘ ik
KER

A || oo )

To apply Lemma 35, we consider p < %,uA. Then, By Lemma 32, on Q,, ,(1t), n(t) ~ p for
all t € [0,1]. So, on €y, ,(1), we have by Lemma 35

M W] '
sup ny Uy Q) — ,u,a)| <K supa | —————
azo\f(u ) = fu,u, @) S )]
dmy,
< — T
S c i A
dm
= 3 ‘u|s an - :
P dpan (7) 1] oo ()
Therefore, by partitioning €2 into €, ,(p)¢ and Qy, , (1), we bound
ES&% |f(:un7u> CV) - f(/h% Oé)|2
dme 112 (C.5)
<9, F " 1 4lul?, P(Qp(p)°
O 5 Pt P

where on , ,(1)¢, we use the bound in Lemma 31.

By Lemma 32, on Qy, () for y s.t. u(y) > 0, pn(y) > pa—p > 2pa > p. Since p(y) > 0
implies that p(y) > pa, we have that p,(¢)(y) > p for any ¢ € [0, 1]. Therefore, Lemma 34
applies. On the other hand, Lemma 33 also applies and is used to bound P(£2,, ,()).

Therefore, continue from (C.5), we have

2 |u|§pan
Esup [ f(pn, u, o) = f(p,u, )" < 13—5— log(elY]).
a>0 pn

We conclude that choosing p = %P/\ < %min {Vs.an,Psant
Var('f‘(q)(s, a)) <2F Zli% ’f(l/s,zz,nv id, /8) - f(Vs,aa id, 6)‘2

+ 272Esup ’f(ps,a,nv U(Q)a a) - f(ps,m U(Q)) a)|2

a>0
lid]| lo(a)|l3
< 26— o0(e|R|) 4 2672 ———222P2 o0 (e|S])
p*n p’n
2 2.2
Tiax 77 14
< 26— 5 P2 log(e(|R| V [S])).
p°n
Plugging in p = %p/\, we obtain the claimed inequality in Proposition 21 |
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C.3 Proof of Proposition 22

Proof We consider for generic u and measure p on (Y,2Y). We assume § < iu/\, which
will be guaranteed by Assumption 1.

Since o — f(u,u, ) is continuous, and from Si et al. (2020) it is sufficient to optimize
the Lagrange multiplier on compact set [0, ||u| Leo(u), there is an optimal Lagrange
multiplier o (¢) that achieves sup,~q f(tn(t), u, ).

The bias of the dual functional

Bias(f(/lzn, u7a;’kz))
= B(g(0,a3(0)) — ga(L,a")La, () + B (9n(0,05(0)) = gu(L,a) Lo, e (C.6)
= E1 + E2-

We fix p < %,u/\. Notice that by assumption,

1 1 1
o< 24,LL/\ < M/\ < —10g (]. — 2,[1/\) . (C?)

Then, the following Lemma 36 holds.
Lemma 36 (Differentiability of the Dual Functional) Suppose § < —log(1 — Sun)
and p < %u/\, then

o On Qup(p), t = supyso gn(t, @) is C*((0,1)) N C[0,1].

o o =0 iff u is p essentially constant. So, a;(t) =0 and sup,>q gn(t, a) = plu]

o Ifa* >0, then o (t) > 0 for all t € [0, 1] with

ma [w]
dysup gn(t, ) = —a (t) ————=

and

didy sup gn(t, o)
a>0

— _a M [w]?

AN

)
- (i) (i * szl ~ et )

O] T O] a

The proof of this result is deferred to Appendix E.
So, on Q. (1), t — gn(t,al(t)) is C%(0,1) N C[0,1]. By the (second order) mean value
theorem, there exists random variable 7 € [0, 1] s.t.
) ]lQn,p(H)
t=1
plw]

B =E (—dtgnos, 0
> ]lﬂnyp(/‘)
t=1
Emy,[w] My [W]

1
= o _ Ea* Lo, (e + B | =didign(t, o
« //L[w] « ,U'[w] Qi p(p) + |:2 dtdtg (ta Qp (t))

=0—-FE11+ E12

1
+ idtdtgn(t) ap(t))

t=1

n 1
= (o) S 03 )

]lQn,p(N):|

t=T1
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where Emy,[u] = 0 for any function u. Recall Lemma 35. Since naturally p > p, tin,

|E1a| < 3ul Lo, ,(ue

span
Leo(p)

B H dm,,
dp

Uu
< 3|’37panp<9n,p(,“)c)
22

u
< 3o o v,
“Ap=T

where we use Lemma 33 for the last inequality.
On Q,, (1), by Lemma 36, for all t € [0, 1] either () = 0 or aj;(t) > 0. In the first
case, we have trivially 72 = 0. In the second case,

—dydygn(t, i (t)) = —diOrgn (t, o (1))
My [W]

2

=t P
(N [ male] | mafuw] gt welmnf] )2
+<WMMMM><mﬁWM s (O (0) ] mmmmmw2>

Next, we prove a finer characteristic when d goes to 0. We need the following Lemma:

Lemma 37 On Q, ,(p) with p < pa
2

supoﬁ < WMJUJ TnnhMU} _.Whﬁudﬂn(ﬂ[uuﬂ>2 <:136inf’hk—KH3 dmy, .
o0 \tn(Ow] * apn(®)w]  apa(b)[w]? T ker B ] dpan (8) || oo )
Applying Lemma 35 and 37, we have that on €, ,(u)
|dedign(t, o, (1) [ La, ()
a2 e ([0 — Kl || dimn |
< 3inf |lu — k|| p= “ £ ‘ -
KER L) dpin,(t) Lo () Var,,- ) (u) dpin(t) L0 ()
dmy, ||? lu = [l Zoc sy || dimn |2
<3 |u|span di + 136 |u|span * 2(#n) ‘d
Mn(t) Leo(p) ||u - Mn(t)[u]HLQ(M;) Mn(t) L (p)

To bound the second ratio in the last inequality, we introduce the following lemma, whose
proof is deferred to Appendix E as well.

Lemma 38 Suppose d < 2—14u/\ andp < %u/\. When the optimal Lagrange multiplier a® > 0,
worst-case measures 5 (t) = pin (t)[w-]/pn (t)[w] satisfies pi(t)(y) > pn on Qp(p).

For § < 5;pn, by Lemma 38, for some y' s.t. u5(t)(y') > 0,

lu = bl ooy _ Ju(y’) — g [u]
lu = g Oz #ROWW) = i ull? + 32 w5 (O W) uy) — w5 [u]]?
lu(y') — iy, [u]|?
W) wy) — p[ul?
<2
27
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As in the proof of Propositon 21, under the choice p < % ua, Lemma 34 applies. Therefore,

|ul

|E o] < 275—2 log(e]Y])

pAp*n

For Fs in (C.6), we use Lemma 31 and previous bound on P (£, ,(1)¢)

‘EZ‘ <FE |f(:umuv aZ(O)) - f(,u,u, Oz*)| ]lQn,p(M)C
<2 |U’Span P (Qn,p(ﬂ)c)

|ulg
< 9 Shaly Y
< og(elY])

u
< P 1o 01y
AP

Therefore, going back to (C.6), we have

. |u|span
Bias ( sup f(tn, u, @) || < 280——5— log(elY]).
a>0 HUAPTY

Apply this to the empirical Bellman operator with p = %p/\ < %min {Ps.an, tsan}t and
Assumption 1 holds. So, § < 2—14pA implies that 6 < imin {Ps,an, tsan}. Therefore, we

have

[Bias(T(q)(s, a))| =

Bias (Sup f(Ws,am. id, ﬁ)) + 7Bias <Sup f(ps,amsv(q), a)> ‘

B>0 a>0
ll#dlus a,5pan + ¥ [0(9)]span
pAn

< 4480 T lspan ey

< 4480

log(e[S| v [R)

log(e[S| v [R]).

A

C.4 Proof of Proposition 23
Proof We recall the bound (C.4) and the subsequent result

dm,

dpin(T)

sSup ’f(unv u, a) - f(,UJ, U,Oé)’ <3 ‘u’span

a0 Lo ()

Again, we consider p < %/M. Also recall the definition (C.3) of €, ,(¢). By Lemma 32,
on Qp p(p) for y st w(y) > 0, pn(y) > pr —p > %M/\ > p. Since u(y) > 0 implies that
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w(y) > pa, we have that p,(t)(y) > p for any ¢ € [0, 1]. Therefore, we have
P (Sup |f (pons uy ) — f(p,u, )] > t>
a>0

dmy,

dpin(T)
3|u
<P <sgp ln(y) — ()| > p> +P <‘1‘:pan sup [ma(y)l > t)
2,2,
< 22 (exp(—2p2n) + exp ( 92‘];|t ))

y span

2p*t*n
<2|Y| (exp(—Zan) + exp ( p))
|u‘span

where we used Hoeffding’s inequality and union bound.
Therefore, going back to the DR Bellman operator setting, we choose p = ip A and by
union bound

P(IT(q) = T(q)lloo > 1)
<P (supsup |f (Vs,amsid, B) — f(Vsa,id, B)] > t)

s,a >0 2

S P(Qn,p(/‘b)c) + P <3 ’u|spa,n > t? Qn,p(”))

Leo(p)

P <sup b |f (scams 0(), B) — F(poasv(@), B)] > t)

s,a a>0 2

2 _pan patn
2(|S[7|A| + [S||A[|R]) exp 3 + 2[S||A[|R|exp

288 2
2t2
+2/S[2[Alexp [ ——FA
288 2’ ‘span

HlaX
We set each of the three terms to be less than 7/3 and find that it suffices to have

8
n = — log (12|S[|A[([S| V [R])/n)
N

and 17 l
Tmax + 7 [q
t> span) log (6/S]|A](]S| V IR
> o/ Vlog (6[SA[(S] v [R]) /).
This implies the statement of the proposition. |

C.5 Proof of Proposition 24
Proof We define

V= H(G) - H(Q) = (T(4) — T(a:)) — (T(@) — T(q)). (C.9)
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Recall the dual formulation

T(‘])(S CL) = sup f(VS a id, B) +’}/Sup f(ps a,V (Q) a)'
5>0

The first term is not dependent on ¢, hence canceled in V. We have that

‘V(S, a)‘ =7 |Sup f(ps,av ’U((j), 04) — sup f(ps,av v(q*), a) — sup f(ps,a,ny U(Q), a) + sup f(ps,a,m v(q*)u a)
a>0 a>0 a>0 a>0
Note that if v(¢) and v(¢*) are both u essentially constant, then V' = 0, and the claim of
Proposition 24 holds trivially. Therefore, moving forward, we consider the case at least one
of v(¢) and v(q*) is not p essentially constant.
To analyze V' while keeping the consistency of our notations, we define vy = tv(§) + (1 —
t)v(Q*)a U= Ps,as bn = Ps,a,n, M = b — HUn, and N( ) t — (1 - t):un' Because Assumptlon
1 is imposed, we have that § < i,uA.
We consider the parametric function for s,t¢ € [0, 1]

h(s,t) := sup f(u(t), vs, ) = f(u(t),vs, a:,t)' (C.10)

a>0

To motivates our analysis, we assume that h(s, -) is C*(0, 1)NC[0, 1] and d;h(-, t) is C1(0,1)N
C10,1] as well. Then the fundamental theorem of calculus implies that

V(s,a)| = |h(L,0) — h(0,0) — h(1,1) + h(0,1)]

—’)/’ /at 1tdt+/ 8t Otdt’

/8@ st)dsdt‘

<fy//|88t (s,t)| dsdt

where 0s;0;h(s,t) is easier to analyze. We proceed to show that (C.11) is valid (with some
minor modification) on €y, , ().

As in the proof of Proposition 22, Lemma 36 applies when we consider p < % - So, for
p < 1hn, on Qyp(p), h(s,) is C2(0,1) N C[0, 1] with derivative

(C.11)

Oth(s ) = dvsup Fu(t). vm @) =~ L, T

Here, by Lemma 36, o ; is the unique optimal Lagrange multiplier, and ws = e s/,
Next, we show that for every fixed t, there is a function D0:h s.t.

1
/ D,dyh(s, t)ds = 8ih(1,t) — d;h(0,1). (C.12)
0

We note that by Lemma 36, ag, = 0 if and only if v, is essentially constant. This
can only happen at one particular s = s*. Otherwise, if there are some 0 < 57 < s9 < 1,
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510(¢) + (1 — s1)v(¢*) = c1e and sov(q) + (1 — s2)v(g*) = c2e w.p.1 under p, where e is the
vector of all ones, then for all a,b > 0,

asy +bsy . as1 + bs
asitbsy )+ (1 _as1tbsy

P P )v(q):(acl—l—b@)e.

This would imply that v(§) and v(g¢*) are both essentially constant.

We consider two cases:

Case 1: v, is never essentially constant for all s € [0, 1].

In this case, aj; > 0 for all s € [0,1]. Note that s — e~vs/* is clearly C* for oo > 0.
So, on Qp, p(p) if o}, is C(0,1) in s, then s — d4h(s,t) is C*(0,1) N C[0,1].

We show differentiability of s — o ; by invoking the implicit function theorem as in the
proof of Lemma 36 When ag, > 0, as shown in Lemma 36, it is the unique solution to the
optimality condition

5) p(t) [vsws]

g (= log pu(t)[ws] — 8) — m =: F(s,a5,) =0. (C.13)
Define the optimal measure
wre g B0 ws]
He O = e

Since for all fixed ¢, af; > 0 on (0,1) and F is infinite smooth. The implicit function
theorem then implies that o, is C*(0,1) N C[0,1] and s — d:h(s,t) is C1(0,1) N C[0, 1].

We compute the derivative 0;0;h in this case. Let A, = v(§) — v(¢*). Rewrite the
optimality equation as

o2y (~ log pu(t)fuwy] — 5) = D=l

 p()ws]
Differentiate w.r.t. s on both side
N w(t) [Ayws] . p(t)[vsws]
LHS = 950 ,(— log p(t)[ws] — 8) + —F == — Os0f
o(~loaulBlws] =0+ ] ok ()]

= asa:,t(_ log p(t)[ws] — 0) + p* (s, 1)[Ay] — aso‘:,t/i*(sa t) [US/O‘:,t]

RHS — () [Avws]p(t) [vsws] + p(8) [Avws] _ 1(t) [Apvsws]

oy pu(t)[ws]? () [ws] arg o u(t) [ws]
o | — M(t)[USU}SF U(t)[UEWS]
o < (a2, PO <a;t>2ﬂ<t>[w51>

= —Cov(s) (Av, Us/a:,t) + 17 (5, 0)[Av] + Osag  Var 5.4 (vs/ ag 1)

From the optimality equation and the LHS and RHS derivatives, we have
Drorty (10g p(B)[wa] + 8-+ 1" (5. 0)[vs/ ] + Ve (0e/05) = Covpe ) (Au, e fal)
asa:,tvarp,*(s,t) (Us/a:,t) = COV,u*(s,t)(Ava vs/a:,t)
Cov (5,0 (A, vs /s 1)

Var - (5 1) (vs/a;t)
(C.14)

*
Os0igy =
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Therefore, when ag, > 0,

D5, ) — asm
mfwp(t)[Avwy] | m[Ayw,] _ ot m[ws]
1) [wy)2 pu(t)[ws] S (t)[ws) (C.15)
% _ m[Usws] m[ws] ()[ ws]
+a‘9as’t< a;‘,tu(t)[ws]+ ag (1) [ws]? )

=: D1+ Do+ D3+ Dy.

Case 2: There is a unique s* € [0, 1] s.t. vy is essentially constant.

In this case, the previous argument implies that s — 9;h(s,t) is C1(0,s*), C1(s*, 1), and
continuous at 0, 1. The derivative is also given by (C.15).

We need to show the existence of D;0;h that satisfy (C.12). Observe that if s — 9;h(s,t)
is continuous at s*, then applying the fundamental theorem of calculus on the interval [0, s*]
and [s*, 1] separately, we will have that

s* 1
Ouh(1,1) — Byh(0, 1) / 0.0uh(s, t)ds + / 0.0uh(s, t)ds.
0 s*

Hence, taking D0ih(s,t) = 0s0¢h(s,t) for every s # s* and Ds0:h(s*,t) = 0 will suffice to
produce (C.12).
It is left to check the continuity at s*. As analyzed in (E.1),

hma m{w] =0.

alo N(t) [ws]

So we can conclude the continuity of s — 0;h(s,t) at s, if we can show that when v — ce
for some constant ¢, then ag; | 0.

To prove this, we assume to the contrary that there is a subsequential limit a , — 8 >0
for some sequence s, — s*. But since F' defined (C.13) in s and o when « > 0, we must
have that

0= lim F(sy,af, ;) = B(—logu(t)[e /] =) — c = —6p3

n—oo

raising a contradiction. This implies that s — 0,h(s,t) is continuous at s*, and hence (C.12)
holds with Ds0;h(s,t) = 0s0;h(s,t) for every s # s* and D;0;h(s*,t) = 0.
Therefore, we have shown that the bound (C.11) is valid on Qy, ,(x) with p < iﬂ/\
Now we bound 959;h(s, t) using the decomposition (C.15). |D;| and | D2| can be bounded
using the change of measure techniques: on €2, (1)

|D | < M(t)[dil[(r;)ws] (t)HAv’ws]
1

SRS PN
180 | 2

dp(t)

Le° ()
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and

()5 Ao

u(t)’[u:;]

|Dy| <

< [|Av]loo

Lo ()

To bound D3| and |Dy], recall dsa;; from (C.14).

_mlws]
1(t) [ws]
- |COVH*(S¢)(AU7U5/O‘:¢)‘ m[ws]
Var. (s (vs/az;)  p(t)[ws]
|COVM*(S¢)(A@,U5){Q* m[ws]
Var - (s 4)(vs) = p(t) [ws]

C (s Ava s
< | OV t)( (% )} inf ”'US - HHLOO(M)
Var *(s,t )( 5) KER

| Ds| = |0sar s

dm H

s — 1 (5, ) sl ey || dim
< 34/ Var,« (51 (Ay) ) e
Varu*(&t)(vs) 'LL() Loo(“)
[vs — 1 (s, ) [vs]ll oo (= (s,0)) || dm
< 38l = G ol )
s — KOS, ) Us] L2 (u* (s,t)) I Lo°(p)

where (7) used Lemma 35 with j = 1. Since aj, > 0 for s € (0,1) and vs is not essentially
constant, by Lemma 38, for some s’ € S s.t. vs(s') — p*(s,t)[vs] # 0

* 2

Hvs — M (57 t) [US]HLOO(H*(s,t))
* 2

l[vs — p*(s,t)[vs] ||L2(,u*(s,t))

_ [vs(s") — p* (s, ) [vs]”

(s, 0)()|vs(8') = (s, ) [vs] 2 + D gzr (5, 8) (80 (87) — g (s, ) [vs] 2
< [0s(s") — (5, ) [vs]|”
= (s, )(8)[s(8) — (s, ) vs] 2

IA

2
27
So,
|Ds| <

51 A 00 H dm
VEA [l dp(t)

From (C.14), by the property of variance,

x A,
‘asa:t{g\/ Var,- (s, ) < 1Al ‘
, Var (5 1) (vs/ a5 1) \/Varu* (s,)(Us/aky)

L)
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Hence applying similar analysis,

. * mvsws] m[ws|p(t)[vsws]
'D”"@“”<‘agu@w%1+ o (D) [ws]? >|
=w&a;|—u%aw[éz;vJag}+u%aw[£ﬁ;]u%awwgaa1
1A
<

Co ( dm Jo )
= Vi (s,t) yUs/ Qg t
\/Varu*(s,t)(vs/oz;t) dp(t)

dm
<A, ”OO\/V&ru*(s,t) <d,u(t)>

dm
suAmem@

Loo(u)

By (C.11), we have

1 1
E|V| S E’V“]‘Qn,p(ﬂ)c + ’)// / E ’asath(s,t” ﬂQn,p(M)det
0 JO

< ElV|iq, (e +7 Slép )E(|D1| + |Da| + | D3| + [Da|) 1y, ,()-
s,t€(0,1

Recall the definition (C.9) of V,

Voo = (T(@) — T(gx)) — (T(4) — T(q:)) |0
<IT@) = T(g) oo + IT(G) — T(q)loo
< 2’7”@ - Q*Hoo

So, by Lemma 33,

ElVIg, e <2714 — ¢xlloo P(Qnp(1)°)

27014 — g« C.16
< 2 oy (©19)
p*n
By the previous bounds on |D;|, i = 1,2,3,4,
2711d — g.llso g "
E|V| < 710g(6‘8|)—|—7 sup 7E”A ” _an 1 )
pin saen) VAR ) | ey »(H)
29014~ gellc 814 o
< ———5——log(e[S]) + ———=1/log(e[S
257@_(]* QSQ_Q* .
< Mlog(ew) + w Tog(e[S|)
HATY Iy \/ﬁ
26 Q_Q*
s wbg(elsl)
Y RVAD

where we choose p = %,UA < ipA and the last inequality follows from the assumption in
Proposition 24 that n > py'.
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To bound the variance, note that Var(T(z) — T(z,)) < EV? and

1 pl
EViq, (<7 / / (050sh(s,t))*dsdt
0o Jo
which follows from applying Jensen’s inequality to the [0, 1]? integral. Therefore,
Var(T(q) - T(q"))

1 1
< 87%)1G — @l 2 P(Qp (1)) + V°E /0 /0 4D} + D5 + D% + D})dsdtlg, ()

27921 — g% 112
< Mg—n* og(e[S|) + 7”A ”2 ts%)l E Qn,p(u) (C.18)
A s,te .
29%14 — ¢ 2|g — g
< M= gl \S|>+Mlog<ersw.
HATY HATY
212|g — g.||?
< ——5—=log(e|S]).
pAn
m

C.6 Proof of Proposition 25

Proof Recall the notations and definitions in as the proof of Proposition 24 in Appendix
C.5 and, in particular, the definition (C.9) and bound (C.11) for V. We again choose
p < %MA = %ps,w\. As Appendix C.5, we have that

V(s,a)l <|VI[lq, e +7 tselzopl)(‘Dl‘ + |Da| + | D3| + [Da|)Lq, )
87 b

where 1 = ps.q-
Since Assumption 1 is assumed, the bounds on D1, Do, D3, D4 are still applicable. There-
fore, by Hoeffding’s inequality and union bound

P(|V(s,a)| > t)

< P(Qnp(psa)®) + P (’Y sup )(\Dl\ + [Da| + [Ds| + |Dal) > tyﬁn,p(ps,a)>
s,te(0,1

8I1d — g«lloo ’
< P|suplp s') — ps.als >p>+P< sup |mp(s’)| >t
(s’es Pesan(s) () (Ps,an — P)\/Ps,a#\ s'eS a5

<> ( (Imn(s)| > p) + P (Wolmn(s'ﬂ > t))

s'eS s,a,A\
3/2 .9
D t“n
<2|s| (exp (—2p°n) + exp (—M))
*1loo
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where my, = pPsan — Ps,a- Then, as py < psqn forall (s,a) € S x A, by union bound
2 3,2
XL At n
P(IV]lw > 1) < 2SP|A <exp <_> + exp <_)>

We first control the first term to be less than 7/2, which is implied by
8 2
n > — log(4S2|Al/n).
PA
Finally, the second term less than 7/2 is implied by choosing

t2

56(|q — q*|| 2
= Tlog(‘lﬁ’ |A|/77)

A

This proves the claimed result. |

Appendix D. Proof of Technical Lemmas: Empirical Measures and
Concentrations

The proofs in the rest of this section is based on the following concentration property of
maximum subgaussian random variables.

D.1 Subgaussian Maximum Inequality

Lemma 39 Let {Y;,i=1...n} be o2-sub-Gaussian with zero means, not necessarily inde-
pendent, then
EZ :=F max [Vik < 2Fok (k-1 + logn)k/z.
1=1...n

Proof For any A > 0, consider an increasing function ¢y (z) = exp(Az'/¥) for z > 0. Since
Z >0,
ONEZ) = \(EZ1{Z > u} + EZ1{Z < u})

< G\(EZ1{Z > u} +uP(Z < u))
< ONEZ +u)

Take second derivatives,
o(z) = k=2 )zl k=2t (A2VE — k4 1);
one can see that ¢y(z) is convex for z > (k — 1)*A\7%. Let u = (k — 1)*A\=*. By Jensen’s

inequality
IAEZ) < E$r(Z + (k — 1) A7)

= e* "1 Eexp(\ max |Yj|)
i=1..n

n
< ekl g EeMNYil
=1
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Since {Y;} are Sub-Gaussian,

2
P(]Yi] > 1) < 2exp (_W>
By Rigollet (2015, Lemmas 1.4 and 1.5), one can show that

log BNVl < log(E[e* 4+ ¢*Y1]) < log(2exp(c?A2/2)) < 402\2.
Therefore,
1/k
A(B k) = tor(52)
1=1...n
<k—1+logn+ 40%)\2.

Rearrange and take infimum over A > 0, we conclude

k—1+1 g
E max |Y;|F < <inf k- +logm —0—402)\)
i=1..n A>0 A

< 2kgk (k—1+ logn)k/2

D.2 Proof of Lemma 33
Proof By definition and Markov’s inequality

P(Qp()) = P (sgp in(y) — ()] > p)

1
< wh [sgp [n(y) — M(?/)Fﬂ
. n 2k
= mE sup Z]I{Yl =y} — uy)
prn Y \i=1
Since Y., 1{Y; =y} — p(y) is n/4 sub-Gaussian, by Lemma 39

. 1 1 _
P p(p)°) < e —5i (2k — 1+ log(|Y)* = eI log(e** 1Y ])*

as claimed.

D.3 Proof of Lemma 34
Proof Note that by Jensen’s inequality,

dm
e ( i,
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So it suffices to show the second claim. By assumption,

dmn
|

Same as the proof of Lemma 33, we use Lemma 39 to conclude that

1
14 < 5 FEsup [ () * 1 4.
L (én) p y

1
4 < ——log(elY]).
L (&) p’n

dmn
ol

Appendix E. Proof of Technical Lemmas: KL Case
E.1 Proof of Lemma 30

Proof

sup f(v,u,a) > lim f(v,u,a) = ebsmfu > essinfu > —||ul| gy
a>0 al0 H

On the other hand, since the sup is achieved on compact K. For optimal «} > 0,

sup f(]/, Oé) S HUHLOO(V) — a;’; log y[e_(u_HuHLoo(u))/azt]
a>0

< ull Loo ()

where the last line follows from that v[e~(=Ilzew)/o] 5 0 and v < p. Also, if af = 0,
the above holds trivially. |

E.2 Proof of Lemma 31

Proof Let a* and o), Use Lemma 30,

sup f(p, u, @) — sup f (b u, @)
a>0 >

o 10g pine 7] + o6 — a*log ple /] — a6

o (0) log i [e~ /00 0] 4 %5 — o* log p[e™ 9/ — o*§
< ég{% |f(,un,u - ’Q7O‘::L(O))| + |f(,U,,’LL - R, a*)|

<21 — oo

< 2 inf [lu = £ll ooy

=2 ul

span
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E.3 Proof of Lemma 32
By definition, on Q, , (1), |un(y) — p(y)| < p. So for all y s.t. pu(y) >0
0 <pn—p<p(y) —p < pn(y)-
Moreover, if u,(y) = 0, then 0 > u(y) — p, we must have that u(y) = 0. So, p, > p and

hence pn ~ p.

E.4 Proof of Lemma 35

Proof First we note that for any x € R

m[efu/oz} m[ef(ufﬁ)/a]

ulea] = e e

Therefore, it suffices to show that for m = puy — pe s.t. > w1, to

a/m[w)]? 2
sup

< ollylld
o e = Ol

Ns,a)

dm
dp

Lo ()
Fix any ¢ > 0, write
a/m[w)]? o/ m[w]? a?mlw]?
SUp ————>— = max SUp  ———=s, SUD o
a>0  p[w] acloclule] MW T azcfulle W]
=: max {J1(c), Ja(c)}.
We first bound Ja(c)

G o= @tlullpos () /02
Jo(c) = sup a’mle ]
a>cllull oy Hnle

—(U+\\ul|L00(u))/Oé]2

For simplicity, let w’ := e~ (“Hlulzow)/a Recall that m = g, — p, so m[1] = 0 and

odme”(tlullLeon)/a12 — ([af /2 (e~ (utllullLoogn)/e _ 1)))2,

Define and note that v := af/2(e~(HlullLeegn)/a _ 1) < 0. Then
am[w')?

plw w2

p[—v]” || dm
= p[wP | pee,
v |2 dm ||?
S Il O

We defer the proof of the following claim:
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Lemma 40 For any j € [0, 2]

’U .
sup [ | < (el o)A - ).
a>cllull Loo () Lo ()
Therefore,
. . dm |I?
To() < [ul[] e (€7 = 1) || == :
w i {l Lo ()

Choose ¢ = 2/ log 2

amw] = max {J1(c), J2(c)}

sup
a>0 ,U'[w]

< e {0l (3 -

H dp

Lo (p)
d
< 9l dm
Hllzoe ()
which completes the proof.
E.4.1 PrROOF OF LEMMA 40
Proof We bound
‘ v = esssup o/ (et FHluloo )/ _ 1)
w’ 11Lo° (1) u
< od/?(e2lulloo g /o 1)
Compute derivative: let 8 = 2[|ul| oo () /@
d . .
%aa/Q(&HuHLw(m/a —1) = a2 ((® = 1)j/2 — Be?)
Notice that when § = 0, the above expression is 0. Moreover, for j € [0, 2]
d
%((65 ~1)j/2-pe’) = (j/2 -1~ B)e <0;
ie. (e# —1)j/2 — pef is decreasing. Therefore, for a > 0
d .
%aj/2(62”u”L°°(u)/a —1) <0;
ie. af/2(e2lzew/o _ 1) is decreasing in . Hence
sup ‘ < sup o2 (Ao /o )

a>c||u||LOO( ) Lo()  axcllull oo ()

= (cllull oo () (e*¢ = 1)

establishing the claim.
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E.5 Proof of Lemma 37

Proof Let u' = u+ [[u|poo(y) and w' = e~/

sup o mn[w] mn[uw] n[w]un(t)[uw] 2

e <un<t>[w1+aun<t>[w] i (1) [w]? )

B A I U I A R G U A

" azo ( W (6)[u] aun<t>[ 177 ap®wP )
(el mafuw) R e )

< 2500 (unu[ T @ }) e O

=: 20PT1 + 20PT;

We first analyze OPTy. Fix ¢ > 0, we separately consider a > cl|uf| e, and a €
[0, c[|ul| oo (u)]- The first two terms

o o () mafw] N gma (L e’
achuHIL)oo(u) (Mn(t) w] " agun(?) [’w’]> achuHIL)oc(#) i (£) [w']?
_ - mp[?2((1 4+ o' Ja)w' — 1)]?
achuHIL)oow) fan () [w']? '

Recall that 1 4+ 2 < e”;ie. (1+u /a)w’ —1 <0. Also, by Lemma 32, on ,, (1), p < fin,
pin(t) ~ pin ~ p. So,

2

ma[?2((1 4+ o' Ja)w' — 1)]? 21— (144 Ja)w') H dmy, |2
fin (8) [w']? B w' L () dpin(?) Lo ()

’ 2 dm 2

< 3/2 u /Oé _ 1 ! H n
< Ha (e (1+'/a)) £ || dpin () || oo
Recall the Taylor series of e®. For all s € S, we have that
3/2/ u
aB/2(e? /e _ (14 /(s Z k3/21<;v

Notice that &k — 3/2 > 0 for kK > 2 and the terms in the sum are non-negative. So, the
above expression suggests that a — a3/2(e¥'()/* — (1 4 4/(s)/a)) is decreasing. Therefore,
on 2, (1)

2
dmy,

dpn(t)

su o3 W] g [u'w ? Allulld e2/c _ 1)2
0 ot ) < hlegnfe )

a>cllullpoo ()

Lo ()
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Also,

sup

o’ < M (W] o [u'w']
a€[0,cllul| oo ()]

2
] 1)
(a?’mn [W'?  am, [u’w’]2>
pn(B)[W']? () [w']?

<2 sup
a€[0,cllull oo ()]

<2 sup <a3 dm, | + o) 2 ’ dmy | )
— LOO
acl0clull ool \ 1|20 () || oo ) O P
< 2(c% + 46) Jul? ’dm" 2
< L) || g, () Lo ()
Choose ¢ = 2, we conclude that
dmy, |*
OPTy < 32||ull? ’ -
L) || dpa () Lo ()
For OPT,, we use Lemma 35.
dm,, ||? W () [u/w']?
OPTy < 9|[ul 1o ) ‘d M
(D) | ey (010
<Ol | |
= Lo %)
(k) Apin () || oo Lo ()
dm, |?
< 36l | 7
L) || dpan (t) Lo ()
Therefore, we conclude that on Q,, , (1)
2 2
3 ( mn[w] i [uw] M [w] pn (1) [uw] > 3 dmn
sup o + — < 136||u||7 o .
o (T ] TP ] Pt P
The lemma follows from considering v — x, which won’t change the left hand side. |

E.6 Proof of Lemma 36

Proof From Si et al. (2020), it is sufficient to consider a € [0,6!||ul|fo(,)] =: K. For
a > 0 fixed,

my [w]

i (8) [w]

Also, for a = 0, by Lemma 32 and p < %Mm gn(t,0) = essinf, u; hence 0;9,(t,0) = 0.
Again by Lemma 32 p,(t) ~ p on €, ,(1). So, the Radon-Nikodym theorem applies: For

8tgn(t7 Oé) =~
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fixed t € [0, 1],
. : M [w]
lim  sup Orgn(t, )] < lim sup « ‘
alo se(tie)ﬂ[o,l]’ tgn(f: )] al0yepo] | n(t)[w]
=lim sup « ;,u (t) [ @i ”
a0 ¢e0,1] i (£) [w] dpin(t)
. ‘ dmy, (E.1)
<lim sup «
al0 gefo1] | dpn(t) || oo ()
< lim
ald pn —p
=0.

where we used Holder’s inequality to get the second last line. Therefore, d.g(-,-) is contin-
uous on [0,1] x K.
Next define

O(t) := arg max g(t, a).
acK

To simplify notation, we use the w to denote w = w(t) = e~/ We discuss two cases:

1. If u is p-essentially constant with [|u| ;e (,) = @, then

sup —alog e _ 0§ = sup 4 — ad;
acK acK
ie. O(t) = {0}.

2. w is not p-essentially constant. Note that when o > 0, w > 0; we can define a new

measure e H Mn(t) [w] '

We have that

(] (Ol

aaaagn (t> a) = Oé?’,un (t) [’LU] Oés,un (t) [’LU]2

(¢ u2 (¢ ’LL2
_ _un(a)g[ I un(a)g[ ]
Var%(t)(u)
a3

< 0;

i.e. gn(t,-) is strictly concave for a > 0. Also, recall that g,(¢,-) is continuous at 0.
So, in this case either ©(t) = {0} or ©(t) = {aj;(t)} where 6~ H|ul| () > aji(t) > 0.

In particular, O(¢) is a singleton which we will denote by «} (t) in both cases. We
conclude that by Shapiro et al. (2014) Theorem 7.21, the following derivative exists

dy sup gn(tv Oé) = Ssup atgn(tv a) = 6tgn(t> a;(t))
acK aco(t)
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Next, we analyze the second derivative. We prove that under Assumption 1, we have
that on Q, (1) @ =0 or a* > 0 will imply that aj;(t) = 0 or «;(t) > 0 respectively.

Let p = pu({y : u(y) = essinf, u}) and p,(t) the mixed version. Since p, < p, if p =1
(thence a* = 0), then we automatically have that p,(t) = 1 and () = 0.

Now we consider the case p # 1. Notice that by definition of Qy, (1), p—p < pn < p+p.
There are two cases:

1. o = 0. From Hu and Hong (2013), a* = 0 iff p > e7. If we want o (t) = 0 for all
t € [0,1], a sufficient condition is that p,(t) > p —p > e°.

2. a* > 0iff p < e, If we want o (t) > 0 for all t € [0, 1], a sufficient condition is that
pu(t) <p+p<e

Therefore, for any e™® # p C {u({y:u(y) <t}):t € R}, we can always choose p small
enough s.t. for w € Q, (1), pn(t) is close to p for all ¢t and the above sufficient conditions
hold.

Remark 41 While this generalizes to all but finitely many 9§, for simplicity of presentation,
we assume Assumption 1 that pp/2 > 1 — e 9.

So,if p#£1,thenl—p>pupr >1—e % ie p<e 9 and case 1 cannot happen. Therefore,

o = 0 iff u is p essentially constant. Moreover, by our choice p < % LA,

3 1 s
p+p§1—1uA<1—§uA§e

satisfying the sufficient condition in case 2. Hence our assumption on p implies that if
a*=0or a® >0, then on w € Q,, (1), a;,(t) =0 or a;,(t) > 0 for all ¢t € [0, 1] respectively.

1. o* =0, then g,(t, a5 (t)) = gn(t,0) is constant. Hence didign (¢, o (t)) = 0.

2. a* > 0, then o (t1),a’(t2) > 0. Since g,(t,-) is strictly convex, « (¢) is the unique
solution to the first order optimality condition

o
POINOITE (E2)

Note that Jngn, € C*°([0,1] x Ryy) and that 0,0a9n(t, o (t)) < 0. The implicit
function theorem implies that o (t) € C1((0,1)) with derivative

0= Oagn(t, ap(t)) = —log pin(t)[w] — 0 —

pn()[w] o (Opa(t)w]? g () pn () [w]

(A8 Y (ol n(Ofuslmale] el )

o [w]
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is C1((0,1)) as a function of ¢t. Therefore, g, (¢, o (t)) is C?((0,1)) with derivative

dtdtgn(t ay, (t))
= dtatgn(t @ (t))
2

3
L
E

maf] gl mgfuum(t) )
i@ T e <un< Dl " @ O0] @) Dl )
]

— my [w]? ay (1) My, [w] mpluw] Mg [w]pn () [uw] 2
= o) P <Var t<u>> <un<t>[w1 T (O[] a:z(tmn@)[wP)

Therefore, Lemma 36 summarizes these two cases. |

S

E.7 Proof of Lemma 38

Proof
First, we note that if 1 (¢)(y) > pn(t)(y) > 0, then by Lemma 32, 1% (t)(y) > pn(t)(y) >
3. So, we will only consider cases where % (¢)(y) < pn(t)(y). We now fix any such y.
By Lemma 36, under the given assumptions o > 0 implies that o (t) > 0. So, the KL
constraint is binding; i.e. 6 = Dk, (1) (t)||un(t)). By the log-sum inequality,

5 = Dis o0l = w00 1o (L) 0 o) o (1= 22400 )

Define 1
q —4q
—qlog (L) + (1 - ¢)1
kl(q,b) qog(b)+( q) 0g(1—b>
where we think of b = 1, (¢)(y). Observe that for ¢ € (0,b)

0q04kl(q,b) = 1 + % > 0;
i.e. kl(-,b) is strictly convex and the maximum is achieved at ¢ = 0, k:l(O b) =log(1/(1-0)).
Since b € [3pun, 1 — 3], we have that log(1/(1 — b)) > log(1/(1 — 3un)) > 3ps > 6. So,
by the convexity, continuity of kl(-,b) and kl(b,b) = 0, there is unique ¢* € (0,b) s.t
kl(¢*,b) = §. Now we bound such ¢*.
Since dgkl(g,b) < 0 for ¢ < b, by the fundamental theorem of calculus and convexity
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Note that for ¢ < b
(b—q)(q+b— 2gb)
2(1 — b)2b?

i.e. ((q,-) is increasing. Suppose to the contrary ¢* < %,um then

kl(q*,b) > C(q",b)

> inf ¢(q*,b)
bE[2 pn,1—2 pun]

= (q*, zuA)

1
94 HN

dbC((L b) = >0

However, by assumption, ﬁ“/\ >0 > kl(q*, pn(t)(y)) > pun. Hence ¢* > %MA- We conclude
that i (t) > Spn. [ |

Appendix F. The Empirical Robust Bellman Operator: y, Case

To analyze the variance-reduced Q-learning for the s case, we establish important statis-
tical properties of the empirical DR ellman operator T and its recentered version H. We
defer the proofs to Appendix H The proof techniques are similar to that in Appendix C.

We let T be the empirical DR Bellman operator formed by n samples defined in (5.5).
Define the recentered operators ﬁ, H as in (A.1). We fix ¢ € RS*A,

Proposition 42 Suppose Assumption 3 is enforced. Then

|E[E(q)(s,a) — H(d)(s,a)]| < 26Hqiiq*”oolog(e\sl)a
AV
provided n > p/_\z, and
o 211G — qu||%
Var(H(q) (s, ) < 2L 4l g cjs))
pPAn

for alln > 1.

Proposition 43 Assume Assumption 8. Then w.p. at least 1 — 7

I7400) ~ (@) < 2122 g CaISPTAT

provided that n > 8p,*log(4|S|?|A|/n)

Proposition 44 The empirical DR Bellman operator

2@ - 7o) < 2 0] oy STATISTV R )

w.p. at least 1 — 1, provided that n > 8p,2log (12|S]|A|(|S| V [R|)/n).
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Appendix G. Analysis of the Variance-Reduced Q-Learning: y, Case

We proceed with the analysis of the variance-reduced DR Q-learning Algorithm 2 in the yo
divergence case, similar to the KL case. Specifically, we aim to show that if the ¢g-function
from the last variance-reduced algorithm epoch, §¢;_1, is within a certain error b of the
optimal ¢*, then ¢; will have a better concentration bound by a geometric factor. This is
summarized in Proposition 45, which is analogous to Proposition 10 in the KL case.

Recall that F; denotes the o-field generated by the random samples used until the end
of epoch I. We define the conditional expectation E;_1[-] = E[-|F;_1].

Proposition 45 Assuming that Assumptions 2 and 3 are satisfied. On{w : ||§1—1 — ¢*|lcc < b}
for some b < 1/(1 — ), under measure P,_1(-) := E;_1[1 {-}], we have that there exists nu-
merical constant ¢ s.t.

b b b
q — q* o S € < + +
e N e e R T ol e Ve

1
+ Cp/\(l——y)Q\/nTl\/lOg (3d/n)

w.p. at least 1 —n, provided that m; > 8px2log(24d/n) and ny, > py°.

) log (3dky: /7)?

Proof [Proof of Proposition 45| We recall the proof of Proposition 10 in Appendix B.3.1.
We have that by (B.12), under P,_1, on {w : ||§1—1 — ¢*||co < b}

k

gkt — @ lloo < X {20+ D 1 Qujlloo | + 1Qukr1lloo +
j=1

2|| Dtloo

— (G.1)

w.p.1. The sequence {Q;; : j =1,...,k + 1}, by (B.13), satisfies

kvr
eor 2 1Qujlloo + 11Qukr+1lloo
j=1
)\ 1 1-—- kvr —1]loco —1l]jco )‘
<s< bologlet (L= Dlltr e Joo o k”)log(él\SHAlkvr/"?)

w.p. at least 1 — 7, where we recall that

1¢6-1ll0e = lldi—1 — ¢*I,
loia ]l = (o f)ﬂeagmVarH(Hl,k((jlfl)(s,a)).

Therefore, by Proposition 42, we have that

kvr
b O 1Qu

j=1

oo T ||Ql,kvr+l||oo

b b
<
= ((1 - 7>2kvr T p/\(l - 7)3/2\/ nvrkvr

)log (4|SHAV<5vr/77)2
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for some constant c.
Moreover, recall the definition of D; in (B.14). By Propositions 42, 43, and 44, we have
that

Tmax + ‘q*’s an + HQZ—I - q*HOO ||(jl71 - q*Hoo
Dil|loe < c P log (12d/n) + c———————+/log(e|S
D o Viog (124]) + et LI fiog e[S

log (12d/1) + ¢ log(e[S])

1 b
<c—
a p/\(l - 7)\/ my PAN/Movr

for some constant ¢ that can change from line to line.
Combining these bound with (G.1) and apply union bound, we conclude that

b b b
+ +
- V)kar P/\(l - 7)3/2 V nvrk;vr p/\(1 - 7) \Y% Ny

CPA(l — {y)QM\/log (24d/n)

w.p. at least 1 — 7. Recall the definition in Algorithm 2 that ¢, +1 = §-
Finally, we adjust the constant in the log factor using the inequality for C; > 1,C5 > e,
log(C1C%) =log(C1) + log(Cy) < C1log(Cs). This completes the proof. [ |

i~ e < e ) to (s /0

+

Given Proposition 46, we apply the analysis techniques for the variance-reduction iter-
ates in the proof of 46. This yields the following Proposition.

Proposition 46 Assume Assumptions 2 and 3. For ¢ < (1 —~)~L, define parameters ac-
cording to(5.6). Then, the statement of Proposition 11 hold; i.e. the sequence {G;,0 <1 <l }
produced by Algorithm 2 satisfies the pathwise property that ||§ — q*[|ec < 2741 — )71
for all 0 < I < Iy w.p. at least 1 —n. In particular, the final estimator §,, satisfies
Ndn, — @ lloo <270 (1 —~)~! w.p. at least 1 — 1.

Proof [Proof of Proposition 46| Follow the proof of Proposition 11, we only to validate
(B.16) given the parameter choice in (5.6). By Proposition 45, conditioned on ||g;—1—¢"||cc <
2701 — )=

. b b b 9
— "l < log (3dky,
g — ¢ llo <c <(1 — )2k + pa(l— 7)3/2 fmockor + pa(1—7) Tvr) og ( /)
1
+c log(3d/n)

pa(l —)2/my

w.p. at least 1 —n.
Therefore, it is easy to see that by the parameter choice (5.6), we have that for sufficiently
large cyy and for events w € {||gi—1 — ¢%[|oc < 2~ (=11 — 7)1},

Pt (1l —aulle <270 =) ) (@) 2 1= 7

validating (B.16). Following the same arguments as in proof of Proposition 11 will yield
Proposition 46. |
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Now, we prove Theorem 18.
Proof [Proof of Theorem 18] By Proposition 46, under the parameter choice (5.6), ||d,, —
q*|lco < € w.p. at least 1 — 7. The total number of samples used is

l

vr _ 1 4lvr
SIA| | lyenorker + m :O<SA < + ))
""( Z;l) SIA = T wma =

This yields the sample complexity bound in Theorem 18. |

Appendix H. Proofs of Properties of the Empirical Bellman Operator: y»
Case

We first define some notations that mimic the definitions in Appendix C. Again, we override
the notations for the KL case. For generic probability measure p on (Y,2Y) and random
variable u : Y — R, let w = (o — u)4; define the x2 dual functional under the reference
measure fi as

Fluu, o) = a — c(O)ufw?)?. (H.1)
Recall the dual formulation of the DR Bellman operator (5.4), we have that

T(q)(s;a) = sup f(Vs,a,id, B) + ysup f(ps,a, v(q), @). (H.2)
BER a€R

Next, we present two important lemmas that underlie our analysis of the DR Bellman

operator in the yo case. First, we characterize the optimal Lagrange multiplier in the dual
formulation (5.4).

Lemma 47 For § > 0, f(u,u,«) is second continuously differentiable and concave for
a > essinf, u. The supremum is achieved at essinf, u < a* < 00, i.e. sup,eg f(@,u, ) =

f(uyu,0%), satisfying

plw?] = e(6uful®. (1.3
Moreover, if a > essinf, u, then
: plwl {-}]
wi() = ——m——. H.4
()= (H.4)
18 a worst-case measure satisfying
wlu] = f(p,u, ) = inf W] = inf AOE
g ( ) W'Dy (W || 1)< g WDy (W || 1) =6 ]
1.e. the xo2 constraint is active.
Finally, if o = essinf, u, then the measure
N p1{U N3]
()= M0 (H.5)

w(U)

where U := {s : pu(s) > 0,u(s) = essinf, u} is a worst-case measure.
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With this lemma, we can show that under Assumption 3, the optimal Lagrange multi-
plier o* is sufficiently large so that w = (a* —v)y = a* — v a.s.u.

Lemma 48 If § < Su := ming, (50 H(8), then a* > esssup, u. Moreover, if u is not p
essentially constant, then a* > esssup, u

The proofs of these Lemmas are deferred to Appendix I.

H.1 Proof of Proposition 42

As in Appendix C.5, call V := H(§) — H(§) = (T(§) — T (q )) (T
Recall the following notations in Appendix C.5: v = tv(q) + (
m =1p— pn, and pu(t) =tp — (1 — t)p,. Let

h(s,t) := sup f(u(t),vs, ).

a€ceR

We consider €, ,(p) with p < iuA. Then, by Lemma 32, we have that p ~ p, ~ u(t)
on Q,,(p). Also, recall that aj, is the optimal Lagrange multiplier that satisfies the
conclusions of Lemma, 47.

First we note that if v(§) and v(g*) are both u essentially constant, then V' = 0, and
the claim of Proposition 42 holds trivially. Moving forward, we consider the case at least
one of v(¢) and v(q¢*) is not p essentially constant.

We proceed to show the differentiability of A in this setting. This is summarized by
Lemma 49. The proof of this result is deferred to Appendix I

Note that Assumption 3 implies that § < % LA -

Lemma 49 Suppose § < %,u/\ and p < %,u/\. If at least one of v(§) and v(q*) is not u
essentially constant, then on Q, (1) there exists function s,t — D*h(s,t) s.t.

1 1
S, a 2 S S .
Vs, )IS’y/O/O|Dh(,t)\ddt (H.6)
w.p.1, where
2 (s. 1) — () [Ayws]m[w?] _ m[Ayws] o mlw?] _ mws]
Dhis: ) = | ) fwslp@w?] ~ p(®)lwa] } s <2u(t)[w§] u(t)[ws]> (H.7)
=: D1+ D>

with
c(8)?p(t) [ws]p(t) [Av] — p(t) [wsAy]
(c(0)? = 1)p(t)[ws]

We analyze the two terms separately. Recall that w,; > 0. Similar to the techniques in
Appendix C.5, we have that on €2, , (1) with p ~ py, ~ p(t),

(L.8)

* JR—
8504871& =

p(t)[A vws
2p(t) [ws t

‘HA ol

1 || H dm

< = el

Leo(p)

66



VARIANCE-REDUCED DISTRIBUTIONALLY ROBUST Q-LEARNING

and
m[A,ws] dm_
S Wl | Lot
Hence on €y, ,, (1),
Dl < D1 ||
Lo ()
For D5, we note that
‘3 o ’ _ C(5)2#(t) [ws]pu(t)[Ay] — p(t)[wsAy]
et (c(0)? = L)pu(t)[ws]
— s [0l - L0k
o(8)2
LN
Next, we consider
mwi]  mwg]  mf(ws — p(t )[ s))?] + 2mlwslp(t)[ws]  mlws]
2u(t)[wi]  pt)|ws] 2p(t)[w3] p(t) [ws]
m{(ws — p(t)[ws))?]  (c(6)* — )m[w,]
2¢(0)?p(t)[ws]? c(0)?p(t)[ws]

where we use the optimality condition (E.2) to replace p(t)[w?] with ¢(6)2u(t)[ws]?. Then,

21| ﬂw - ws])?
‘m[(ws — u(t)[ws)) ]| = "u(t) [du(t)( s — p(t)[ws]) :|
< () [(ws = p(){ws])’] 6% L5 (1)
> (p
= (03] - w0 f?) | 5 w
> (p
e 2| dm_
= (0" = Dl | 25|,

where we also apply (E.2) and pu(t) ~ u. So,

(c(9)? = ym[w]
c(6)?pu(t)ws]

m[w?] m[ws
2u(t)[w3]  p(t)[ws

’ m M(t) [ws))?]

ws]?
i ‘1H

67

IN

L°°(u



WANG, Si, BLANCHET, ZHOU

Therefore, we have that

[ ] m[ws]
el = 10sesel | 3] ~ ntwd
g 3(0 +1 H
dm
§3HA1)HooHdu(t) Lo ()

as c(6)2=1+25 > 1.
So, on Qy, (1),

9
[050th(s, )] < D1+ |Ds| < 5 [ Al Hd

Lo ()

Recall (C.16) and (C.17), we have that
29014 = gellos dm
ElV| < —————=log(e|S|) + 57||Ay|]|cc sup F 1o,
| n S| 1A o ) B
25“(.?*(1*”00 51G — g«lloo
< ——————log(e|S|) + ———=———+/log(e|S
22 log(efs) + 2L g (efS)
25Hq_Q*”oo 2OHQ_Q*HOO
< ——————1log(e|S]|) + ——————+/log(e|S
A1 og(els]) + LT log (S
26“@‘@1*”00
< —————log(e|S
< 2l pogefs)

where we choose p = %M/\ < ip A and the last inequality follows from the assumption that
n > p/*\2.

To bound the variance, we use the same techniques as in (C.18) and conclude that for
n>1

1 1
Var(T(§) — T(0") < 822114 — |2 P(Qup(10)°) + 12 /0 / 2<D%+D3>dsdtnm "

27 (j g«
< 20— el o) + 2418, 2 sup gl tanm
HAT 5,t€(0,1) Loo ()
T A 910
< gglﬁljzfﬁﬁﬂzzl g(elS)) + AAAJBL——f@JL531 g(elS]).
an JNLG

211 — g. 1%
2T Blloo 50 (elS
o g(elS]).

This is the variance of H(§) as H(q) is deterministic.

IN

H.2 Proof of Proposition 43

Proof Given Lemma 49, we directly apply the arguments in Appendix C.6.
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We have that w.p.1,

V(s,a)] < |V[la, e +7 tSeLEg)l)(|D1| + [D2)1q, ()

where 4 = psq. Recall the choice p < %,u/\ = %ps,a/\- By Hoeffding’s inequality and the

union bound

P([V(s,a)| > 1) < P(Qnp(ps,a)®) + P (7 S%)l)(lDll + [D2f) > taQn,p(ps,a)>
s,te(0,

g —q
< p <sup Poan(s) = poals)| > p) P (7” oo g m(s)] > t)
s'eS Ps,a,A — P seS

<> (P >+ P (ML=l ) )

S,a,/\

2 42
P t“n
< 2|S| (exp (—2p2n) + exp <_32HZCL7—Aq E ))
*1loo

Then, as pp < psqn for all (s,a) € S x A, by union bound

pin p2tin
P(|[Vloo > t) < 2IS]*|A <eXp(_>+eXp<_A ‘
i )= 2SEA 8 3272114 — g+ [13%

We first control the first term to be less than 7/2, which is implied by
8
nz oy log(4|S[*|A/n).
A

Finally, the second term less than 7/2 is implied by choosing
_ 329°)lq— ¢
pAn

This proves the claimed result. |

2 log(4|S|*|A|/n).

H.3 Proof of Proposition 44

Proof We recall the bound (C.4). If v(q) is essentially constant w.r.t. ps o, then T(q)(s,a) =
T (q)(s,a). Therefore, we then focus on the case that v(g) is not essentially constant.

Again, we fix p < %p/\ < %MA and thus on Qy, (1), 1t ~ pn, where pp = vg 4 Or ps 4. So, if
u is not essentially constant, by Assumption 3 and Lemma 48, we have that

Sllp f(una u7 Oé) - f(lu’nv U, CY:;), Sup f(lu’a U, Oé) - f(lu’u u7 OK*)
a€R a€eR

* * .
for some a;,, a* > ess Sup,, u =: uy.
Then, as in (C.4) we analyze

sup |f(/‘m U, a) - f(:u’ U’O‘)| :

a>uy
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Since @ > uy, p[w?] > 0 and f is differentiable in y on 2, ,(1). By the mean value theorem,

£, 0,0) = £ ,0)| = (6 5 () ]~ 2mfu?]

:1VMa—m%
2| u(r)lo— ]

for some 7 € [0, 1] where we used (H.3) and pu(t) = tp+ (1 — t)p,, and m = p — pp,.

We first consider when o > 2 ||ul|,

Sup |f(un7 ’LL,O() - f(ﬂ, u7a)|

a>2lull
2 2
< sup l'm[a 20w + u?|
as2lul. 2| a— p(7)[y]
< sw amu] N 1 m(u?]
~ a2l = p(M)ul| 2 o= p(r)[u]
- 1 2
< sup Qo p@U)mid| pOmid| | L] mlu]
as2lul, | @ — p(T)[u] a—p(m)[ul| 2 |a—p(r)ul
0 u(r)l] 1 mfu?
< )+ |50 gl + 5
[[ull o Kl
< [|ull o sup [m(y)]
yey
where (i) uses that o > 2 ||ul|, and hence o — p(7)[u] > [Juf -
On the other hand, if uy, < o <2 ||ul|,
1| m[(a —u)?
sup ’f(:u’TMua Oé) - f(Ma% Oé)‘ S sup a ‘
uy<a<2ull. uy<a<2|ull, 2 | #(T)[er — u]
1 mla — ul
< sup o glla -l |
uy<a<2|ull 2 (1) — ul
<3 I _dm_
-2 o0 dILL(T) LOO(H)
3
< 2 vl o sup |m
5 llul i —pyey| ()]
2||u
< s g )
A yeYy

where the last two inequalities follow from Lemma 32 and p < i LA
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Therefore, we have

P (sup (s 0) = Fltyu, )] > t)

a€cR

< P(Qup(p))+ P <sup | f (pony uy ) — f(p,u, )| > t,Qmp(u))

a>vy
) 2 Jull.
< P (suplun(y) —puly) >p) +P sup |mq(y)| >t
Y MA  yey
2,2
<2) <exp(—2p2n) + exp <—2MHA”Z
u
Y oo

242
< 2|Y| (exp(2p2n) + exp (u/\?;
2Jull%

where we used Hoeffding’s inequality and union bound.

Therefore, going back to the DR Bellman operator setting, we choose p = ip/\. By
union bound

P(|T(q) = T(q)lloc > t)

<P (sup sup |f(Vs,a,n7ida /8) - f(Vs,av id, B)’ > t)

s,a BER 2

ip (sup 5D |F (D 0(@),B) — F(pearv(a). B)] > t)

s,a CXGR 2

2n 2¢2n,
< 2(S7IA T+ SIAIRD exp (72" ) + oS LAl R exp (-~ 225" )

6412,
2t2
+2ISP[Afexp [~ A
6472 [|ql|5%

We set each of the three terms to be less than 7/3 and find that it suffices to have

8
n> p710g(12|SHA|(!S| VIR[)/n)
A

and
S(Tmax+7‘Q| )
t> PR 1og (6]S]|A|(IS] Vv IR|) /7).
> o/ Vlog (6[S[|A[(S] v [R])/n)
This implies the statement of the proposition. |
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Appendix I. Proof of Technical Lemmas: y,; Case
1.1 Proof of Lemma 47

Proof First, we note that for every u and pu, f is continuous in «. Differentiate, we see
that f(u,u,-) is C! with derivative

1

Oaf (.10, ) = 1 — (8 plw?] " pfu] (L1)

which is again continuous. Differentiate again, we get that

3

Baef (11, 11,0) = e(8) ()% pw]? — plw?) "3 p[1 {a > v}])
= c(@uw?) ™% (plot {a > v} = plw?ult fo > 0)])  (12)
<0

when a > essinf,, u, where (i) follows from Jensen’s inequality. Moreover, this expression is
continuous for oo > Therefore, f is second differentiable and convex in o when o > essinf, u.

As we commented after Lemma 17, it suffices to optimize over o > essinf, u. By the
continuity of f and d,f in o and convexity, if the optimizer essinf, u < o < oo, it must

satisfies
1

0= o f(p,u,a*) = 1 — e(8)uw?] 2 pfuw];
which is (H.3).
Next, we handle the boundary cases a® = oo and o* = essinf, u. Notice that rewriting

(H.3) as
g [(Mﬁ])gl = <)

we see that for § > 0, a* # oo, because otherwise ﬁ =1 a.s.u. and the above equality
cannot hold.

On the other hand, if a* = essinf, u, then (H.3) holds trivially with w = 0.

Then, we show that (H.4) is a worst-case measure. It suffices to check that p*[u] =
f(p,u, *) and Dy, (p*]|pn) = 6. We have that

. plwu]
' [u] Ll
e et )1 o > u} (0 — w)
pulw]
_ e ]
pulw]
2 a* = e(0)?ulu]
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where (7) and (ii) follows from (H.3). Moreover, by definition (5.1),

Dm@W@—éMK?Z—Qj

2| (G’
:;<ﬁ%§+1‘@
9 (e 1)

=0

again (i) follows from (H.3).

Finally, clearly p* defined in (H.5) satisfies p*[u| = essinf, v = f(u,u,a*). So, to show
that p* is a worst-case measure, it suffices to check that D,, (1*||p) < 9.

To show this, we observe that if a* = essinf, u, then by convexity we must have that
for all sufficiently small € > 0, 0o f (1, u,* + €) < 0. Otherwise, a* = essinf, u cannot be
optimal. In particular, let w(e) = (a* + € — u)4, then by (I.1), we have that

plw(e)’] < c(8) plw(e)]*.

Note that if € is sufficiently small, i.e. when o + € < u(s) for all s ¢ U and u(s) > 0, then
w(e) = ely. Therefore, we must have that

plly] < c(8)*ully]*;

ie. u(U)~! < ¢(6)?. With this bound, we now compute

1 1y 2
Dy, (W |p) = 1 ( - 1)

1 1

=—|—-1
2 (u U) )
1

<5 (e’ = 1)

= 0.

Therefore, this proves Lemma 47 |

1.2 Proof of Lemma 48

Proof
If w is p essentially constant, then essinf, u = esssup, u = «*; i.e. the statement of
Lemma 48 holds.

73



WANG, Si, BLANCHET, ZHOU

Next, we prove that if u is not p essentially constant, then § < %M/\ implies o* >
esssup, u. To achieve this, we first show that a* > essinf, v under these assumptions.

We prove this by assuming a* = essinf, u and raising a contradiction. By Lemma 47,
w* defined in (H.5) is a worst-case measure. Hence,

6 > Dy, (17| )
2
-y </~L]ég) - 1) ]
)

where (7) follows from the assumption that u is not u essentially constant, so

U= {s s u(s) > 0,u(s) = essinfu}
o
cannot be of probability 1. In particular, by the definition of pa, u(U) < 1— pun. Therefore,

rearrange terms, we have that
)

7

1
L= pn

s

1
>
-2

N | =

ie. 0> %/M\) contradicting our assumption. Therefore, o > essinf,, u.

Using this, we then show that if u is not u essentially constant, § < %/JA, and a* >
essinf, u, then o > esssup, u.

We prove by contradiction, assuming that essinf,u < a® < esssup,u. Since a* <
esssup,, u, we must have that for some s’ € S s.t. pu(s’) > 0, w(s') = (@* —u(s)); = 0. By
Lemma 47, p* defined in (H.4) is a worst-case measure when o* > essinf, u. Moreover,

0 = Dy, (1" [l1)
1 w 2
A [(m -1) ]
> %N(S/)

contradicting the assumption. Therefore, a* > esssup, u. This completes the proof of
Lemma 48. |

1.3 Proof of Lemma 49

Proof
By assumption, we are interested in empirical measures that satisfy €, ,(¢) (c.f. (C.3))
with p < i,u/\. Then, by Lemma 32, we have that p ~ p, ~ pu(t) on Q, ,(@).
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We first fix s € [0,1]. Let us denote vsy := esssup,, vs. Recall that by Lemma 48, when
0 < %Mm it suffices to optimize the Lagrange multiplayer in [vs/,00). We have

OuF (1), v ) = — e(Bymlu?u(t) w?] >

S S

where ws = (o — vs)4+ = o — v. It is not hard to see that 0, f(u(t),vs, ) is continuous on
[0, 1] x[vs v, 00) even if v is essentially constant (in this case we note that O f (u(t), vs, vsv) =
0).

Next define

O(t) := arg max f(u(t), vs, ).

a>vs,v

We discuss two cases:

1. If vs is p essentially constant, then for o > v, v

F(u(t),vs, @) = o = e(d)(a = vs,v) = (1 = e(6))r + ¢(S)vs,-

Since ¢(0) = 1+ 26 > 0, this is maximized at O(t) = {vs v }.

vs is not p essentially constant. Note that then by Lemma 48, oo > esssup,, vs, @ > v
a.s.pt (hence p(t)). Recall that the second derivative in (1.2),

aaaaf(ﬂ(t)7 Vs, a)

= c(é)u(t)[wg]_% (Iu,(t) [ws]l {Oé > US}]2 - /’L(t)[wg]u(t)[]l {Ck > US}Q]) (13)
— o(8) () [w?] ™% (p(t)ws)? — p(t)[w?)

<0

Nl

where the last inequality follows from that ws is not p(t) constant, hence the variance
is positive. So, in this case f(u(t),vs, ) is strictly concave. Thus, O(¢) is a singleton.

Therefore, in both case, ©(t) is a singleton. We conclude that by Shapiro et al. (2014,
Theorem 7.21), the following derivative exists

dy sup f(u(t),vs, @) = sup O, f(p(t),vs, )
a>vs,v a€cB(t)

— O (u(t), vy ) (L4)
= —gelOmpuAu(t)u?] .

S

where it is understood that ws = (af; — vs)y = af; — vs. Therefore, we have shown that
t — h(s,t) is C1(0,1) N C[0,1]. Hence,

[V (s,a)| =~ |h(1,0) — h(0,0) — h(1,1) + A(0,1)|

1
— / (1, 1) — (0, 1)dt
0
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Next, we show that for any fixed ¢, there exists a mapping s — Ds0:h(s,t) s.t. (C.12)
holds.

We note that by Lemma 48, o, = vsy only when v is essentially constant. Again,

assuming that at least one of v(§) and v(¢*) is not u essentially constant, as in the proof of
Proposition 24, this can only happen at one particular s = s*.

We separately consider these two cases:
Case 1: v is never essentially constant for all s € [0, 1].

In this case, af; > vsy for all s € [0,1]. Note that ws = af; —vs > 0. So, if on Qy (1),
oty is CH0,1) N C[0,1] in s, then by chain rule, s — d;h(s,t) in (L4) is C*(0,1) N C[0,1].

As in the proof of Proposition 24, we show differentiability of s — a5, by invoking the
implicit function theorem. By the strict convexity (I1.3), aj, is the unique solution to the
optimality condition (H.3)

0= c(8)u(t)[wy)? — p(D)[w?] =: F(s,al,).

S

Since F is infinite smooth, the implicit function theorem implies that o, is C*(0,1) N
C[0,1] and s — 9;h(s,t) is C1(0,1) N C[0,1].

We compute the derivative d;0;h in this case. Recall A, = v(§) — v(q*). Differentiate
w.r.t. s on both side, we have

0 = c(6®)2u(t) lwg (DDl — A — 2u(t)wy(Dsat, — A,)]

Rearranging terms, we have

b, = COPHOI)

This gives (H.8). Moreover, when ag, > 0,

0u0h(s,1) = e@)u(t)w?] 3 p() [ AvuZmlu] — c(O)u(H)w]ml A,
+ 0u0, (@Ol b + GOl Ol mfo?

c(9)
(@) [N(t)[Ava]m[wg] _ m[Avwsq
2u(t)[ws]p(B)[wg]  p(t)[ws]

S

where (7) uses the optimality equation (H.3). This is consistent with (H.7).
Case 2: There is a unique s* € [0, 1] s.t. vy is essentially constant.

As in the proof of Proposition 24, in this case, the previous argument implies that
s — Oth(s,t) is C1(0, s*), C1(s*,1), and continuous at 0, 1. The derivative is also given by
(H.7).
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Again, we show the existence of D;0,h that satisfy (C.12). Observe that if s — 9;h(s, 1)
is continuous at s*, then applying the fundamental theorem of calculus on the interval [0, s*]
and [s*, 1] separately, we will have that

* 1

Ouh(1,1) — Byh(0, 1) = / D.0uh(s, t)ds + / 0.0uh(s, 1)ds.
0 s*
Hence, taking Ds0ih(s,t) = 0s0:h(s,t) for every s # s* and Ds0;h(s*,t) = 0 will suffice to
produce (C.12).
It is left to check the continuity at s* of

Ouh(5,6) = 0uf (1) vs, L) = — selO)mlu?](e) w?] 5

from (I.4). Note that on €, ,(p), for all s € [0,1], @ > vy,

—5e(dmla = uu®)llo = v ¥ | < |Gu(Ol(0 v | S0 L)
e
=12 LWy —p
1 1

o = Vsl ooy 5—
2 silL (“)%,u/\

where (i) follows from Lemma 32. Also, d;h(s*,t) = 0. Therefore, if dsaf, — vsry as
s = 5%, then [l — vy[[ oo,y — 0 as s — s*, implying continuity at s*.

It is left to check that asa:’t — Vg v as s — s*. To prove this, we assume to the contrary
that there is a subsequential limit o , — 8 + vs+ v for some sequence s, — s* and 8 > 0.
But by Lemma 47, we must have that

0= lim (6)’u(t)[a}, ¢ — v, )? = p(t)(F, 4 —vs,)°) = 08
n—oo
raising a contradiction. This implies that s — 0;h(s,t) is continuous at s*, and hence (C.12)
holds with D0.h(s,t) = 0s0:h(s,t) for every s # s* and D;0;h(s*,t) = 0.

Therefore, in both cases (H.6) holds with |D2h(s,t)’ is given by (H.7). This gives the

claim of the lemma. [ ]
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