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Abstract

We explore the control of stochastic systems
with potentially continuous state and action
spaces, characterized by the state dynamics
Xt+1 = f(Xt,At,Wt). Here, X7 A7 and
W represent the state, action, and exoge-
nous random noise processes, respectively,
with f denoting a known function that de-
scribes state transitions. Traditionally, the
noise process {Wy,t > 0} is assumed to be in-
dependent and identically distributed, with
a distribution that is either fully known or
can be consistently estimated. However,
the occurrence of distributional shifts, typ-
ical in engineering settings, necessitates the
consideration of the robustness of the pol-
icy. This paper introduces a distribution-
ally robust stochastic control paradigm that
accommodates possibly adaptive adversarial
perturbation to the noise distribution within
a prescribed ambiguity set. We examine
two adversary models: current-action-aware
and current-action-unaware, leading to differ-
ent dynamic programming equations. Fur-
thermore, we characterize the optimal fi-
nite sample minimax rates for achieving uni-
form learning of the robust value function
across continuum states under both adver-
sary types, considering ambiguity sets de-
fined by fr-divergence and Wasserstein dis-
tance. Finally, we demonstrate the applica-
bility of our framework across various real-
world settings.
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1 Introduction

Stochastic control formulations are extensively utilized
in the modeling, design, and optimization of systems
influenced by probabilistic dynamics. These formula-
tions play a crucial role across various fields within
operations research and management disciplines. No-
table applications of stochastic control can be seen
in finance (Merton, 1976), communication systems
(Yiiksel and Basar, 2013), manufacturing and oper-
ations management (Tse and Grossglauser, 1997; Por-
teus, 2002), as well as energy systems (Foschini and
Miljanic, 1993). A key aspect common to these appli-
cations is the use of a continuous state space, which
provides a robust and flexible environment for formu-
lating complex system dynamics. This facilitates the
development of realistic dynamic models that accu-
rately reflect the underlying systems, thereby enhanc-
ing system management and operational efficiency.

The underlying state dynamics of a large class of
stochastic control problems can be described by the
following recursion

Xit1 = f(Xe, A, Wh). (1.1)

Here, X; is the state of the system at time ¢, and
{W; : t > 1} is assumed to be a sequence of ran-
dom variables that are independent and identically
distributed (i.i.d.), representing the exogenous ran-
domness that underlies the stochasticity of the sys-
tem. The action A; taken at time t is based on the
information that the controller has accumulated up
to that point. Then, a reward r(X;, A;) is realized.
The goal is to maximize the cumulative infinite hori-
zon a-discounted reward, for some o € (0,1). In this
setting, it is well-known that Markov policies, which
base decisions solely on the current state X;, are opti-
mal. Furthermore, the dynamic programming princi-
ple characterizes this optimality through the Bellman
equation, describing the optimal value function and an
associated optimal Markov policy.

The Bellman equation can be equivalently expressed
using transition probabilities, rather than relying on
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the specific function f. This is the standard for-
mulation in the theory of Markov Decision Processes
(MDPs). Although stochastic control and MDP for-
mulations are equivalent in terms of modeling expres-
siveness and optimization, assuming a known form of
f, as we have in this paper, presents significant advan-
tages for statistical learning when the distribution of
{W; : t > 0} is unknown. Specifically, this allows for
simultaneous learning across all states when the ran-
dom variables W, are observed. Fortunately, as listed
above, there is a wide range of learning and dynamic
decision-making settings for which the stochastic con-
trol formulation is natural. This is especially the case
for environments with continuous state spaces, align-
ing with the objective of this paper. The following
overviews of examples will illustrate scenarios where
these key features are present. The detailed versions
are presented in Section 6.

Example 1 (Portfolio management). We consider
managing a portfolio of m assets. X; € R™ denotes
the portfolio at time ¢, where X;; is the dollar value
of asset ¢ at the beginning of time ¢t. We can buy and
sell assets at the beginning of each time period. Let
A; € R™ be our decision variables at t, representing
the dollar values of the trades. The state dynamics is
Xt+1 = Wt(Xt-f—At), where Wt = dlag(Rt) € Rm>X™ jg
the a diagonal matrix of asset returns R; € R™. Here,
R; ; represents the return of the i-th asset from period
t to period ¢ + 1.

Example 2 (Service and manufacturing systems). We
consider a simple service and manufacturing system
with make-to-order queues. Let X, denote the waiting
time of the n-th job, W, the inter-arrival time between
the (n + 1)-th and the n-th job, and assume each job
requires 1 unit of work. Let A, be the service rate
chosen by the system manager for the n-th job. Then,
the system dynamics can be written as X,,11 = (X,, +
1/A, — Wy)™*.

However, in practice, the i.i.d. assumptions for
the joint distributions of {W;} will often be vio-
lated. Challenges such as a correlated noise pro-
cess, along with the presence of confounders and non-
stationarities in the environment, can significantly de-
teriorate policy performance in real deployment envi-
ronments. These issues serve as the motivation for
adopting a distributionally robust stochastic control
(DRSC) formulation. The DRSC framework promotes
policy robustness by setting up a dynamic game where
the controller selects an action at each time ¢, while an-
other entity—the adversary—perturbs the distribution
of W;. The introduction of the adversary serves as
a strategic device that quantifies the worst-case risk
associated with model misspecifications. Although
this formulation is natural to dynamic robust decision-

making, the learning aspect within DRSC, particularly
in continuous state space settings, has not yet been
studied. To our knowledge, this paper presents the
first optimal sample complexity results for learning in
such settings.!

Unlike the robust control literature, which often
leads to deterministic optimal controls (Gonzdlez-
Trejo et al., 2002), our study explores two distinct
DRSC formulations where the adversary can be ei-
ther current-action-aware (CAA) or current-action-
unaware (CAU). The key difference between these
models lies in whether the adversary has access to
the controller’s realized action when deciding how to
perturb W;. The presence of deterministic optimal
Markov controls and a corresponding Bellman equa-
tion is not guaranteed to hold under these conditions,
especially when asymmetric information structures are
present (Wang et al., 2023b). Specifically, DRSC
problems with CAU adversaries necessitate random-
ized policies to achieve optimal control. While these
issues have been explored within the distributionally
robust MDP (DRMDP) context (Wiesemann et al.,
2013; Wang et al., 2023b), there has been limited re-
search focusing on differentiating between CAA and
CAU formulations in robust control settings, or on
their implications for learning. Nevertheless, recogniz-
ing these distinctions is crucial from modeling, learn-
ing, and optimization perspectives. CAU formulations
typically result in less powerful adversaries, leading
to less conservative controls, although they may be
challenging to learn and optimize. Conversely, the
more conservative CAA formulations may be more ap-
propriate models for highly competitive environments.
These modeling considerations are exemplified and dis-
cussed in Section 6.

Our formulation contribution extends to establishing
the existence of dynamic programming principles, ex-
pressed as DR Bellman equations, for both CAA and
CAU adversaries, which guarantee the optimality of
stationary Markov policies in the discounted infinite
horizon setting. Although this contribution is funda-
mental, it is presented in the supplemental materials
due to space constraints. Establishing this dynamic
programming principle lays the groundwork for the
other main focus of our paper: the statistical complex-
ity of learning the DRSC values, which equal the so-
lution of the corresponding Bellman equations, across
a continuous state space.

Tt is important to note that the field of Distributionally
Robust Reinforcement Learning (DRRL), which is closely
related, is quite active. While discussing the differences, it
is crucial to highlight two key distinctions: firstly, the func-
tion f is known in our context, and secondly, much of the
DRRL literature focuses on discrete state-action spaces.
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Table 1: Summary of our results on the statistical com-
plexity of achieving minimax learning of the DRSC
value function in the uniform norm. The © suppress

a gap of v/logn.

Ambiguity Set Type Action Complexity
. CAA Continuum “1/2
Wasserstein CAU  Finite © (n )
. CAA Continuum </ __ 1
Ji-divergence it pinite © (" i ”)

Our results on learning complexities involve two types
of admissible adversarial decisions affecting the dis-
tribution of {W; : ¢ > 0}, characterized by Wasser-
stein distance and fy-divergence ambiguity sets. These
represent the main types of distributional ambiguity
in the field of distributionally robust optimization.
Wasserstein ambiguity sets effectively capture model
errors at the outcome level, while fr-divergence sets
hedge against misspecifications in the likelihood of
possible outcomes. In Table 1, we provide a summary
of the sample complexity results for each of the four
cases studied in the paper. The cases are based on the
visibility of the current action to the adversary (CAA
vs. CAU) and the type of ambiguity sets (Wasserstein
distance vs. fg-divergence).

1.1 Literature Review

Distributionally robust stochastic control is not a new
concept in the literature. Yang (2021) investigate a
setting aligned with our current-action-aware formu-
lation, employing a Wasserstein uncertainty set. In
contrast, Petersen et al. (2000) consider an uncertainty
set based on Kullback—Leibler divergence. For linear
systems, where f is linear on X;,4;, and W;, distribu-
tionally robust stochastic control has been explored by
several authors (Taskesen et al., 2024; Kim and Yang,
2023; Han, 2023; Kotsalis et al., 2021). Nonetheless,
existing research predominantly focuses on character-
izations of the optimal policies or the development
of tractable optimization methods. In our study, we
address the statistical complexity associated with the
learning problem.

Our work is also closely related to the literature
on DRMDPs and distributionally robust reinforce-
ment learning (DRRL). Various formulations are ex-
plored in Iyengar (2005); Nilim and El Ghaoui (2005);
Le Tallec (2007); Xu and Mannor (2010); Wiesemann
et al. (2013); Wang et al. (2023b); Goyal and Grand-
Clément (2023); Li and Shapiro (2023). Concurrent
with this manuscript, Shapiro and Li (2024) also ex-

plores DRSC. However, the focus of the two papers
differs significantly: whereas Shapiro and Li (2024)
emphasizes formulation aspects of DRSC, our work
formulates and investigates statistical properties as-
sociated with optimal policy learning within a DRSC
framework.

Statistical complexities for associated DRRL problems
with finite state and action spaces are subsequently de-
veloped in Zhou et al. (2021); Panaganti and Kalathil
(2021); Yang et al. (2021); Shi and Chi (2022); Xu
et al. (2023); Shi et al. (2023); Blanchet et al. (2024);
Liu et al. (2022); Wang et al. (2023a,c); Yang et al.
(2023).

However, the picture is very different in the contin-
uous state space setting. If one assumes that only
trajectories or a generative model is available, it is
known in the literature that achieving efficient (in a
minimax sense) RL in a continuous state space with-
out strong restrictions is impossible Chen and Jiang
(2019) and this challenge also applies to DRRL. Our
formulation of DRSC differs from DRRL as we assume
a known state recursion form f driven by an unknown
random variable W, whereas in DRRL, the full tran-
sition probabilities need to be learned. This difference
leads to a significant difference in sample complexities.
We derive minimax optimal sample complexities for
uniformly estimating the robust value function with
parametric convergence rates even in continuous state
and action spaces.

Remarks on Paper Organizations. The remainder
of this paper is structured as follows: Section 2 outlines
the formulations of the DRSC problems and the corre-
sponding dynamic programming principles, with a fo-
cus on both CAA and CAU adversaries. Sections 3 and
4 present the upper and lower bounds of the sample
complexities, respectively. In Section 5, we present our
algorithm design, leveraging function approximations.
Finally, Section 6 presents two applications within our
framework to demonstrate its effectiveness in modeling
real-world problems.

2 Dynamic Programming and
Bellman Equation

In this section, we provide a minimal self-consistent
introduction to our formulation of the distributionally
robust stochastic optimal control problem and its cor-
responding dynamic programming theory. The fully
rigorous construction is provided in Appendix A. Our
focus here is on the infinite horizon discounted reward
setting. It should be noted that a DRSC formula-
tion for finite horizon systems naturally arises from
the same principles.
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We consider Polish (i.e. complete separable metric
spaces) state, action, and noise measurable spaces
(X, %), (A, A), (W, W) equipped with the Borel o-
fields generated by open sets. Let P(W) and P(A)
denote the set of probability measures on the action
and noise spaces, endowed with the topology of weak
convergence. We also consider a known state dynamic
function f : X x A x W — X given in (1.1), a known
reward function 7 : X x A — Ry, and a discount factor
a € (0,1).

Let @ C P(A) and P C P(W) be arbitrary Borel mea-
surable subsets. Here, Q and P represent the admis-
sible decision sets of the controller and the adversary,
respectively. Based on Q and P, we construct admissi-
ble policy classes II(Q) and I'(P) of the controller and
adversary, respectively. As we will rigorously develop
in the Appendix A, the admissible control policy class
I1(Q) of the controller will always be a proper subset
of the history-dependent Q-constrained policy class:

H(Q) C HH(Q) = {7T = (71'0,7'('1, o ) : Wt(da|ht) S Q;
Vhe = (1170, ag, - 7at—1,517f,)}-

Intuitively, the controller decides a sequence of the
conditional distribution of current action A; given the
history until the last visible state x.

Similarly, adversary’s admissible policy class T'(P) is a
subset

F(P) - FH = {,7 = (707717 o ) : ’Yt(dw|gt) € P7
Vg: = (@0, a0, -+ ,x¢,a¢) }.

The adversarial policy m € I'(P) determines the con-
ditional distribution of W, given the history until the
last visible state action pair x;, a;, for each and every
t>0.

For any given pair of controller and adversarial policy
(m,v) € II(Q) x T'(P) and an initial state x € X, the
distribution of the state and action process (X, A) is
uniquely determined, see (A.2). We denote the expec-
tation under this distribution as E77. Then, we define
the DRSC value under initial distribution p and con-
troller’s and adversarial policy classes II(Q) and T'(P)
as
o (2, T(Q), T(P)) :=
o0
sup  inf E;’“’Zatr(Xt,At). 1)
rell(Q) vEL(P) P}

In order for the DRSC value to satisfy a dynamic pro-
gramming principle, i.e. a Bellman equation, regular-
ity conditions for the reward r and the state transition
function f are necessary.

Assumption 1. Assume thatr : X x A — Ry is non-
negative ry-bounded (i.e. 0 < r(z,a) <ry,Ve,a) uni-
formly continuous and f : Xx AXW — X is uniformly

continuous. Furthermore, the controller can take on
deterministic decisions; i.e. @ D {6{a} ta € A}.

Remark. Tt is straightforward to generalize all the sub-
sequent results in this paper to the case where the
reward at time ¢ is r(X¢, A;, W;) which depends on
the adversarial noise W;. Moreover, for the dynamic
programming part, the boundedness of reward and
uniform continuities can be significantly weakened to
the satisfaction of some growth conditions and semi-
continuities (Gonzélez-Trejo et al., 2002). However, to
study the minimax statistical complexity, which is one
of the main goals of the paper, we need even stronger
conditions (e.g. uniform Lipschitz continuity) as in As-
sumption 2 and 3. Although relaxing the assumptions
to be as general as possible while retaining a dynamic
programming theory is of great theoretical value, our
focus here is to develop a rigorous theoretical frame-
work that allows us to study the statistical complexi-
ties of learning a DRSC. Hence, we adopt these more
restrictive assumptions that are easy to work with.

Current-Action-Aware Adversary

Observe that, by our construction, a general adver-
sarial decision 7, at time t can be dependent on the
entire history g = (xo, a0, - ,2¢,a¢). In particular,
the conditional distribution of W; given history and
different realizations of A; could be different. In other
words, the adversary is aware of the current action,
hence the name current-action-aware adversary, and
can use this information to harm the performance of
the controller. This could be a reasonable model for
settings in which ambiguity or non-Markov response
arises from the system’s reaction to the control inputs.
One such application setting of particular practical im-
portance is the portfolio optimization problem, where
policy robustness is extremely valuable.

For CAA adversaries, we consider the following distri-
butionally robust Bellman equation.

Definition 1 (Current-Action-Aware Bellman Equa-
tion). We define the following fixed point equation as
the Bellman equation for current-action-aware adver-
saries.

=supr(z,a) + « inf /Wu(f(x,a,w))z/}(dw) (22)

a€chA peP

We will show in Proposition 2.1 that, under Assump-
tion 1, the CAA Bellman equation (2.2) has a unique
bounded solution u*. Moreover, in the full discussion
of the DRSC framework in Appendix A, we will rig-
orously establish the dynamic programming principles
under which the DRSC value in (2.1) is equal to u*.
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Current-Action-Unaware Adversary

Although CAA adversaries give rise to natural distri-
butionally robust control models in various important
applications, there are settings for which the noise is
considered as exogenous inputs to the system that are
independent of the current action of the controller. For
example, in the make-to-order manufacturing setting,
to achieve robust planning, it might be reasonable to
assume the presence of adversarial inter-arrival time
given the previous completion times. However, assum-
ing that the inter-arrival times can adversely relate to
the service rate could lead to an overly conservative
optimal policy, leading to a diminished value in the
deployment environment where the interarrival time
is independent of the service assignment.

To address this potential issue and increase the ver-
satility of our framework we consider an adversary
that cannot observe the current action. Concretely,
an adversarial decision #; at time t is said to be
current-action-unaware (CAU) if for any history hy =
(xo,a0, -+ ,2¢) and (heya) = (xo,a0,: - ,2e,a), We
have that 7;(dw|h¢, a) = F(dw|h, a’) for all a,a’ € A.
In other words, the conditional distribution of W,
given the history is independent of the current action
A;. Note that will use the ”overline” notation to sig-
nify the CAU setting. We remark that in the DRMDP
literature, this behavior is captured by S-rectangular
adversaries, see Wiesemann et al. (2013); Wang et al.
(2023b) and the reference therein.

For CAU adversaries, we define the following distribu-
tionally robust Bellman equation.

Definition 2 (Current-Action-Unaware Bellman
Equation). We define the following fixed point equa-
tion as the Bellman equation for current-action-
unaware adversaries.

a(x) = T (a)(x) =

s inf /A (e au( (e, w))6 x v(da.du)
(2.3)

Again, we will rigorously establish the dynamic pro-
gramming principles in the full discussion of the DRSC
framework in Appendix A.

With these formulation and modeling considerations
in mind, we are ready to establish the existence and
uniqueness of solutions to the proposed Bellman equa-
tion in the following Proposition 2.1. Throughout the
paper, we use ||-|| to denote the supremum norm. Let
Up(X) denote the space of uniformly bounded contin-
uous functions on X, which is a Banach space under
|-|l. For notation simplicity, we define 8 := (1 —«)~L.

Proposition 2.1. Suppose Assumption 1 is in force.

The Bellman equations (2.2) and (2.3) have unique
fized points u* and u* in Up(X), respectively. More-
over, [[u*[|, [|a*]| < Bry.

Combining Proposition 2.1 with the dynamic program-
ming theory in Appendix A.3, we see that learning op-
timal DRSC value and hence a robust control can be
achieved by finding a good approximation to the so-
lutions of (2.2) and (2.3) in CAA and CAU settings,
respectively.

3 Upper Bounds on Statistical
Complexity

In Definitions 3 and 4, we first introduce Wasserstein
distance and fj-divergence ambiguity sets. We fix a
measure g € P(W) as the center of the ambiguity
sets, which is only accessible from samples.

Definition 3 (Wasserstein distance ambiguity sets).
Let ¢ : Wx W — Ry st. c(w,w) = 0 for all w €
W. The Wasserstein distance for p,v € P(W) with
transportation cost function c is defined as

We(p,v) := inf / cdg,
565(”,1/) Wx W

where E(u, 1) is the set of probability measures on W x
Ws.t. £(-, W) = pand EW,-) = v for all £ € E(u, v).
The Wasserstein distance constrained ambiguity set of
adversarial decisions with cost ¢, transport budget ¢
and center pg is P = {p: We(p, po) < 6}

Definition 4 ( fx-divergence ambiguity sets). For k >
1 and probability measures p < o in P(W), let
th—kt+k—1

k(k—1)

d
Dy, (o) == /W fe (dﬁ;) .

Then, the fi-divergence constrained ambiguity set of
adversarial decisions with center pg and radius § is

P ={n < po : Dg, (pllpo) < 6}

fk<t) =

For both the Wasserstein distance and fx-divergence
settings, we let P do denote the n-sample empiri-
cal measure-centered version of the ambiguity sets;
i.e. one that replaces po with i where () :=
LS 1{W; €} for iid. W; ~ po. Further, we
denote the CAA/CAU empirical Bellman operator as
T/T, where P in equation (2.2)/(2.3) is replaced by
P, ie.,

T(u)(zx) :=
supr(x,a) + « ian/ u(f(z,a,w))(dw),
a€A PYeP JW
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and
T(u)(z) :=

sup ian/ r(z,a) + au(f(z,a,w))o x ¥(da, dw).
p€QYEP JAXW

Then, the empirical versions of (2.2) and (2.3) are
T(u)(z) = u(z) and T(a)(z) = a(x).

Proposition 3.1. Let v’ and 4 be the solution to the
population and empirical versions of (2.2) or (2.3);
let T' and T’ denote the corresponding population and
empirical Bellman operators. Then, the estimation er-
ror in uniform norm is upper bounded by

o — 'l < BT (u') = T' ()] -

In the following two sections, we establish statisti-
cal complexity upper bounds for learning the optimal
value uniformly under CAA and CAU adversary mod-
els. In both cases, we consider both the Wasserstein
distance and fi-divergence-based adversarial ambigu-
ity set. Our focus here is to obtain a tight convergence
rate in n.

3.1 The Current-Action-Aware Case

We begin by clarifying notations and stating the as-
sumptions under which our statistical analysis is car-
ried out. For set S C R?, let diam(S) :=sup, ,cg |z —
y|, where | - | denotes the Euclidean distance. For the
CAA adversary case, we assume the following.

Assumption 2. Assume the following conditions:

1. The spaces X < R&= A < R®W C
R%™ qare equipped with the FEuclidean distance.
The state and action spaces are bounded:
diam(A), diam(X) < oo.

2. To simplify notation, we require Assumption 1 to
hold with rv = 1.

3. The mapping (z,a) — u*(f(x,a,-)) uniform (-
Lipschitz, i.e.

™ (f(z, a,9)) — u™(f(2', 0, )]

<z —2'| +|a—d]).

In the following Theorems 1 and 2, v* and @ are solu-
tions to (2.2) with corresponding Wasserstein and fi
adversarial ambiguity sets P and P centered at 1o and
i, respectively.

Theorem 1 (Wasserstein distance constrained CAA
adversary). Suppose Assumption 2 is in force.
Also, assume that the cost is cy-bounded; i.e.

Sup,, yew c(w,y) < ey Then, with P =

{p: Welp, po) < 6}, we have that

1
|t —u*|| < ¢ BDyVdx +dp + 522 [log = | n~
n

w.p. at least 1 — 1. Here, ¢ = 46/ and

N

Dy, = {(diam(X) + diam(A)) + cy6 1B+ 1.

Remark. Employing the chaining technique, we elimi-
nate an extra logn factor. This is at a cost of trans-
forming root-log-diameters (c.f. Theorem 2) into lin-
ear diameter dependence. Retaining the logn allows
reducing this to root-log-diameters.

For notation simplicity, define k¥’ := k/(k — 1),
cr(0) == (1 + k(k —1)8)Y/*,

and a V b = max {a,b}

Theorem 2 (fi-divergence constrained CAA adver-
sary). Suppose Assumption 2 is in force. Then, with
P ={pn < po: Dy, (ullpo) < 8}, whenn >3VEk

~ * 2 7ﬁ 2 Ck(d)
[l —w*|| <308°n~ #vzcg(d) <ck((5)—1 \/2>

1 1
X (k + \/D + 1og5 +2(dx + da) logn)
w.p. at least 1 —n. Here, the parameter

D := dxlog (1 + 3¢diam(X)) +dy log (1 4+ 34diam(A)) .

3.2 The Current-Action-Unaware Case
For the CAU adversary case, we will operate under the
following Assumption.

Assumption 3. Assume the following conditions:

1. X ¢ REW c R¥™ are equipped with the Eu-
clidean distance with diam(X) < oco.

2. The action space A is finite, equipped with the 0-1
distance; i.e. d(a,a’) =1{a=a'}.

3. Assumption 1 hold with r, = 1.

4. The mapping (x,a) — u*(f(z,a,-)) uniform (-
Lipschitz, i.e.

|U*(f(l’, a, y)) - u*(f(xla alay))|
<z —2'|+1{a=d}).

Remark. As we will discuss in Appendix C.4, our proof
will generalize to continuum action spaces under ad-
ditional covering number requirements, yielding n~'/2
convergence rates in those settings. However, in this



Shengbo Wang, Nian Si, Jose Blanchet, Zhengyuan Zhou

paper, for CAU adversaries, we will focus on the cases
where |A| < 0o to get concrete dependencies on the di-
mensions, diameters, and the size of the action space.
However, it is not clear to us if the same rate can be
achieved in the CAU setting if, for example, A C R¢
is compact and Q@ = P(A). This is a limitation of this
work to be addressed by future research.

In the following Theorems 3 and 4, #* and 4 are solu-
tions to (2.3) with corresponding Wasserstein and fj
adversarial ambiguity sets P and P centered at 1o and
(1, respectively.

Theorem 3 (Wasserstein distance constrained CAU
adversary). Suppose Assumption 3 is in force. Also,
assume that the cost is cy-bounded. Then, with P =

{1 Welp, po) < 6},
_ 1
|a—a*| <e (BDV\/dX + |A] + 8%2 /log ) n~1/2
n

w.p. at least 1 —n. Here c = 46a/7 and
Dy = tdiam(X) + 28 +cy6 '8+ 1.

Theorem 4 (fj-divergence constrained CAU adver-
sary). Suppose Assumption 3 is in force. Then, with
P={p < po: Dy, (pllpo) <0}, whenn>3Vk

~ * 2 —ﬁ 2 Ck(é)
|t —u*|| <308°n~ #vzcg(d) <Ck(5)—1 \/2)

1 — 1
X (k + \/D+10g77 +2(dx + |A|)logn>

w.p. at least 1 — 1. Here, the parameter

D := dxlog (1 + 3¢diam(X)) + |A|log (1 + 67) .

4 Lower Bounds on Finite Sample
Minimax Risks

In this section, we study lower bounds on the finite
sample minimax risk associated with learning the opti-
mal value functions for both CAA and CAU adversary
models. We demonstrate lower bounds that match the
corresponding convergence rate upper bounds speci-
fied in the previous section.

Before we establish our lower bounds, we first intro-
duce the finite sample minimax risk considered by this
paper. For given value operator K : P(W) — C(X)
and a class of probability measures U C P(W), we
define the n-sample minimax risk over U of uniformly
learning K(u) as

M, (U, K) =

inf sup E,» sup |[K(W7q, -
K pneu reX

W) (2) = K(p) ()]

where u = p X -+ - x p is the n-fold product measure,
and the first infimum is taken over all measurable func-
tions K : W" — C(X).

As we will discuss in detail later, the operator K
maps the center i of the Wasserstein distance and fy-
divergence constrained adversarial ambiguity sets to
the solution of the Bellman equations (2.2) and (2.3).
According to the dynamic programming principles
outlined in Appendix A.3, this solution corresponds to
the optimal DRSC value. Therefore, 9, (U, K) repre-
sents the error incurred by the optimal learning algo-
rithm (in terms of uniform performance over all centers
of the ambiguity sets in i) for the optimal value when
the sample size is n. To match the rate in the pre-
vious upper bounds, it is sufficient to consider U as
the family of Bernoulli distributions with parameter
p € [0,1].

Concretely, to establish our lower bound, we consider
an instance with infinitely smooth reward and tran-
sition function s.t. the minimax risk associated with
learning DRSC value function has lower bounds that
match the convergence rate of upper bounds in Theo-
rem 1-4.

Specifically, let X = A =W = [-1,1], f(z,a,w) = w,
and r(xz,a) = z. For fixed controller and adversar-
ial ambiguity set, the value operator is the mapping
K(p) = u*, where u* is the solution to (2.2) with g
replaced by p. Since f and r are independent of a,
u* = @* is also the solution to (2.3).

Lemma 1. Given adversarial ambiguity set P, the
solution to (2.2) and (2.3) are

u*(z) =u"(z) =z + F inf /Www(dw). (4.1)

PYEP

Using this instance, we have the following lower
bounds.

Theorem 5 (Lower bound for Ws-distance con-
strained Adversary). Let P = {p: We(u, po) <0}
with c(x,y) = |z — y|>. The minimaz risk of learn-
g u* or u* over any

UD{p=pduy+ (1 —p)dy :p € 0,1}

1s lower bounded by

N

B -
> — .
M, (U, K) = 350

Remark. We state the theorem only in terms of the
Wy distance. This is just for the convenience of cal-
culations. It is not hard to see from the proof that
using a Taylor expansion argument, for W, distances
with ¢(z,9) = |z — y|?, we have the same n~1/2 rate,
matching that in Theorem 1 and 3. Also, upon inves-
tigating the proof, one will find that the minimax risk
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of estimating the value function at one single = has
the same lower bound on the rate.

Theorem 6 (Lower bound for fi-divergence
constrained Adversary).  Let P =
{rw < po : Dy, (pl|po) < 0}. Then there exist constants
Ci(k,0) and Co(k,d) that only depend on k,§ s.t.
whenever n > Cy(k,d), the minimaz risk of learning
u* or u* over any

UD{p=pipy+(1-p)dpoy :p € [0, 1]}
1s lower bounded by
SJI,L(L{,IC) > C’Q(’]{%é)ﬁniﬁ

Remark. The constants Cy(k, ) and Cs(k, 0) are given
in the proof in Appendix D.3. This matches the con-
vergence rate up to a y/logn in Theorem 2 and 4.
Again, estimating the value function at one single x
has the same lower bound.

5 Algorithm Design

Recall from our theoretical analysis that the solution @
of the empirical Bellman equations achieves minimax-
optimal convergence rates in estimating the true ro-
bust optimal values ©* and @. Thus, our algorithm will
focus on approximately solving the empirical Bellman
equations: T(u) = u and T(u) = u.

In the subsequent discussion, we focus specifically on
the fr-divergence ambiguity setting, devising actor-
critic-style algorithms for DRSC problems with CAA
and CAU adversaries.

5.1 The CAA Case

In the CAA setting, we parameterize the value func-
tion ug : X — X and the policy m, : X — A as
neural networks. Leveraging the actor-critic frame-
work, we alternate between Bellman error minimiza-
tion and policy improvement steps. Specifically, for a
given policy-value pair (m,, ug), the empirical Bellman
operator is defined as:

Tyo(x) = r(x,m)())

+o inf /W o ( (2, (1), ) )b (d),

heP

where the minimization is performed over the empiri-
cal fi-divergence ambiguity set P centered around the
empirical measure ji, as described in previous sections.

Strong Duality and Optimal Lagrange Mul-
tiplier: To compute gradients of the empirical
Bellman operator, we invoke strong duality (Duchi

and Namkoong, 2021), transforming the minimiza-
tion over probability measures into an equivalent one-
dimensional convex problem:

T, 6(x) = r(z, m(z)) + asup {)\
AER

- ald)| [ (e m(e),w) - N i) " }

Here, A is the dual multiplier. Under mild assump-
tions, the maximization in A has a unique optimal so-
lution A*(n,0,x), which can be efficiently computed
using bisection search. We define the intermediate op-
erator for convenience:

T, 0\ x) = r(z, m(x)) + a{/\
= )| [ (e m(e) ) - A )] " b

Bellman Error Minimization: Given a fixed policy
Ty, We minimize the squared L? Bellman error:

ajn [ fuo(a) = Ty o) Po(de),

where v is a user-specified probability measure sup-
ported on the entire state space X. To compute gradi-
ents, we utilize the envelope theorem to get that:

VoT,o(x) =VeTye(N(n,0,),2). (5.1)
To minimize Bellman Error we update the 8 using first-
order algorithms. For illustrative purposes, we formu-
late the mini-batch stochastic gradient descent in this
context. At each iteration, we independently sample
states X; ~ v, compute the optimal multipliers A in
parallel, and update the parameters as follows:

1 n
Orir =00 — L~ > Vol(u(X;) = VT p(x))%),

i=1

where the gradient w.r.t. 6 is computed using the

chain-rule and (5.1).

Policy Improvement: Given a fixed value function
ug, the policy m, is improved by solving the following
optimization problem with first-order methods:

max /X T, 0(2)v(dz)

with gradients computed similarly using the envelope
theorem. Again, we update parameters via stochastic
gradient ascent:

e~ & .
Me+1 =M + fég ZvnTn,H()‘i7Xi)~
i=1
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5.2 The CAU Case with Continuous Action

While our theoretical analysis focuses primarily on fi-
nite action models in the CAU setting, practical appli-
cations often involve continuous action spaces. Hence,
we propose an extended algorithm suitable for con-
tinuous state-action problems. The CAU case is in-
herently more complex since deterministic policies are
generally suboptimal, necessitating the consideration
of randomized policies. To address this, we propose a
novel generative policy approach. Specifically, we view
a policy as a generative model that produces random-
ized actions given a state x € X by utilizing an external
source of randomness.

Concretely, we define the policy as a mapping m, :
R? x X — A, where an action is generated according
to m,(N,z) and N ~ N(0,I) is a standard normal
random vector independent of the state. Due to space
constraints, a detailed discussion of the algorithm for
the CAU case is provided in Appendix E.

6 Applications

In this section, we map two applications into our
DRSC framework. Specifically, Section 6.1 outlines
a multi-period portfolio optimization problem where
market returns may react adversarially to specific ac-
tions. Section 6.2 examines a service optimization
problem in make-to-order systems, where the distri-
butions of inter-arrival times may be misspecified.

6.1 Portfolio Optimization

We manage a portfolio of m assets where the time
is divided into discrete time periods ¢ = 1,2, ... (not
necessarily uniformly spaced in real time). X; € R™
denotes the portfolio (or vector of positions) at time ¢,
where X, ; is the dollar value of asset ¢ at the beginning
of time period ¢: X;; > 0 and X;; < 0 mean a long
position and a short position in asset ¢, respectively.

We can buy and sell assets at the beginning of each
time period. Let A; € R™,t = 0,1,... be our deci-
sion variables at ¢, which is the dollar values of the
trades: A¢; > 0 or A;; < 0 means buying or selling
asset 7 at the beginning of time period t, respectively.
For simplicity, we assume that there is no contribu-
tion of capital. However, one can consume the portfo-
lio by having a total sale that is higher than the total
purchase; i.e. 1TA; < 0 where 1 € R” is the col-
umn vector of all 1’s. Therefore, the consumption is
C, = —1T A, > 0, which is the cash amount taken
out from the portfolio. As such, the self-financing
constraint (in the absence of any transaction costs)
becomes 17A; + C; = 0. Hence, it suffices to con-

sider the action space A := {a eR™:1Ta < O}7 and
Q = P(A), as the consumption Cy; = —17 A4 is deter-
mined by a feasible investment A;.

At the beginning of the next period, we have Xy, =
Wi(X: + A;), where W, = diag(R;) € R™*™ is the
matrix of asset returns, and R;; is the return of the
i-th asset from period ¢ to period t + 1.

We assume that the decision maker is endowed with
a utility function U : Ry — R, which is concave and
non-decreasing. Then, taking action A; will incur an
instantaneous reward utility 7(X;, 4;) = U(—1T Ay).
The performance of the policy is measured in terms of
the expected infinite horizon discounted total utilities.

As motivated before, in a dynamic portfolio optimiza-
tion environment, there might be a non-trivial (typi-
cally adversarial) market response in reaction to the
change in portfolio position induced by current action
A;. Therefore, a CAA adversary could be a reasonable
model for robust dynamic decision-making in this con-
text. Thus, given ii.d. data {R; e R™ t=1,---n},
we can build Wasserstein distance or fi-divergence
ambiguity set P from the empirical measure ji induced
by the data. Then, we estimate the DRSC value func-
tion by solving (2.2) with P.

6.2 Service and Manufacturing Systems

Following Example 2, we consider a make-to-order sys-
tems. The goal is to minimize discounted sum of Wait-
ing time by dynamically adjusting the service rate.
The cost of service rates is denoted as ¢(4,), where
¢(+) is an increasing function. Therefore, the reward
function can be written as r(X,,, 4,) = —X,, — c(A,).
And recall the state recursion is X,, 11 = (X, +1/4,,—
W,)t.

Here the randomness came from the inter-arrival times
{W,}. The standard queueing theory assumes the de-
mand Wy, Wy, ..., W, ... are i.i.d.. In practice, how-
ever, the distribution of W, is often unknown, and the
demand sequence Wy, Ws, ..., W,,,...is non-i.i.d. and
non-stationary. For example, an empirical study (Kim
and Whitt, 2014) and a publicly available dataset
from a US bank call center, "DataMOCCA” (Trofi-
mov et al., 2006), indicate that arrivals at call centers
and hospitals exhibit significant time-of-day and day-
of-week effects. Therefore, it is important to model
this ambiguity using our distributionally robust frame-
work. In this framework, we use adversaries to model
all possible inter-arrival (joint) distributions the sys-
tem manager may face. It is natural to use a CAU
adversary, as this inter-arrival time should not depend
on the manager’s service decision.
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A Formulations of Distributionally Robust Stochastic Control

Let X, A, W be Polish spaces and (X, X), (A, A), (W, W) equip them with the Borel o-fields. Let P(A) and P(W)
be the set of probability measures on (A, .A) and (W, W), respectively. Endow them with the topology of weak
convergence; i.e. p, = pif [ fdu, — [ fdu for all bounded continuous f. Then, P(A) and P(W) are separable,
as (A, A) and (W, W) are separable.

We now present our distributionally robust stochastic control formulation. Let = X x (A x W)%+ and F is
the o-field generated by cylinder sets. A canonical element w € Q is w = (g, ag, Wo, ar,wy - - ag,wy -+ - ), To € X,
wr € W, and a € A, Vk > 0.

Let W :={W; :t >0} and A := {A; : t > 0} be the processes of point evaluation of {w; : t > 0} and {a; : t > 0},
respectively; i.e.
Wt((.U) = W, At(w) = Q¢.

Finally, define the process X := {X; : t > 0} by the stochastic recursion Xy(w) = z¢ and for each t > 0

Xt+l = f(XtyAta Wt)

We refer to X as the controlled state process, A as the action process, and W as the exogenous noise process. In
the classical stochastic control setting, a typical assumption is that the noise process W consists of i.i.d. W; under
any probability measure of interest on (£2, 7). In our setting, however, the adversary can dynamically perturb
the distribution of W; based on some or all historical information, potentially making it a general stochastic
process with arbitrary dependent structure.

A.1 Admissible Policies

In this section, we rigorously formulate the controller and adversarial policies under the DR Stochastic control
framework. We formulate the the controller and the adversary policies so that, collectively, they will give rise
to a unique probability measure on (€2, F). At a high level, for each and every ¢ > 0, the controller and the
adversary choose the conditional distributions of A; and W; respectively, given their available information.

Let us define the following notations. For measures p, v on (C,C), we write u(de) = v(de) if u(C) = v(C) for all
CecC.

For t > 0, define controller’s history
H; := {h; = (z0, a0, - ,ai—1, %) : ¢ € X, ay, € A, Vk}.
and the adversarial history
G :={g9: = (o, a0, -+ ,x,a¢) : 2 € X, a5 € A, VE}.

For convenience, we let H_1 = G_; = @.

Define the history random elements
Hi(w) :=ht = (x0,00, - ,2¢) E Hy and Gi(w) := gt = (x0,a0, -, Tt,a¢) € Gy

where zy11 = f(xk, ag,wy) for k=1,--- t — 1, recursively.
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Admissible Controller’s Policies

A decision of the controller 7y at time ¢ is a (product space) Borel measurable function 7y : Hy — P(A). This
is seen as the conditional distribution of A; given history Hy = hy, hence we write m;(dalh:). A policy of the
controller m = (mg, m1,---) is a sequence of decisions. The largest possible policy class under this framework is
the the history-dependent unconstrained controller’s policy class:

Iy := {7 = (mo,m1,--+) : 1 € m{H; — P(A)}}
where m {H; — P(A)} denote the set of Borel measureable functions.

To increase the modeling flexibility of our DR stochastic control framework, we consider constraints on the
controller in terms of information availability and admissible set of controller’s decisions.

We say that a controller’s policy m = (mg, 71, - - - ) is Markov if for each and every ¢ > 0,
mi(dalgs—1,2¢) = Wt(da\géqﬂt)

for any g;—1,9;_1 € Gy—1 and z; € X i.e. given x;, the distribution of the action is independent of the history
gt—1. Therefore, through an abuse of notation, we can write m;(da|z) when the decision is Markov. Denote the
set of Markov controller’s policies by IIy;.

Moreover, 7 is said to be time-homogeneous (or stationary Markov) if
me(dalgi—1, ) = m5(dalg,_y, )

for every s,t > 0 and g;—1 € Gy_1, g._; € Gs—1 and z € X; i.e. 7 is Markov and invariant in time. As in
the Markov case, we can write m(da|z) when the decision is time-homogeneous. We denote the set of time-
homogeneous controller’s policies by Ilg.

We further allow the controller to be constrain to choose its decision m¢(dalh;) € Q from a admissible subset
Q C P(A) that is Borel measureable. This can be done under any information structures defined above. We
denote such constrained controller with the corresponding information availability as IIy(Q) where U = H, M, S.

Admissible Adversarial Policies

A decision of the adversary ~; at time ¢ is a measurable function v; : Gy — P(W), where we write v;(dw|g;) and
note that it signifies the conditional distribution of W; given G; = ¢;. An adversarial policy v = (y0,71, ) is a
sequence of adversarial decisions. This forms the the history-dependent unconstrained adversary’s policy class:

Ta:={v= (0,7, )% € m{Gy = PW)}}.

We define an adversary’s policy to be Markov if vi(da|gi—1,xt,a:) = ve(dal|gi_qi,xt,at) for any gi—1,9;, 1 €
G;-1 and z; € X,a; € A. Further, an adversary’s policy is time-homogeneous (or stationary Markov) if
vi(dalgi—1,x,a) = 7s(dalg,_1,x,a) for every s,t > 0 and g,—1 € Gy_1, g,_1 € Gs—1 and z € X,a € A.
As in the controller setting, we write v;(dw|x,a) and y(dw|x,a) for Markov and time-homogeneous adversary
decisions, respectively. Denote the Markov and time-homogeneous adversarial policy classes by I'yy and T'g,
respectively.

As for the controller’s case, we allow the adversary to be constrain to choose 7;(dalg:) € P from a admissible
subset P C P(W) that is Borel measureable. We denote such constrained adversarial policy classes with the
corresponding information availability as I'y(P) where U = H, M, S.

Remark. Notice that in this model, the history-dependent controller cannot directly use the realized action w; of
the adversary to make its decision. This should be compared to the stochastic game settings Gonzélez-Trejo et al.
(2002) in which either player observes the action of the other and makes a decision based on such observation.
However, this model can include the settings for which both players see the action of each other by considering
a new state process z; = (2, wy—1) and defining the state space and histories using z; instead of x;.

We also note that in general settings for which the modeler decides to construct f so that Wy_1 ¢ o(X}) for
each k < t. Then, this is as if the adversary cannot use its historical actions {W}, : k <t — 1} to decide the
distribution of the current action W;.
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Current-Action-Unaware Adversary

Consider adversarial policy v = (70,71, -+ ) € I'y. Because in general, the distribution of W; depends on the
current action a; through gy, i.e. Wi ~ v (dw|gt), we say that they are current-action-aware (CAA). However, in
many settings, the adversary cannot base its decision on the current action a;. Such adversary is characterized
by the following concept of current-action-unaware (CAU) decisions.

We say that a adversary’s decision ~; is current-action-unaware if
Ye(dwlge) = i (dw|he, a’) (A1)

for all ' € A, where g; = (hy,a;). Then the set of history dependent current-action-unaware adversary with

constraint set P is a subset I'y C I'y defined by
fH(P) ={y=(0,7,") % € m{G¢ = P}, v (dwl|gs) = ve(dw|hs,a’),Va' € A}

When v is independent of the current action, we write ;(dw|h;) = 7:(dw|hs,a). Hence, we have 7 =
(Yo, 71, -+ +) € T'u(P).

This can be easily generalized to the Markov and time-homogeneous settings by Tum(P) :=Tu(P) NT'u(P) and
T's(P) := T'u(P) NTs(P), consisting of Markov and time-homogeneous policies for which the decision at any
time is current-action-unaware as defined in (A.1).

A.2 The Distributionally Robust Stochastic Control Problem
Given an initial distribution pg on P(X) and a pair of controller’s and adversary’s policy (m,7), define a proba-
bility measure P77 on 2 as follows. For cylinder sets of the form
Ci =BygxYyXx ++XxBxY; x AXxXWxAxW-..
for some By, € A and Yy, € W for each k < ¢, define

Pr(Cy) = /X /B /Y /B /Y Ye(duwnlge) - m1(das o Yo (dwolgo)mo (daolho)pio (Ao, (A.2)

This uniquely extends to a probability measure on (2, F). Let EJ7 denote the expectation under Pj7.

The distributionally robust stochastic control (DRSC) paradigm under this formulation where an adversary
perturbs the exogenous driving randomness aims to find the infinite horizon discounted maxmin value function

v* (p, I, T) := sup ’iyrelﬁ ET ; alr(Xy, Ay) (A.3)

subject to X1 = f( Xk, A, W), Vk. Here, the admissible policy classes II,T are II = IIy(Q) and T' =
I'y(P),T'y(P) where U = H, M, S. This is the rigorous version of (2.1).

For simplicity, we write v* (2, I, T') := v*(0(4},11,T"), and v*(II,T') can be seen as a function x — v*(z,II,T").

A.3 Dynamic Programming

In this section, we show that the solutions to the distributional robust Bellman equations (2.2) and (2.3) will
correspond to the DRSC value (A.3).

Theorem 7 (Dynamic Programming for CAA Adversaries). Suppose Assumption 1 is in force, then u* =
v*(II(Q),T'(P)) for each and every one of the 9 pairings I1(Q) = Iu(Q),Im(Q),Is(Q) and T'(P) =
I'g(P), Tm(P),T's(P).

Theorem 8 (Dynamic Programming for CAU Adversaries). Suppose Assumption 1 is in force, then there is a
unique bounded continuous solution u* to (2.3). Moreover, u* is the optimal DRSC values

u* =" (Mu(Q), Tu(P))
= v*(II\(Q), Tu(P)) = v*(TI\(Q), Tm(P))
v*(IMs(Q), Tu(P))
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Remark. The equality v*(IIg(Q),Tu(P)) = v*(IIs(Q), Tu(P)) and v* (I (Q), Tm(P)) = v*(IIg(Q), Tm(P)) im-
plies time-homogeneous (or stationary Markov) policies are optimal for history-dependent and Markov adversary.

A history-dependent version of Theorem 7 is established in Gonzdlez-Trejo et al. (2002). In this paper, we will
prove the more technically interesting Theorem 8. The proof of the rest of the Theorem 7 can be easily achieved
by adapting the same proof techniques to deal with continuous state spaces in this paper to that of Theorem 2
from Wang et al. (2023b).

B Proofs for Section 2 and A.3

B.1 Proof of Proposition 2.1

We prove Proposition 2.1 by applying the Banach fixed-point to the mapping 7 and 7.
Lemma 2. Under Assumption 1, T and T are a-contractions on (Uy(X), ||-|); i.e. T': Up(X) — Up(X) satisfies

17" (w1) = T (u2)|| < o flur — uz|
for all uy,us € Up(X), where T' =T, T.

Therefore, there exists unique fixed-points u* for (2.2) and a* (2.3).

Moreover, for 7/ =7, T and v’ = v*,@*, we have that
o[ = T (@) < lIrll + || = rv +a ]
Hence, [[u/|| < B[u/[|.

B.1.1 Proof of Lemma 2

We will establish the result for 7, the statement for 7 follows from the same arguments. First, we check that for

u € Up(X), T (u) € Up(X). Observe that by uniform continuity, for x, z € X s.t. d(z,2) < € there are 6,6’,6” >0
s.t.

| T (w)(2) = T (u)(x)|

< sup

inf / r(z,a) + au(f (z,a,w))d x ¥(da, dw) + sup / —r(z,a) — au(f(z,a,w)) x v(da, dw)
»eQ AXW AxW

YEP PEP

< sup s [ fra) = 1)+ aful(r,0,0) = au(f (e a,w)[6 x 6 da du)
AxW

PEQYEP
<4§+ sup sup  alu(f(z,a,w)) — u(y)]
aGA,WGWyEBf(z,a,w)(‘s/)
S 6+6//

uniformly in z, where (i) follows from [inf fi +sup fa| < max {|sup(f1 + f2)|, |inf(f1 + f2)[} < sup|fi + f2f and
Bi(g,aw)(0") :={y € X:d(f(z,a,w),y) <d'}. Hence, T (u) € Up(X).

Next, we show that it is indeed a a-contraction. Consider for uy,us € Up(X), by the same argument, one has

[T (1) =T(u2)| < sup /A Wa\m(f(fv,a,w)) — up(f(, a,w))|¢ x ¢(da, dw)

z€X,p€Q,PEP

< sup alur (f(z,a,w)) —us(f(x,a,w))|
rzeX,a€h,weW

< alu; — usl .

This completes the proof.
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B.2 Proof of Theorem 8

We decompose our proof of Theorem 8 to two main Propositions as follows.

Proposition B.1. Under the assumptions of Theorem 8, for any 7 € ly(Q),

inf v(z,7,7) <a*(z),
¥€Tu(P)

where U =H, M, S.
In particular, Proposition B.1 implies that @* > v*(IIx(Q),Tu(P)), u* > v*(IIyu(Q),Tm(P)), and @* >
v*(Ils(Q), I's(P)).

Proposition B.2. Under the assumptions of Theorem 8,
v*(Is(Q), Tu(P)) > u’(x)

Therefore, we have that by the inclusion relationship Iy (Q) D Iy (Q) D Is(Q), we have

@ > 0" (Mu(Q), Tu(P)) = v*(In(Q), Tu(P)) > v*(Is(Q),Tu(P)) > u".
So all the quantities above are equal. Similarly,

u* :v*(HM(Q),fH(P)) < v (Im(Q),

Tn(P) < v
u* = v*(Ilg(Q), Tu(P)) = v*(IIs(Q),Tm(P))

v*(Ils(Q),Ts(P)) < u*.

This proves Theorem 8.

B.2.1 Proof of Auxiliary Results for Theorem 8
B.2.2 Proof of Proposition B.1
Fix an arbitrary m = (mg, 71, -+ ) € Iy (Q). It suffice to show that for any € > 0 there exists ¥ € T'y(P) s.t.

v(z,m,7) < a*(x) +e. (B.1)

Recall from 2.1 that ||a*|| < fry. Define and denote the T-step truncated value with terminal reward @* by

T.—1
vr(x,m,y) = EXY Z alr(Xe, Ar) + aTu* (X1, | - (B.2)
t=0
Also, define T), = [Blog(2ry/3/n)]| where g = . Then,

. 1\ Plog(@rv8/m) n
<(1-2 < exp(— = :
an_(l ﬂ) < exp(~log(2r /) = 5

Thus, consider, for any 7 € Iy (Q), v € T'y(P), and z € X, we have

M oo T,—1
lv(z,7,79) —vr, (@, 7,7)| = |EFY | Y alr(Xy, &) | — B2 | Y alr(Xy, A) + o™ (X7,
Lt=0 t=0
= |E" Z a'r(Xy, Ay) — aTut (X))
=T,
' (B.3)
< aTn £ Z Olt_T"T'(XtaAt) + |E§’7ﬂ*(XTn)|
t=T,
< T, 2Tv
- -«
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Next, we focus on the history-dependent case U = H. Since @* is the solution, we must have that for any h; € Hy,

inf /W/Ar(xt,a)—|—aﬂ*(f(xha,w))m(da|ht)w(dw) < a*(xy)

YEP

Fix any § > 0. Let W?(h;) be a set of 1 € P s.t.
/ / r(ae, @) + o (f (o1, 0, w))my(dalhe ) (dw) < @ (0) + 5. (B.4)
W JA

We want to show that there is a H; — P(W) measurable selection 77 (dw|h) € W (hy).
We note that
{1/) eP: / / r(ze, a) + o™ (f(xt, a,w))m(da|hy) P (dw) < @* () + 5}
W JA

is a closed set. It is clearly nonempty, as @* satisfies (2.3). Now, by the Kuratowski-Ryll-Nardzewski measurable
selection theorem, we show that for any open set D of P, we have that

{ht €H, : o+ {w eP: /W/Ar(xt,a) + a@* (f (e, a, w))m(dalhe ) (dw) < @ (z1) + 5} N D} € B(H,).

Note that,
o # {1/) eP: /W/Afr(xt,a) + ot (f(x¢, a, w))m(dalhy ) (dw) < @*(xy) + 5} NnD
— WeD: /W/Ar(mt, a) + au”(f(zt, a, w))me(dalhe)p(dw) < @ (xe) + 6

— élelfD/W/AT(xt,a)  a@t* (2, @, w))me(dalhe ) (dw) — T (20) — 5 < 0

Recall that P(W) is endowed with the Lévy—Prokhorov metric. Since W is separable, so is P(W). Observe that

by bounded convergence and the continuity of f and @*, for wy — w on W, we have that

klim r(x,a) + at” (f(z, a, wy))m(dalhy) = / r(xe, a) + at” (f (zr, a, w))m(dalhy)

iLe. w— [, r(zy,a) + au*(f(2, a,wi))my(dalhy) is bounded continuous. Hence,

1/J—>/W/Ar(xt,a)+aa*(f(mt,a,w))wt(da|ht)1/,(dw)

is continuous. Therefore, we have that

c(hy) = inf /W/Ar(xt,a)+aﬂ*(f(mt,a,w))m(da|ht)¢(dw)—ﬂ*(xt)—é

PED

is B(H;) — R measurable, by the measurability of m; and that the infimum can be taken over a dense subset.
Hence, the sub-level set ¢(h:) < 0 is B(H;) measurable.

Therefore, the measurable selection theorem applies and we conclude that there exists 79 : H; — P measurable
s.t.

/ / r(xe,a) + aﬂ*(f(xt,a,w))m(da|ht)7yf(dw|ht) < a*(xy) + 9.
wJA

Since this can be done for each ¢, we can construct 5% € T (P) s.t. the above inequality holds for each and every
t.

Now, we first consider
EX7 [r( Xy, Ad) + 0" (Xeg1)] = EXT (X, Ar) + 0™ (f(Xe, A, W2)))
= BTV ETY [1(Xy, Ay) + au” (F(Xe, A, W) | H]
=227 [ [ r(01,0) + 0 (X a0) ol B ol )

< BT @5 (X)) + 6.
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Recall the definition (B.2), we have that for any T > 1,

rT—1
vr(a,m7%) = BT |37 alr(Xe, A) + T (Xﬂ]
L t=0
) [1=2 s
=E77 | Y alr(Xe, A) | + o T ERY [r(Xpoy, Ar_y) + 0w (X))
Lt=0 (B.5)
rT—2 ]
< ET 7° alr(Xy, Ay) AT VETY [0 (Xr_q)] + Tt
L t=0
<wvp_1(z,m,7°) +aT 1.
Therefore, by induction on T', we conclude that
vr(z,m,7%) < oi(@,m,7°) + 6 Z o
< BT [r(Xo, Ao) + a@*(X1)] — 6 + 86
< u(z) + Bé.
Since § is arbitrary, choosing § = ¢/(23) and T' = T, /3, we conclude that by (B.3),
_5 €
v(x,m,3°) <vp,(z, 7,7 )+ 5
< @ (x) + B0+ g
< a*(z) + €
i.e. inequality (B.1) holds with adversarial policy 4°. This completes the proof for the case U = H.
For cases U = M,S, the proof remains the same except we choose the adversary to be Markov or time-

homogeneous, in the presence of a Markov or time-homogeneous controller, respectively. For instance, in the
time-homogeneous case, given any 7(da|z) we choose a policy 7° € Ts(P) s.t.

/ /r(act,a)—|—aa*(f(xt,a,w))ﬂ(da|xt)’76(dw\xt) < @ (z)) 40,
W JA

for every x;. A measurable choice is always possible because ﬁ5(da|xt) has the same information dependence on
xy as w(da|xy).

B.2.3 Proof of Proposition B.2

Since @* is the solution to (2.3), by the same measurable selection argument and separability, for any fixed ¢ > 0,
there exists measurable 7°(da|z) s.t. 7°(da|r) € Q for all z € X and

) < inf // r(x,a) + a*(f(z,a,w))r’ (da|z)(dw) + 6. (B.6)

YeP
Let 70 = (7%, 7%,---) € IIs(Q). We consider for any 5 = (Y9, %1, -+ ) € L'u(P),
7 (Xu)) = VL [0 (F(X0, A W)IG

I3
ET | (X Ay w))7e(duw|G)

I
\

BT w// (f (X, a,w))5: (dw|Hy, a)m® (da| X;)

=B / / (F(Xe, 0,0))7e(dw| Gy, Xo, a)r (da) X,)

7;
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Given G4_1 and X,

[ # G e sanl G, Xeaw @l = inf [ ] @ (00,0007 0l )

Therefore, by (B.6)

EX T [P(Xy, Ar) + o (Xes)]

zE;réﬁ {/Ar(Xt, a)m® (da|Xy) 4 a 1nf// u*(f(Xe, a,w))y(dw)w (da|Xt)]

PEP

=" |int [ [ r(Xea) + o (70X 0,0 () (dal )|
> B0 (X;) — 6.
By the same technique as in (B.5), we see that for all T,
vr(z,,5) > a*(x) — B9
uniformly in z.

Since 7 € IIg(Q),

by (B.3). Since € and § are arbitrary, we complete the proof.

C Proofs for Section 3

C.1 Proof of Proposition 3.1

Define a sequence of functions uy = 0 and ug+1 = T'(ug). By the Banach fixed point theorem, ug — @ in
uniform norm. Since v’ = T'(v), the error

Apyr = U1 — U
=T (ug) — T'(W') + T' (') = T' ()
— [T+ D) — ()] + [T ()
= H(Ay) +U.

T'(u')]

By Proposition 2.1, it is easy to see that H is also a a-contraction on Uy (X), with 0 as its unique fixed point.

We claim that for k£ > 1,
k—1

1AL] < Ba*~t + > o U] -

j=0
We check this by induction: for k =1,

1AL < [H(Ao)[l + IU]]
= [[H(Ao) = HO)| + U]
<alu|| + U]
<af+ Ul
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For the induction step, we have that

[Aks1]l < [[H(AR) = HO)[| + U]
<allAgl+ (U]

k
< Ba®+) o’ U]
j=0
where the last inequality follows from the induction assumption.
Therefore,

S — T < j _ "W — T (W) .
[ — '] kgH;OHAkII_Za U] =BT (u) = T"(u)||

=0
C.2 Proof of Theorem 1

We remark that our proof techniques have similarities with that in Lee and Raginsky (2018). By Proposition 3.1,
to achieve an upper bound on the uniform learning error, it suffices to prove an upper bound for | T(u*) — T (u*)]|.

To do this, we first rewrite the Bellman operator using its dual form. By strong duality (Blanchet and Murthy,
2019), for P = {pu € P(X) : W(p, po) < 60}

it [ (o) otd) = s =35+ [ inf 0 (7e2)+ A, )] o)

YEP Sy A>0 yeW

Notice that since

/ inf [u"(f(2,9)) + Ac(w, )] po(dw) < / u*(f (2 w) o (dw) < [Ju

x YEW
and
inf * dw) >0
Juf, | @G w)pldw) 2
it suffices to maximize A over A := [0,571 |ju*|].

Therefore, we have that
[T (u") =T (u?)l
sup {/ inf [u*(f(z,y)) + Ae(w, y)] po(dw) — /\5} — sup [/ inf [w*(f(z,vy)) + Ae(w,y)] i(dw) — )\6}

<« sup
AeA [Jx yeEW AeA | Jx yEW

z€XXA

<« sup sup
2EXXA NEA

= asup | (o — f1)[ge]|
0c6

it ) + 30 o))
X Y€

where © = {0 = (2,\) : z € X X A, XA € A} and

g0 = Inf [ (f(2,9)) + Ac(, )]

Therefore, the estimation error is bounded by a supremum of empirical process.

To bound this, we use the Rademacher process and a chaining argument. Specifically, for fixed sequence w :=
{w; e W:i=1,2,--- ,n}, we define the Rademacher process indexed by gy € G as

Ralowsgn) 1= =3 () = =D st o () + Aclwi )] (€1
i=1 i=1

The empirical and population Rademacher complexities of the function class G := {gg : 6 € O}

R(w,G) := Ecsup —=

geg\f R, (w,g), and R,(G):=E.R.(W,G) (C.2)
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where ufl = po X -+ X ug the n-fold product measure, and W = (Wy,--- , W,,).
From empirical process theory, see e.g. Wainwright (2019, Theorem 4.10), w.p. at least 1 — 7,

sup (i )l < 2R, (@) + | 2210z (1) (©3)

where gy := sup g [lg]| < [[u*]| < 8. Thus, we proceed to bound R, (w,G) and hence R,,(G). We achieve this
by using subgaussian processes and entropy integrals.

Specifically, we consider the moment generating function of the Rademacher process (C.1). For ¢ in some
neighborhood of the origin

Ee eXp[f(Rn (W7 99) - R’ﬂ(W? 99’))]

= Beexp (jﬁg_j i )+ A = fnf ) + Ve, >]]>

9 n 2
<exp <§nz {inf [ (f(z,9)) + Ac(wi, y)] — inf [u (f(ZCy))Jr/\'C(wi,y)]] )

yeWw yeW

< exp (fn S sup [u”(£(9) — w (F( ) + (X - A)c(wi,y>|2>

[ 2 2
< exp (52 (sup [ (F(2,9) —u* (F( )]+ 1A= ] ) )

yeWw

(i) 2
= eXp<£ (¢ <x—x’|+|a—a'|>+A—A’Icv>2)

where (i) uses the transport cost being bounded by ¢y and (i) follows from the uniform Lipschitzness in
Assumption 2. Therefore, defining

p(0,0") := |z — 2|+ |a—d']) + ey |X = N,

which is a distance on ©, we obtain that

52
e expl€(t, v, g0) = B, 90)] < ex0 (72 ansa0))
This shows that the stochastic process { R, (w, go) : 0 € O} is subgaussian w.r.t. p.
Therefore, using Dudley’s entropy integral for subgaussian processes (Wainwright, 2019, Chapter 5), the empirical
Rademacher complexity in (C.2) can be bounded by

1
Ry (Wa g) = E.sup —R, (Wa 90)
fco VN

< 32 o V1og N (&0, p)d
— €0, p)de
~Vno

w.p.1., where N'(¢; O, p) is the € covering number of © in distance p and

(C.4)

Dy, := {(diam(X) + diam(A)) 4+ ¢, 6 15+ 1
> {(diam(X) + diam(A)) 4+ cydiam(A) + 1

> sup p(6,0)
0,0’

is an upper bound on the diameter of © in terms of p.

Note that as the r.h.s. of (C.4) is deterministic, we take expectation over W ~ p§ to conclude that the population
Rademacher complexity

Dy
R (G) = R.(W,G) < — V1og N (€; 0, p)de
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satisfying the same bound. Moreover, the covering number

N(€6,0) = N(6X x A 1] -])-

N(& A evl-])
=N(eX.0-])-

N(& AL -]) - N A ev]-])

()"t s,

€
Therefore, the entropy integral

€

Dy

Dy . : ;
/ V1og N (€;0, p)de < / \/(dx +dy+1)log <1 + max { tdiam(A) , fdiam(X) , cvdiam(A) })de
0 0 € € €

<

i V/(dx + dy + 1)1log(Dy /€)de

= VD, s 11

We conclude that by Proposition 3.1 and (C.3), the estimation error

[ —u™[| < BT (u”) () = T(

< afsup |(pn
6O

u)(@)]|

- Mo)[ge]\

< (32\/EaBDV Vdx +dy +1+ \/§aﬁ3/21 [log (;)) n-z

where (7) holds w.p. at least 1 — 7. This bound implies the theorem as we note that dx > 1
C.3 Proof of Theorem 2

C 208R(G) + 0| 22 log (1)
n n

As in the previous proof, we bound

IT@) =T < o sup ég;&u*(f(z,w))w(dw)—irelgs/wu*(f(z,w)wdw)
Define the function class F := {u*(f(

z,+)) : z € X x A)}. By Duchi and Namkoong (2021, Corollary 1), the r.h.s
satisfies w.p. at least 1 — 2N (¢/3; F, ||-||)e™ ",

sup int [ () (aw) = int [ (0,0 ()
where

< 3083¢

_ 1 2 Ck(é)

= [V —_— —_ 1 .
e=n_k 2Ck((5) (Ck(5)1V2) (k+ t+2 ogn)
Therefore, choosing ¢ = log(2/N (¢/3; F, ||-||)/n), we have that w.p. at least 1 —

IT(u*) — T (u*)]| < 30a8n~7vz ¢y (5)? (ck?g;a—)l \Y 2) <llc + \/log(QJ\/(e/?);]:7 I-11) + log% + 2log n> .

By the uniform Lipschitz assumption of z — u*(f(z,-)) and that € > n~/2 for all t > 1, we have that by van der
Vaart and Wellner (1996, Chapter 2.7.4)

log A'(e/3; F, || <log./\/< Mo xa) |>

(X .
< dxlog 1""% + dp log 1+M
eNnl eNnl

1
< dx log (1 + 3¢diam(X)) + du log (1 + 3¢diam(A)) + §(dx +dy)logn.
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Therefore, defining D = dx log (1 + 3¢diam(X)) + da log (1 + 3¢diam(A)), we conclude that by Proposition 3.1,
the estimation error

@ —u| < B T(u)(z) = T(u) (@)
@ 2, — = 2 ck(9) 1 1
< 308°n~ mvzcp(d) ( V 2> (k + \/D + log; +2(dx + da) logn)

ck(é) —1

where () holds w.p. at least 1 —

C.4 Proof of Theorem 3

In this proof, we first consider general Polish action space and then specialize to finite action space to achieve
n~1/2 rate. Through the proof, we identify possible structures of the controller’s decision space Q so that

We employ the same proof strategy as that of Theorem 1 in Appendix C.2. By the strong duality, positivity,
and Bellman equation (2.3), we have that

() = sup / (. a)6(da) + @ inf / / (2, 0, w))p(da)(dw)

PeEQ

—sup [ rwapotda) + w2+ [ ing | [ 0 (Foan)otda) + dew, )| mo(av)

peQJA A>0 yeW
By the same argument, the supremum is achieved within A := [0, ||@*|]]. So, we have that
|T(@*)(x) - T(a*) ()| <o sup |inf / / (z,a,w))p(da)y — inf / / (z,a,w))o(da)(dw)
TEX,pEQ [peP YeEP
ca o N[ o [ (oot + Ac(w,yﬂ (o = )
zexX,gpeQAeA [JwYEW [Ja

=:sup |(uo — A1) 9]l
g€eg
Here, the parametric function class G is characterized by (z,¢¥,\) € © = X x Q x A and

G = {w s inf [/A @ (f(z, a,y))6(da) +/\c(w,y)] (2, \) € @}.

yeW

To bound the previous empirical process supremum, we still employ the Rademacher complexity bound as in
(C.3). In this case, for g € G and sequence w := {w; € W:i=1,2,---  n}, the Rademacher process is

R(w,g) fzezg wi) = WZ@;&% [ . ay>>¢<da>+Ac<wi,y>],

compare to (C.1), and the empirical and population complexities are defined as in (C.2) accordingly. We then
consider the moment generating function: for £ in some neighborhood of the origin

E. exp[&(Rn (W7 99) - Rn(W7 99’))]
= E.exp (jﬁ ; €ilgo(wi) — gor (wz‘)])

exp (gn Z[Qe(wi) — 9¢ (wi)]2>

—1

Sk
exp <2n Z sup

52
exp |:Sup
2 yeWw

IN

IN

/ w*(f(x,a,w))d(da) — / a*(f(2',a,w))¢ (da) + (A = XN)e(w;, y)
A A

2
+C\/ |)\)\/|:| )

)

IN

/ *(f( a,))b(da) - / @ (f(&, a,y))¢ (da)
A A




Shengbo Wang, Nian Si, Jose Blanchet, Zhengyuan Zhou

Consider

/ @ (f (2, 0, )6 (da) — / @ (f(', a, ) (da)
A A

. (C.5)

/ & (f (2 0, w)) — u (F(&' 0, w))é(da) | + / @ (f(&', 0, w))[6 — ¢')(da)
A A
< fla -2/ +min {816 — ¢ llpy , (Wi (6, &)

Remark. As we will easily see from the reset of the proof, if Q is set of measures with e covers of cardinality
O(e~%) in either Wy or total variation distance, for example Q is a set of smoothly parameterized set of measures
or |A| < oo, then the entropy integral will be finite, yielding a n~1/2 convergence rate. However, in the following
development, we will focus on the case where |A| < oo to get concrete dependencies on the dimensions, diameters,
and the size of the action space.

With |A| < oo, we conclude that

B explé(Ra(u, go) — Ra(u, gp))] < exp (f;p(e, 9’))

where
p(0,0") =tz — 2’| + Bl — &' [lpy + ev|A = N
which is a distance on X x @ x A. This shows that the process {R,(u,gy) : 0 € O} is subgaussian w.r.t. p.

Therefore, using Dudley’s entropy integral (Wainwright, 2019, Chapter 5), the empirical Rademacher complexity

can be bounded b
Rn(w,G) <— Viog N (€; 0, p)de

w.p.1., where

Dy = tdiam(X) + 28+ 6 'B+1> sup plg,q).
g,9'€G

In particular, as the r.h.s. is deterministic, we take expectation over W = {W; : i =1,--- ;n} ~ pug to conclude
that the population Rademacher complexity

Dy
m(g)s% [ Vi N6, oy

satisfying the same bound. Moreover, the covering number
N(&0,p) < N(eX, 0] -|) - N(& Q, B llpy) - N(es Asevl - [)
SN(EX A -)-Ne BB - N6 Asev] )

< (HW)“ (1+2€6>A (e ),

where BllAI is the |A| dimensional ¢;-ball of radius 1, and its covering number bound follows from Wainwright
(2019, Example 5.8). Therefore, the entropy integral

D, Dy —
VIog N (€: 0, p)de < / V(dx + 4] + 1) log(D, /e)de
0
= gﬁv\/dx +|A]+1

Therefore, we conclude that by Proposition 3.1 and the Rademacher complexity bound (C.3), the estimation

error — —
la—a*|| < B||T(@") — T (@)

(i) 2y - 1
< 2a8RA(G) + af v log —
nooo
__ 1
(32\/EaﬁDv\/dX + A+ 1+ vV2a8%2,[210g n) n~1/2

where (7) holds w.p. at least 1 — 7. This bound implies the theorem as we note that dx > 1.

(C.6)

IN
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C.5 Proof of Theorem 4

Again, we have that

T(a* — f — inf
| T (@) (z) — T(u*) ()| < axeiiufeg 1;273/ / (z,a,w))p(da)y 1;1617)/ / (z,a,w))p(da)p(dw)
= asup | inf /W go(w)(dw) — it /W go(w)(duw)

where © = X x Q and for 6 = (z, ¢),
ww)i= [ @ (Fla.a.w)otdo)
By Duchi and Namkoong (2021, Corollary 1), for n > kV 3, the r.h.s. satisfies w.p. at least 1—2N(¢/3; G, ||-||)e*

inf [ glw)ptdu) - inf g(uwyi(dv)

< 3083¢
veP ypeP

sup
geg

where G := {gp : 0 € O} and

_ 1 2 Ck((S) 1
= /v _ 2 — 21 .
e=n"wvic(0) (ck(5) ] Vv ) (k ++/t+2logn
Therefore, choosing t = log(2N(¢/3; G, ||-[|)/n), we have that w.p. at least 1 —n

1 ) 1 1
< 300077y (6)? ((3§)1 v 2) (k n wog(wv(e/s; G. ) +10g 1 + 2log n) .

|T(@") =T (@)

To bound the covering number, we recall (C.5). Again, we can generalize to continuum settings. However, we
focus on the finite action setting in this paper. In this case, we have that by (C.5), § — gp(w) is uniformly
1-Lipschitz in the distance

d((z,9), (2", ¢") = llz — 2’| + Bl — ¢/l v -
This and the Lipschitz covering number bound (van der Vaart and Wellner, 1996, Chapter 2.7.4) implies that

¢diam (X
log N'(¢/3;0, p) < dx log (1 + W) +]A[log (1 + 6/\51)
€

1
< dxlog (1 + 3¢diam(X)) + |A|log (1 +68) + 3 (dx + |A]) logn

where we handle the covering number of probability measures on (A, ||-|[1y) the same way as in (C.6) and the
last inequality uses € > n~1/2,

Therefore, defining D := dx log (1 + 3¢diam(X)) + |A|log (1 + 63), we conclude that

. 5) 1 = I
0— < 2 — s 2 Ck;( _ \/ —
|t — u*|| <308°n~ #7vacg(d) (ck(5) 1 V2 : +4/D +log ; + 2(dx + |A]) log n

w.p. at least 1 — .

D Proofs for Section 4

D.1 Proof of Lemma 1

Since f and r doesn’t depend on a, we have that

" (z) =u*(z) =z + « inf /Wu*(w)z/}(dw)

PeEP
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We guess that u(z) = 2 + ¢ is the unique solution, and define ¢ = infyep [, wi)(dw). Then, we have

z+a$r€1gjfwu(w)w(dw)::L'+ac+ozdi}relg)/ww1/1(dw):x+a(c+c’)

This shows that if we choose ¢ = ¢/, then u is the unique solution.

Now we move on to show the lower bounds. For fixed = € X, we define a local version of the minimax risk

M, U, K, z) = i%f sup En |[K(Wh, -+, Wy)(x) — K(p)(2)] <M (U, K)
pneu

which trivially lower bounds the uniform version. We will prove Theorem 5 and 6 by showing the same lower
bound for this local risk.

D.2 Proof of Theorem 5

We apply Le Cam’s technique to prove the lower bound. Recall the instance in Lemma 1. Fix z € [0, 1], for any
1> 0 and po, p1 € U s.t. whenever [K(uo)(x) — K(p1)(x)| > 2n, we have

M (U, K, z) =

n n n
5(1 = [|p7 = g HTV)'

We consider 1o = podg1y + (1 — po)dgoy with po < 5. Then
—z=finf d
K(po) (@) — Bﬁp@wMUO

= Bsup —\d + / inf (y+ A(w — y)?) po(dw)
A>0 [0,1] ¥€[0,1]

4N -1 1 1
= — 1 > — 1 < —
Big% Ad + po 5y {)\_2}—1—270)\ {0_)\<2}

= fmax< sup pg — A0 — p—o, sup  poA — A
A>1/2 4N p<a<1y2

=5max{po— p057p026}

It is not hard to see the max is always achieved by pg — 1/pg9.

So, if we construct the local alternative p1 = p10g1) + (1 —p1)dgoy, then K(u1)(z) —x = B(p1 —/p16). Therefore,
choosing any p; = pg + ¢ with % > ¢ > 0, we have

(k) (@) = K(p) (@)| = B |e+ V5 (vBo = vpo +2)|
in c— 1 —1/2
= ﬂﬁe[Po,zfo+C] \/326

ST}

Be
2

>

Hence, we can choose p; = pg + 43~ when n < g to achieve separation |KC(uo)(x) — KC(p1)(z)| > 2n.
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By properties of TV-distance, KL, and y2-divergence we have that

n
17 — po llpy < §DKL(M1||M0)

n
< 5 (1mllpo)
n (po —p1)*
2 po(1 — po)
8nn?

B%po(1 — po)

<

So, for all n > 1, we can choose

- Bv/Po(1 — po) < g

4y/n
With this 7, we conclude that ||} — p8|lpy < 3 and hence
1—
M, (U, K) > My (U, K, ) > Z - %61"%—1/2.

Since pg is arbitrary, we can choose the maximizer py = %

D.3 Proof of Theorem 6

We lower bound the uniform risk by
m, U, K) >m,U,K,0).

To achieve this, we would like to apply Duchi Theorem 3.
Notice that for two-point distribution p with support {0, 1},

K(p)(0) = inf EyBZ =—-p+ sup  Eup(1-2).
Dy, (' [|l1)<8 Dy, (1 [|1)<8

Here, 8(1 — Z) has a two-point distribution on {0, 8} under u. Therefore, Theorem 3 of Duchi and Namkoong
(2021) applies. Define

pr(6) = (1 + k(k — 1)6)_ﬁ’ Xk((s) _ m

‘We obtain that with n s.t.

\/pk(5)(1 —pr(9)) <1 — pr(9)
8n - 2

= <P A L= (1= 0 ),

A pr(9),

then

mn(u,/go)wmax{ COSTOIN UL _1}.

) ’ n K’
16v/2k/p(8) 8 - 4k

This implies the statement of Theorem 6.

E Algorithm Design for the CAU Case

To parameterize randomized controller policies, we employ a generative model by considering m, : RE{xX — A
where an action is generated by A ~ (N, ) using an independence source of randomness N ~ N(0,) is a
standard Gaussian vector independent of the state.

Under this definition, we overwrite the notation and consider

'i‘mg()\,z) = Enr(z,m(N,z)) + «

A —cx(9) [/W(ua(f(%”n(N’ z),w)) = )\)fiﬂ(dw)} : ]
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By strong duality, the Bellman operator under policy m, applied to ug is

Ly
Enr(z,m)(N,z)) + asup ()\ — ¢ (0) {/ (Enug(f(z, (N, x),w)) — )\)k ﬂ(dw)} ) =T, s\, x)
AER W

where A* = A*(n), 6, x) is the optimal dual multiplier. We note that \* doesn’t depend on the realizations of N,
and can be computed via bisection search.

Bellman Error Minimization: Analogous to the CAA case, we minimize the L? Bellman error:

o~

min /X o (z) — Ty g (A, 2) v (de)
The gradient is evaluated using the envelope theorem
VoTy0(z) = VoTye(\ (1,0, 2),2)
and the expectation over N can be approximated using the sample average over m i.i.d. samples Ny, ..., N,,.
Therefore, we update the 6 using first order methods; e.g. mini-batch stochastic gradient descent (SGD):
Ori1 =00 — L:Grnom s

where /; is the learning rate and G, ;¢ is a stochastic gradient.

The gradient estimate G, 1 can be obtained as follows: we first sample N = {Ny,...,N,,,} and X; ~ v i.id.
and compute Ay, ; = A*(n,0, N, X;) that maximize

Y 1/k

A= enl0) | [ | 2 DS w7y (V5. X)) = |t

using bisection search. Then, we set

n

1 ~ _
Grama = D 2(ua(X) = T o (N i X)) (Voua(Xi) = VoTop oA i, Xi))-
i=1
Policy Improvement: The policy improvement step parallels the CAA setting:
/ 1 ¢ T *
Ne+1 = N + gtﬁ Zl VnTnﬁ()\m,ia Xi),

for some possibly different learning rate /.



