High-quality Mid-infrared Chalcogenide Ring Resonator

Bright Lu^{1*}, Bo Xu², Greg Krueper², Mo Zohrabi¹, Juliet T. Gopinath^{1,2,3} and Wounjhang Park^{1,3}

¹Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309, USA

²Department of Physics, University of Colorado, Boulder, Colorado 80309, USA

³Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309, USA

* Bright Lu@colorado, edu

Abstract: We report $Ge_{23}Sb_7S_{70}$ chalcogenide ring resonators with up to 8×10^4 quality factors operating around 3.6 μ m wavelength fabricated through e-beam lithography. Their rib waveguide geometry can be engineered to support close-to-zero dispersion modes needed for mid-infrared microcomb generation. © 2024 The Author(s)

Chalcogenide glasses are attractive platform for linear and nonlinear optics in the mid-infrared (MIR) due to their vast transparency window and high nonlinearity. In addition, chalcogenide planar waveguides and ring resonators can be integrated on-chip with sources and detectors for compact spectroscopic sensing. There have been steady efforts to advance the quality of chalcogenide-based MIR photonic devices in recent years [1-3], but a dispersion controlled low-loss microresonator platform suitable for microcomb generation is yet to be demonstrated. Among chalcogenide glasses, $Ge_{23}Sb_7S_{70}$ is transparent between 0.6 to 22 μ m and has low toxicity compared to arsenic-based chalcogenide glass system. It is easy to deposit via thermal evaporation and its glass transition temperature of 311 °C ensures material stability during high-intensity light propagation [4]. In this paper, we present a highly repeatable fabrication process and thorough characterization of $Ge_{23}Sb_7S_{70}$ ring resonators with high quality factors up to $\sim 8 \times 10^4$. Also, the rib waveguide geometry of the ring cross-section offers plentiful degrees of freedom for dispersion engineering, which could be used to achieve a close-to-zero dispersion needed for frequency comb generations at mid-infrared.

The Ge₂₃Sb₇S₇₀ ring resonators were fabricated through a combination of thermal evaporation, electron beam lithography (EBL), and inductively coupled plasma (ICP) reactive ion etching (RIE). First, a Ge23Sb7S70 chalcogenide film was thermally evaporated on a MgF2 substrate that was dehydrated at 400 °C for 15 hours in an N2 environment to remove all physically and chemically adsorbed water [5]. Next, the film was annealed at 265 °C to promote adhesion between the chalcogenide and MgF₂ while reducing thermal stress. EBL was then performed to pattern double coated, micron-thick e-beam resist which was also used as an etch mask for the following dry etch process as shown in Fig.1(a). We first explored an ICP dry etch of Ge₂₃Sb₇S₇₀ chalcogenide with a BCl₃/Cl₂ chemistry established for a similar chalcogenide, [1] but results produced extremely rough sidewalls. After a comprehensive etching study, we found that Cl2 prohibits the formation of passivation layer during the ICP etch, which is essential for achieving smooth sidewalls. Thus, we adapted to a Cl₂-free etch chemistry with BCl₃/Ar and further optimized the etch condition to achieve smooth and vertical sidewalls as shown in Fig.1(b). The etch depth was deliberately set to be slightly smaller than the Ge23Sb7S70 film thickness to avoid exposing MgF2 substrate to air. It is critical to fully remove the hardened e-beam resist after ICP etch with a short Ar plasma ash followed by 1 hour soaking in 75 °C N-Methyl-2-pyrrolidone (NMP) based solvent and 30 seconds of sonication. The short sonication process will efficiently remove any passivation overgrowth on the etched sidewalls without delaminating the Ge₂₃Sb₇S₇₀ devices.

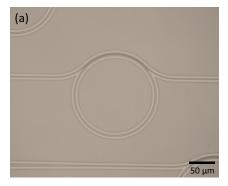


Fig. 1. (a) Optical microscope top-view image of the e-beam resist pattern on $Ge_{23}Sb_7S_{70}$ film for 100 μ m-radius ring resonators coupled with a tapered bus waveguide. (b) Scanning electron micrograph of the cross-section of a $Ge_{23}Sb_7S_{70}$ bus waveguide etched by BCl_3/Ar chemistry inductively coupled plasma reactive ion etching.

Finite element analysis simulation was performed to engineer the dispersion of the fabricated waveguide using the optical constants measured by MIR ellipsometry. By tuning the width of the rings, we achieve close-to-zero total dispersion for various radiuses. Finite-Difference Time-Domain (FDTD) simulations were then performed to design pulley couplers for coupling to the dispersion controlled TE₀₀ mode. The bus waveguides were tapered to 8 μm wide at the cleaved facets for efficient free-space coupling. The optical transmission spectra of the ring resonators were measured using an Argos Aculight Model 2400 CW optical parametric oscillator (OPO), Bristol 671 wavemeter, and two PbSe AC coupled amplified detectors. Asphere lenses (NA 0.56) were used for free space coupling into and out of the chip. The wavelength of the OPO was tuned continuously following procedures outlined in [6]. Transmission spectra of the resonances were fitted to a Lorentzian lineshape to identify loaded quality factors Q₁, and the intrinsic quality factor Q₁ was calculated from the measured coupling depth, as shown in Fig.2(a). To characterize the dispersion, resonant frequencies were identified over a wide range of wavelengths and the integrated dispersion was then extrapolated from the changes in free spectral range, as shown in Fig.2(b,c). As designed, the resonator exhibited a flat and close-to-zero dispersion near 3600 nm. Near the edges of the measured wavelength range, the measured dispersion deviates from the design due mainly to the limited number of data points available. This mismatch is expected to be greatly reduced when a wider wavelength scan is performed.

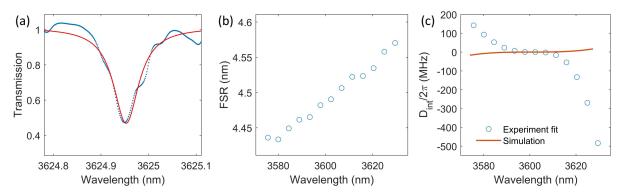


Fig. 2. (a) Transmission spectrum of a 200 μ m-radius Ge₂₃Sb₇S₇₀ ring resonator around 3.6 μ m wavelength. The measured quality factor is Q₁ = 6.44 × 10⁴, and the intrinsic quality factor is calculated to be Q_i = 7.64 × 10⁴. (b) The measured free-spectrum-range (FSR) spectrum of the ring resonator measured from a wideband transmission scan. (c) Fitted integral dispersion D_{int} spectrum compared to the simulation of the Ge₂₃Sb₇S₇₀ ring resonator's TE₀₀ mode.

From the intrinsic quality factor, we calculated the propagation loss to be 2.1 dB/cm. Given our optimized etch condition, we believe that remaining sources of loss can be attributed to atmospheric degradation and absorption in the substrate. Therefore, continuing work will investigate fabrication with substrate options, such as Al₂O₃ (sapphire) substrates that is free from water absorption, as well as thick claddings, such as Al₂O₃ chemical vapor deposition (CVD), to prevent device exposure to atmosphere.

In conclusion, we present high-quality $Ge_{23}Sb_7S_{70}$ ring resonators in the mid-infrared region. Scattering losses were reduced by an optimized BCl_3/Ar etch chemistry that enabled vertical and smooth sidewalls, as well as a short sonication process to remove passivation overgrowth. Dehydrating the MgF_2 substrate significantly reduced absorptive losses compared to the previous works [1]. These combined efforts produced ring resonators with Q_i up to $\sim 8 \times 10^4$ which is among the best reported in chalcogenide material systems. These resonators are a great platform for cavity-enhanced MIR spectroscopy. Further improvement in quality factor will enable $Ge_{23}Sb_7S_{70}$ resonators as a promising integrated system for mid-infrared nonlinearities such as micro-comb generation, due to its low-loss propagation and dispersion engineering capability.

References

- [1] M. Grayson, G. Krueper, B. Xu, M. Zohrabi, D. Hjelme, J. T. Gopinath, and W. Park, "On-chip mid-infrared optical sensing with GeSbSe waveguides and resonators," Opt. Express 31, 877-889 (2023).
- [2] P. Ma, D. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, "Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared," Opt. Express 21, 29927-29937 (2013).
- [3] P. Ma, D. Choi, Y. Yu, Z. Yang, K. Vu, T. Nguyen, A. Mitchell, B. Luther-Davies, and S. Madden, "High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing," Opt. Express 23, 19969-19979 (2015).
- [4] L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K.C. Richardson, "Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S," Mater. Chem. Phys. 97, 64-70 (2006).
- [5] J. Cen, F. Liang, D. L. Chen, L. Zhang, N. Yang, and W. Zhu, "Adsorption of water molecule on calcium fluoride and magnesium fluoride surfaces: A combined Theoretical and experimental study," J. Phys. Chem. C 124, 7853-7859 (2020).
- [6] A.M. Morrison, T. Liang, and G.E. Douberly, "Automation of an "Aculight" continuous-wave optical parametric oscillator", Rev. Sci. Instrum. 84(1), 013102 (2013).