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As was pointed out by S. Karp, Theorem B of paper [V. Sedykh and B. Shapiro, On
two conjectures concerning convex curves, Int. J. Math. 16(10) (2005) 1157-1173] is
wrong. Its claim is based on an erroneous example obtained by multiplication of three
concrete totally positive 4 X 4 upper-triangular matrices, but the order of multiplication
of matrices used to produce this example was not the correct one. Below we present
a right statement which claims the opposite to that of Theorem B. Its proof can be
essentially found in a recent paper [N. Arkani-Hamed, T. Lam and M. Spradlin, Non-
perturbative geometries for planar N = 4 SYM amplitudes, J. High Energy Phys. 2021
(2021) 65].
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1. Introduction

Recall that a classical result due to Schubert, [7] claims that for a generic
(k+1)(n — k)-tuple of k-dimensional complex subspaces in CP™ there exist ., =
1'2'((2;37(21(2(;“()75; —)' complex projective subspaces of dimension (n—k—1)in
CP" intersecting each of the above k-dimensional subspaces. (The number fy, ,, is
the degree of the Grassmannian of projective k-dimensional subspaces in CP™ con-

sidered as a projective variety embedded using Pliicker coordinates.) The following
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conjecture has been formulated in early 1990s by the authors (unpublished); it has
been proven in two fascinating papers [2, 5] some years ago. (Recently, two novel
proofs of these results have been presented in [3, 6].)

Conjecture on total reality. For the real rational normal curve p, : S* — RP"
and any (k 4+ 1)(n — k)-tuple of pairwise distinct real projective k-dimensional
osculating subspaces to p;,, there exist fi , real projective subspaces of dimension
(n —k —1) in RP" intersecting each of the above osculating subspaces.

Many discussions and further results related to the latter conjecture can be
found in [9].

Originally, the authors suspected that the latter conjecture were also valid for
convex curves and not just for the rational normal curve where a curve v : S* —
RP™ (respectively, v : [0,1] — RP"™) is called convex if any hyperplane H C
RP™ intersects v at most n times counting multiplicities. (Discussions of various
properties of convex curves can be found in a number of earlier papers by the authors
as well as in other publications.) In particular, at each point of a convex curve ~y
there exists a well-defined Frenet frame and therefore a well-defined osculating k-
dimensional subspace for any k=1,...,n — 1.

Theorem B of [8] erroneously claims that there exists a convex curve in RP3
and a 4-tuple of its tangent lines such that there are no real lines intersecting all of
them. (In this case k = 1,n = 3 and #; 3 = 2.) The correct statement is as follows.

Theorem 1. For any conver curve v : St — RP3 (respectively, v : [0,1] — RP?)
and any 4-tuple of its tangent lines L = (L1, 2,3, y), there exist two real distinct
lines L1 and Lo intersecting each line in L.

In other words, Theorem 1 claims that total reality conjecture is valid in the
special case k = 1,n = 3 for convex curves as well. Its proof follows straightfor-
wardly from the next result of [1]. (We want to thank S. Karp for providing the
formulation and the proof of this statement.)

Theorem 2. Let W;, i = 1,2,3,4 be 4 X 2 real matrices, such that the 4 x 8 matrix
formed by concatenating Wi, Wo, W5 and Wy has all its 4 x 4 minors positive. Then
regarding each Wi as an element of the real Grassmannian Gra 4(R), there exist two

distinct U € Gra 4(R) such that U NW; # 0 for i =1,2,3,4.

Proof. Let A:=[W; Wy W5 Wy] be the 4 x 8 matrix formed by concatenating
W1, Wy, W3 and Wy. After acting on R* by an element of a GL4(R) with positive
determinant, we may assume that A = [X Y], where X is a 4 x 4 totally positive
matrix and

0 0 0 -1

0 0 1 0
Y =

0 -1 0 0

1 0 0 0
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Then X = [Wl WQ] and Y = [Wg W4] Set

1 0
—x 0

U:= N (z,y € R).
0y

Then in Gra 4(R), we have UNW3 # () and UNW, # (. Also, we have UNW; # ()
and U N Wy # 0 if and only if

det[W; U]=0 and det[Wy U]=0.
These conditions give the following two equations:
Aq3122y + A2 + Aos 12y + Ags 12 =0 and
A13,342Y + A1a,302 + No3 34y + Aoy 34 = 0,

where Ay ; denotes the determinant of the submatrix of X in rows I and columns
J. Using the second equation to solve for y in terms of x and substituting into the
first equation, we obtain a quadratic equation in x whose discriminant equals

2
D = (A13,120824.31 — Doy 12013 310 — A14,12023 34 + Aoz 19014,34)
—4(A13,12014,34 — A1412013 34) (D23 12024 34 — Noa 12023 34).

To settle Theorem 2 it suffices to show that under our assumptions D > 0.
Since X is totally positive, by the Loewner—Whitney theorem [4, 10] we can
write

1 0 0 0 m 0 0 0
Y- g+j+I 1 0 0 0 n 0O
hj+hl+kl h+k 1 0 0 0 o O
ikl ik k1 0 0 0 p
1 f+d+a ab+ae+de abc
0 1 b+e be
0 0 1 ¢ |
0 0 0 1
where a,...,p > 0. Then we calculate

D =m?n?(FG + H?),
where
F = acehijmo + acehilmo + 2cdehijmo + cdehilmo + abhjmp + abhlmp
+ abklmp + aehjmp + achlmp + aeklmp + cehino + dehjmp + dehlmp
+ deklmp + bhnp + 2bknp + ehnp + eknp,
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G = acehijmo + acehilmo + cdehilmo + abhjmp + abhlmp + abklmp
+ aehjmp + aehlmp + aeklmp + cehino + dehjmp + dehlmp + deklmp
+ bhnp + ehnp + eknp,

H = bknp — cdehijmo.

Since F' and G are positive if a,...,p > 0 we get that D > 0. O

In order to deduce Theorem 1 from Theorem 2 we need the following lemma.

Lemma 3. For any convex curve y : St — RP3 (respectively, v : [0,1] — RP3) and
any 4-tuple of its tangent lines L = ({1, 02,03, l4), there exists a basic e1,€2,€3,€4 in
R* where RP? = (R*\0)/R* and bases in the 2-dimensional subspace 01,05,05,0, of
R* covering {1, 0y, U3, {4, respectwely, such that the 4 x 2 matrices Wi, Wo, W3, Wy
expressing the chosen bases of 51,62,63,54 with respect to ey, eo,e3,e4 satisfy the
assumptions of Theorem 2.

Proof. Notice that given a convex curve v : ST — RP3 (respectively, v : [0,1] —
RP3) as above, one can always find its lift 7 : St — R*\0 (respectively, 7 : [0,1] —
R*\0) such that the projectivization map RP3 = (R*\0)/R* sends ¥ to ~. Since
v is convex, the lift 4 satisfies the property that any linear hyperplane H C R*
intersects ¥ at most 4 times counting multiplicities.

Now set e; = ¥971(0), j = 1,2,3,4 where 7(*) stands for the derivative of
7 of order s considered as a vector function with values in R*. By convexity, the
vectors eg, es, e3, e4 are linearly independent and therefore form a basis in R*. In
what follows we consider coordinates in R* with respect to the basis {e;}.

The Wronski matrix of 4 at ¢ = 0 written in these coordinates coincides with
the identity matrix and therefore has determinant 1. In particular, this implies that
the determinant of the 4 x 4 matrix whose rows are given by the coordinates of
a 4-tuple of vectors ¥(d;) in the latter basis where 0 < 61 < dy < 03 < 04 < &
with sufficiently small § is positive. Furthermore, by definition of convexity, the
determinant of the 4 x 4 matrix with rows %(6;), ¢ = 1,2,3,4 does not vanish for
any 4-tuple 0 < 61 < 0y < 03 < 0, < 1. Thus, this determinant is positive since its
value is close to 1 for sufficiently small 6;’s.

Thus, all 4 x 4 minors of the matrix U = (U, ;)1<i<s, where U, ; = 7;(t;) are
1<5<4
positive for any choice 0 < t) < to < t3 <ty < t5 < tg < t7 < tg < 1. Choosing

0 <t) <tz <ty <ty <1 arbitrarily, set to; = to;_1 + ¢ for i = 1,2, 3,4 where ¢ is
sufficiently small. Notice that J(t2;) = Y(t2i—1) + ¥ (t2i—1) + o(e).

Now introduce the 8-tuple of vectors w;, where wor_1 = Y(top—1),k =1,2,3,4
and wor = J(tox—1) + €7/ (t2x—1). Define the 8 x 4 matrix W = (W, ;), where
Wij = (wi);.

2292002-4



Int. J. Math. 2022.33. Downloaded from www.worldscientific.com

by MICHIGAN STATE UNIVERSITY on 08/26/25. Re-use and distribution is strictly not permitted, except for Open Access articles.

Corrigendum to two conjectures concerning convexr curves

Then for any ordered index set I = {1 < i1 < iy < i3 <14 < 8}, let Uy and Wy
denote the determinants of submatrices of U and W, respectively, formed by rows
indexed by I.

Define

{1 if {2k — 1,2k} C 1T
M =

4
) and 7 = g 2.
0 otherwise 1

Obviously, W; = O(¢*) and Uy = Wi +o0(e*"). As we have noticed above, U’s
are positive for all index sets I which yields that all W;’s are positive as well if
¢ is sufficiently small. It remains to notice that matrix W satisfies the conditions
of Theorem 2 and it consists of the 4-tuple of pairs of vectors spanning the 2-
dimensional subspaces 21,172, 23, 54, respectively. O

Problem 1. Prove or disprove the total reality conjecture for convex curves for other
values of parameters k and n.
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