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As was pointed out by S. Karp, Theorem B of paper [V. Sedykh and B. Shapiro, On
two conjectures concerning convex curves, Int. J. Math. 16(10) (2005) 1157–1173] is
wrong. Its claim is based on an erroneous example obtained by multiplication of three
concrete totally positive 4× 4 upper-triangular matrices, but the order of multiplication
of matrices used to produce this example was not the correct one. Below we present
a right statement which claims the opposite to that of Theorem B. Its proof can be
essentially found in a recent paper [N. Arkani-Hamed, T. Lam and M. Spradlin, Non-
perturbative geometries for planar N = 4 SYM amplitudes, J. High Energy Phys. 2021

(2021) 65].

Keywords: Schubert calculus; total reality conjecture.

1. Introduction

Recall that a classical result due to Schubert, [7] claims that for a generic

(k + 1)(n− k)-tuple of k-dimensional complex subspaces in CPn there exist �k,n =
1!2!...(n−k−1)!((k+1)(n−k))!

(k+1)!(k+2)!...(n)! complex projective subspaces of dimension (n − k − 1) in

CPn intersecting each of the above k-dimensional subspaces. (The number �k,n is

the degree of the Grassmannian of projective k-dimensional subspaces in CPn con-

sidered as a projective variety embedded using Plücker coordinates.) The following
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conjecture has been formulated in early 1990s by the authors (unpublished); it has

been proven in two fascinating papers [2, 5] some years ago. (Recently, two novel

proofs of these results have been presented in [3, 6].)

Conjecture on total reality. For the real rational normal curve ρn : S1 → RPn

and any (k + 1)(n − k)-tuple of pairwise distinct real projective k-dimensional

osculating subspaces to ρn, there exist �k,n real projective subspaces of dimension

(n − k − 1) in RPn intersecting each of the above osculating subspaces.

Many discussions and further results related to the latter conjecture can be

found in [9].

Originally, the authors suspected that the latter conjecture were also valid for

convex curves and not just for the rational normal curve where a curve γ : S1 →

RPn (respectively, γ : [0, 1] → RPn) is called convex if any hyperplane H ⊂

RPn intersects γ at most n times counting multiplicities. (Discussions of various

properties of convex curves can be found in a number of earlier papers by the authors

as well as in other publications.) In particular, at each point of a convex curve γ

there exists a well-defined Frenet frame and therefore a well-defined osculating k-

dimensional subspace for any k = 1, . . . , n − 1.

Theorem B of [8] erroneously claims that there exists a convex curve in RP 3

and a 4-tuple of its tangent lines such that there are no real lines intersecting all of

them. (In this case k = 1, n = 3 and �1,3 = 2.) The correct statement is as follows.

Theorem 1. For any convex curve γ : S1 → RP 3 (respectively, γ : [0, 1] → RP 3)

and any 4-tuple of its tangent lines L = (�1, �2, �3, �4), there exist two real distinct

lines L1 and L2 intersecting each line in L.

In other words, Theorem 1 claims that total reality conjecture is valid in the

special case k = 1, n = 3 for convex curves as well. Its proof follows straightfor-

wardly from the next result of [1]. (We want to thank S. Karp for providing the

formulation and the proof of this statement.)

Theorem 2. Let Wi, i = 1, 2, 3, 4 be 4×2 real matrices, such that the 4×8 matrix

formed by concatenating W1, W2, W3 and W4 has all its 4×4 minors positive. Then

regarding each Wi as an element of the real Grassmannian Gr2,4(R), there exist two

distinct U ∈ Gr2,4(R) such that U ∩ Wi �= ∅ for i = 1, 2, 3, 4.

Proof. Let A := [W1 W2 W3 W4] be the 4×8 matrix formed by concatenating

W1, W2, W3 and W4. After acting on R4 by an element of a GL4(R) with positive

determinant, we may assume that A = [X Y ], where X is a 4 × 4 totally positive

matrix and

Y =

»

¼

¼

¼

¼

½

0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

¾

¿

¿

¿

¿

À

.
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Corrigendum to two conjectures concerning convex curves

Then X = [W1 W2] and Y = [W3 W4]. Set

U :=

»

¼

¼

¼

¼

½

1 0

−x 0

0 −1

0 y

¾

¿

¿

¿

¿

À

(x, y ∈ R).

Then in Gr2,4(R), we have U∩W3 �= ∅ and U∩W4 �= ∅. Also, we have U∩W1 �= ∅

and U ∩ W2 �= ∅ if and only if

det[W1 U ] = 0 and det[W2 U ] = 0.

These conditions give the following two equations:

∆13,12xy + ∆14,12x + ∆23,12y + ∆24,12 = 0 and

∆13,34xy + ∆14,34x + ∆23,34y + ∆24,34 = 0,

where ∆I,J denotes the determinant of the submatrix of X in rows I and columns

J . Using the second equation to solve for y in terms of x and substituting into the

first equation, we obtain a quadratic equation in x whose discriminant equals

D = (∆13,12∆24,34 − ∆24,12∆13,34 − ∆14,12∆23,34 + ∆23,12∆14,34)
2

− 4(∆13,12∆14,34 − ∆14,12∆13,34)(∆23,12∆24,34 − ∆24,12∆23,34).

To settle Theorem 2 it suffices to show that under our assumptions D > 0.

Since X is totally positive, by the Loewner–Whitney theorem [4, 10] we can

write

X =

»

¼

¼

¼

¼

½

1 0 0 0

g + j + l 1 0 0

hj + hl + kl h + k 1 0

ikl ik k 1

¾

¿

¿

¿

¿

À

·

»

¼

¼

¼

¼

½

m 0 0 0

0 n 0 0

0 0 o 0

0 0 0 p

¾

¿

¿

¿

¿

À

·

»

¼

¼

¼

¼

½

1 f + d + a ab + ae + de abc

0 1 b + e bc

0 0 1 c

0 0 0 1

¾

¿

¿

¿

¿

À

,

where a, . . . , p > 0. Then we calculate

D = m2n2(FG + H2),

where

F = acehijmo + acehilmo + 2cdehijmo + cdehilmo + abhjmp + abhlmp

+ abklmp + aehjmp + aehlmp + aeklmp + cehino + dehjmp + dehlmp

+ deklmp + bhnp + 2bknp + ehnp + eknp,
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G = acehijmo + acehilmo + cdehilmo + abhjmp + abhlmp + abklmp

+ aehjmp + aehlmp + aeklmp + cehino + dehjmp + dehlmp + deklmp

+ bhnp + ehnp + eknp,

H = bknp− cdehijmo.

Since F and G are positive if a, . . . , p > 0 we get that D > 0.

In order to deduce Theorem 1 from Theorem 2 we need the following lemma.

Lemma 3. For any convex curve γ : S1 → RP 3 (respectively, γ : [0, 1] → RP 3) and

any 4-tuple of its tangent lines L = (�1, �2, �3, �4), there exists a basic e1, e2, e3, e4 in

R4 where RP 3 = (R4\0)/R∗ and bases in the 2-dimensional subspace �̃1, �̃2, �̃3, �̃4 of

R4 covering �1, �2, �3, �4, respectively, such that the 4 × 2 matrices W1, W2, W3, W4

expressing the chosen bases of �̃1, �̃2, �̃3, �̃4 with respect to e1, e2, e3, e4 satisfy the

assumptions of Theorem 2.

Proof. Notice that given a convex curve γ : S1 → RP 3 (respectively, γ : [0, 1] →

RP 3) as above, one can always find its lift γ̃ : S1 → R4\0 (respectively, γ̃ : [0, 1] →

R4\0) such that the projectivization map RP 3 = (R4\0)/R∗ sends γ̃ to γ. Since

γ is convex, the lift γ̃ satisfies the property that any linear hyperplane H ⊂ R4

intersects γ̃ at most 4 times counting multiplicities.

Now set ej = γ̃(j−1)(0), j = 1, 2, 3, 4 where γ̃(s) stands for the derivative of

γ̃ of order s considered as a vector function with values in R4. By convexity, the

vectors e1, e2, e3, e4 are linearly independent and therefore form a basis in R
4. In

what follows we consider coordinates in R
4 with respect to the basis {ej}.

The Wronski matrix of γ̃ at t = 0 written in these coordinates coincides with

the identity matrix and therefore has determinant 1. In particular, this implies that

the determinant of the 4 × 4 matrix whose rows are given by the coordinates of

a 4-tuple of vectors γ̃(δi) in the latter basis where 0 ≤ δ1 < δ2 < δ3 < δ4 < δ

with sufficiently small δ is positive. Furthermore, by definition of convexity, the

determinant of the 4 × 4 matrix with rows γ̃(θi), i = 1, 2, 3, 4 does not vanish for

any 4-tuple 0 ≤ θ1 < θ2 < θ3 < θ4 ≤ 1. Thus, this determinant is positive since its

value is close to 1 for sufficiently small θi’s.

Thus, all 4 × 4 minors of the matrix U = (Ui,j)1≤i≤8
1≤j≤4

, where Ui,j = γ̃j(ti) are

positive for any choice 0 ≤ t1 < t2 < t3 < t4 < t5 < t6 < t7 < t8 ≤ 1. Choosing

0 < t1 < t3 < t5 < t7 < 1 arbitrarily, set t2i = t2i−1 + ε for i = 1, 2, 3, 4 where ε is

sufficiently small. Notice that γ̃(t2i) = γ̃(t2i−1) + εγ̃′(t2i−1) + o(ε).

Now introduce the 8-tuple of vectors wi, where w2k−1 = γ̃(t2k−1), k = 1, 2, 3, 4

and w2k = γ̃(t2k−1) + εγ′(t2k−1). Define the 8 × 4 matrix W = (Wi,j), where

Wij = (wi)j .
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Corrigendum to two conjectures concerning convex curves

Then for any ordered index set I = {1 ≤ i1 < i2 < i3 < i4 ≤ 8}, let UI and WI

denote the determinants of submatrices of U and W , respectively, formed by rows

indexed by I.

Define

κk =

{

1 if {2k − 1, 2k} ⊂ I

0 otherwise
and κI :=

4
∑

k=1

κk.

Obviously, WI = O(εκI ) and UI = WI +o(εκI ). As we have noticed above, UI ’s

are positive for all index sets I which yields that all WI ’s are positive as well if

ε is sufficiently small. It remains to notice that matrix W satisfies the conditions

of Theorem 2 and it consists of the 4-tuple of pairs of vectors spanning the 2-

dimensional subspaces �̃1, �̃2, �̃3, �̃4, respectively.

Problem 1. Prove or disprove the total reality conjecture for convex curves for other

values of parameters k and n.
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