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ABSTRACT

Optical biosensors are highly sensitive devices that employ optical techniques and biological

recognition elements to detect and measure specific analytes in real-time. Their real-time

continuous monitoring, high sensitivity, and non-destructive sampling make them applicable in

various fields, including medical diagnostics, environmental monitoring, and food safety. This

thesis presents a brief survey on biosensors, focusing on the detection of sepsis biomarkers and

continuous glucose monitoring in whole blood over extended periods. The proposed methods have

been tested and validated using an animal model. Additionally, a machine learning-based

approach for feature selection and data analytics is explored to predict diseases based on

biomarker data from publicly available hospital database. Overall, this thesis summarizes the

current state of biosensors, and sensor fabrication for in-vitro and in-vivo point-of-care

applications and addresses limitations in continuous monitoring in whole blood, proposes

innovative solutions with animal model validation, and presents a data analytics framework for

disease prediction.
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CHAPTER 1. GENERAL INTRODUCTION

This chapter narrates the organization, contents, and contribution of this thesis. The thesis

discusses 4 aspects that are narrated in the next 4 chapters, followed by the conclusion and future

work. This chapter also discusses the motivation behind the research, the socio-economic

significance of this work, and the practical applications of optical biosensors.

1.1 Overview and Organization of the chapters

The research was based on the applications of optical sensors for sensing biomolecules critical

for diagnosing and prognosis of diseases critical for patients in ICU/CCU. The research outcome

is aimed at the development of point-of-care devices which can provide test results quickly and

facilitate continuous bio-molecule monitoring. In Chapter 2 a survey has been reported on sepsis

pathogenesis, related biomarkers, and sensing principles, and an extensive discussion on the

comparison between different kinds of biosensors and their applications and limitations, which

acts as a foundation for the development of improved biosensors for sepsis and glycemia detection.

Both the projects narrated in chapters 3 and 4 provide detailed literature, motivation, fabrication,

and results related to developing respective sensors to detect molecules related to sepsis and

diabetes, respectively. Once the sensor senses the biomolecules in whole blood, it becomes

necessary to analyze it and make appropriate and quick decisions based on the data. Chapter 5

discusses the application of data analytics in predicting diseases early and also assists physicians

with their decisions. MIMIC-III database was used to predict sepsis based on different biomarker

data present. Two feature selection algorithms were employed and 8 machine learning models

were applied to study the efficiency of a set of physiological and physio-chemical biomarkers in

the patient data and compare it with the traditional qSOFA-based sepsis evaluation based on

sepsis-3-definition and recommendation. We have provided a methodology that shows a slightly
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autonomously monitor the health of the patients. For obtaining a patient’s biological and

physio-chemical data, different types of point-of-care biosensors can be used. The data can be

processed in an IoT cloud where the relevant biological data can be sent for analytics. This can

be computed in real-time using intelligent cloud computing technology and can instantaneously

send push notifications to doctors, nurses, and hospital staff after analyzing sensor data to

identify a patient’s health condition. This helps doctors and nurses by allowing them to observe

their related patients without having to visit them in person. With restricted access, patients’

families can also gain from this system. So, the motivation was to contribute towards such

biosensor development in first place and propose a data analytics framework to process such

sensor reading in predicting diseases and help save millions of lives across the world.

1.3 Socio-Economic Importance of Biosensors

Biosensors have had a profound effect on our society, bringing about important

socio-economic changes in various domains. These innovative devices, which combine biology and

technology, can detect and analyze biological information, ranging from small molecules to

physiological changes in living organisms. Their influence can be observed in healthcare,

agriculture, environmental monitoring, and food safety. In the healthcare sector, biosensors have

revolutionized diagnostics and patient monitoring. They enable early disease detection,

personalized medicine, and the rapid identification of infectious diseases like COVID-19, sepsis,

etc. By facilitating early intervention and tailored treatments, biosensors improve patient

outcomes and reduce healthcare costs. In agriculture, biosensors optimize crop production and

help address food security challenges Geballa-Koukoula et al. (2023).

Furthermore, biosensors contribute to economic growth by fostering innovation,

entrepreneurship, and job creation. They encourage collaboration among scientists, engineers,

and business professionals, which fuels the growth of the biosensor industry McGrath et al.

(2013). Additionally, the application of biosensors in various sectors stimulates economic

development and enhances competitiveness. However, challenges still exist regarding affordability,



4

accessibility, and ethical considerations. Ensuring that biosensor technologies are affordable and

accessible to all, especially in low-resource settings, is crucial for promoting equitable healthcare

and sustainable development. Addressing ethical concerns related to privacy, consent, and

responsible use of biosensor data is also essential.

In summary, biosensors have had a significant socio-economic impact. They have improved

healthcare, agriculture, environmental monitoring, and food safety, resulting in better outcomes,

increased productivity, and sustainable practices. Biosensors empower individuals, industries, and

governments to make informed decisions, driving positive socio-economic changes in our society.

1.4 Optical Biosensors and it’s Applications

Optical biosensors Singh et al. (2023) Damborskỳ et al. (2016) have emerged as highly effective

devices for continuous monitoring in a range of fields. These biosensors utilize a combination of

optical techniques and biological recognition elements to detect and measure specific analytes in

real-time. They offer several advantages, including real-time measurements, high sensitivity,

specificity, and non-destructive sampling. The ability of optical biosensors to provide real-time

measurements is a significant benefit. They employ optical techniques such as fluorescence,

surface plasmon resonance (SPR), or interferometry to quickly and accurately detect analytes

without the need for complex sample preparation. This real-time capability is particularly

valuable in time-sensitive applications like medical diagnostics and environmental monitoring.

The high sensitivity of optical biosensors is another key advantage Kim et al. (2021). They

can detect analytes at very low concentrations, often in the nanomolar or picomolar range. This

sensitivity is achieved through signal amplification methods, enabling the precise detection of

analytes and the continuous monitoring of subtle changes in analyte levels. Optical biosensors

also demonstrate excellent specificity. By incorporating biological recognition elements like

antibodies or enzymes, they can selectively detect the target analyte of interest. This specificity

ensures accurate measurements and reduces the risk of false-positive or false-negative results.

Moreover, the non-destructive nature of optical biosensors is beneficial for continuous monitoring.
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Unlike traditional techniques that may require sample destruction or modification, optical

biosensors enable repeated measurements without altering the sample. This feature is particularly

advantageous when working with limited or valuable samples. The applications of optical

biosensors for continuous monitoring are wide-ranging. They find utility in medical diagnostics

for real-time monitoring of biomarkers, enabling early disease detection and personalized

medicine. In environmental monitoring, optical biosensors continuously track pollutants in air,

water, and soil, aiding in pollution control and resource management. Additionally, in food safety,

these biosensors ensure the continuous monitoring of contaminants, contributing to the quality

and safety of food products. In this thesis we will explore how optical biosensors can be used in

the medical world for disease monitoring and detection.

In summary, optical biosensors offer significant benefits especially for continuous monitoring

in various domains. Their real-time measurements, high sensitivity, specificity, and

non-destructive sampling capabilities make them valuable tools for tracking dynamic changes in

analyte levels. As technology advances and portable optical biosensors become more prevalent,

their applications for continuous monitoring are expected to expand, leading to enhanced

diagnostics, improved understanding, and effective management of complex systems.
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CHAPTER 2. A PERSPECTIVE ON SEPSIS PATHOGENESIS,

BIOMARKERS , AND DIAGNOSIS : A CONCISE SURVEY

Souvik Kundu1, Shawana Tabassum1, and Ratnesh Kumar1

1 Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50010,

USA

Modified from a manuscript published in Medical Devices and Sensors, Wiley

2.1 Abstract

Sepsis is a potentially fatal physiological state caused by an imbalance in the body’s immune

response to an infection, and is one of the most common causes for deaths in the non-coronary

intensive care unit worldwide. In this article, the state-of-art on sepsis is presented in a manner

that facilitates easy comprehension also for the non-medical researchers by introducing sepsis, it’s

causes, extent, and comparison of diagnostic techniques (conventional labeled as well as label-free

detection). The article also provides a comprehensive discussion on sepsis biomarkers, to help

researchers from multi-disciplinary domain in developing devices and ideas to compliment the

existing sepsis diagnosis systems for quick and premature detection of the physiological condition

and reduce mortality by means of early treatments.

2.2 Introduction

The word Sepsis originates from the Greek word [σηψις], which refers to bacterial

decomposition of animal- or plant-based organic materials Geroulanos and Douka (2006). In

addition to that, it was also mentioned by Homer’s poems as ‘sepo’ [σηπω], by which he meant ‘I

rotted’. Even during the 460-370 BC, Hippocrates, in order to describe ‘dissolution of a

structure’, used the word ‘sepidon’ which is synonymous with modern day sepsis. Interestingly,
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the term was also used by great philosophers and physicians like Aristotle and Galen with similar

meaning and prevailed for over 2700 years Gül et al. (2017). However, it was not until the

ACCP/SCCM Consensus Conference at Chicago in 1991 that the terms related to sepsis were

standardized Bone et al. (1992). The conference aimed at providing general guidelines for future

investigations related to sepsis, so that researchers could compare and improve various existing

therapeutic protocols. They provided a definition of sepsis and systemic inflammatory response

syndrome (SIRS) along with details of physiological parameters which can categorize sepsis and

non-sepsis cases. In modern medical science, sepsis can be broadly defined as an unbalanced

immune response of an organism to an infection that eventually ends up injuring its own organs

or tissues. However, the definition of sepsis has changed over the years. Due to advancement in

science and technology now it is possible to assess sepsis criterion based on patient’s past health

records data. Thus the definition was modified in 2001 and again on 2016 the latest definition of

sepsis has been provided by a task force comprising of personnel from infectious diseases,

Intensive Care Unit (ICU), and surgical and pulmonary specialists. They have published their

recommendations in The Third International Consensus Definitions for Sepsis and Septic Shock

(Sepsis-3), where Sepsis is defined as a life-threatening organ dysfunction caused by a

dysregulated host response to infection. Also, SIRS was substituted with a shortened sequential

organ failure assessment score known as the quick Sequential Organ Failure Assessment (qSOFA)

score . This comprises of two of the following three physiological conditions suffered by a patient:

increased breathing rate, low blood pressure, and change in level of consciousness Singer et al.

(2016). Based on historical records on the inception and expression of sepsis, Figure 2.1 illustrates

the transformation of sepsis definition over a span of 24 years.

Sepsis starts with an inflammatory response to the presence or invasion of a microorganism.

Several clinical symptoms arise with the progression of sepsis, including a rise in body

temperature above 38.3◦C (101◦F) or a temperature drop below 36◦C (96.8◦F), a heart rate and

respiratory rate of more than 90 beats/min and 20 breaths/min respectively, acute alternations in

white blood cell (WBC) count, i.e., either greater than 12000 per cu. mm. or less than 4000 per
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techniques and methodologies explored in the year 2019. Along with that care has been taken to

include the most popular sepsis diagnosis techniques over the years and they are grouped by their

detection principle and depicted in form of Tables. Amendments to these techniques should lead

to the fabrication of point-of-care devices which would result in early and quick diagnosis of sepsis

and eventually save more lives in ICU by exercising proper antibiotics early on. The main focus of

this survey paper is the review of causes of sepsis, molecular mechanisms underlying sepsis, and

labeled and label-free sepsis diagnostic systems along with their advantages and limitations.

Finally, the article ends with a discussion on the future prospects of diagnosis and treatment of

sepsis.

2.3 Causes and effects of Sepsis

2.3.1 What underlies sepsis?

In the past years several research has been conducted to understand the root cause of sepsis,

e.g., Schouten et al. (2008); Ward and Bosmann (2012); Hotchkiss et al. (2016). From prevalent

research it is understood that the severity resulting from sepsis is not directly caused by invading

microorganisms or pathogens, rather this clinical condition is caused by dysregulation of the host

immune response that leads to multiple organ dysfunction, coagulopathy, and hypotension

Schouten et al. (2008). This requires understanding of the interrelation between infection,

inflammation, and coagulation as well as the difference between immune response during regular

infection and during sepsis. In Opal and Esmon (2002) authors have claimed that when an

external pathogen invades, an attempt is made by the host defense system to prevent the foreign

organisms from spreading and multiplying inside the host body. This event is thus followed by an

inflammatory response that activates the coagulation process and fibrin deposition. However, the

exaggerated response of the immune system leads to a situation where severe coagulation leads to

microvascular thrombosis and organ dysfunction also known as disseminated intravascular

coagulation (DIC) Levi and Ten Cate (1999).
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Essentially, this microvascular thrombosis is an adaptive response of the immune system when

there is an infection that prevents the intruding pathogens present in the tissues from entering the

systemic circulatory system. Thus, by clotting the path between the tissue and circulatory system

temporarily, the immune system with the help of natural killer cells (a type of white blood cells)

removes the pathogens or bacteria and repairs the damaged tissues. However, during acute

infection the microvascular thrombosis becomes generalized, which results in organ failure and

eventually death due to extensive tissue ischaemia (i.e. inadequate blood supply to an organ).

This phenomenon is supported by studies on post-mortem of patients found positive with sepsis,

as they demonstrate microvascular thrombosis in many organs including the lung, adrenals, liver,

gut, kidney, and brain Dixon (2004). Researchers therefore have found a relation between

inflammation and coagulatory response in the host system Esmon (2005), Levi et al. (2004), and

have acknowledged the significance of endothelial activation for microvascular dysfunction, which

is one of the hallmarks of sepsis Aird (2003), Bateman et al. (2003).

2.3.2 Compromise of immunity by sepsis

One aspect of immunity is the viable lymphocytes, a subtype of WBC, which mainly

comprises of natural killer (NK) cells Freud et al. (2017), T-cells (thymus) Kumar et al. (2018),

and B-cells (bone-marrow) Cooper (2015). NK cells are generally part of the innate or inborn

immune system and are best known for killing the tumors and virally infected cells. On the other

hand, T-cells are involved in cell-mediated immunity, i.e., they provide immunity by activating

phagocytes, antigen-specific cytotoxic T-lymphocytes, and release multiple cytokines in response

to a foreign organism (also called antigen). B-cells respond to pathogens by generating large

amount of antibodies for neutralizing these foreign bodies, e.g., bacteria and viruses. These

lymphocytes along with dendritic cells (DCs) Luckashenak and Eisenlohr (2013) can become

dysfunctional during sepsis.

A recent study Boomer et al. (2011) infers that during sepsis there is a massive apoptosis of

T- and B-cells which is accompanied by profound immunosuppression. An increased number of
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T-suppressor cells is also noted. Sepsis can turn out to be lethal with the apoptosis of T- and

B-cells followed by defective DCs, and marks the onset of immunosuppression. As a result of this

defective innate immune system, the ability to engulf bacteria is greatly reduced, resulting in

multi-organ failure (MOF) and finally death. Studies also reveal that sepsis can result in a huge

buildup of reactive oxygen species (ROS) which causes redox imbalance in WBCs (leukocytes)

and organs. This increased number of ROS and WBC imbalance gives rise to an inflammatory

response called systemic immune response syndrome (SIRS), along with a sustained immune

response and other immune activation states in endothelial cells and leukocytes, that ultimately

causes MOF and death.The detailed analysis and pathways are narrated in several papers

including Riedemann et al. (2002); Hotchkiss et al. (2001); Peck-Palmer et al. (2008); Budd

(2002); Kasten et al. (2010); Hotchkiss et al. (2016).

2.4 Molecular mechanisms in sepsis pathogenesis

Any severe insult to the body including burns, pathogen attacks, or severe surgeries, triggers

inflammatory responses by releasing one of the two types of molecular patterns into the

bloodstream: damage-associated molecular patterns (DAMPs), when the body suffers from an

injury, or pathogen-associated molecular patterns (PAMPs), when a pathogen invades the body

Bone (1996). In order to understand the complex flow of events that accompanies sepsis, let us

consider the example of bacterial infection. In this section, the flow of events, i.e., the immune

response of the body that follows the inception of bacterial infection is narrated to facilitate easy

grasp of the complex biological phenomenon. (The flow of events associated with the immune

response of the body is nearly similar for most of the infections or injuries.)

Bacterial cell walls are composed of lipo-polysaccharides (LPSs) which are also known as

endotoxin. These toxin molecular patterns that are present inside a bacterial cell are released

when the cell disintegrates. These patterns are known as PAMPs and are received by toll like

receptors (TLR) that resides on the host cell surface. TLRs belong to a class of proteins usually

expressed on the leukocyte membranes including macrophages, dendritic cells and cells of
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reduced expression of HLA-DR is also accompanied by an increased expression of the negative

co-stimulatory molecule CTLA-4 (cytotoxic T lymphocyte-associated antigen-4) Roger et al.

(2009) as well as another molecule associated with apoptosis of T-cells called PD-1 (programmed

cell death) Zhang et al. (2011). Generally, T-cells express a positive co-stimulatory molecule

called CD28. Along with the TCRs, it recognizes peptide antigens presented by macrophages,

which activates the T-cell. However, reduced expression of CD28 and enhanced expression of the

alternative ligand CTLA-4 (also called CD152) leads to apoptosis of T-cells Kessel et al. (2009).

When there is a lack of T-cells, the production of antibodies against the bacterial peptide antigen

is reduced, thus delaying the elimination of bacterial infection. This leads to prolonged

coagulation (one which tries to prevent the migration of infection to various organs of the body),

and eventually due to this delayed coagulation, there is an insufficient supply of blood and

nutrients to the organs which leads to organ failure and tissue toxicity. This becomes the cause of

fatality in sepsis patients.

Figure 2.4 (A) Deaths from sepsis vs other diseases (https://www.cdc.gov/); (B) Rise in

mortality with an increase in the number of systemic inflammatory response

syndrome symptoms.

2.5 Impact Statistics of Sepsis

In order to appreciate the impact of sepsis worldwide, we hereby present a statistical

representation of the scenario. Among the reported cases, there are over 31.5 million people who

develop sepsis each year worldwide. Among those, 19.4 million suffer from severe sepsis and about
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(2003); Campbell et al. (2003), and by the time a positive result arrives, the patient may

have started suffering from severe sepsis or septic shock along with multiple organ failure.

• Miss-classification due to non-specificity: The anomalous counts for leukocytes or CRP may

be misleading as that might be an outcome of some other clinical conditions or diseases

rather than sepsis, thereby increasing the false-negative rate Angus and Van der Poll (2013).

• Blood volume required for culture: Studies reported at Bouza et al. (2007); Connell et al.

(2007) confirm that the diagnostic yield improves with increase in extracted blood volume.

Moreover, insufficient blood volume often yields in false-negative results. However,

extracting large volume of blood from neonates and other pediatric patients with certain

critical clinical conditions, is not always possible. This can be a bottleneck of traditional

blood culture methodologies.

• Existence of slow-growing pathogens: Some pathogens multiply and express themselves

slowly and this results in low microbial activities in the culture media, which reduces the

signal to noise ratio Fenollar and Raoult (2007). The situation gets further deteriorated if

the patients had received an anti-microbial therapy before.

• Timeliness of sample testing: Blood culture bottles need to be loaded into an automated

instrument for measuring microbial activities Sautter et al. (2006); Schwetz et al. (2007).

Ideally, to reduce false-negative results and minimize the detection time, the samples need

to be loaded immediately, which puts additional constraints on accuracy.

It is evident that several diagnostic dilemma prevail in traditional blood-culture based sepsis

diagnosis, and hence less limiting sepsis diagnostic methods are of paramount significance.

2.7 Biomarker-based Label-free Sepsis Diagnosis

The limitations of the traditional diagnosis discussed in the previous section motivate

intervention of several interdisciplinary techniques. In the past decades, many novel techniques
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Table 2.1 Traditional sepsis diagnosis techniques

Device Company Detection Method Sample Time-to-detect Diagnosis
FDA

Approved
POC

EPOC Siemens
Blood gas

(Analyzer)

Whole

blood
1min qSOFA Yes Semi

i-STAT Abbott Immuno Analyzers
Whole

blood
30min

Circulating

proteins
Yes Yes

SeptiFast Roche PCR
Whole

blood
6 hrs

Identify

Pathogens
Yes No

FAST-ID

BSI Panel
Qvella PCR

Whole

blood
1 hr

Identify

Pathogens
Yes No

Microbiology

- Septi-Chek

Becton

Dickinson
Blood culture

Whole

blood
38 hrs

Identify

Pathogens
Yes No

Oxoid signal
ThermoFisher

Scientific
Blood culture

Whole

blood
24 hrs

Identify

Pathogens
Yes No

QuickFISH AdvanDx Fluorescence

Positive

blood

culture

1.5 hrs
Identify

Pathogens
Yes No

Accllix LeukoDx
Fluorescence/

Flow Cytometry

Positive

blood

culture

1-2 hrs
Cell Antigen

Expression
No No

SepsiTest Molzym
PCR/ DNA

Amplification

Whole

blood
1-2 hrs

Identify

Pathogens
Yes No

AST ImpeDx
Microfluidics/

Electrochemical

Positive

blood

culture

1-5 days
Identify

Pathogens
Yes No

hemoFISH
Miacom

diagnostics
Fluorescence

Positive

blood

culture

0.5 hr
Identify

Pathogens
Yes No

Verigene Luminex PCR

Positive

blood

culture

3.5 hrs
Identify

Pathogens
No No

FilmArray
Biofire

diagnostics
PCR

Positive

blood

culture

1 hr
Identify

Pathogens
No No

HYPLEX BAG PCR

Positive

blood

culture

3 hrs
Identify

Pathogens
No No

ACCU-PROBE Gen-probe
Chemi-

luminescent

Positive

blood

culture

3 hrs
Identify

Pathogens
No No

PLEX-ID BAC Abbott PCR

Positive

blood

culture

6 hrs
Identify

Pathogens
No No

Staph SR
Becton

Dickinson
PCR

Positive

blood

culture

3 hrs
Identify

Pathogens
Yes No

StaphPlex Qiagen PCR

Positive

blood

culture

5 hrs
Identify

Pathogens
No No

MALDI-TOF bioMérieux

Matrix

assisted

laser

desorption

Positive

blood

culture

2 hrs
Identify

Pathogens
No No

Magicplex Seegene PCR
Whole

blood
3.5 hrs

Identify

Pathogens
No No
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have been developed with the aim to mitigate the existing limitations and achieve lower limits of

detection. Some detection techniques focused on detecting the sepsis biomarker or a combination

of biomarkers rather than directly detecting the pathogens, while some others studied the motion

or motility of various blood components in a sepsis patient and compared those against a healthy

subject. Biomarkers are measurable substances, the concentration of which increases or decreases

in response to diseases, infections, or other environmental factors. The level of a specific

biomarker or a combination of biomarkers gives an indication of the presence of a medical

condition or disease. A large number of sepsis related biomarkers has been reported in literature.

However, the accuracy and effectiveness of biomarker-based sepsis detection can not be evaluated

until and unless the results are compared to some standards. In Liu et al. (2016) the authors

conducted a systematic review and meta-analysis in order to evaluate the biomarkers reported in

the last two decades by retrieving information from journals including PubMed and Embase.

They identified seven most common sepsis biomarkers - PCT, CRP, IL-6, soluble triggering

receptor expressed on myeloid cells-1, prepsin, lipopolysaccharide (LPS) binding protein, and

CD64. Although, concentration of biomarkers correlates well with the severity of sepsis, due to

the lack of specificity of biomarkers and different early inflammatory responses for different

patients, distinguishing sepsis from other similar type of non-sepsis clinical conditions is critical.

According to Pierrakos and Vincent (2010), approximately 178 sepsis biomarkers have been

identified. But no biomarker shows sufficient sensitivity and specificity to sepsis Nobre et al.

(2008) with one exception of PCT Rowland et al. (2015); de Jong et al. (2016). Hence, a

combination of biomarkers can lead to better specificity and sensitivity Vincent and Beumier

(2013). Table 2.2 lists the three major sepsis related biomarkers IL-6, PCT, and CRP, and their

clinically important concentrations Reinhart et al. (2012).

Table 2.2 Key biomarker concentrations relevant for sepsis detection

Biomarker Concentration in Blood (normal)[pg/mL] Concentration in Blood (Sepsis)[pg/mL]

CRP <3 >3

PCT <10 10-10000

IL-6 <1 1-5000
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In the following sub-section, we discuss some existing ‘label-free’ sepsis detection schemes

which ultimately may lead to a POC (point-of-care) solution to sepsis detection.

2.7.1 Electrochemical Approach

Electrical transducers are widely used due to their high sensitivity, simplicity and amenability

to inexpensive miniaturization. The increasing need for a patient-centered, efficient and

inexpensive diagnostic system has resulted in the emergence and development of POC sepsis

diagnostic systems. Min et al. (2018a) reported the development of a POC platform, termed IBS

(integrated biosensor for sepsis) for rapid and reliable sepsis identification. A portable platform

comprising of a disposable kit (to capture sepsis biomarker interleukin-3 (IL-3) on magnetic beads

and label it for subsequent electrochemical measurements), an electrical detection system (to

measure electrical current for IL-3 quantification), a microcontroller unit for signal processing and

a bluetooth module for wireless communication, all packaged into a single monolithic device,

outperformed the conventional enzyme-linked immunosorbent assays (ELISA) by providing >5

times faster response, >10 times more sensitivity and an order of magnitude larger dynamic

detection range. Further, using human clinical samples (n = 62), sensitivity and specificity of

91.3% and 82.4% were achieved, respectively. In addition, survival analysis on patients suffering

from septic shock, confirmed the significance of IL-3 as in indicator of organ failures. The total

cost of the device was broken down to about $50 for the IBS reader and $5 per test for the

reagent use. A scale-up production is expected to further reduce these prices, thus providing IBS

competitive cost-advantages over ELISA ($11) or lateral flow strips ($10-$20).

The limitations in differentiating sepsis from other noninfectious causes of SIRS are overcome

through multiplexed detection of multiple biomarkers that results in improved diagnosis. In this

regard, Panneer Selvam and Prasad (2017a) reported the first-of-its-kind electrochemical

impedance spectroscopy (EIS) based nanochannel system built with a nanoporous nylon

membrane integrated onto microelectrodes. The covalent binding of biomarkers onto the electrode

surface formed an electrical double layer which was transduced as impedance changes and
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Table 2.3 Survey on electrochemical sensors for sepsis diagnosis

Principle Sample Biomarker Interface Linearity & LOD Reference

Microelectrode Buffer
Interlukin-6

(IL-6)

needle

shaped

micro-electrode

20-100pg/mL Russell et al. (2019a)

Chrono-

amperometry

Human

Blood
IL-3

Antibodies,

oxidizing

enzyme

(HRP)/

mediators

10 pg/mL Min et al. (2018b)

Amperometric

Human

Serum/

Blood

Secretory

Phospholipase

Group 2-IIA

(Enzyme)

Enz. Conj.

acrylic

µspheres

and Au NP

coated on

(SPE)

0.01–100

ng/mL,

5 x 10−3 ng/mL

Mansor et al. (2018)

Electrochemical

Impedance

Spectroscopy

(EIS)

Human

Serum/

Blood

PCT,

LPS and

lipoteichoic

acid

(LTA)

nanoporous

nylon membrane

integrated onto

microelectrodes

0.1ng/ml,

1µ g/ml,

1µ g/ml

Panneer Selvam and Prasad (2017b)

Electrochemical

Immunosensor
Buffer PCT

Cu/Mn

Double-Doped

CeO2

Nanocomposites

0.03pg/ml Yang et al. (2017)

Multiplexed

EC Sensor

Infected

Blood

Medium

specific to

bacterial

species

AuNPs

on

SPE

290 CFU/mL Gao et al. (2017)

Electrochemical

Immunosensor

Human

Serum/

Blood

TNF
Microarray

ELISA
60pg/mL Arya and Estrela (2017)

Surface plasmon resonance (SPR) is another promising label-free technique for selectively

identifying sepsis. In Vance and Sandros (2014), an SPR system was developed to detect ultra-low

concentrations of the CRP biomarker in blood. In this work, a sandwich assay was implemented

by introducing aptamer-modified quantum dots (QDs), which could measure 7 zeptomole (at 5

fg/mL) of CRP in spiked human serum. Figure 2.10 (B) and (C) illustrate the set up. Wang

et al. (2017) coated a thin gold film on the exposed region of the fiber core to excite the surface

plasmon polaritons at the interface between the gold coating and the dielectric overlayer.

Afterwards, the SPR sensor was modified with a polydopamine, followed by the

immobilization of anti-CRP monoclonal antibodies. The shifts in the SPR dip appearing at the

output signal were measured and the sensitivity was observed to be 1.17nm µg −1 mL. The
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Table 2.4 Survey on optical sensors for sepsis diagnosis

Principle Sample Biomarker Interface Linearity & LOD Reference

Nano-Plasmonic Buffer
E. coli

(bacteria)

Bioprinted

Microarray

Based Lens free

Interferometer

Single bacterial

cell in 40 min
Dey et al. (2018)

Optical Fiber

(LMR)

Blood

Plasma
CRP

Core-Cladding

Interface
0.0625 - 1 mg/L Zubiate et al. (2017)

Plasmonic

(Nano-particles)
Buffer CRP

Digital Biomarker

detection

in Microarray

(NP enhanced gold

nano-hole arrays)

27pg/mL Belushkin et al. (2018)

Fiber Based

Immunosensor
Buffer IL-6

fluorescent

magnetic

nanoparticle

0.1 pg/mL Zhang et al. (2018a)

SPR
Human

Serum

Folic

Acid

Proteins

Graphene

+

Folic acid

5−500 fM

5fM
He et al. (2016)

SPR Buffer PCT

KOH treated

gold-coated

SPR chip

4.2 ng/mL Vashist et al. (2012)

Fluorescence

[FRET]
Buffer

Folate

Receptor

Proteins

Ag nanoclusters

coated

DNA /SWCNTs

0.1−3 ng/mL

33pg/mL
He et al. (2017)

Total Internal

Reflection

Fluorescence

(TIRF)

Serum

and

Plasma

PCT,

IL-6

microarray based

multiparameter

immunofluorescence

assays

IL-6: 0.27 ng/mL

in serum

0.77 ng/mL

in plasma

PCT: 0.37ng/mL

in serum

1 ng/mL in plasma

Rascher et al. (2014)

optimum binding time between the anti-CRP and CRP was observed to be 60 mins which is far

less than the conventional schemes. A point-of-care application for PCT quantification was

proposed by Rascher et al. (2014), that worked on the principle of total internal reflection

(TIRF). A comparative summary of 9 optical sensors for sepsis diagnosis, detailing the samples

they use, the biomarkers they target, the interfaces they utilize, their linearity and LOD, and

their references, is presented in Table 2.4.
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2.7.3 Microfluidics Based Approach

Ellett et al. (2018) reported a novel sepsis diagnostic procedure where the motility of

neutrophils present in blood was measured in a microfluidic assay. This device, as illustrated in

Figure 2.11, required only a drop of diluted whole blood for diagnosis. Five motility parameters

were studied and a hybrid score was calculated to estimate the prevalence of sepsis. Supervised

machine learning algorithms were also applied to narrow down the total number of control

parameters which increased the efficiency of the overall diagnosis process. The motility of

neutrophils collected from sepsis patients exhibited higher motility compared to neutrophils

collected from a healthy human. The complete detection process took about 6 hrs to complete

which may be viewed as a limiting factor. Recently, researchers from MIT Wu and Voldman

(2019) have developed a novel point-of-care microfluidic chip to detect sepsis in about 30 min.

This biochip detects levels of IL-6, which is a sepsis biomarker from blood. The novelty lies in the

fact that the detection is possible using only micro-liters of blood rather than conventional

milliliters and can replace bulky devices with similar detection performance.

Figure 2.11 Microfluidic device to estimate neutrophil motility from a drop of blood Ellett

et al. (2018) Reprinted with permission from Springer Nature.
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Table 2.5 Survey on microfluidic and lab-on-chip sensors for sepsis diagnosis

Detection Principle Sample Biomarker Interface Linearity & LOD Reference

Micro-fluidic Drop of Blood
Neutrophils

N/A N/A Ellett et al. (2018)

Micro-fluidic Blood nCD64 cell counts
619 +/- 340

cells/ chip
Zhang et al. (2018b)

PoC Microfluidic

Biochip
Blood nCD64 cell counts

102 in 10uL

of Blood
Hassan et al. (2017)

Lab on a Chip

(Micro-fluidic)
Buffer IL-3

magneto-

electrochemical

sensing

10pg/mL Min et al. (2018b)

A comparative summary of 4 sepsis sensors realized on a microfluidics platform, detailing the

samples they use, the biomarkers they target, the interfaces they utilize, their linearity and LOD,

and their references, is presented in Table 2.5.

2.7.4 Field-Effect Transistor Based Approach

Field-effect transistors have been gaining more attention for infectious disease detection

because of their low voltage operation (<1V), inherent gain amplification, biocompatibility and

miniaturization Torsi et al. (2013). Seshadri et al. (2018a) developed a electrolyte-gated organic

field-effect transistor (EGOFET) for label-free detection of PCT biomarker. The corresponding

schematic diagram and actual implementation are depicted in Figure 2.12 (A) and (B)

respectively. Monoclonal antibodies were immobilized on the surface of a poly-3-hexylthiophene

(P3HT) organic semiconductor (OSC) that formed the transistor electronic channel. The

antibody immobilization and analyte-receptor binding events induced distinct changes in the

transistor figures of merit, namely, threshold voltage, drain current, and carrier mobility. The

antibody functionalized to the OSC channel induced alterations in transfer path of charge carrier

which translated into changes in carrier mobility. On the other hand, the net negative charge on

the target PCT acted as traps for holes induced in the OSC, eventually reducing the drain

current and shifting the device threshold voltage. The reported EGOFET could detect PCT

concentrations, ranging from 0.8 pM to 4.7 nM with a detection limit of 2.2 pM. Similar FET

based label free sensing using aptamer and carbon nano tubes has also been explored to detect

IgE by Khung and Narducci (2013). Figure 2.12(C) illustrates a generalized scheme for fabrication
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diagnose the sepsis. The model employed random forest algorithm that enhanced the diagnosis

accuracy. It was concluded that there was an increase in the levels of acetic acid, and a decrease

in linoleic acid and cholesterol levels in sepsis patients.

Sepsis is prevalent in newborns which makes its early detection extremely important. In Hu

et al. (2018) three physiological attributes Lehman et al. (2018) were utilized to predict sepsis

which included: heart rate, respiratory rate, and blood oxygen saturation. The experienced

pediatricians at the NICU of Monash Children Hospital utilized these variables to predict the

onset of sepsis in preterm infants. Machine Learning algorithms including Multi-layer Neural

Network (NN), Logistic Regression (LR), Support vector machines (SVM) with Gaussian kernel,

and ensemble learning models including, Random Forest (RF) and Gradient Boosting Decision

Tree (GBDT) were used, and from the results it was evident that RF and GBDT outperformed

LR, SVM, and NN. Authors also claimed that the method could accurately predict the onset of

sepsis 24 hours in advance. This provides clinicians ample opportunities to restrict the infection

before it begins to cause harm to the newborn.

Now-a-days hospitals are employing Artificial Intelligence (AI) to monitor the onset of sepsis.

Duke University Hospital has officially launched Sepsis Watch, that identifies incipient sepsis

cases and raises an alarm Strickland (2018). Several other deep learning (convolutional - long

short term memory) Lin et al. (2018); Saqib et al. (2018) based prediction algorithms are also

presented in literature that predict sepsis with high efficiency. Recent Temporal Patterns (RTPs)

used in conjunction with SVM classifier outperforms some other state-of-the-art machine learning

techniques Khoshnevisan et al. (2018). Also, cloud based systems have been proposed that work

in conjunction with ML and AI. For example, GE Healthcare and Roche Diagnostics have

partnered together3 to provide a cloud based digital analytical tool to utilize the pentabytes of

patient data that is generated by hospitals yearly. Also, Faisal et al. (2019) have developed a

computer model which defines a new score called computer-aided National Early Warning Score

(cNEWS) which they claim to be more accurate than conventional qSOFA score and also easily

3https://www.gehealthcare.com/article/a-bot-for-sepsis-and-cancer-care-in-the-cloud
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integrable with existing analytics in hospitals. These data provides a clear picture about an

overall involvement of machine learning and data analytics tools in healthcare.

2.7.6 Miscellaneous Approaches

In addition to the above-mentioned techniques, there are other diagnostic schemes for

cost-effective, timely, and real-time detection of infections. Recently, for easy tunability properties

of the porous silicon (PSi) (e.g. pore morphology, photonic properties, biocompatibility and

surface chemistry), biosensors based on PSi are gaining popularity . Over years, the initial

drawbacks on sensitivity caused due to limited diffusion of biomolecules inside PSi nanopores

have been overcome: The technique reported in Mariani et al. (2016), depicts a 10,000 fold

increased sensitivity while detecting 3.0 nM concentration of sepsis biomarker protein TNFα with

an enhanced signal to noise ratio of 10.6. Arshavsky-Graham et al. (2017) reported a proof of

concept on enhancing the sensitivity by means of on-chip protein pre-concentration using

electrokinetic isotachophoresis (ITP) on porous silicon (PSi) biosensor. The detection was based

on Reflective Interferometric Fourier transform spectroscopy (RIFTS) with a LoD of 7.5 nM.

Similar PSi based interferometric highly sensitive label-free detection of sepsis biomarker TNFα

was also reported in Mariani et al. (2017), where Interferogram Average over Wavelength (IAW)

reflectance spectroscopy was used as the detection principle, and concentrations ranging from 3 to

390 nM were detected. In Terracciano et al. (2019), authors have presented the recent progress in

the development of PSi optical aptasensors for bioengineering and biomedical applications, also

dicussing various PSi functionalization strategies along with techniques to improve the device

performance in terms of sensitivity, response time, and limit of detection (LOD).

Voltammetric diagnosis Ly et al. (2018) of E. Coli done on blood plasma infected by sepsis, is

another scheme in use. In Henne et al. (2006), researchers developed a gold-coated quartz crystal

microbalance biosensor for the detection of folate binding protein (FBP), which is a biomarker for

sepsis. A LOD of 30 nM was achieved for the sensor. Figure 2.13 (A) and (B) depict the working

principle of this acoustic biosensor for the detection of FBP. Figure 2.13 (C) illustrates a
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Table 2.6 Survey on FET, Mass, and Machine Learning based sensors for sepsis diagnosis

Principle Sample Biomarker Interface Linearity & LOD Reference

Organic FET Saliva CRP
millimeter-sized

transistor (SiMoT)
590 zM Macchia et al. (2019)

Colorimetry Whole Blood PCT
poly-3-janus

transducers
0.4ng/mL Russell et al. (2019b)

Machine Learning

Based
N/A N/A

Prediction from

variation of

physiological

data analysis

of historic data

available on

sepsis

N/A

Hu et al. (2018) Lehman et al. (2018)

Strickland (2018) Lin et al. (2018)

Saqib et al. (2018) Khoshnevisan et al. (2018)

Electrolyte Gated

OFET
Buffer PCT

poly-3- hexylthiophene

(P3HT) / Antibody

(anti-PCT)

2.2pM Seshadri et al. (2018b)Mulla et al. (2015)

Field Effect

Transistor
Buffer CRP

CMOS

Technology
0.1ng/mL Sohn and Kim (2008) Park et al. (2010)

Quartz Crystal

Microbalance

- D300 QCM unit

Human

Serum

Folate

Binding

Proteins

Au+ folate /

BSA+ anti-FBP
50pM − 2µM Henne et al. (2006)

There has been a great advancement in the diagnosis of sepsis, especially in methods that do

not require blood culture, such as PCR, MALDI-TOF, and ELISA based technology. These

technologies have facilitated a great deal of velocity in which the infections along with their

anti-microbial activity patterns are identified. However, challenges continue to persist and unless

the clinicians can detect sepsis at its onset, the infected blood samples cannot be obtained from

patients which results in retardation in diagnosis and delay in exercising antibiotics. Thus, there

is an urgent need for point of care devices that can detect sepsis within minutes from the onset of

sepsis. From the existing literature review narrated in this paper, it is evident that point of care

biochips can be fabricated with the capability of detecting multiple sepsis biomarkers at a time.

Thus, label-free biomarker detection can eventually pave the way for future automatic diagnosis

of sepsis in intensive care units and thereby contribute significantly to the reduction in sepsis

fatality worldwide.
In addition to the measurement issues, the occurrence of sepsis depends on a combination of

system factors: hosts, pathogens, and health-care systems, as illustrated by the venn diagram in

Figure 2.14. These factors are inter-related and hence their interplay can be a crucial factor. The

factors can be social and demographic which include: diet, lifestyle, economic status, sex, race.

Even access to health-care system is very critical in determining the prevalence, extent, and
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Bouza, E., Sousa, D., Rodŕıguez-Créixems, M., Lechuz, J. G., and Munoz, P. (2007). Is the
volume of blood cultured still a significant factor in the diagnosis of bloodstream infections?
Journal of clinical microbiology, 45(9):2765–2769.

Budd, R. C. (2002). Death receptors couple to both cell proliferation and apoptosis. The Journal
of clinical investigation, 109(4):437–442.



37

management of adult patients admitted to the hospital with community-acquired pneumonia: a
prospective observational study. Chest, 123(4):1142–1150.

Cohen, J., Vincent, J.-L., Adhikari, N. K., Machado, F. R., Angus, D. C., Calandra, T., Jaton,
K., Giulieri, S., Delaloye, J., Opal, S., et al. (2015). Sepsis: a roadmap for future research. The
Lancet infectious diseases, 15(5):581–614.

Connell, T. G., Rele, M., Cowley, D., Buttery, J. P., and Curtis, N. (2007). How reliable is a
negative blood culture result? volume of blood submitted for culture in routine practice in a
children’s hospital. Pediatrics, 119(5):891–896.

Cooper, M. D. (2015). The early history of b cells. Nature Reviews Immunology, 15(3):191.

Daniels, R. (2011). Surviving the first hours in sepsis: getting the basics right (an intensivist’s
perspective). Journal of Antimicrobial Chemotherapy, 66(suppl 2):ii11–ii23.

de Jong, E., van Oers, J. A., Beishuizen, A., Vos, P., Vermeijden, W. J., Haas, L. E., Loef, B. G.,
Dormans, T., van Melsen, G. C., Kluiters, Y. C., et al. (2016). Efficacy and safety of
procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients:
a randomised, controlled, open-label trial. The Lancet Infectious Diseases, 16(7):819–827.

Dey, P., Fabri-Faja, N., Calvo-Lozano, O., Terborg, R. A., Belushkin, A., Yesilkoy, F., Fabrega,
A., Ruiz-Rodriguez, J. C., Ferrer, R., Gonzalez-Lopez, J. J., et al. (2018). Label-free bacteria
quantification in blood plasma by a bioprinted microarray based interferometric point-of-care
device. ACS sensors, 4(1):52–60.

Dixon, B. (2004). The role of microvascular thrombosis in sepsis. Anaesthesia and intensive care,
32(5):619–629.

Ellett, F., Jorgensen, J., Marand, A. L., Liu, Y. M., Martinez, M. M., Sein, V., Butler, K. L., Lee,
J., and Irimia, D. (2018). Diagnosis of sepsis from a drop of blood by measurement of
spontaneous neutrophil motility in a microfluidic assay. Nature Biomedical Engineering,
2(4):207.

Esmon, C. T. (2005). The interactions between inflammation and coagulation. British journal of
haematology, 131(4):417–430.

Faisal, M., Richardson, D., Scally, A. J., Howes, R., Beatson, K., Speed, K., and Mohammed,
M. A. (2019). Computer-aided national early warning score to predict the risk of sepsis
following emergency medical admission to hospital: a model development and external
validation study. CMAJ, 191(14):E382–E389.

Faix, J. D. (2013). Biomarkers of sepsis. Critical reviews in clinical laboratory sciences,
50(1):23–36.

Campbell, S. G., Marrie, T. J., Anstey, R., Dickinson, G., Ackroyd-Stolarz, S., capital
Study Investigators, et al. (2003). The contribution of blood cultures to the clinical



38

Fenollar, F. and Raoult, D. (2007). Molecular diagnosis of bloodstream infections caused by
non-cultivable bacteria. International journal of antimicrobial agents, 30:7–15.

Fleischmann, C., Scherag, A., Adhikari, N. K., Hartog, C. S., Tsaganos, T., Schlattmann, P.,
Angus, D. C., and Reinhart, K. (2016). Assessment of global incidence and mortality of
hospital-treated sepsis. current estimates and limitations. American journal of respiratory and
critical care medicine, 193(3):259–272.

Fleischmann-Struzek, C., Goldfarb, D. M., Schlattmann, P., Schlapbach, L. J., Reinhart, K., and
Kissoon, N. (2018). The global burden of paediatric and neonatal sepsis: a systematic review.
The Lancet Respiratory Medicine, 6(3):223–230.

Freud, A. G., Mundy-Bosse, B. L., Yu, J., and Caligiuri, M. A. (2017). The broad spectrum of
human natural killer cell diversity. Immunity, 47(5):820–833.

Gaieski, D. F., Edwards, J. M., Kallan, M. J., and Carr, B. G. (2013). Benchmarking the
incidence and mortality of severe sepsis in the united states. Critical care medicine,
41(5):1167–1174.

Gao, J., Jeffries, L., Mach, K. E., Craft, D. W., Thomas, N. J., Gau, V., Liao, J. C., and Wong,
P. K. (2017). A multiplex electrochemical biosensor for bloodstream infection diagnosis. SLAS
TECHNOLOGY: Translating Life Sciences Innovation, 22(4):466–474.

Geroulanos, S. and Douka, E. T. (2006). Historical perspective of the word “sepsis”. Intensive
care medicine, 32(12):2077–2077.
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3.1 Abstract

The need for point-of-care (POC) devices for detecting the onset of sepsis has become critical

since sepsis is one of the most prevalent causes of deaths worldwide in non-coronary intensive care

units at the hospitals. Every one hour delay in exercising proper medication can lead to an

exponential rise in mortality. Motivated by this, we propose a POC device for sepsis biomarker

detection, which will complement traditional blood culture-based techniques for easy and quicker

diagnosis and monitoring of sepsis state. The working principle of the device is based on

amalgamation of surface plasmon resonance (SPR) technology with microfluidics. The sensing

chip consists of a gold and graphene oxide coated patterned array of periodic nanoposts to detect

target biomarker molecules in a limited sample volume. The nanoposts are functionalized with

specific receptor molecules that serve as a nanostructured plasmonic crystal for SPR-based

bio-sensing via the excitation of surface plasmon polaritons. The sensitivity of the device to one

of the known sepsis biomarkers, Pro-calcitonin (PCT), was found to be 0.0125 a.u./ pg ml−1 in

the range of 0 pg/ml to 102 pg/ml and 0.0395 a.u./ pg ml−1 in the range of 103 pg/ml to

105 pg/ml, and a LOD of 6.32 pg/ml. The sensor chip provides an opportunity to dynamically

measure antigen-antibody bindings and the soft-lithography based sensor manufacturing

technology provides high reproducibility of the sensor response to PCT molecules even at a
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picomolar level. The microfluidics-based platform provides potential for future integration with

other microfluidic devices viz. plasma separator for separating the PCT-sized molecules to enable

blood sample measurements.

3.2 Introduction

There are more than 31.5 million people who suffer from sepsis every year around the world.

Among them, 19.4 million develop severe sepsis and about 5.3 million people die Fleischmann

et al. (2016). Further, it has been estimated that there are about 3 million sepsis cases in newborn

babies and 1.2 million in children per year globally, with mortality rates between 11% and 19%

Fleischmann-Struzek et al. (2018). As stated by Daniels (2011), the cause of these grim numbers

is due to the lack of an prompt, accurate and point-of-care (POC) sepsis diagnosis method.

A concise discussion on the sepsis pathogenesis, impact, diagnosis and a review of state of the

art diagnostic techniques and its limitations can be found in Kundu et al. (2020). Traditional

sepsis testing involves blood, bronchial fluid, cerebrospinal fluid (CSF) and urine culture. Due to

typical prolonged blood culture turnaround time of around 24-72 hrs (from specimen collection to

actionable test results), septic patients may progress toward septic shock along with multi organ

dysfunction (MoD) Beekmann et al. (2003). Each hour of delay in exercising an appropriate

anti-microbial medicine to the patients results in 7.6% decline in the survival rate of a patient

Linnér et al. (2013). Also, statistically the diagnostic accuracy of the traditional blood culture

based methodologies improve with higher volume of extracted patient blood Bouza et al. (2007).

However, for critical care patients, extraction of sufficient amount of blood for testing is often not

possible which is another challenge for conventional blood-culture based diagnosis of sepsis.

Measurements of leukocytes or C-reactive proteins (CRP) are also conducted to identify an

infection. However, elevated leukocytes or CRP may also correspond to clinical conditions other

than sepsis Angus and Van der Poll (2013). Thus, there is an urgent need for rapid and bedside

monitoring of sepsis with limited blood volume.
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Several label-free detection techniques have been employed for sepsis biomarker detection

ranging from electrochemical Russell et al. (2019), opticalDey et al. (2018), field effect

transistor-based Macchia et al. (2019), acousticOhlsson et al. (2018), and microfluidic-based Ellett

et al. (2018). Although electrochemical sensors provides higher sensitivity, but generally these

sensors provide little information on binding kinetics of protein-protein interactions on the sensor

surface Im et al. (2012). This limitation can be overcome by our microfluidic plasmonic sensor, as

proposed in this work. It allows us to quantify the protein–protein binding affinity by studying

binding kinetics represented by the sensorgram, which helps in designing and implementing a

better target antibody for a given antigenJoe et al. (2007). Among various biomarkers including

CRP and interlukin-6, procalcitonin (PCT) is most commonly used biomarker for identifying

bacterial sepsis Reinhart et al. (2012). The concentration of PCT in normal human being is less

than 10pg/ml and the concentration can rise from 10 to 10,000 pg/ml during sepsis condition.

Therefore, we have used our microfluidics plasmonic biochip for detecting PCT in a buffer

solution in the above concentration range, and have demonstrated the application of our sensor

for measuring the sepsis biomarker PCT.

Point-of-Care solution to biomarker detection/diagnosis in blood samples can be broken up

into two steps: Extraction of plasma from blood (which removes the larger molecules such as red

blood cells, white blood cells and platelets from blood), and detection/diagnosis of the analyte

biomarkers in plasma. There already exist several POC approaches to extract plasma from blood

Dixon et al. (2020); Yang et al. (2006), and here we provide POC approach for

detecting/diagnosis sepsis biomarker in blood plasma and spiked buffer analyte solution (a

common practice as for example also in the works of Neugebauer et al. (2014); Shenoy (2019);

Fabri-Faja et al. (2019)). It will be possible to integrate the plasma extraction step with our

proposed biochip, and the current work focuses on providing a proof-of-concept for POC sepsis

biomarker PCT detection. Accordingly, in this paper we have provided:

• Detailed fabrication process for the microfluidic plasmonic biosenosr chip;
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• Analysis of mode of surface plasmon resonance of the sensor, and estimation of sensitivity

w.r.t. the changes in surrounding refractive indices;

• SPR measurements with PCT protein at different flow rates and demonstration of the

real-time monitoring of the kinetics of protein-protein binding at the sensor surface;

• Exposition of the specificity of our sensor to PCT, with negligible rate of change of sensor

response to non-specific proteins in human plasma;

• Comparison of performance of the proposed sensor w.r.t. the sensors reported in literature

for the PCT detection.

3.3 Plasmonic Sensor Working Principle

An electromagnetic wave impinging on a metal-dielectric interface gives rise to collective

oscillations of free electrons, which leads to the formation of surface waves called surface plasmon

polaritons (SPP) Ghaemi et al. (1998). However, electromagnetic radiation by itself can not

attain SPP resonance due to absence of momentum match between the incident radiation and

that of surface plasmons (SP). For a resonance to occur, the component of the wave vector of the

incident radiation along the interface should equal the wave vector of the SP. Thus in order to

attain SPP resonance several configurations have been employed Raether (1988) viz.

Kretschmann configuration, Otto configuration, waveguide SPR, and grating coupling.

3.3.1 Grating Coupled Surface Plasmon Resonance

In our work, we have employed grating coupling configuration for the momentum matching

using a 2-D array of nanoposts having diameter, pitch, and depth of 250 nm, 500 nm, and 210 nm

respectively.

Fig. 3.1 depicts the generation of SPP wave vector, k⃗spp, by the in-plane wave vector of the

incident radiation, k⃗p, and the Grating momentum wave vector, G⃗m,n, as in (3.1):

k⃗spp = k⃗p + G⃗m,n. (3.1)
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(3.4) can be rewritten by evaluating the magnitude of the right hand side to find the resonant

wavelength as given by (3.5):

2π

λ

√

ϵdϵm
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= 2π
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(

m

Λ
+
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)2

. (3.5)

For our experimental set up, the incident radiation was taken to be normal to the x-y plane,

hence by setting θ = 0◦ and squaring both sides of (3.5), we obtain the simplified form (3.6) for

the resonant wavelength corresponding to our sensor structure’s SPP excitation mode.

λsppm,n
=

Λ√
m2 + n2

√

ϵdϵm
ϵd + ϵm

. (3.6)

3.3.2 Working Principle of the Proposed Sensor

Any changes in the dielectric permitivity that occurs in the surrounding medium, results in a

change in the surface plasmon coupling condition due to a change in permittivity at the

metal-dielectric interface. The surface plasmon waves that are excited at the metal-dielectric

interface, propagate along the surface, and respond to changes in surrounding electrical

permitivity caused by capture of analyte on the surface (in our case Procalcitonin (PCT), a sepsis

biomarker). The changes in permittivity can be detected in three different ways: (a) measuring

changes in coupling angle at a fixed resonant wavelength, (b) measuring changes in coupling λ at

a fixed angle, or (c) measuring change in intensity of transmitted/reflected light at fixed

wavelength and angle. In this work, we used (c), i.e., measured shifts in the reflected light

intensity at the resonance wavelength of our sensor structure and at normal incidence.

3.4 Sensor Fabrication and Functionalization

Fig. 3.2 depicts the fabricated portable, plasmonic biochip at the POC for quantification of

PCT protein. The buffer solution spiked with the PCT protein is injected through the inlet and

the solution reaches the sensor surface through a microfluidic channel. The sensor surface is a

grating structure of pitch 500 nm containing nanoposts (height 210 nm, diameter 250 nm) coated

with gold, graphene oxide (GO), and functionalized with anti-PCT, resulting in SPR resonance in
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minutes to remove air bubbles. After that, the hard-PDMS solution was spun-coated on the Si

surface of master mold at 1000 rpm for 40 s. It was then subsequently cured for ten minutes at

70◦C. Next, to make a soft-PDMS (s-PDMS) pre-polymer solution, Sylgard 184 monomer and it’s

curing agent were mixed at the weight ratio of 10 : 1 followed by degassing for about 30 min.

Then the s-PDMS solution was poured over cured h-PDMS and the combination was cured for

2 hrs at 65◦C as shown in Fig. 3.3(a). Finally, the cured PDMS mold was peeled off from the Si

master mold and thus a complimentary nanohole structure was formed on the PDMS mold. The

above two step process of mold preparation is significant because generally the pre-polymer

solution of s-PDMS has a higher viscosity which makes it hard for the solution to enter the

nanostructures fully at the surface of the Si mold. However, one can argue that if we increase the

weight ratio of the monomer to curing agent, it can decrease the viscosity, but in that case the

cured PDMS structure would be difficult to peel off from the Si mold without damage. The

h-PDMS precursor solution is relatively less viscos than s-PDMS and therefore conforms well

along with the nano-structured surface of the Si mold. Hence h-PDMS helps in better

conformation and the s-PDMS facilitates easy peeling off the PDMS mold from the Si mold.

In order to transfer the nanostructures from the PDMS mold to a glass substrate, an

ultra-violet (UV) curable ZPUA precursor solution procured from Gelest, Inc. was drop cast over

the PDMS mold and then the PDMS mold was placed over a glass slide. For curing the ZPUA,

the combination of glass and mould was exposed for 5 min to a UV light of intensity 3.3 mW

cm−2 to form the periodic array of ZPUA nanoposts as shown in Fig. 3.3(b) and (c). Finally, a

5 nm thick titanium layer was deposited by e-beam evaporation to provide good adhesion to the

continuing thickness build up of the 80 nm thick gold layer deposited next on the ZPUA

nanoposts array, as illustrated in Fig. 3.3(d). Next the sample substrates were mounted on a

rotating and tilting substrate holder for improving the sidewall gold deposition coverage on the

nanoposts. This sidewall coverage of gold on the nanoposts was confirmed from the scanning

electron microscopic (SEM) image ( Fig. 3.3(d) ).
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3.4.2 Sensor Functionalization

In order to immobilize the anti-PCT protein on the surface of the gold nanopost array, layers

of graphene oxide (GO) and ligands were deposited by flowing them over the Au nanopost array.

Colloidal solution of concentration 0.1 mg/mL was made using DI water followed by sonication to

form single-layer graphene oxide nanosheets. 20 µL of the GO solution was introduced inside

the microfluidic channel via the inlet. The GO solution is flown over the nanopost and kept at

room temperature for 2 hr for drying. The GO nanosheets thus gets conforms to the shape of the

nanoposts underneath it and this was confirmed from the SEM image of the fabricated GO/Au

nanopost array illustrated in Fig. 3.4(b). At GO nanosheets, since there are ample functional

groups viz. carboxylic and carbonyl etc., the GO layer serves as covalent binding site for the

anti-PCT proteins. The covalent linkage was formed using EDC–NHS coupling chemistry Ali

et al. (2017). To immobilize the ligands, a solution of 1 : 1 volume ratio containing 1 mg/mL

anti-PCT and EDC–NHS (EDC : 0.2 M; NHS : 0.05 M) was made. The surface of GO–Au

nanoposts was covered by introducing 200 µL of the solution containing anti-PCT, EDC and

NHS. The set up was kept inside a humid chamber for 12 hr at 4◦C. During this time, EDC

reacts covalently with carboxyl groups present at the GO nanosheets forming an intermediate

O-acylisourea. In the meantime another intermediate amine reactive stable NHS ester is produced

by NHS that facilitates the association between the primary amines of anti-PCT by forming C–N

covalent bonds. In order to prevent non-specific bindings and block the sites devoid of anti-PCT

over the sensor surface, 2 mg/mL of bovine serum albumin (BSA) solution was introduced inside

the channel. Finally the sensor surface is washed with the phosphate-buffered saline solution

(PBS) of pH = 7.4 Ali et al. (2018).

3.4.3 SPR Characterization and Simulation

Fig. 3.5(a) illustrates the simulation and experimental data comparison. After fabricating the

nanopost array on the substrate, it was embedded in a microfluidic channel and the resonance

was measured at 607 nm as shown by the green waveform. After coating a layer of graphene oxide
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on nanopost the resonant wavelength got shifted slightly by 1 nm (yellow waveform). Finally,

after functionalizing the sensor with anti-PCT the resonance wavelength red shifted to 637 nm

(shown by blue waveform).

COMSOL simulation, on the other hand, depicts that the resonance dip occurs at a

wavelength of 614 nm prior to GO/anti-PCT functionalization, and at 635 nm after

functionalization. The COMSOL-based FEM simulation was performed using the COMSOL

Multiphysics 5.5. software as shown in Fig.3.5 (c) and (d). In this simulation, periodic boundary

conditions were applied at the boundaries in parallel to the light propagation direction. The top

and bottom of the computation regions were placed with two perfectly matched layers (PMLs) so

that all the scattered electromagnetic waves from the nanopost arrays were absorbed at the

PMLs. In addition, the refractive index of the PMLs was set at the same value as of the

surrounding media to simulate an infinitely thick substrate. Note since our analyte solution

contains PCT which is a protein, the refractive index of the analyte solution was selected as 1.33

for simulation purpose.

The bulk index sensitivity of the fabricated gold nanoposts array was measured to be 470 nm

per RIU by flowing water, acetone, ethanol, isopropyl alcohol, and chloroform with refractive

indices 1.33, 1.36, 1.365, 1.377, and 1.44 respectively over the sensor surface illustrated in

Fig. 3.5(b).

The main characteristics of the sensor is its resonance wavelength and the associated quality

factor. An imperfection in sensor would affect both parameters, but it is only the quality factor

that affects the sensor performance. As long as the resonance wavelength falls within the visible

spectrum, its exact value is immaterial to sensor performance. In this sense, the sensor

performance is unaffected by the pitch or depth of the nanoposts as long as the resonant

wavelength remains within the realm of visible spectrum. The only things that can affect the

quality factor (and hence the sensor performance) is the gold layer thickness, as discussed earlier

in section-3.4 which is optimized at thickness of 50 nm. A variation in that thickness will lead to

lowering of sensor sensitivity. Further the thickness of functionalization Layers (GO, EDC-NHS,
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Anti-PCT) affect the reflectance minimum Usman et al. (2019), that in turn affects the limit of

detection of the sensor.

3.5 Experimental Setup and Sample Preparation

The experimental set up, illustrated in Fig. 3.6, consists of the fabricated microfluidic sensor

chip (inset of Fig. 3.6), the optical source and detector module, a syringe pump to flow the sepsis

biomarker (PCT), collecting vial at the output and a PC for real time data acquisition and

analysis.

Figure 3.6 Experimental Setup

3.5.1 Instruments

For optical measurements, a white light source of power 150 watt quartz halogen lamp

(Luxtec Fiber Optics, Plainsboro, NJ) was connected to a bifurcated optical fiber (BIF

400-VIS-NIR, Ocean Optics). A collimator (F220SMA-A from Thorlabs) was used to illuminate

the nanoposts area inside the channel at normal incidence. The reflected light from the sensor

surface was collected and measured by a UV/VIS spectrometer (USB-4000, Ocean Optics)

attached to the other end of the bifurcated fiber. A syringe pump was used to inject the PCT

solutions through the inlet of the microfluidic channel.
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3.5.2 Chemicals and Sample Preparation

Materials used in sensor are ZUPA (Gelest, Inc.) nanoposts (pitch of 500 nm, height of 210

nm, and width of 250 nm), gold layer (50 nm thick), GO layer (20 nm thick), and anti-PCT layer

(2 nm thick). Their refractive indices are: 1.470, 0.17689+ i3.47 (at 637nm), 1.9 , 1.33

respectively. Lyophilized form of Procalcitonin (PCT), prepared at a 10 mM sodium phosphate

buffer and pH of 7.5, was procured from Millipore Sigma. The vial containing the PCT was

centrifuged prior to use. Then it was reconstituted in sterile H2O to a concentration of

0.1 mg/ml. This formed the stock solution which was further diluted to form different

concentrations of PCT ranging from 105 pg/ml to 10 pg/ml. Deionized (DI) water (resistivity >

18.2 MΩ-cm), used in our experiments was produced using a purification system from Millipore,

Billerica, MA, USA. N-Ethyl N-(3-dimethylaminopropyl carbodiimide) (EDC) and

N-hydroxysuccinimide (NHS) were obtained from Sigma Aldrich, MO, USA.

3.6 Results and Discussions

3.6.1 Effect of flow rate on analyte capture

The specific capture of protein molecules depends not only on the sensor characteristics, but

also on the flow rate. Increasing the flow rate reduces the protein capture time and imparts

different amount of shear stress on the molecules, whereas decreasing the flow rate has reverse

effect. Fig. 3.7(a) shows the effect of the flow rate (controlled by a syringe pump) on the specific

absorption. When the flow rate was low, for instance 10 µL/min, the sensor surface required

longer time (∼30 min) to saturate, resulting in a low protein capture rate, as was measured in

terms of rate of change of intensity to be 0.04 min−1 (Fig. 3.7(a)). However, when the flow rate

was raised to 20 µL/min, the sensor saturation took place within ∼10 min, giving rise to higher

rate of change of sensor response of ∼0.15 min−1. An even higher flow rate, namely, 40 µL/min,

imparted higher shear stress on the molecules resulting in poor sensor response, and an even lower

capture rate of ∼0.03 min−1. Thus, a flow rate of 20 µL/min was found to be optimal and
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selected for the sensing purpose. Fig. 3.7(b) shows the sensor response to non-specific absorption

at this selected flow rate of 20 µL/min, when using BSA as the blocking agent.

We have evaluated the matrix effect and provided the sensor’s response for 0, 104, and

106 pg/ml PCT prepared in buffer and plasma, as shown in Fig. 7(b). All three in-plasma

readings are lower compared to the in-buffer readings. At 0 pg/ml, the sensor response is reduced

by a factor of 2.33 for in-plasma w.r.t. in-buffer. There are reductions by factors of 2.64 and 2.4

at in 104 pg/ml and 106 pg/ml concentrations respectively. Thus the reduction in sensor’s

response in plasma is itself a concave curve (as can be seen in Fig. 7(b)), and this also gets

addressed during calibration.

Lyophilized plasma sample prepared from pooled human blood was obtained from Sigma

Aldrich (USA). No traces of PCT were found in the plasma as confirmed using the Synapt G2-Si

H-Class UPLC Mass Spectrometer from Waters. The plasma was diluted with 1xPBS (pH = 7.4)

buffer to prepare two different concentrations, 104 and 106 pg/ml. Both the plasma

concentrations resulted in much lower sensor response as compared to the response due to PCT,

thus further justifying the selection of 20 µL/min for our experiments.

3.6.2 Transient Response and Sensor Calibration Curve

As can be seen in Fig. 3.8, a reflection dip was found at the resonance wavelength of ∼637 nm

when the anti-PCT conjugated GO-Au nanoposts array was excited by the normal incident light.

At this resonance wavelength of 637 nm the intensity measurements at various PCT

concentrations were performed because the maximum intensity variation to the concentration

change is realized at the resonance, justifying the design of an Au-coated nano-patterned sensor

surface in the first place.

Fig. 8 depicts the reflection spectra of the SPR sensor for 5 different concentrations of PCT

(10 pg/ml, 102 pg/ml, 103 pg/ml, 104 pg/ml, and 105 pg/ml) in the 1xPBS solution (pH = 7.4) in

the visible region of the light spectrum from 630 nm to 645 nm. We specifically examine the five

PCT concentrations around the resonant wavelength of 637 nm. As the PCT concentration
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Table 3.1 Comparison of optical techniques to detect sepsis biomarkers

(PCT,CRP,sTREM-1)

Principle Sample Biomarker Interface Sensitivity Limit of Detection References

Plasmonic

(nanoparticles)
Buffer CRP

Microarray (Nano Particle

enhanced gold nanohole arrays)
0.1 a.u./pg.ml−1 27 pg/ml

Altug et. al.

Belushkin et al. (2018)

Fiber Optic

Evanescent Wave

Excitation

(FOEW)

Blood Plasma PCT

Fiber optic nano-gold

linked immunosorbent

assay

0.024 a.u./pg.ml−1 0.095 pg/ml
Chiang et. al.

Chiang et al. (2020)

Surface

Plasmon

Resonance

(SPR)

Buffer,

Simulated

Blood Plasma

PCT
Molecular imprinted

polymer surface
1.78 a.u./pg.ml−1 9900 pg/ml

Denizli et al.

Sener et al. (2013)

Surface-Enhanced

Raman Scattering

(SERS)

Serum

PCT

CRP

sTREM 1

Au Coated MNPs

PCT (1.08 a.u./pM)

CRP (4.62 a.u./pM)

sTREM-1(1.69 a.u./pM)

0.028 pg/ml (PCT)

0.0073 pg/ml(CRP)

0.00046 pg/ml(sTREM1)

Nguyen et al.

Nguyen et al. (2016)

Localized

Surface

Plasmon

Resonance

(LSPR)

Blood PCT Au Nanopillars 0.05 a.u./ pg.ml−1 500 pg/ml
Deng et al.

Sun et al. (2020)

Surface

Plasmon

Resonance

(SPR)

Buffer PCT
Au Nanopost Array,

Microfluidic

0.0643 a.u./ pg.ml−1 at low conc.

0.0224 a.u./ pg.ml−1 at higher conc.
1.22 pg/ml This work

static setting. Finally, Fig. 3.10 shows the calibration curve that we generated from the

measurement plot of Fig. 3.9, demonstrating how we used the measured data to perform the

calibration between the logarithmic PCT concentrations and the SPR response for the 6

measured concentrations. The response is shifted toward the higher detected intensity with

increase in concentration, that results from the specific binding of the PCT molecules over 2 min

window each, and increase in the refractive index at the sensor surface. The calibration curve

fitted, as illustrated in Fig. 3.10, is chosen to be a montonically increasing power series (to

guarantee 1-1 mapping and thereby allowing inversion for calibration, and one that also supports

a higher reading for a higher concentration): y = 0.207 x0.2628 + 0.02296, having R2 = 0.96. At a

lower concentration (0 pg/ml to 102 pg/ml), the sensitivity is around 0.0125 shift in intensity per

pg/ml change in concentration of PCT, whereas at a higher concentration (103 pg/ml to

105 pg/ml) the sensitivity is around 0.0395 shift in intensity per pg/ml change in concentration of

PCT. The Limit of Detection (LOD) is calculated from the fitted polynomial of the calibration

curve as, 3σ

sensitivity(at low conc.) = 3× 0.02634/0.0125 = 6.32 pg/ml. The coefficient of

variation(CV%) values at concentrations 0 pg/ml, 10 pg/ml, 102 pg/ml, 103 pg/ml, 104 pg/ml,

105 pg/ml are 3.03%, 8.6%, 12%, 7.6%, 12.1%, 2.9% respectively.
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3.7 Conclusion

To summarize the work, we have developed a novel microfluidic plasmonic device for real-time

and label-free detection of a sepsis biomarker for POC application. The label-free detection of

PCT reduces the detection time as compared to conventional labeled detection methodologies, and

also portable biochip design makes it suitable for eventual POC application by integration with

optics for excitation and measurement. Since our methodology involves detection of variations in

intensity of the visible light reflected from the sensor surface, inexpensive source and detector can

be integrated in a package to make the device portable and serve as a POC instrument for sepsis

biomarker quantification. Future work will involve multiplexed detection of other sepsis

biomarkers in a single chip, and design and fabrication of an integrated POC sensing system.
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4.1 Abstract

This paper reports a sensor architecture for continuous monitoring of biomarkers directly in

the blood, especially for ICU/CCU patients requiring critical care and rapid biomarker

measurement. The sensor is based on a simple optical fiber that can be inserted through a

catheter into the bloodstream, wherein gold nanoparticles are attached at its far distal end as a

plasmonic material for highly sensitive opto-chemical sensing of target biomolecules (glucose in

our application) via the excitation of surface plasmon polaritons. For specificity, the nanoparticles

are functionalized with a specific receptor enzyme that enables the localized surface plasmon

resonance (LSPR)-based targeted bio-sensing. Further, a micro dialysis probe is introduced in the

proposed architecture, which facilitates continuous monitoring for an extended period without

fouling the sensor surface with cells and blood debris present in whole blood, leading to prolonged

enhanced sensitivity and limit of detection, relative to existing state-of-the-art continuous

monitoring devices that can conduct direct measurements in blood. To establish this

proof-of-concept, we tested the sensor device to monitor glucose in-vivo involving an animal

model, where continuous monitoring was done directly in the circulation of living rats. The
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sensor’s sensitivity to glucose was found to be 0.0354 a.u./mg.dl−1 with a detection limit of

50.89 mg/dl.

4.2 Introduction

There exists technological challenges in continuous biomarker monitoring in-vivo in whole

blood. These include lack of stability of the sensors and limited re-usability, reduced sensitivity

due to fouling from blood debris, real-time monitoring requirement, expensive manufacturing

cost, are some examples of feasibility challenges needing viable solutions Zafar et al. (2022). In

this paper, we establish a proof-of-concept of such a sensor architecture by targeting in-vivo

continuous glucose monitoring (CGM), which is especially useful in ICUs/CCUs and where CGM

becomes a critical aspect of treatment. In the case of hospitalized COVID-19 patients with

pre-existing conditions of type-2 diabetes, the impact of unbalanced glucose levels is amplified,

and the CGM need becomes even more given that patients with poorer blood glucose control

showed an increased mortality rate relative to those with better glucose control Zhu et al. (2020).

Glycemia in critically ill ICU patients can range from hyperglycemia to hypoglycemia, where

the former is not uncommon even among those patients who have not been previously diagnosed

with diabetes Levetan et al. (1998). Those cases are clinically known as stress-induced

hyperglycemia (SIH), or hospital-related hyperglycemia Palumbo (1981) Pomposelli et al. (1998)

and are associated with increased ICU mortality. There is also a subtle relation between sepsis

Kundu et al. (2020), one of the most common causes of death in ICUs Kundu et al. (2021), and

glycemic status in ICU patients. In these patients, a hyper-metabolic state existsMcCowen et al.

(2001), predominantly due to the intense hormonal and cytokine responses like TNF, IL-1, and

IL-6, that important mediators of insulin resistance, resulting in hyperglycemiaMizock (2001). In

the case of COVID-19 treatments, systemic glucocorticoids used for dampening the cytokine

storm often raise blood glucose levels exponentially. This glycemic variability in the case of

critically ill ICU patients is usually quantified via the standard deviation around the mean or

coefficient of variation (CV), which equals standard deviation/mean Krinsley (2008). Greater
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glycemic variability is associated with a significantly higher mortality rate: A blood glucose level

standard deviation of > 20 mg/dL was associated with a 9.6-fold increase in mortality compared

with a blood glucose level standard deviation of < 20 mg/dL. A study has also revealed that even

a single episode of severe hypoglycemia or low glucose level is associated with an increased risk of

mortalityKrinsley and Grover (2007). Some studies have found that glucose levels of

140-180mg/dL can be associated with the best risk-benefit ratioPreiser and Devos (2007), and

based on that the American Association of Clinical Endocrinologists and the American Diabetes

Association have adopted these levels as targets for ICU patients Kavanagh and McCowen (2010).

Thus, continuous monitoring of glucose along with other critical ICU-relevant biomarkers is of

utmost importance for the survival of critically ill ICU patients.

In this paper, we provide a sensor architecture for in-vivo continuous biomarker monitoring in

blood and establish its proof-of-concept by detecting glucose. However, the approach applies to

any other critical ICU/CCU biomarkers. Although there exist numerous glucose sensors (invasive,

noninvasive, and minimally invasive), which can be broadly categorized as amperometric sensors,

single-use with costly enzyme-based strips, or optical sensors (employing absorption spectroscopy,

light scattering, or Raman spectroscopy), most of these cannot be used for continuous in-vivo

monitoring in the blood due to fouling and interference caused by blood cells on the sensor

surface, and the commonly used static sensor calibration is incapable of compensating for such

fouling over time Vogler (2012). There exist low-fouling materials, e.g., poly(ethylene glycol)

(PEG), but they also have only limited non-fouling capabilities in complex real-world media such

as undiluted blood plasma and serum and its derivatives; are susceptible to oxidative damage over

longer-term use; and are also difficult to directly functionalize with biomolecules for biosensing

applications Li et al. (2007) Ostuni et al. (2001). Also, the wearable sensors integrated with

bio-needles for measuring glucose continuously in sweat or other subcutaneous body fluids can

lack a proper correlation with the immediate blood glucose concentration.

Fiber-optic sensors enjoy unique advantage for in-vivo monitoring in while blood, that those

can be inserted through patient’s catheter into the blood stream in ICU/CCU setting, and while
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different types of gold nanoparticles coated optical fiber-based glucose sensors are reported in the

literature Yang et al. (2020); Kumari et al. (2022), they are incapable of providing continuous

in-vivo monitoring of glucose for a prolonged period due to fouling caused by the proteins, cells,

and other interfering molecules present in the blood.

In contrast to these previous works that mainly focus on sensor design, our work advances the

existing state-of-art in in-vivo glucose sensor design by integrating the fiber-tip sensor with a

microdialysis probe for continuous glucose monitoring in whole blood for a prolonged period: In

our sensing architecture, we have proposed the integration of a microdialysis (µD) probe with

20kDa membrane molecular weight cutoff (MWCO) to prevent the sensor from coming in direct

contact with the larger blood molecules and thereby reduce its fouling. Integration of the

microdialysis probe not only protects the sensor from fouling but also enables easy access to

whole blood for continuous monitoring in an existing ICU/CCU setup: The functionalized

opto-chemical fiber sensor can be inserted inside a microdialysis probe, and the entire assembly

can be inserted through a patient’s catheter that is already furnished in an ICU/CCU setup,

thereby avoiding any extra logistic or overheads. We have established this proof-of-concept by

doing live experiments in a live rat as narrated in the subsequent sections.

The main novelties of our work are:

• nano-sensing footprint of the fiber optic cable that makes it amenable for insertion into the

bloodstream through a catheter for in-vivo monitoring in critical care setting without any

extra logistics, and

• integration of the fiber-tip sensor with a microdialysis probe that allows continuous in-vivo

monitoring in whole blood for a prolonged period. We have demonstrated a proof of concept

by testing the integrated sensing system in a live rat, mimicking the ICU/CCU setup.

Summarily, the paper provides these contributions:

• Detailed fabrication process for the opto-chemical fiber optic sensor.
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• Measurements exploiting localized surface plasmon resonance of the sensor and evaluation of

sensitivity, LOD of the sensor.

• An integrated micro dialysis probe based in-vivo measurement for continuous glucose

monitoring in living rats.

• Performance comparison of the proposed sensor against the continuous glucose monitoring

sensors reported in the literature.

4.3 Plasmonic Sensor Working Principle

This section describes the working mechanism of the gold nanoparticle-coated optical fiber

sensor probe. Given that an in-vivo detection requires a reflected (as opposed to transmitted)

signal for measurement, the sensor is made on the far distal end of a fused bifurcated fiber (see

Fig 4.1) that can be inserted through a catheter into the bloodstream. Gold nanoparticles

(AuNP) are deposited as shown in Fig 4.1 (in the form of red dots) to provide for localized surface

plasmon resonance (LSPR). Light guided through the optical fiber interacts with the AuNPs at

the far distal end of the fiber and excites the surface plasmons (valence bonded electrons). At the

LSPR wavelength, the incident light has maximum absorption (equivalently, minimum reflected

intensity). The LSPR wavelength depends on the AuNP characteristics (material, size, shape,

refractive index (RI)), and RI of the local surrounding medium—This is formalized below in

Section 4.3.1. Accordingly, a change in local surrounding medium RI results in a shift in resonance

wavelength and also a change in the absorption level (and so also the reflected intensity level) at

the original resonance wavelength. We propose to measure intensity variations as opposed to

resonance wavelength shifts because the sensors basd on localized surface plasmon have been

reported to have reduced sensitivity in wavelength modulation configuration and hence the

intensity modulation configuration is preferred Srivastava et al. (2012). For the specific detection

of glucose molecules, the AuNP coated fiber is functionalized with glucose oxidase (GOx) enzyme

(see the yellow Y’s in Fig 4.1). During the glucose detection on the AuNP surface, the glucose
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Figure 4.1 Fiber Optic LSPR based Glucose Sensing Principle.

trapped within the immobilized GOx enzyme gets oxidized by enzymatic reaction, producing

gluconic acid and hydrogen peroxide as the products (see the dark and light blue dots in Fig 4.1)

and changing the local surrounding medium RI. The effect of this on the refractive index change

is then detected as an intensity change at the LSPR wavelength Yang et al. (2020).

4.3.1 Theoretical formulation of the sensing mechanism

The proposed fiber optic-based LSPR sensor system comprises three layers:

• Fiber core made up of silica (SiO2) of refractive index, say η0.

• Metallic (Au) nanoparticle layer, whose real part of dielectric constant ϵr is given by (4.1)

Maier et al. (2007):

ϵr = 1− λ2

λ2p
, (4.1)

where λp is the plasma wavelength of the electrons in the metal nanoparticle layer, and λ is

the wavelength of the incident light.

• Target sensing layer, whose dielectric constant and refractive index are denoted ϵs and ηs,

respectively. (In this paper, the target sensing layer consists of GOx at its base that traps

and oxidizes glucose.)
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Fundamentally, surface plasmon resonance (SPR) is the oscillation resonance of the valence

electrons in metal layers induced by incident radiation of an appropriate frequency. When this

phenomenon is observed in nanoscale particles/layers, it is called localized surface plasmon

resonance (LSPR). The mathematical formulation of the resonance condition and an expression

for LSPR wavelength are presented next.

4.3.2 Resonance condition

The wave incident at the core and metallic nanoparticle layer interface can undergo extinction

(E), transmission (T), and reflection (R). Since, in our optical fiber design, the light gets totally

internally reflected at its far end, there is no transmission component, i.e., a part of the wave gets

extinct due to the absorption and scattering by the nanoparticles, and the rest gets reflected for

measurements. Thereby the reflected spectrum shows a dip at a wavelength where the extinction

is maximum due to LSPR. For very small particles of diameters (d) less than wavelength of

incident light, the scattered fields produced by a plane wave incident on a homogeneous

conducting sphere (AuNPs in our case) results in the following extinction, scattering, and

absorption components, given by (4.3), (4.2), and (4.4) respectively Bohren and Huffman (2008)

Mayer and Hafner (2011):

Eext =
2π

|k|2
+∞
∑

L=1

(2L+ 1)[Re(aL + bL)], (4.2)

Esca =
2π

|k|2
+∞
∑

L=1

(2L+ 1)[|aL|2 + |bL|2], (4.3)

Eabs = Eext − Esca, (4.4)

where k is the incident wave-vector, L values are integers representing the dipole, quadrupole, and

higher multipoles of the scattering, and finally, aL and bL are composed of the Riccati-Bessel

functions Mayer and Hafner (2011). In case of spherical AuNPs, L = 1, and the aL and bL values
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for L = 1, as approximated from power series, are given by (4.5):

a1 =
(kd)3

12

(−iϵ2r − iϵrϵs + 3ϵiϵs − iϵ2i + i2ϵ2s
(ϵr + 2ϵs)2 + (ϵi)2

)

, b1 ≈ 0, (4.5)

where ϵ = ϵr + iϵi, with ϵr being the real part and ϵi being the imaginary part of the metallic

nanoparticle dielectric function, and ϵs is the dielectric constant of the surrounding medium.

Substituting (4.5) into (4.2) and retaining only the L = 1 term yields (4.6):

Eext =
3πd3ϵ

3

2

s

2

ϵi
(ϵr + 2ϵs)2 + ϵ2i

. (4.6)

Similarly, Esca can be evaluated by substituting (4.5) into (4.3). The extinction in (4.6) is

maximized when the denominator is minimized, and that condition is met when ϵr = −2ϵs

assuming ϵi is small or only weakly dependent on the wavelength of the incident light. This

explains the dependence of the LSPR absorption peak on the surrounding environment.

Substituting ϵr = −2ϵs (resonance condition) and ϵs = η2s in (4.1), we obtain the expression for

the LSPR wavelength (4.7):

λLSPR = λp
√

2η2s + 1. (4.7)

4.4 Sensor Fabrication and Functionalization

This section narrates the detailed steps to fabricate the fiber optic-based LSPR sensor probe.

There are three basic steps to the fabrication as follows:

1. Preparation of ∼10 nm radius spherical gold nanoparticles.

2. Immobilization of the nanoparticles on the fiber surface.

3. Functionalization of glucose oxidase on the immobilized nanoparticles.

These steps are also depicted in Fig. 4.2. The integration of the sensor with a µD probe is

discussed in Section 4.5.2.
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4.4.0.2 Fabrication of the nanoparticle-coated sensor on the far distal end of the

fiber

First, the external polymer jacket of the fiber at its tip was removed using a fiber optic

stripper. Next, approximately 3-4 cm of the cladding of a multimode fiber was removed from its

far distal end using an acetone-soaked Kimwipe by a multi-step stripping procedure dipping the

fiber into acetone for 20 min. The cladding part starts to dissolve in acetone, making the

stripping of the cladding easier. The distal end of a multi-mode fiber (with a core diameter of 200

µm) was cut with a fiber cutter to create a flat tip. The unclad sensing area was next cleaned and

hydrolyzed with Piranha solution (volume ratio of H2SO4 : H2O2 = 7 : 3) for 30 min at 85◦ C,

which provided –OH groups on the fiber surface as shown in Fig. 4.2(a). Next, the sensing region

of the optical fiber was rinsed with DI water, blow-dried with N2, and annealed in a vacuum oven

for 30 min at 110◦ C then immersed in a 10% solution of 3-aminopropyl trimethoxysilane

(APTMS) in methanol for 1 hr. at 40◦ C, which provided a monolayer of -NH2 groups on the

fiber surface as illustrated in Fig. 4.2(b). The fiber was next rinsed sequentially with ethanol and

DI water to remove unbound APTMS, blow-dried with N2, and again annealed in a vacuum oven

for 30 min at 110◦ C. The sensing region was then incubated in a gold nanoparticle solution

overnight. Afterwards, the fiber was washed with DI water to get rid of any unbound

nanoparticles and dipped back in the nanoparticle solution for 12 hours to ensure effective

attachment of the nanoparticles on the fiber surface, as seen in Fig. 4.2(c).

Note while ∼10 nm sized AuNPs predominately occur during the above-described synthesis

process of Section 4.4.0.1, there may still exist AuNPs of smaller radii, which hardly contribute to

LSPR. Hence, even after the AuNP attachment on the fiber surface, there is a possibility of

improved LSPR signal by in-situ growth of the smaller AuNPs using, for example, a process

described in Ziegler and Eychmuller (2011); Kim et al. (2019). In that case, the fiber needs to be

immersed in 1 mM sodium citrate dehydrate aqueous solution for 5 min, where the citrate ions

help accumulate the AuNPs, thereby facilitating the growth of the smaller radius AuNPs. Note
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During the measurement, the blood glucose level (BGL) was adjusted in the rat by managing

the insulin and the glucose infusion rates via the right jugular catheter. For a normal rat with

insulin flow at 2.5 mU/min/kg, we observed that a typical glucose infusion rate of about 55-60

mg/kg/min is needed to maintain the BGL steady at its initial value.

4.5.3 Instruments and Reagent Sources

For the measurements, a quartz halogen lamp which is a white light source of power 150-watt

(Luxtec Fiber Optics, Plainsboro, NJ) was connected to 1x2 Multimode Fiber Optic Coupler,

High OH, Ø200 µm Core, 0.39 NA, 50:50 Split, FC/PC. The reflected light from the fiber optic

sensor tip was measured by a UV/VIS spectrometer (USB-4000, Ocean Optics) that is connected

to the other end of the optical coupler. Syringe pumps were used to inject the glucose solution

into the flow cell for experiments in buffer solution and for injecting the perfusion fluid through

the inlets of the µD probe. HAuCl4, tri-sodium citrate, 3-aminopropyl trimethoxysilane

(APTMS), sodium metaperiodate, GOx and cystamine dihydrochloride were procured from

Sigma-Aldrich. Sulfuric acid, hydrogen peroxide, methanol and DI water were obtained from

Chemstore, ISU. Mouse blood was procured from Biochemmed, Winchester, VA.

4.6 Results and Discussions

To establish a proof-of-concept, we studied the behavior of the proposed sensor architecture

for in-vitro (in flowing buffer solution) as well as in-vivo (in live rat) glucose detection. This

section discusses the corresponding measurement results.

4.6.1 Sensor Characterization in Buffer Solution

The measurement results were obtained at the ESSeNCE Lab., ISU, where we tested the

performance of the sensor in three different settings: (i) static glucose solution, (ii) in a flow cell

with PBS buffered glucose solution, (iii) in mouse blood. A post-meal blood glucose level in a

non-diabetic, should be < 180 mg/dl, and a pre-meal glucose level can range from 90 to
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130 mg/dl. Hence, we tested for a concentration range of 0-250 mg/dl. The results in Figure

4.5(a)-(b) correspond to the measurements of dipping the sensing tip into still solutions of

glucose. We observed sensitivity of 0.05 a.u./mg.dl−1 at glucose concentrations of 0 to 100 mg/dl,

and 0.003 a.u./mg.dl−1 at glucose concentrations of 100 to 250 mg/dl.

Figure 4.7 Sensor performance comparison in PBS buffer vs. mouse blood.

Fig. 4.4(b) illustrates a flow cell setup that we used to take readings of glucose in a flowing

buffer solution. Fig. 4.5(c)-(d) depicts the performance of the fiber optic sensor in the flow cell,

which shows nearly the same sensitivity both at lower and higher glucose concentrations.

(Sensitivity of 0.06 a.u./mg.dl−1 was obtained at lower concentration of glucose between 0 to

100 mg/dl, and of 0.004 a.u./mg.dl−1 at higher concentration of glucose between 100 to

250 mg/dl.)

Since, in a real ICU/CCU scenario, glucose concentrations have to be measured in whole

blood, we studied our sensor’s sensitivity and LOD in mouse blood to imitate the behavior of the

sensor’s response in the presence of blood debris. Fig. 4.7 depicts that response, and although

there is an expected reduction in sensitivity and LOD in blood solution compared to the case of

PBS buffer solution, the sensor remains capable of detecting a very low glucose concentration in

blood samples. The LOD of the sensor in the blood sample is 15.3 mg/dl, which, although higher
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varying concentrations was flown over the sensor for measurements. The resulting calibration

curve of Fig.4.12 depicts the R-squared value of 0.92, with low error bars. Also, another direction

of sensor quality enhancement is by improving the quality of the microdialysis to filter out

molecules with even lower molecular weights than the current 20kDa, which again is a topic of

further study, inspired by the success of the proof-of-concept of the current design.

4.6.2.1 Sensor Calibration w.r.t. wavelength shift

Fig.4.13 depicts the sensor calibration by means of wavelength interrogation. Here the

wavelengths corresponding to the minimum intensity for all glucose concentrations are plotted

and fitted using a monotonically increasing function given by y = 0.016x+ 518.93 with R2 = 0.76.

Here we see a slight drop in the R2 value compared to the calibration done using intensity change

where the R2 was 0.79 at the resonant wavelength. From the calibration curve, we have calculated

the sensitivity as 0.016 and L.O.D. 3×0.473
0.016

= 88.68 mg/dl. This shows that the fabricated

LSPR-based glucose sensor is more sensitive to intensity modulation than wavelength modulation.

This finding is also in sync with the literature where LSPR-based sensors have been found to be

less sensitive in wavelength modulation schemes Haes and Van Duyne (2004). Similarly, the work

on LSPR-based U-shaped fiber optic biosensor for glucose reported in Srivastava et al. (2012), is

also based on intensity modulation, and they have also observed a similar phenomenon where

intensity change is more pronounced than wavelength change in LSPR sensors.

4.6.2.2 Combined Sensor Calibration w.r.t. wavelength shift and intensity

In this sub-section, the combined calibration curve for the sensor is provided with respect to

both intensity and wavelength shift. The generalized equations of the individual calibration

curves can be written as equation (4.8), where x is the intensity and y is the wavelength, and z1,

z2 are glucose concentrations whose variances are given by σ21 and σ22 respectively.

x = f(z1); y = g(z2) (4.8)
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Table 4.2 Performance Comparison

Sensor type
Measurement
range (mg/dl)

Sensitivity (a.u./mg.dl−1)
Measurement

Type
Analyte References

MM Microfiber

with APTES
0-300 0.0174 In vitro

SA buffer, horse,

and calf serum
Li et al. (2018)

Graphene Oxide

modified TFG
0-144 0.24 In vitro DI Water Jiang et al. (2018)

Nafion and Enzyme

coated electrode
56.210-108.069 0.022 In vivo Whole Blood Turner et al. (1990)

Enzyme based

needle electrode
70-420 3.10 In vitro

Interstitial Fluids,

Fish blood
Yonemori et al. (2009)

Fiber Optic SPR

with MEA
0-500 0.854 In vitro SA buffer Zheng et al. (2020)

Fiber Optic SPR

and enzyme
0-400 3.10 In vitro DI Water, Urine Zhang et al. (2022)

Back-scattered MIR

spectroscopy
80-160 not reported In vivo

Skin interstitial

fluid
Liakat et al. (2014)

Transmission MIR

spectroscopy
75-600 not reported In vivo Trans-cutaneous Vrancćicé et al. (2014)

LSPR with APTMS and

Glucose Oxidase
50-315 0.0354 In vitro, In vivo

PBS Buffer and

Whole Blood
This work

such as separation of plasma or serum, thereby reducing it’s complexity. Most other continuous

monitoring sensors reported in the literature do not measure glucose directly in blood and thus

require extrapolation to correlate the blood glucose with that in the tissue fluid, making those not

fully accurate or real-time. Further, in our design, the fabrication steps are relatively simpler,

mostly involving standard chemical processing without the need for complex deposition

techniques or equipment.

4.8 Conclusion

In summary, this paper presents an LSPR-based fiber optic opto-chemical sensor for

continuous glucose monitoring in whole blood for 2 hrs. of unimpeded operation. The work

reported a sensor architecture integrating a micro-dialysis probe for preventing the fouling of the

sensor surface in the operational period, and minimizing non-specific signal output, thereby

improving accuracy and offering better SNR. The designed sensor architecture was validated in

buffer as well as in an animal model, producing a proof-of-concept for future development of fiber

optic multiplexed sensors, targeting multiple biomarkers in whole blood for continuous monitoring

in ICU/CCU settings. The good repeatability of the sensor demonstrates the robustness of the
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proposed design for prolonged continuous biomolecular detection directly in whole blood. The

proposed methodology involves the detection of variations in intensity in the visible light range,

allowing integration of an inexpensive source and detector to make a portable, cost-effective

point-of-care detector for biomarker continuous tracking in real-time, making the design amenable

to scaling for mass production.

While the integration of µD probe prolongs the life of the sensor by blocking the deposition of

larger blood-borne molecules on the sensor surface, smaller blood-borne molecules can still slowly

deposit on the sensor probe, causing its response to drift slowly over time. To further prolong the

sensor life for continuous monitoring applications, a sensor re-calibration will be required, that

may interfere with the ability to do continuous monitoring Vettoretti et al. (2015); Guerra et al.

(2012). This situation can be addressed by developing a generalized time-dependent calibration

model capable of also correcting for any time drift in sensor response. We refer to such an

approach as “dynamic calibration”, where not just the current sensor response but also its

historic readings are used for adjusting the calibration. The details of its mathematical

formulation are reported in our paper Talukder et al. (2022), where we have proposed a Bayesian

framework for dynamic calibration of sensors using the history of sensor measurements and the

observed ground truth data.
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Vrancćicé, C., Kroȯger, N., Gretz, N., Neudecker, S., Pucci, A., and Petrich, W. (2014). A
quantitative look inside the body: minimally invasive infrared analysis in vivo. Analytical
chemistry, 86(21):10511–10514.

Yang, Q., Zhang, X., Kumar, S., Singh, R., Zhang, B., Bai, C., and Pu, X. (2020). Development
of glucose sensor using gold nanoparticles and glucose-oxidase functionalized tapered fiber
structure. Plasmonics, 15(3):841–848.

Yonemori, Y., Takahashi, E., Ren, H., Hayashi, T., and Endo, H. (2009). Biosensor system for
continuous glucose monitoring in fish. Analytica chimica acta, 633(1):90–96.

Zafar, H., Channa, A., Jeoti, V., and Stojanović, G. M. (2022). Comprehensive review on
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5.1 Abstract

The importance of label-free detection of essential biomarkers and their sensing principle was

described in the previous three chapters, and in this chapter will discuss how patient data

analytics can be used to forecast diseases by evaluating measured data. This has great potential

to assist physicians in hospitals and clinics in making informed decisions and taking quick action

based on patient data. Keeping in mind the flavor of the thesis, which examined optical

sepsis-biomarker and glucose sensors, the developed data analytics technique is demonstrated

below using sepsis patient data from the MIMIC III database, which is publicly available.

Traditionally, physiological parameters are analyzed by clinicians to determine the sepsis state,

and according to the most recent sepsis-3 definition, the quick SOFA (qSOFA) score is utilized to

determine the sepsis condition. In this chapter, we compare the performance of qSOFA in

ascertaining sepsis against that based on the proposed data analytics. This analysis is solely

based on the laboratory data features (aka physio-bio-markers) present in the MIMIC-III

database hence the selected feature list reported in this chapter is limited to that available in the

database, but the significance of the data analytics approach developed is that it can be applied

to other patient data in hospital databases and utilized in real-time.
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5.2 Introduction

The majority of current research in post-injury sepsis is based on the 1991 and 2001 worldwide

sepsis consensus criteria, sepsis-2, which are based on the existence of systemic inflammatory

response syndrome (SIRS) Levy et al. (2003). Singer et al. (2016) issued new recommendations,

sepsis-3, in 2016 with the goal of better distinguishing sepsis from other illnesses, where sepsis is

now defined as a potentially fatal organ failure produced by a dysregulated host response to

infection. Accordingly, SIRS was eliminated, and sepsis was clinically defined as a two-point or

more increase in sequential (sepsis-related) organ failure assessment (SOFA) score in the presence

of infection. Sepsis-3 also recommended a bedside assessment tool for sepsis screening in infected

patients who were not admitted to intensive care units (ICUs), called the quick SOFA (qSOFA)

score. It contains one point for each of these three criteria: (a) respiratory rate of 22 breaths per

minute, (b) altered mental state, and (c) systolic blood pressure (SBP) of 100 mm Hg. A qSOFA

score of >=2 is taken to indicate sepsis condition Seymour et al. (2016). Note since qSOFA score

is solely based on physiological parameters, we do not have a detailed understanding of the

disease dynamics; it’s simply based on the corresponding response of the body with respect to the

sepsis condition. Chapter-2, on the other hand, explored the etiology of sepsis and a subset of

biomarkers associated with the condition, emphasizing the need of tracking related biomarkers in

the blood. Thus, in this chapter, we will attempt to predict sepsis by analyzing appropriate

biomarkers from a large pool of measured biomarkers available in the MIMIC-III sepsis database.

To reduce the number of sensors required to predict sepsis without compromising the prediction

accuracy by more than 5%, we used feature selection methods to reduce the number of features

for training supervised machine learning models. The details of the dataset, inclusion criteria,

analysis method, and performance are narrated in the subsequent sections.

5.3 MIMIC-III dataset and description

Medical Information Mart for Intensive Care (MIMIC) - III is freely accessible critical care

database of its kind, and the dataset spans more than a decade, with detailed information about
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Table 5.1 MIMIC-III database table description

Sl No Table Comments

1 admissions Hospital admissions associated with an ICU stay.

2 callout Record of when patients were ready for discharge (called out), and the actual time of their discharge (or more generally, their outcome).

3 caregivers List of caregivers associated with an ICU stay.

4 chartevents Events occuring on a patient chart. Physiological parameters, values and description

5 cptevents Events recorded in Current Procedural Terminology.

6 d cpt High-level dictionary of the Current Procedural Terminology.

7 d icd diagnoses Dictionary of the International Classification of Diseases (Diagnoses).

8 d icd procedures Dictionary of the International Classification of Diseases (Procedures)

9 d items Dictionary of non-laboratory-related charted items.

10 d labitems Dictionary of laboratory-related items.

11 datetimeevents Events relating to a datetime.

12 diagnoses icd Diagnoses relating to a hospital admission coded using the ICD9 system.

13 drgcodes Hospital stays classified using the Diagnosis-Related Group system.

14 icustays List of ICU admissions.

15 inputevents cv Events relating to fluid input for patients whose data was originally stored in the CareVue database.

16 inputevents mv Events relating to fluid input for patients whose data was originally stored in the MetaVision database.

17 labevents Events relating to laboratory tests.

18 microbiologyevents Events relating to microbiology tests.

19 noteevents Notes associated with hospital stays.

20 outputevents Outputs recorded during the ICU stay.

21 patients Patients associated with an admission to the ICU.

22 prescriptions Medicines prescribed.

23 procedureevents mv Procedure start and stop times recorded for MetaVision patients.

24 procedures icd Procedures relating to a hospital admission coded using the ICD9 system.

25 services Hospital services that patients were under during their hospital stay.

26 transfers Location of patients during their hospital stay.

individual patient care. MIMIC-III contains data associated with 53,423 distinct hospital

admissions for adult patients (aged 16 years or above) admitted to critical care units between

2001 and 2012. The details of the complete database are narrated in Johnson et al. (2016). The

database includes information such as demographics, vital sign measurements, laboratory test

results, procedures, medications, caregiver notes, imaging reports, and mortality (including

post-hospital discharge). The complete instruction for downloading the database, data

description, and access methods are narrated in Pollard and Johnson III (2016). The access,

copyright, usage notes, and version control are done by physionet Goldberger et al. (2000). The

schema of the database is maintained at Sch, which contains 26 tables as described in Table 5.1.

The database tables are connected by primary and foreign keys identified by the suffix “ID.” To

uniquely identify each patient, there is a subject id in the patients table, and each hospital

admission is tracked via hospital admission id (hadm id) in the admissions table. As described in

Table 5.1, to obtain the biomarker data for a given hospital admission, the tables lab events,

d labitems, and d items can be joined and queried. In order to get the clinical diagnosis

corresponding to a given hospital admission, the diagnoses icd table is joined with the patient
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information. Thus by joining the relevant tables, the clinical features (biomarkers results from

blood work) can be obtained along with the physiological features like heart rate, oxygen levels,

respiratory rates, etc. All other charted information corresponding to each patient can be queried

by joining the chartevents table, which contains additional information on the procedures and

sequence of operations in great detail, that can be explored in big data analytics for learning more

features. There are other tables drugcodes, and prescriptions that detail the drugs prescribed by

the physician, which can be utilized in some data analytics related to studies on medicines and

dosages. In our case, since we worked mainly on the laboratory results, the additional data in the

chartevents table were not relevant.

5.4 Methodology

In this section, we have described how the analysis was done, it’s steps, and related programs

used to achieve the results. We have first procured the data from MIMIC-III database by

following the steps narrated in mim, where a Python environment was setup using Anaconda

platform and following the instructions, directed in the repository mentioned in README.md

file, which includes running the python files preprocess.py and sepsis cohort.py in sequence on the

MIMIC-III database (PostgreSQL database was installed for dumping the MIMIC-III database -

instructions available at Pollard and Johnson III (2016)). To get the ground truth of true sepsis

patients from the pool of all patients, we first obtained ”icd9 code” from the ”d icd diagnoses”

table, which contained the diagnosis details of all patients for each hospital admission. Next, the

table was joined with the ”diagnosis icd” table to obtain the ”subject id” and the hospital

admission id (”hadm id”) of all the patients where physicians explicitly mentioned that the

patient is suffering from sepsis. We found 1163 hospital admissions out of 52,423 that satisfied the

above criteria, and they were split into 840 (7̃0%) for the training set and 323 (3̃0%) for the test

set. Next, we randomly selected 1000 additional hospital admissions from the rest of the data not

marked as sepsis cases and divided them in a 70:30 ratio into the training and test dataset. With
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AdaBoost, Tree, kNN, Logistic Regression, SVM, and Neural Network. Based on the learning, we

have ranked all the models by comparing them based on the accuracy. From these 8 sets of ML

models, we have chosen the model with the highest accuracy, and then we have compared our

proposed model and feature selection method with the performance of the traditional qSOFA

prediction. We compare our binary classification (determine only sepsis and non-sepsis cases)

with the sepsis ground truth from MIMIC III data, as well as with the calculated qSOFA where

all the qSOFA scores of >= 2 are labeled as sepsis and < 2 as non-sepsis cases. The performance

metrics that were computed for comparing the traditional and proposed methodology are

Accuracy (ability to measure the true predictions in the dataset), Sensitivity (how good a model

is at detecting the positives), Specificity (how good a model is at avoiding false alarms/negatives),

and Precision (how many of the positively classified by the model were relevant), as reported in

the results section. Table 5.2 depicts the formula for calculating these parameters, where TP, TN,

FP, FN are true positive, true negative, false positive, and false negative, respectively.

Table 5.2 Performance Metrics

Measure Implication Formula

Accuracy Total accurate predictions (TP+TN) / (P+N)

Sensitivity True Positive Rate TP/(TP+FN)

Specificity True Negative Rate TN/(TN+FP)

Precision Positive Predictive Value TP/(TP+FP)

5.4.2 Feature Selection

There is a total 207 relevant features being monitored in the MIMIC-III data table, after

removing the features which were missing data. Two feature selection algorithms available in the

Orange machine learning tool were applied to the 207 features, and the features were ranked, and

the top 10 features from each feature selection algorithm output were selected for training the

data. It is worth mentioning here that although using all 207 features the model can be more

accurate, in real-world scenarios, measuring all 207 parameters using separate or multiplexed

sensors may be infeasible or could be expensive. Hence one may have a accuracy reduction of say
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about 4% in favor a reduced set of features to monitor. In the result section, we have described in

detail how using 20 features gave an accuracy of 85.9% compared to 89.9% using all 207 features.

The first feature selection method that was applied is Relief Wikipedia (2023b) - which is a

feature selection algorithm that uses a filter-method approach that is highly sensitive to feature

interactions. It is used for binary classification with discrete or numerical features, as is the case

with our dataset. Relief assigns a feature score to each feature, which is then used to rank and

select the highest-scoring features for feature selection. This algorithm works on datasets with n

instances and p features that belong to two known classes (binary classification). The algorithm is

repeated m times. Start with a p-long weight vector (W) of zeros. At each iteration, the feature

vector (X) belonging to one random instance and the feature vectors of the instance closest to X

(measured using Manhattan(L1) norm Wikipedia (2023c)) from each class is processed. Then

update the weight vector such that Wi =Wi − (xi − nearHiti)
2 + (xi + nearMissi)

2. where the

closest same-class instance is called ’near-hit,’ and the closest different-class instance is called

’near-miss.’ Thus the weight of any given feature decreases if it differs from that feature in nearby

instances of the same class more than nearby instances of the other class and increases in the

reverse case. After m iterations, each element of the weight vector is divided by m. This becomes

the relevance vector. Features are selected if their relevance is greater than a threshold, by using

Chebyshev’s nequality Wikipedia (2023a). This algorithm was applied using the defined function

available in Orange tool (for which we did not have any control over the internal parameters like

the iterations, weights and thresholds). This can be a part to explore in the future using different

tools or by physically coding the algorithm. Based on the Relief feature selection method, the 10

top features selected are illustrated in Fig.5.2(a).

The second feature selection method that was applied is chi-square χ2 feature selection

method. For each two variables, we can get observed value O and expected value E, and

Chi-Square measures how E and O deviates from each other. The relationship between the

independent category feature (predictor) and the dependent category feature (response) must be

determined during feature selection. The goal of feature selection is to select characteristics that
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and Park (2016). Elevated serum levels of the intracellular enzyme Lactate Dehydrogenase (LDH)

in sepsis might result from various mechanisms, including cellular injury related to bacterial

toxins, ischemia and cytotoxic-reactive oxygen species generated during reperfusion. In Zein et al.

(2004) it has been hypothesized that increased LDH in patients with severe sepsis and septic

shock would reflect the extent of tissue injury and be associated with a worse prognosis. Hence

lactate biomarker can be useful sepsis feature. Again, the 3rd feature positive blood culture is a

good initial signature and has been ranked high by the feature selection algorithm.

Hypoalbuminemia is common in the intensive care unit in patients with sepsis and may be due to

decreased synthesis by the liver and/or to increased losses or increased proteolysis and clearance

Tamion (2010). Hence lower levels of albumin correlate well with sepsis. de Pablo et al. (2014)

narrates the correlation between lymphocytes in blood and sepsis, and atypical lymphocytes have

a direct correlation with acute bacterial and viral infections. High levels of metamyelocytes and

band cells have been found to be increased mortality in sepsis Mare et al. (2015). Levels of

myelocytes and metamyelocytes were higher in patients with definite sepsis than in healthy

controls. Platelets are involved in both hemostasis and immune response. These mechanisms

work together in a complex and synchronous manner, making the contribution of platelets of

major importance in sepsis Vardon-Bounes et al. (2019). Critical illness, and particularly severe

sepsis, induces profound changes in the function of the normal liver. The balance of hepatic

metabolic activity may be shifted rapidly in response to systemic inflammation with an “acute

phase reaction (APR).” This results in a series of phenomena that includes complex changes in

circulating and functional levels of immunological, transport, and coagulation proteins. Hence the

levels of aspartate aminotransferase (AST) Bernal (2016) in the liver is also a good indicator of

severe sepsis. Hyperglycemia in severe sepsis Wernly et al. (2016) is also common as that is the

body’s way of protecting human cells when a person is critically ill. Hemodynamic instability in

critically ill patients with sepsis can induce multiple organ compromises, including renal

dysfunction and tissue hypoperfusion, both of which are widely believed to cause decreased serum

bicarbonate levels Paudel et al. (2022). Further, this is also related to metabolic acidosis, which is
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frequently found in patients with severe sepsis Ganesh et al. (2016). Hence pH and bicarbonate

levels are also great feature selectors as sepsis indicators. Several mechanisms contribute to an

acute reduction in hemoglobin levels in the setting of sepsis, including reduced production of red

blood cells induced by the systemic inflammatory response, as well as increased destruction of red

cells due to hemolysis and bleeding Muady et al. (2016). Hence low levels of hemoglobin in

hospitals are a potential indicator biomarker in sepsis. Hence, this proves that the ranked feature

selection was not arbitrary but bears a fair correlation with real-world medical data.

5.5 Results

As depicted in Fig. 5.1, the selected top 10 ranked features from both the feature selection

algorithm outputs were applied to 8 different ML models viz. Random Forest, Gradient Boosting,

Native Bayes, AdaBoost, Tree, kNN, Logistic Regression, SVM, and Neural Network with their

default settings, and it was observed that the Random Forest model was found to be most

accurate in classifying sepsis and non-sepsis cases as it had an accuracy of 85.9%. However, we

have also applied all 207 features to the Random Forest model and have achieved an accuracy of

89.9%. Hence we have a 4% reduction in prediction accuracy once we scale the feature size down

from 207 to 20 (a > 90% feature reduction for < 4% loss in accuracy). Based on the 19 domiant

features and random forest model, we tested on the test set and compared the performance of our

trained model performance with qSOFA-based prediction. Fig.5.3 depicts the results obtained

after the comparison. It reports the qSOFA performance for all 2163 data, which comprise both

training and test data cumulatively. It was observed that the model with 20 selected features

outperforms the qSOFA based approach in terms of sensitivity, specificity, precsion, accuracy

(marked in green).

Again, the goal of this analysis was not to propose the absolute list of biomarkers for sepsis

treatment but to present a methodology of selecting and for classifying physio-bio data to try to

predict sepsis rather than rely solely on physiological parameters.
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setting, which can also assist in increasing the accuracy of the existing models. Finally, apart

from relying on one database and limited biomarkers available, other publicly available databases

can also be explored, like eICU Research Institute (eRI) Pollard et al. (2018) database, which

may have another diverse set of patient data along with additional biomarkers.
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to help correct the sensor drift, allowing continuous monitoring and extending its lifetime. The

real-time sensor data can help in building the historic data dictionary, which can further help in

making the calibration more accurate and robust.

Following Chapter 5, effective machine learning models with reliable feature selection

techniques can be investigated to improve prediction accuracy, assist doctors in making more

precise choices, and ultimately save lives by acting when it matters most and administering the

proper life-saving medications to the patients. The AI-based processes provide insights into the

patient’s state, allowing for the initiation of early therapy. The combination of developments in

the sensing regime and the analytics regime will ultimately pave the way for a better treatment

and help in reducing mortality.



ProQuest Number: 

INFORMATION TO ALL USERS 
The quality and completeness of this reproduction is dependent on the quality  

and completeness of the copy made available to ProQuest. 

Distributed by ProQuest LLC (        ). 
Copyright of the Dissertation is held by the Author unless otherwise noted. 

This work may be used in accordance with the terms of the Creative Commons license 
or other rights statement, as indicated in the copyright statement or in the metadata  

associated with this work. Unless otherwise specified in the copyright statement  
or the metadata, all rights are reserved by the copyright holder. 

This work is protected against unauthorized copying under Title 17, 
United States Code and other applicable copyright laws. 

Microform Edition where available © ProQuest LLC. No reproduction or digitization  
of the Microform Edition is authorized without permission of ProQuest LLC. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, MI 48106 - 1346 USA 


	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT
	1. GENERAL INTRODUCTION
	1.1 Overview and Organization of the chapters
	1.2 Motivation
	1.3 Socio-Economic Importance of Biosensors
	1.4 Optical Biosensors and it's Applications
	1.5 References

	2. A PERSPECTIVE ON SEPSIS PATHOGENESIS, BIOMARKERS , AND DIAGNOSIS : A CONCISE SURVEY
	2.1 Abstract
	2.2 Introduction
	2.3 Causes and effects of Sepsis
	2.3.1 What underlies sepsis?
	2.3.2 Compromise of immunity by sepsis

	2.4 Molecular mechanisms in sepsis pathogenesis
	2.5 Impact Statistics of Sepsis
	2.6 Traditional Sepsis Diagnostics
	2.6.1 Limitations of Traditional Sepsis Diagnosis Systems

	2.7 Biomarker-based Label-free Sepsis Diagnosis
	2.7.1 Electrochemical Approach
	2.7.2 Optical Approach
	2.7.3 Microfluidics Based Approach
	2.7.4 Field-Effect Transistor Based Approach
	2.7.5 Machine Learning Based Approach
	2.7.6 Miscellaneous Approaches

	2.8 Concluding remarks and outlook
	2.9 References

	3. PLASMONIC POINT-OF-CARE DEVICE FOR SEPSIS BIO-MARKER DETECTION
	3.1 Abstract
	3.2 Introduction
	3.3 Plasmonic Sensor Working Principle
	3.3.1 Grating Coupled Surface Plasmon Resonance
	3.3.2 Working Principle of the Proposed Sensor

	3.4 Sensor Fabrication and Functionalization
	3.4.1 Sensor Fabrication
	3.4.2 Sensor Functionalization
	3.4.3 SPR Characterization and Simulation

	3.5 Experimental Setup and Sample Preparation
	3.5.1 Instruments
	3.5.2 Chemicals and Sample Preparation

	3.6 Results and Discussions
	3.6.1 Effect of flow rate on analyte capture
	3.6.2 Transient Response and Sensor Calibration Curve
	3.6.3 Performance Comparison

	3.7 Conclusion
	3.8 References

	4. PLASMONIC OPTICAL FIBER BASED CONTINUOUS IN-VIVO GLUCOSE MONITORING FOR ICU/CCU SETUP
	4.1 Abstract
	4.2 Introduction
	4.3 Plasmonic Sensor Working Principle
	4.3.1 Theoretical formulation of the sensing mechanism 
	4.3.2 Resonance condition

	4.4 Sensor Fabrication and Functionalization
	4.5 LSPR Characterization and Experimental Validation
	4.5.1 Glucose monitoring validation in buffer solution
	4.5.2 Continuous Glucose Monitoring in Live Rats
	4.5.3 Instruments and Reagent Sources

	4.6 Results and Discussions
	4.6.1 Sensor Characterization in Buffer Solution
	4.6.2 Sensor Characterization in Blood from Live Rats

	4.7 Performance Comparison
	4.8 Conclusion
	4.9 References

	5. APPLICATION OF ANALYTICS IN THE PREDICTION OF DISEASE AND EVALUATION OF FEATURES AND BIO-MARKERS FROM PATIENT DATA
	5.1 Abstract
	5.2 Introduction
	5.3 MIMIC-III dataset and description
	5.4 Methodology
	5.4.1 The analytics
	5.4.2 Feature Selection
	5.4.3 Correlation between top-ranked features and sepsis in real-world medical aspect

	5.5 Results
	5.6 Conclusion
	5.7 References

	6.  GENERAL CONCLUSION

