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Although much research has made the case for the value of students” making sense of others’
solutions, explanatory mechanisms for how such learning occurs are lacking. In this theoretical
report, we consider how students’ making sense of others’ mathematical solutions may support
learning from a radical constructivist perspective. We elaborate on radical constructivist
constructs—social goals, cognitive perturbations, and reflective abstraction—and use these
constructs to model how engagement with others’ mathematical solutions may engender
learning. We illustrate our model with a task we designed to promote students’ meanings for
spatial coordinate systems. We conclude with implications for research and teaching.
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Students’ making sense of classmates’ solutions to mathematical problems (e.g., Webb et al.,
2014) and with worked examples (e.g., Barbieri et al., 2023) has been positively associated with
mathematics achievement. Although researchers have suggested reasons why such student
activity may translate to achievement gains (Brown et al., 1992; Webb et al., 2023), they have
not provided explanatory mechanisms for how such learning occurs for an individual. As a
theory of learning focused on ways individuals develop knowledge, radical constructivism can
provide such explanations. Broadly, radical constructivism explains how individuals build
knowledge through persistent cognitive adaptation in concert with their lived experiences, and it
defines learning in terms of shifts in an individual’s mental structures (von Glasersfeld, 1995). In
this theoretical report, we consider how students’ working to make sense of others’ mathematical
solutions may support learning from a radical constructivist perspective (Table 1 provides
colloquial descriptions of key terms).

Table 1. Colloquial descriptions of terms to orient the reader

Term Brief colloquial description of constructs to orient the reader

Perturbation Anything that creates a disturbance in a student’s equilibrated (or settled) state. A
perturbation is neutralized when the disturbance no longer exists.

Experiential Provocation A perturbation that a student conceives as external in origin (i.e., from their
interaction with their environment). Examples include other people, tasks, etc.

Social Goal A goal a student establishes and assumes is shared with others.

Scheme Goal-directed regularities in a student’s functioning consisting of: (1) a perceived
situation, (2) activity triggered by the situation, and (3) an anticipated result.

Cognitive Perturbation A perturbation in which a student experiences discrepancies in their use of a scheme.

Affective experience Experience in which a person’s feelings, attitudes, or moods are activated.

Reflective Abstraction A mechanism to explain an individual’s modification of their schemes toward greater

cohesion and generality.
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Learning in Radical Constructivism and Connections to Social Interactions

In this section, we present and coordinate constructs to yield explanatory mechanisms
through which a student may learn from others’ solutions. First, we conceptualize that a student
prompted to interpret a solution can experience a disturbance to their settled cognitive state (i.e.,
a perturbation). Second, as the student works to understand the solution, they can enact schemes
relevant to their understanding of, and goals for, interpreting the solution. If the student
experiences a cognitive perturbation, they may modify or reorganize their schemes to neutralize
the disturbance. Such reorganizations can result in learning at a higher cognitive level (i.e.,
reflective abstraction). Below, we offer more elaboration on this process.

Schemes, Goals, and Learning

As students engage with others’ solutions, we posit they would draw upon schemes. Drawing
on von Glasersfeld (1995), Hackenberg (2014) defined schemes as “goal-directed regularities in
a person’s functioning that consist of three parts: a situation, an activity triggered by how the
person perceives the situation, and a result of the activity that a person assimilates to her or his
expectations” (p. 87). A student’s schemes are activated through interactive experiences and
involve their anticipation of the outcome of the interaction; thus, a student’s goals are central to
the schemes they enact. Any interaction prompting the student to draw on one or more schemes
is a disturbance to the student’s settled (equilibrated) state.

A student uses their schemes as part of their goal-directed activity. Moreover, in classrooms
where sharing solutions is prioritized, the student may conceive they are working toward a social
goal with others. Steffe and Thompson (2000) describe that an observer can identify a student
working toward a social goal when the observer can infer the student (1) understands others in
the group have intentions and (2) pursues a goal they assume is shared with the others. For
example, a student may assume their classmates are working toward articulating solutions that
are understandable to others and adopt this to inform their own goal-directed activity. We note
even if other students are working toward a different goal (e.g., only intending to obtain a correct
solution), a student’s perception of a social goal can drive their goal-directed activity.

Experiential Provocations and Perturbations

If a student works to interpret classmates’ solutions, they have experienced a disturbance to
their equilibrium; von Glasersfeld (1980) broadly defines a perturbation as any input that creates
a disturbance in a student’s equilibrium. In this report, we use Steffe and Thompson’s (2000)
distinction between two kinds of disturbances (experiential provocation versus perturbation)
based on the student’s perception of the source of the disturbance (external versus internal). We
refer to experiential provocations as disturbances that the student conceives to originate from
their interaction with their environment (Steffe & Olive, 2002; Steffe & Thompson, 2000; Steffe
& Tzur, 1994). We note the environment may include tasks, tools, teachers, other students, and,
relevant to this report, others’ solutions. Prompts that require a student to interpret a classmate’s
solutions can serve as experiential provocations from the student’s perspective; in some cases,
such an experiential provocation may lead to the student establishing a social goal with their
classmates such as solving a particular problem or understanding a novel solution.

Experiential provocations are perturbations, but not all perturbations are cognitive
perturbations. Students might be able to neutralize some perturbations using their current
schemes and without experiencing any discrepancies as they activate and anticipate the results;
such perturbations are not cognitive perturbations. Neutralizing other perturbations may involve
a student experiencing discrepancies in their use of a scheme (Steffe & Olive, 2009; von
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Glasersfeld, 1995). Such perturbations are cognitive perturbations. Cognitive perturbations can
lead to a student reorganizing or modifying their existing schemes to achieve an equilibrated
state (Steffe, 1991a, 1991b; Tillema & Gatza, 2024; von Glasersfeld, 1995). We conceptualize
learning occurs through adjusting schemes in response to cognitive perturbations.

To illustrate, a student engaging in the goal-directed activity of interpreting a classmate’s
solution encounters a perturbation in the form of an experiential provocation. If they can
interpret the classmate’s solution without modification to their schemes (such as when the
classmate’s solution is nearly identical to their own), then the experiential provocation did not
create a cognitive perturbation. However, if the student has difficulty making sense of a solution,
then the experiential provocation could result in a cognitive perturbation. Such a cognitive
perturbation could require the student to modify or reorganize their schemes to achieve an
equilibrated state. We elaborate on this example and provide more details in the next section.

Types of Cognitive Perturbations and Affective Experiences

When a student experiences a cognitive perturbation, they may experience a minor or major
cognitive perturbation. Many researchers have equated perturbations with major cognitive
conflict or experiencing a ‘problem’ (e.g., Booker, 1996; Lerman, 1996; Simon et al., 2010).
Although a major conflict is one type of cognitive perturbation, students can also experience
minor cognitive perturbations without (consciously) experiencing a problem (Steffe, 2011; Steffe
& Olive, 2002, 2009). If an individual neutralizes a perturbation, an observer’s hypotheses about
the steps taken can serve to differentiate major and minor cognitive perturbations. Major
cognitive perturbations require more significant accommodations to a student’s schemes to
resolve, whereas minor cognitive perturbations may be easily resolvable with small adjustments
to a student’s schemes. Students may also experience non-neutralizable cognitive perturbations
when they do not yet have schemes that allow them to neutralize the perturbation.

To exemplify this distinction, we again turn to a student work. A student might experience a
minor cognitive perturbation when a solution has some feature or way of reasoning that is novel,
and the student is able to neutralize the perturbation with minor modifications to their current
schemes. If an observer infers the student undertakes a major modification or reorganization of
their schemes, then the observer could characterize the perturbation as major. Finally, the student
may experience a non-neutralizable cognitive perturbation if the student’s current schemes do
not support them in satisfactorily interpreting (from the student’s perspective) the solution.

Moreover, as the above descriptions suggest, the perturbations students encounter, cognitive
or otherwise, may bring forth different affective responses (Steffe & Wiegel, 1996; von
Glasersfeld, 1995). For example, Steffe (2011) described, “A perturbation may be a surprise
(e.g., unanticipated success, elation, or a sensation of pain)” (p. 258) and von Glasersfeld (1995)
noted a perturbation may include “disappointment” (p. 65). A classmate’s solution that a student
finds hard to follow may lead them to experience frustration (i.e., a negative affective
experience). In contrast, a solution they recognize as different from their own may result in a
positive affective experience (e.g., pleasant surprise or delight). Thus, a student’s affective
experiences are important considerations in the design of learning environments that may
engender reorganizations in students’ schemes, thereby leading to learning.

Reorganization of Schemes and Reflective Abstraction

To further describe the reorganization of schemes that may occur after a perturbation, we use
Piaget’s (2001) notion of abstraction. Abstraction is a mechanism explaining an individual’s
modification of their schemes toward greater cohesion and generality. In this report, we use the
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concept of reflective abstraction. In broad strokes, reflective abstraction entails two processes: a
projection of actions or schemes to a higher level of thought and a reorganization that occurs at
this higher level (Ellis et al., 2024; Piaget, 2001; Steffe, 2024; Tallman & O’Bryan, 2024;
Tallman & Uscanga, 2020; von Glasersfeld, 1995). The reorganization can involve the creation
of a coherent relationship or network of relationships between existing schemes as well as with
new schemes (Piaget, 2001; Tallman & Uscanga, 2020). Such a reorganization involves taking
prior meanings as input for further operating and thus can be considered a “higher” level. We
note the cognizing subject need not be consciously aware of any reorganization.

Connecting to a students’ affective experiences, a student might experience what an observer
would call reflective abstraction as the student considers aspects of a solution they do and do not
appreciate. This consideration could result in the student reorganizing their schemes to
incorporate aspects of solutions they appreciated and avoid aspects they did not perceive as
valuable (e.g., adopting steps or language from a particular solution they find useful and
avoiding confusing lines of reasoning). In this way, affective experiences can work in concert
with cognitive perturbations, leading to students’ reorganizing their meanings at a higher level.

Other researchers have argued for the importance of supporting reflective abstraction and
have provided suggestions for doing so. First, providing students repeated opportunities to
develop schemes relevant to particular meanings can support their connecting their schemes and
reasoning across similar (and different) contexts (Tallman & O’Bryan, 2024; Thompson, 2013).
Second, providing occasions for students to compare activity across tasks can support reflective
abstraction (Ellis et al., 2024; Piaget, 1976, 2001; Tallman & O’Bryan, 2024). We use these two
suggestions to try to create opportunities for reflective abstraction as we describe below.

Exemplifying the Constructs: X-marks the Spot

We designed the X-Marks the Spot Task leveraging the above constructs to support students’
work with spatial coordinate systems (described below). We included occasions for students to
engage with their classmates’ mathematical ideas with the intention they would set social goals.
We conjectured multiple rounds of describing (to classmates) and interpreting descriptions
(written by classmates) of locations in space could occasion experiential provocations for
students. We hypothesized these experiential provocations could lead to major or minor
cognitive perturbations along with associated affective experiences. Further, we provided
deliberate opportunities for students to reflect on location descriptions at a higher level of
thought. We intended these experiences to support students in engaging in reflective abstraction
as they reorganize their meanings for organizing space.

Before describing the task, we first provide important background information about spatial
coordinate systems. We then describe the task with the above constructs in mind. We provide
examples from when we used the described tasks with elementary pre-service teachers (EPSTs)
in a classroom setting to help contextualize how we view the constructs relating to the task.

Task Background: Spatial Coordinate Systems and Conventions

Researchers in mathematics education and spatial cognition have explored ways individuals
conceive of and describe two-dimensional space (Lee, 2017; Piaget & Inhelder, 1967; Taylor &
Tversky, 1996). In this report, we focus on a task designed to support students’ developing
meanings for spatial coordinate systems (Lee, 2017; Lee & Hardison, 2016; Lee et al., 2020;
Paoletti et al., 2022). A spatial coordinate system is a coordinate system (CS) that entails either
mentally overlaying a CS onto some perceived space or overlaying a space onto an already
established CS. In either case, objects within the space can be located via coordinates. Radar on a
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ship and GPS are different examples of spatial CSs (i.e., polar and Cartesian CSs, respectively).

We note there are countless ways an individual can organize space or construct a spatial CS.
Cartesian and polar coordinates are two conventional spatial CSs. Conventions, including
conventional coordinate systems, involve choices often developed or adopted for the purposes of
efficiency and communication (Moore et al., 2019; Zazkis, 2008). Given the communicative
value of such conventions, we conjectured we could support students in developing a social goal
by providing them repeated opportunities to describe locations in space, with the anticipation of
classmates’ interpreting it, and to interpret classmates’ descriptions of locations. This goal could
lead to activity that supported students in reorganizing their schemes for organizing space
towards more clear and efficient strategies. This conjecture is supported by Lee (2017), who
found the goal of relaying instructions to others when locating an object in space supported
ninth-grade students in developing viable spatial CSs much like conventional ones.

The Design of the X Marks the Spot Task

In the X Marks the Spot Task, we provide students with the map, buttons, and prompt shown
in Figure 1a/b. Students can try each button and observe different overlays. Several overlays can
be used to generate conventional coordinate systems: Star and Circles when coordinated can
create a polar-like coordinate system; Vertical and Horizontal together can create a Cartesian-
like coordinate system. Other overlays can be used to create unconventional yet viable ways to
organize space (e.g., Figure 1b shows the map with the Waves and Vertical overlays). We
conjecture the introduction of the task itself could serve as an experiential provocation for each
student, and a student may experience minor cognitive perturbations as they develop associations
between the action of clicking each button and the resulting change to the map.

After exploring the overlays, we ask students to mark an X. To support the creation of a
social goal, we prompt students to use the overlays to provide a written description for their X’s
location that classmates will use. Thus, a student may assume their classmates have a shared goal
of marking the same location. To achieve this social goal, a student may try to write a description
clear enough for their classmates to mark a precise location.

Play with the different
overlays. In the next slides
you will use the overlays
either (a) to describe the
location of an X or (b)
interpret classmates’
descriptions

(a) (b) (c)

Figure 1. (a) The initial map, (b) initial prompt and (b) the map with Wave and Vertical overlays.
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In classroom settings, we have EPSTs write their initial descriptions in groups. We share
each group’s description and the other EPSTs mark an X based on that description. After this, we
engage in a whole class discussion using each group’s description, original X, and an overlay of
all the classmates’ marked Xs (e.g., Figure 2). By comparing the locations of all the marked Xs,
the EPSTs can determine whether they have achieved the social goal of marking their Xs in the
same location. After several rounds of this activity, we provide numerous hypothetical classmate
descriptions (Table 2) and ask students to mark an X from the description and provide feedback
on the description to the hypothetical classmate. These hypothetical descriptions are intentionally
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designed to (a) move from vague to more specific while (b) leading to more viable
and/or conventional spatial CSs (i.e., polar and Cartesian).

Table 2. X Marks the Spot Task hypothetical descriptions and reflection opportunity

# Description Intention

1 Click the Star (1) and Circles (3) options. The X is on the 2nd circle on Polar-like CS that is intentionally
the line above the line going to the left from the star. vague

2 Click the Star (1) and Circles (3) options. Imagine the star is like a clock  Polar-like CS that should provide
with the line going straight up being 12 o'clock and the line going enough information to locate an
straight down being 6 o'clock. The X is on the 4 o'clock line halfway exact location that lies on a
between the 2nd and 3rd circle. reference object in the CS.

3 Click the Star (1) and Circles (3) options. Imagine the star is like a clock  Polar-like CS that should provide
with the line going straight up being 12 o'clock and the line going enough information to locate an
straight down being 6 o'clock. The X is 1.25 miles from the star halfway  exact location that does not lie on
between 10 and 11 o'clock. a reference object in the CS.

[Reflection prompt for #1-3] Below are all the descriptions that used the Star (1) and Circles (3). Talk with your
neighbor about which part of these descriptions was most helpful

#4-6 provide similar phrasing with Cartesian-like CSs. There is also an opportunity for reflection on #4-6.

The act of interpreting others’ responses occasion experiential provocations which could
result in a student experiencing a cognitive perturbation. We conjecture students would be able
to interpret many descriptions using their current schemes (i.e., without cognitive perturbation).
We also conjecture interpreting vague descriptions (e.g., Description 1 in Table 2) or observing
discrepancies in the location of marked Xs for the same description (e.g., Figure 2¢) could create
cognitive perturbations. For example, consider one group’s description for the marked X (Figure
2a/b). During a class conversation, the teacher presented an overlay of their classmates’ marked
Xs for their description (Figure 2¢). Observing the variance of the marked Xs, the EPSTs had
opportunities to consider ways each student interpreted “two boxes up from the bottom” (i.e.,
does this include the bottommost box?). In this case, an EPST may have experienced a cognitive
perturbation as they attempted to understand their classmates’ descriptions or interpretations.

“With the horizontal and 1 - 1
vertical overlays selected, the ‘
xisinlowerrighthandside | T [ Jhad & | = ke ‘
below the parking garage. It ¢ ISP —— o
is one box over from the right ol - ;
and two boxes up from the x
bottom.” >
o Tmilg X 1 [T mile
i
(a) (b) ()

Figure 2. (a) A description EPSTs gave for the X marked in (b), and (c) the Xs marked by the rest of the students

We anticipate the descriptions could lead to a student having a positive affective experience
in concert with a cognitive perturbation. A student might have positive affective experiences as
they interpret descriptions they feel are interesting, clear, or lead to precise locations (e.g., #2-3
in Table 2). For example, when tasked to provide feedback on Description 3, one EPST stated,
“No advice, very precise. I like that clock analogy.” We conjecture the EPST might have
experienced a minor cognitive perturbation along with a positive affective experience as they
made sense of the clock analogy for the first time (“very precise. I like...”).
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Further, we conjecture tasking EPSTs to provide feedback to the author of each description
can engender reflective abstraction as students reorganize their meanings for organizing space.
For instance, we observed some EPSTs adopted phrases (and associated reasoning) that included
elements from the classmate description involving the clock analogy when engaging the final
prompt. This prompt asked them to describe the location of a novel X (Figure 3a). Using the
visual in Figure 3b, one EPST described: “Using the idea of a clock with the top line being 12,
go in between 4 and 5 o clock in the third outermost circle. The x is in the middle of this box.”
We note how the clock language this student incorporated aligns closely with a polar-like CS
used in Descriptions #2-3 (Table 2). Thus, we conjecture reflecting across descriptions supported
the student in reorganizing their meanings for organizing space to incorporate elements they
found useful, lending themselves toward constructing a viable and conventional spatial CS.

i 3
INFORMATION |0 ), *=== B oy

BOOTH | IO | o, UTE

(a)

Figure 3. (a) the last X described by EPSTs and (b) an EPST’s use of polar-like coordinates

Contribution, Implications, and Areas for Future Research

In this report, we elaborated on social goals, experiential provocations, cognitive
perturbations, and reflective abstraction. Importantly, we characterize how affective experiences
are intertwined with cognitive perturbations in ways that can engender learning. We are unaware
of examples in which radical constructivist researchers detail ways positive or negative affective
experiences interact with students’ learning. Given the emphasis on collaborative group work,
such learning is likely to occur in classrooms where students interpret others’ responses
positively and reorganize their own meanings as a result of these interpretations.

We conjecture the use of others’ descriptions to potentially provoke cognitive perturbations
was productive in this task due to the communicative nature of the mathematics at hand. We
conjecture providing students with repeated opportunities to first generate their own descriptions
and then interpret descriptions that communicate more or less effectively and efficiently
increases the chances students would experience positive affective experiences and cognitive
perturbations that could result in their reorganizing their meanings for organizing space. There
are likely other concepts that rely heavily on communicative goals such as conventions, in which
students could be supported in learning via the use of others’ solutions. We call for additional
research exploring this possibility. This and other research could build on prior work showing
how examining others’ solutions to mathematical problems can support learning (Barbieri et al.,
2023; Webb et al., 2014). Further, such research could leverage the constructs outlined here to
provide explanations for zow examining others’ solutions can lead to learning.
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