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Although much research has made the case for the value of students9 making sense of others9 

solutions, explanatory mechanisms for how such learning occurs are lacking. In this theoretical 

report, we consider how students9 making sense of others9 mathematical solutions may support 

learning from a radical constructivist perspective. We elaborate on radical constructivist 

constructs3social goals, cognitive perturbations, and reflective abstraction3and use these 

constructs to model how engagement with others9 mathematical solutions may engender 

learning. We illustrate our model with a task we designed to promote students9 meanings for 

spatial coordinate systems. We conclude with implications for research and teaching.  
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Students9 making sense of classmates9 solutions to mathematical problems (e.g., Webb et al., 

2014) and with worked examples (e.g., Barbieri et al., 2023) has been positively associated with 

mathematics achievement. Although researchers have suggested reasons why such student 

activity may translate to achievement gains (Brown et al., 1992; Webb et al., 2023), they have 

not provided explanatory mechanisms for how such learning occurs for an individual. As a 

theory of learning focused on ways individuals develop knowledge, radical constructivism can 

provide such explanations. Broadly, radical constructivism explains how individuals build 

knowledge through persistent cognitive adaptation in concert with their lived experiences, and it 

defines learning in terms of shifts in an individual9s mental structures (von Glasersfeld, 1995). In 

this theoretical report, we consider how students9 working to make sense of others9 mathematical 

solutions may support learning from a radical constructivist perspective (Table 1 provides 

colloquial descriptions of key terms). 

 
Table 1. Colloquial descriptions of terms to orient the reader 

Term Brief colloquial description of constructs to orient the reader 

Perturbation Anything that creates a disturbance in a student9s equilibrated (or settled) state. A 

perturbation is neutralized when the disturbance no longer exists. 

Experiential Provocation A perturbation that a student conceives as external in origin (i.e., from their 

interaction with their environment). Examples include other people, tasks, etc. 

Social Goal A goal a student establishes and assumes is shared with others. 

Scheme Goal-directed regularities in a student9s functioning consisting of: (1) a perceived 

situation, (2) activity triggered by the situation, and (3) an anticipated result. 

Cognitive Perturbation A perturbation in which a student experiences discrepancies in their use of a scheme. 

Affective experience Experience in which a person9s feelings, attitudes, or moods are activated. 

Reflective Abstraction A mechanism to explain an individual9s modification of their schemes toward greater 

cohesion and generality. 



Learning in Radical Constructivism and Connections to Social Interactions 

In this section, we present and coordinate constructs to yield explanatory mechanisms 

through which a student may learn from others9 solutions. First, we conceptualize that a student 

prompted to interpret a solution can experience a disturbance to their settled cognitive state (i.e., 

a perturbation). Second, as the student works to understand the solution, they can enact schemes 

relevant to their understanding of, and goals for, interpreting the solution. If the student 

experiences a cognitive perturbation, they may modify or reorganize their schemes to neutralize 

the disturbance. Such reorganizations can result in learning at a higher cognitive level (i.e., 

reflective abstraction). Below, we offer more elaboration on this process. 

Schemes, Goals, and Learning 

As students engage with others9 solutions, we posit they would draw upon schemes. Drawing 

on von Glasersfeld (1995), Hackenberg (2014) defined schemes as <goal-directed regularities in 

a person9s functioning that consist of three parts: a situation, an activity triggered by how the 

person perceives the situation, and a result of the activity that a person assimilates to her or his 

expectations= (p. 87). A student9s schemes are activated through interactive experiences and 

involve their anticipation of the outcome of the interaction; thus, a student9s goals are central to 

the schemes they enact. Any interaction prompting the student to draw on one or more schemes 

is a disturbance to the student9s settled (equilibrated) state. 

A student uses their schemes as part of their goal-directed activity. Moreover, in classrooms 

where sharing solutions is prioritized, the student may conceive they are working toward a social 

goal with others. Steffe and Thompson (2000) describe that an observer can identify a student 

working toward a social goal when the observer can infer the student (1) understands others in 

the group have intentions and (2) pursues a goal they assume is shared with the others. For 

example, a student may assume their classmates are working toward articulating solutions that 

are understandable to others and adopt this to inform their own goal-directed activity. We note 

even if other students are working toward a different goal (e.g., only intending to obtain a correct 

solution), a student9s perception of a social goal can drive their goal-directed activity. 

Experiential Provocations and Perturbations 

If a student works to interpret classmates9 solutions, they have experienced a disturbance to 

their equilibrium; von Glasersfeld (1980) broadly defines a perturbation as any input that creates 

a disturbance in a student9s equilibrium. In this report, we use Steffe and Thompson9s (2000) 

distinction between two kinds of disturbances (experiential provocation versus perturbation) 

based on the student9s perception of the source of the disturbance (external versus internal). We 

refer to experiential provocations as disturbances that the student conceives to originate from 

their interaction with their environment (Steffe & Olive, 2002; Steffe & Thompson, 2000; Steffe 

& Tzur, 1994). We note the environment may include tasks, tools, teachers, other students, and, 

relevant to this report, others9 solutions. Prompts that require a student to interpret a classmate9s 

solutions can serve as experiential provocations from the student9s perspective; in some cases, 

such an experiential provocation may lead to the student establishing a social goal with their 

classmates such as solving a particular problem or understanding a novel solution. 

Experiential provocations are perturbations, but not all perturbations are cognitive 

perturbations. Students might be able to neutralize some perturbations using their current 

schemes and without experiencing any discrepancies as they activate and anticipate the results; 

such perturbations are not cognitive perturbations. Neutralizing other perturbations may involve 

a student experiencing discrepancies in their use of a scheme (Steffe & Olive, 2009; von 



Glasersfeld, 1995). Such perturbations are cognitive perturbations. Cognitive perturbations can 

lead to a student reorganizing or modifying their existing schemes to achieve an equilibrated 

state (Steffe, 1991a, 1991b; Tillema & Gatza, 2024; von Glasersfeld, 1995). We conceptualize 

learning occurs through adjusting schemes in response to cognitive perturbations. 

To illustrate, a student engaging in the goal-directed activity of interpreting a classmate9s 

solution encounters a perturbation in the form of an experiential provocation. If they can 

interpret the classmate9s solution without modification to their schemes (such as when the 

classmate9s solution is nearly identical to their own), then the experiential provocation did not 

create a cognitive perturbation. However, if the student has difficulty making sense of a solution, 

then the experiential provocation could result in a cognitive perturbation. Such a cognitive 

perturbation could require the student to modify or reorganize their schemes to achieve an 

equilibrated state. We elaborate on this example and provide more details in the next section. 

Types of Cognitive Perturbations and Affective Experiences 

When a student experiences a cognitive perturbation, they may experience a minor or major 

cognitive perturbation. Many researchers have equated perturbations with major cognitive 

conflict or experiencing a 8problem9 (e.g., Booker, 1996; Lerman, 1996; Simon et al., 2010). 

Although a major conflict is one type of cognitive perturbation, students can also experience 

minor cognitive perturbations without (consciously) experiencing a problem (Steffe, 2011; Steffe 

& Olive, 2002, 2009). If an individual neutralizes a perturbation, an observer9s hypotheses about 

the steps taken can serve to differentiate major and minor cognitive perturbations. Major 

cognitive perturbations require more significant accommodations to a student9s schemes to 

resolve, whereas minor cognitive perturbations may be easily resolvable with small adjustments 

to a student9s schemes. Students may also experience non-neutralizable cognitive perturbations 

when they do not yet have schemes that allow them to neutralize the perturbation.  

To exemplify this distinction, we again turn to a student work. A student might experience a 

minor cognitive perturbation when a solution has some feature or way of reasoning that is novel, 

and the student is able to neutralize the perturbation with minor modifications to their current 

schemes. If an observer infers the student undertakes a major modification or reorganization of 

their schemes, then the observer could characterize the perturbation as major. Finally, the student 

may experience a non-neutralizable cognitive perturbation if the student9s current schemes do 

not support them in satisfactorily interpreting (from the student9s perspective) the solution.  

Moreover, as the above descriptions suggest, the perturbations students encounter, cognitive 

or otherwise, may bring forth different affective responses (Steffe & Wiegel, 1996; von 

Glasersfeld, 1995). For example, Steffe (2011) described, <A perturbation may be a surprise 

(e.g., unanticipated success, elation, or a sensation of pain)= (p. 258) and von Glasersfeld (1995) 

noted a perturbation may include <disappointment= (p. 65). A classmate9s solution that a student 

finds hard to follow may lead them to experience frustration (i.e., a negative affective 

experience). In contrast, a solution they recognize as different from their own may result in a 

positive affective experience (e.g., pleasant surprise or delight). Thus, a student9s affective 

experiences are important considerations in the design of learning environments that may 

engender reorganizations in students9 schemes, thereby leading to learning. 

Reorganization of Schemes and Reflective Abstraction 

To further describe the reorganization of schemes that may occur after a perturbation, we use 

Piaget9s (2001) notion of abstraction. Abstraction is a mechanism explaining an individual9s 

modification of their schemes toward greater cohesion and generality. In this report, we use the 



concept of reflective abstraction. In broad strokes, reflective abstraction entails two processes: a 

projection of actions or schemes to a higher level of thought and a reorganization that occurs at 

this higher level (Ellis et al., 2024; Piaget, 2001; Steffe, 2024; Tallman & O9Bryan, 2024; 

Tallman & Uscanga, 2020; von Glasersfeld, 1995). The reorganization can involve the creation 

of a coherent relationship or network of relationships between existing schemes as well as with 

new schemes (Piaget, 2001; Tallman & Uscanga, 2020). Such a reorganization involves taking 

prior meanings as input for further operating and thus can be considered a <higher= level. We 

note the cognizing subject need not be consciously aware of any reorganization.  

Connecting to a students9 affective experiences, a student might experience what an observer 

would call reflective abstraction as the student considers aspects of a solution they do and do not 

appreciate. This consideration could result in the student reorganizing their schemes to 

incorporate aspects of solutions they appreciated and avoid aspects they did not perceive as 

valuable (e.g., adopting steps or language from a particular solution they find useful and 

avoiding confusing lines of reasoning). In this way, affective experiences can work in concert 

with cognitive perturbations, leading to students9 reorganizing their meanings at a higher level. 

Other researchers have argued for the importance of supporting reflective abstraction and 

have provided suggestions for doing so. First, providing students repeated opportunities to 

develop schemes relevant to particular meanings can support their connecting their schemes and 

reasoning across similar (and different) contexts (Tallman & O9Bryan, 2024; Thompson, 2013). 

Second, providing occasions for students to compare activity across tasks can support reflective 

abstraction (Ellis et al., 2024; Piaget, 1976, 2001; Tallman & O9Bryan, 2024). We use these two 

suggestions to try to create opportunities for reflective abstraction as we describe below.  

Exemplifying the Constructs: X-marks the Spot 

We designed the X-Marks the Spot Task leveraging the above constructs to support students9 

work with spatial coordinate systems (described below). We included occasions for students to 

engage with their classmates9 mathematical ideas with the intention they would set social goals. 

We conjectured multiple rounds of describing (to classmates) and interpreting descriptions 

(written by classmates) of locations in space could occasion experiential provocations for 

students. We hypothesized these experiential provocations could lead to major or minor 

cognitive perturbations along with associated affective experiences. Further, we provided 

deliberate opportunities for students to reflect on location descriptions at a higher level of 

thought. We intended these experiences to support students in engaging in reflective abstraction 

as they reorganize their meanings for organizing space.  

Before describing the task, we first provide important background information about spatial 

coordinate systems. We then describe the task with the above constructs in mind. We provide 

examples from when we used the described tasks with elementary pre-service teachers (EPSTs) 

in a classroom setting to help contextualize how we view the constructs relating to the task.  

Task Background: Spatial Coordinate Systems and Conventions 

Researchers in mathematics education and spatial cognition have explored ways individuals 

conceive of and describe two-dimensional space (Lee, 2017; Piaget & Inhelder, 1967; Taylor & 

Tversky, 1996). In this report, we focus on a task designed to support students9 developing 

meanings for spatial coordinate systems (Lee, 2017; Lee & Hardison, 2016; Lee et al., 2020; 

Paoletti et al., 2022). A spatial coordinate system is a coordinate system (CS) that entails either 

mentally overlaying a CS onto some perceived space or overlaying a space onto an already 

established CS. In either case, objects within the space can be located via coordinates. Radar on a 



ship and GPS are different examples of spatial CSs (i.e., polar and Cartesian CSs, respectively).  

We note there are countless ways an individual can organize space or construct a spatial CS. 

Cartesian and polar coordinates are two conventional spatial CSs. Conventions, including 

conventional coordinate systems, involve choices often developed or adopted for the purposes of 

efficiency and communication (Moore et al., 2019; Zazkis, 2008). Given the communicative 

value of such conventions, we conjectured we could support students in developing a social goal 

by providing them repeated opportunities to describe locations in space, with the anticipation of 

classmates9 interpreting it, and to interpret classmates9 descriptions of locations. This goal could 

lead to activity that supported students in reorganizing their schemes for organizing space 

towards more clear and efficient strategies. This conjecture is supported by Lee (2017), who 

found the goal of relaying instructions to others when locating an object in space supported 

ninth-grade students in developing viable spatial CSs much like conventional ones.  

The Design of the X Marks the Spot Task  

In the X Marks the Spot Task, we provide students with the map, buttons, and prompt shown 

in Figure 1a/b. Students can try each button and observe different overlays. Several overlays can 

be used to generate conventional coordinate systems: Star and Circles when coordinated can 

create a polar-like coordinate system; Vertical and Horizontal together can create a Cartesian-

like coordinate system. Other overlays can be used to create unconventional yet viable ways to 

organize space (e.g., Figure 1b shows the map with the Waves and Vertical overlays). We 

conjecture the introduction of the task itself could serve as an experiential provocation for each 

student, and a student may experience minor cognitive perturbations as they develop associations 

between the action of clicking each button and the resulting change to the map.  

After exploring the overlays, we ask students to mark an X. To support the creation of a 

social goal, we prompt students to use the overlays to provide a written description for their X9s 

location that classmates will use. Thus, a student may assume their classmates have a shared goal 

of marking the same location. To achieve this social goal, a student may try to write a description 

clear enough for their classmates to mark a precise location.  

 

 

Play with the different 

overlays. In the next slides 

you will use the overlays 

either (a) to describe the 

location of an X or (b) 

interpret classmates9 

descriptions  
(a) (b) (c) 

Figure 1. (a) The initial map, (b) initial prompt and (b) the map with Wave and Vertical overlays. 

 In classroom settings, we have EPSTs write their initial descriptions in groups. We share 

each group9s description and the other EPSTs mark an X based on that description. After this, we 

engage in a whole class discussion using each group9s description, original X, and an overlay of 

all the classmates9 marked Xs (e.g., Figure 2). By comparing the locations of all the marked Xs, 

the EPSTs can determine whether they have achieved the social goal of marking their Xs in the 

same location. After several rounds of this activity, we provide numerous hypothetical classmate 

descriptions (Table 2) and ask students to mark an X from the description and provide feedback 

on the description to the hypothetical classmate. These hypothetical descriptions are intentionally 



designed to (a) move from vague to more specific while (b) leading to more viable 

and/or conventional spatial CSs (i.e., polar and Cartesian). 

  
Table 2. X Marks the Spot Task hypothetical descriptions and reflection opportunity 

# Description Intention 

1 Click the Star (1) and Circles (3) options. The X is on the 2nd circle on 

the line above the line going to the left from the star. 

Polar-like CS that is intentionally 

vague 

2 Click the Star (1) and Circles (3) options. Imagine the star is like a clock 

with the line going straight up being 12 o'clock and the line going 

straight down being 6 o'clock. The X is on the 4 o'clock line halfway 

between the 2nd and 3rd circle. 

Polar-like CS that should provide 

enough information to locate an 

exact location that lies on a 

reference object in the CS. 

3 Click the Star (1) and Circles (3) options. Imagine the star is like a clock 

with the line going straight up being 12 o'clock and the line going 

straight down being 6 o'clock. The X is 1.25 miles from the star halfway 
between 10 and 11 o'clock. 

Polar-like CS that should provide 

enough information to locate an 

exact location that does not lie on 
a reference object in the CS. 

[Reflection prompt for #1-3] Below are all the descriptions that used the Star (1) and Circles (3). Talk with your 

neighbor about which part of these descriptions was most helpful 

#4-6 provide similar phrasing with Cartesian-like CSs. There is also an opportunity for reflection on #4-6. 

 

The act of interpreting others9 responses occasion experiential provocations which could 

result in a student experiencing a cognitive perturbation. We conjecture students would be able 

to interpret many descriptions using their current schemes (i.e., without cognitive perturbation). 

We also conjecture interpreting vague descriptions (e.g., Description 1 in Table 2) or observing 

discrepancies in the location of marked Xs for the same description (e.g., Figure 2c) could create 

cognitive perturbations. For example, consider one group9s description for the marked X (Figure 

2a/b). During a class conversation, the teacher presented an overlay of their classmates9 marked 

Xs for their description (Figure 2c). Observing the variance of the marked Xs, the EPSTs had 

opportunities to consider ways each student interpreted <two boxes up from the bottom= (i.e., 

does this include the bottommost box?). In this case, an EPST may have experienced a cognitive 

perturbation as they attempted to understand their classmates9 descriptions or interpretations. 

 

<With the horizontal and 

vertical overlays selected, the 

x is in lower right hand side 

below the parking garage. It 

is one box over from the right 

and two boxes up from the 

bottom.=  

 
  

(a) (b) (c) 
Figure 2. (a) A description EPSTs gave for the X marked in (b), and (c) the Xs marked by the rest of the students 

We anticipate the descriptions could lead to a student having a positive affective experience 

in concert with a cognitive perturbation. A student might have positive affective experiences as 

they interpret descriptions they feel are interesting, clear, or lead to precise locations (e.g., #2-3 

in Table 2). For example, when tasked to provide feedback on Description 3, one EPST stated, 

<No advice, very precise. I like that clock analogy.= We conjecture the EPST might have 

experienced a minor cognitive perturbation along with a positive affective experience as they 

made sense of the clock analogy for the first time (<very precise. I like&=). 



Further, we conjecture tasking EPSTs to provide feedback to the author of each description 

can engender reflective abstraction as students reorganize their meanings for organizing space. 

For instance, we observed some EPSTs adopted phrases (and associated reasoning) that included 

elements from the classmate description involving the clock analogy when engaging the final 

prompt. This prompt asked them to describe the location of a novel X (Figure 3a). Using the 

visual in Figure 3b, one EPST described: <Using the idea of a clock with the top line being 12, 

go in between 4 and 5 o clock in the third outermost circle. The x is in the middle of this box.= 

We note how the clock language this student incorporated aligns closely with a polar-like CS 

used in Descriptions #2-3 (Table 2). Thus, we conjecture reflecting across descriptions supported 

the student in reorganizing their meanings for organizing space to incorporate elements they 

found useful, lending themselves toward constructing a viable and conventional spatial CS. 

 

  
(a) (b) 

Figure 3. (a) the last X described by EPSTs and (b) an EPST9s use of polar-like coordinates 

Contribution, Implications, and Areas for Future Research 

In this report, we elaborated on social goals, experiential provocations, cognitive 

perturbations, and reflective abstraction. Importantly, we characterize how affective experiences 

are intertwined with cognitive perturbations in ways that can engender learning. We are unaware 

of examples in which radical constructivist researchers detail ways positive or negative affective 

experiences interact with students9 learning. Given the emphasis on collaborative group work, 

such learning is likely to occur in classrooms where students interpret others9 responses 

positively and reorganize their own meanings as a result of these interpretations. 

We conjecture the use of others9 descriptions to potentially provoke cognitive perturbations 

was productive in this task due to the communicative nature of the mathematics at hand. We 

conjecture providing students with repeated opportunities to first generate their own descriptions 

and then interpret descriptions that communicate more or less effectively and efficiently 

increases the chances students would experience positive affective experiences and cognitive 

perturbations that could result in their reorganizing their meanings for organizing space. There 

are likely other concepts that rely heavily on communicative goals such as conventions, in which 

students could be supported in learning via the use of others9 solutions. We call for additional 

research exploring this possibility. This and other research could build on prior work showing 

how examining others9 solutions to mathematical problems can support learning (Barbieri et al., 

2023; Webb et al., 2014). Further, such research could leverage the constructs outlined here to 

provide explanations for how examining others9 solutions can lead to learning. 
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