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ABSTRACT

Unlearning in Large Language Models (LLMs) is essential for ensuring ethical
and responsible Al use, especially in addressing privacy leak, bias, safety, and
evolving regulations. Existing approaches to LLM unlearning often rely on retain
data or a reference LLM, yet they struggle to adequately balance unlearning
performance with overall model utility. This challenge arises because leveraging
explicit retain data or implicit knowledge of retain data from a reference LLM
to fine-tune the model tends to blur the boundaries between the forgotten and
retain data, as different queries often elicit similar responses. In this work, we
propose eliminating the need to retain data or the reference LLM for response
calibration in LLM unlearning. Recognizing that directly applying gradient ascent
on the forget data often leads to optimization instability and poor performance,
our method guides the LLM on what not to respond to, and importantly, how to
respond, based on the forget data. Hence, we introduce Forget data only Loss
AdjustmenT (FLAT), a "flat" loss adjustment approach which addresses these
issues by maximizing f-divergence between the available template answer and
the forget answer only w.r.t. the forget data. The variational form of the defined
f-divergence theoretically provides a way of loss adjustment by assigning different
importance weights for the learning w.r.t. template responses and the forgetting of
responses subject to unlearning. Empirical results demonstrate that our approach
not only achieves superior unlearning performance compared to existing methods
but also minimizes the impact on the model’s retained capabilities, ensuring high
utility across diverse tasks , including copyrighted content unlearning on Harry
Fotter dataset and MUSE Benchmark, and entity unlearning on the TOFU dataset

1 INTRODUCTION

The widespread integration of Large Language Models (LLMs) into daily applications has raised
significant concerns regarding the trustworthiness of such models. Their outputs may contain sensitive,
private, or illegal content (Karamolegkou et al.,|2023; |Patil et al.,[2023), reflect societal biases (Motoki
et al., 2024;|Yu et al., 2023), or provide harmful instructions (Yao et al., 2023;|L1 et al., 2024} Barrett
et al., [2023). In particular, for privacy concerns, regulations (Hoofnagle et al., [2019) have been
introduced, requiring applications to support the deletion of information contained in training samples
upon user request. This has motivated research into machine unlearning (MU) (Cao & Yang, 2015;
Liu et al.| [2024b; [Fan et al.| [2023; D1 et al., 2024; [Liu et al.| [2024c)), a critical process aimed at
removing the influence of specific data points, data classes, or even higher-level data concepts from
trained models.

LLM unlearning (Eldan & Russinovich, 2023} |Yao et al., 2023} Liu et al.,[2024c) is part of a broader
set of MU techniques aiming to make the unlearned model forget the knowledge specified in forget
dataset, while preserving the model ability to accomplish tasks irrelevant to the unlearning target (Liu
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Table 1: Comparison of different loss adjustment-based baselines in terms of their requirement. Our
method relies solely on forget data and available template responses, without using the retain data or a reference
model for response calibration.

Baselines | Forget Data Retain Data Reference Model

Gradient Ascent (GA) (Maini et al.|[2024a)
Gradient Difference (GD) (Maini et al.|[2024a)

KL Minimization (KL) (Maini et al.[[2024a)
Preference Optimization (PO) (Maini et al.||[2024a)
Mismatch (Liu et al.]|2024a)

Direct Preference Optimization (DPO) (Rafailov et al..[2024)
Negative Preference Optimization (NPO) (Zhang et al.,[2024)
Large Language Model Unlearning (LLMU) (Yao et al.,[2023)

FLAT (Ours) \
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et al.||2024c; Ji et al.| [2024). To achieve this, existing work can be categorized into three main streams
of LLM unlearning approaches: input-based, data-based, and model-based methods. Input-based
methods (Liu et al., 2024a; |[Pawelczyk et al.,[2023) design input instructions to guide the original LLM
towards the unlearning objective without altering the model’s parameters. Data-based methods (Chot
et al.| 2024) typically fine-tune models on pre-constructed desirable responses, using prompts from
the forget data distribution. Model-based methods (Yao et al.,2023; Chen & Yang} 2023) focus on
modifying the weights or architecture to achieve the unlearning objective. Among these approaches,
the most relevant to our work is fine-tuning the target LLM using a modified loss function, which
typically incorporates two key objectives: maximizing the loss on the forget samples and minimizing
(or maintaining) the loss on the retain samples.

However, as summarized in Table E, current loss adjustment-based methods either rely on retain
data (Maini et al., 2024a; |Liu et al., 2022; |Yao et al., [2023)), which might not be readily available in
real-world scenarios (Li et al.,[2024), or utilize a reference model (Rafailov et al., 2024} [Zhang et al.|
2024; Yao et al.| 2023} [Maini et al.| [2024a) to maintain performance on the retain dataset, incurring
additional cost during training—especially when fine-tuning a large-scale LLM. Moreover, leveraging
explicit retain data or implicit knowledge from a reference LLM during fine-tuning may blur the
distinction between the forget and retain data, which can lead to a trade-off between model utility
and forget quality. Furthermore, fine-tuning using both retain data and forget data would require a
careful design of a data mixing strategy. To preserve model utility while improving forget quality, we
propose Forget data only Loss AdjustmenT (FLAT), a "flat" loss adjustment approach which adjusts
the loss function using only the forget data. Given the forget data, FLAT guides the LLM not only
in what to forget but also in how to respond, by optimizing the f-divergence between the template
and forget answers with respect to the forget data. The variational form of the f-divergence enables
loss adjustment by assigning optimal importance weights to learning from template responses while
forgetting the responses subject to unlearning. Our main contributions are highlighted below:

e We identify the potential drawback of relying on retain data or a reference LLM to guide LLM
unlearning. To address this, we propose FLAT, which facilitates LLM unlearning without requiring
retain data or a reference LLM for response calibration.

e FLAT optimizes the f-divergence between template and forget responses to guide the LLM
through the unlearning process. The variational form of f-divergence optimization provides a
clear illustration of how to optimally balance forget quality and model utility, with theoretical
guarantees.

o Extensive experiments on three unlearning tasks, including copyrighted content unlearning on the
Harry Potter dataset and MUSE benchmark, as well as entity unlearning on the TOFU dataset,
demonstrate the superior performance of our method, achieving both high unlearning efficiency
and strong overall model utility.

2 PRELIMINARIES

In this section, we introduce the preliminary formulation of LLM unlearning and existing LLM
unlearning framework.
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2.1 FORMULATION

Given an forget dataset Dy, a retain dataset D,, and an LLM 6, the task of LLM unlearning is
to fine-tune the original model such that the updated LLM 6 resembles a model trained without
Dy. For a prompt-response pair (x,y), the loss function on y for fine-tuning is L(x,y;6) =
Zlﬂl L(ho(x,y<i),yi), where £(-) is the cross-entropy loss, and hg(z, y<;) := P(y;|(x, y<;); 0) is
the predicted probability of the token y; given by an LLM 6, with the input prompt « and the already
generated tokens y<; := [y1, ..., Yi—1]-

The most straightforward approach to unlearn is Gradient Ascent (GA). GA modifies a trained model
so that it "forgets" or minimizes the influence of specific data or patterns it has previously learned.
Mathematically, the GA algorithm iteratively updates the model at step ¢ by performing gradient
ascent on the next-token prediction loss over the forget dataset: 0;11 < 0: + AVy, L(z, y; 0:), where
A is the (un)learning rate.

2.2  EXISTING LLM UNLEARNING PARADIGM

The mainstream class of existing LLM unlearning methods involves fine-tuning the original LLM
against an unlearning objective function. Although the exact designs vary, the general type of loss
adjustment in LLM unlearning can be characterized as follows:

L = Lyg + Lrr + Lcustom- ()
The modified loss function comprises three main components:

e Lpg (Forget Loss): Encourages the model to "forget" the undesired data or patterns. This typically
involves increasing the loss on the data to be forgotten, effectively making the model perform
worse on those specific examples. The goal is to reduce the model’s reliance on these data points,
thereby minimizing their influence on future predictions.

e Lgrr (Retain Loss): Ensures that the model maintains its overall performance and general knowl-
edge on unaffected data. It typically involves using the original loss function from training or a
modified version that focuses on the data the model is meant to retain. This term prevents the
unlearning process from degrading the model’s overall capabilities beyond the scope of the specific
unlearning objective.

e Lcustom (Custom Loss): Allows for additional flexibility and customization in the unlearning
process. It may include regularization terms to control the magnitude of parameter updates or
specific constraints to enforce certain unlearning behaviors. This component enables researchers to
tailor the unlearning process to specific requirements or incorporate domain-specific knowledge.

In summary, common loss adjustment methods employ one (Jang et al., [2022)), two (Liu et al., 2022;
Maini et al.| [2024a; Zhang et al.| [2024)), or all three (Yao et al., [2023) of these components to guide
the model towards forgetting specific data while minimizing the impact on its overall performance
and utility. The interplay between these terms allows for controlled and targeted unlearning, ensuring
the model retains its valuable capabilities while selectively forgetting undesired information. More
detailed formulations of these loss adjustment-based methods, along with related work, are deferred
to Appendix [C.T and Appendix [E.

An Example: Large Language Model Unlearning (LLMU). We adopt a popular approach in

LLM unlearning, LLMU (Yao et al.,[2023), to interpret a special case of Eqn. (I). Specifically, the

objective of LLMU contains three components: the Unlearn Harm Lyg, the Maintain Performance

Lgr, and the Random Mismatch Lgrandom (the custom loss). The training objective is as follows:
Lyimu = Ly + Lrr + LRandom,

The forget loss Ly = — Z(xf,yf)eDf L(zys,ys;6), where (xy,yy) indicates the forget data

pairs from the forget dataset Dy, 6 is the updated unlearned model. It is actually the
Gradient Ascent loss to forget the samples subject to unlearning. The retain loss Lrr =

Z(xr,yr)eDr Z‘Zill KL(hg,(xr, yr<i)||ho(@r, Yr<i)), where KL(-) is the KL divergence term,

(2r,y-) indicates the retain data pairs from the retain dataset D,., 6, is the original model, and
0 is the updated model. The random 10ss Lrandom = Z(If,‘)eDf \Y%I Zyrdneym" L(xf,Yrdn;0).

Here, Y, 4, is a set of random responses that do not have a connection to the forget prompts x .
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3 METHOD

In this section, we introduce Forget data only Loss AjustmenT (FLAT), a "flat" loss adjustment
approach which adjusts the loss function using only the forget data, by leveraging f-divergence
maximization towards the distance between the preferred template and original forget responses. We
first derive the formulation of our method via f-divergence maximization (§[3.1), followed by the
presentation of the empirical alternative to our approach (§ [3.2). In section § [3.3] we explore the
estimation gap between the theoretical and empirical f-divergence. Finally, we discuss the connection
between our method and DPO (§ [3.4).

3.1 LOSS-ADJUSTMENTS VIA f-DIVERGENCE MAXIMIZATION

For each learning batch, we Table 2: fq;,S, optimal variational g (¢*), conjugate functions (f*).
assume that we only have ac-

cess to a set of forget samples Name g ) dom;- fr(w)
i- 1 11

(mf Yf ) < .Df ’ Ins.tead of di Total Variation — tanh v u€l-=,2] wu

rectly adopting gradient ascent 22

over these forget samples, we  Jensen-Shannon log u < log2 —log (2 —e")
propose to maximize the diver- 1+ 1

gence between exemplary and Pearson v R Zuz +u

bad generations of forget data. KL v R eu—1

Key steps are summarized as be-

low.

o Step 1: Equip example/template responses ¥, for each forget sample x s. Together we denote the

paired samples as {(a:ic, y)}jen-

This could be done by leveraging open-source LLMs such as Llama 3.1 (Dubey et al.,[2024) or
self-defining the responses according to our wish, etc. The designated unlearning response could
be a reject-based answer such as "I don’t know" (denoted as "IDK") or an irrelevant answer devoid
of the unlearning target-related information.

Motivation: Step 1 generates example responses for LLM fine-tuning and provides better instruc-
tions on what LLM should respond given the forget data. Besides, certain existing methods make
LLM generate hallucinated responses after unlearning, which further illustrates the importance of
example responses for LLM unlearning.

o Step 2: Loss adjustmens w.r.t. the sample pairs (2, ye,ys) through:
L(zg,ye,yp:0) = Ae - Le(wg,ye;0) — Ap - Ly(xp,y5:0), 2

where L., L are losses designed for the data sample (x,y.) and (zy,y,), respectively. The
corresponding closed form will be introduced in Section §[3.2]

Motivation: Step 2 encourages the LLM to forget the forget data with bad responses, meanwhile,
learn to generate good responses on relevant forget data. [such as template answers]

o Step 3: How to decide on the values of A, and A\f?
We leverage f-divergence to illustrate the appropriate balancing between L.(zf,y.;¢) and
Li(zys,ys;6). Assume zy,y. is generated by the random variable X, Y, jointly following
the distribution D.. Similarly, z ¢,y is given by Xy,Y} and (Xy,Y}y) ~ Dy. Step 2 shares
similar insights as if we are maximizing the divergence between D, and D;. Our theoretical
purpose is to obtain the model that maximizes the f-divergence between D, and Dy, defined as

fdiv(De||Df)~

The variational form f-divergence Instead of optimizing the fg;, term directly, we resolve to
the variational form of it. Due to the Fenchel duality, we would have:

faiv(Del|Dy) = Sup [Ez.~p, [9(Ze)] = Ez,op, [f*(9(Z0))] = Sup VA(®,9),  (3)

we define f* as the conjugate function of the f-divergence function. Here, Z, takes (zy, ye, 8) as
input and estimates the "loss" between the model’s response to x ¢ and the target .. Mathematically,
this corresponds to the discrepancy between 6(zf) and y., where 6(x ) represents the answer
generated by the LLM parameterized by 6 given prompt z ;. Similarly, Z; estimates the "loss"
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for (zf,ys,6). We will provide the empirical estimation for Eqn. (@ in the next section. For
simplicity, we define VA(6, g*) := sup, VA(0, g), where g* is the optimal variational function.
Hence, the objective of FLAT is to obtain: 8* := arg maxy VA(6, g*).

Motivation: Note that existing solutions fail to keep a good balance between model performance
on forget data and retain data, step 3 provides a formal theoretical framework of our loss revision
in Step 2, under the f—divergence maximization between D, and Dy, the method assigns the
appropriate weights f*(-), g*(f*(-)) w.r.t. the joint data distributions D,, D;.

3.2 EMPIRICAL ALTERNATIVE OF LOSS ADJUSTMENT

Note that Eqn. (3) could be viewed as a data distribution level loss adjustment, in practice, when
given access to a set of forget data as well as example and bad answers, ¢, ¥, ¥, the per-sample
loss function (closed form of Eqn. ) would be given b

L(zy,Ye,yp;0) = — Sup [9(P(zf,ye;0)) — f*(g(P(zs,yy;0)))]
=—g"(P(zs,ye;0)) + f* (9" (P(zy,yy;0)))- “)

We provide examples of f-divergence functions in Table B], along with their conjugate and variational
functions (Nowozin et al.,[2016; Wei & Liu, 2021). We illustrate via following examples.

Example 1: Total-Variation For Total-Variation (TV), an example of f-divergence, f*(u) =

tanh * */ k tanh (P(x r,ye;0 tanh (P(z ¢,y ¢;0
u, g (v) = 220 hence, g* (P(xs, ye; 0)) — f* (9" (Blag, yy; 0)) = 2onE@rve®)  tanh (o pp:0)),

We defer examples of other f-divergence functions in the Appendix [B.1.

How to estimate P(z ¢, y.;0), P(zs,yr;0)?  We define the following two quantities:

_ X P(Mo(gye i) = Yei) _ S PMo(as.ypci) = )

]P)(xfaye;o) = |y | 5 ]P)(xfayf’e) = |yf|

Here, y.; and y;; denote the i-th token in the samples y. and y, respectively, while y. «; and
Yy, <i represent the already generated tokens. |y.| and |y¢| are the lengths of the example response
e and the forget response ¢, respectively. Given a prompt and the previously generated tokens,
P(Mg(xf,Ye <i) = Yei) and P(Mg(xs,yr <i) = yy,;) are the probabilities of correctly predicting
the next token, where Mg(2 ¢, Ye, <;), and Mg(x s, ys <;) are the predicted token using LLM 6 given
input prompt x; and the already generated tokens y «; and yr ;. These two quantities represent the
average probabilities of correctly generating tokens for the template and forget responses, respectively.
To align Eqn. (E) with Eqn. (IZ), we could define Ae = Ay =1, Le(xf,ye; 0) = —g* (P(xy, ye; 0)),
and Ly (2, y5:0) :== —f* (g7 (P(zy,y5:0))).

3.3 THE UPPER BOUND OF THE ESTIMATION GAP

To connect the empirical alternative of FLAT with the corresponding theoretical format, in this
section, we aim to explore the estimation gap between the theoretical f-divergence fg;,(De||Dy) and

the empirical optimal estimated f-divergence fu;, (De||D ), here we define:

fain(Del|Dy) := Ez,~p,[§(Ze)] = Ez,np, [f*(9(Z)))],
where § := sup,cq Ez,~p,[9(Ze)] = Ez,~p,[f*(9(Zy))] and @ is the function space.

Assumption 3.1 (Bounded Density Ratio). The density ratio Z./Z is lower and upper bounded by
positive constants a and b, respectively.

Assumption [3.T/is wildely adopted by the literature (Suzuki et al., 2008} Nguyen et al.,[2010), which
necessitates that the probability density functions Z,, Zy share the same support.

>To clarify, we introduce the negative sign on the r.h.s. because loss function is commonly combined with
the minimization task, while our method is formulated as maximizing the f-divergence.
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Assumption 3.2 (Regularity of Divergence Function). f(-) is smooth on [a,b], and f(1) = 0. f is
wo-strongly convex, and has Lg-Lipschitz continuous gradient on [a, b), for positive constants pig, Lo.

Assumption is a mild condition since it only requires the condition to hold for the interval [a, b],
which works for many commonly used f-divergence functions, i.e., KL divergence.

Let (V,|| - ||z,) be a normed space, and ® C V. wvq,...,v¢ is a d-covering over ® of size C' if
® C U, B(v;, ) where B(v;, §) is the 5-ball centered at v;. The covering number is then defined as
C3(6, ®) = min{C : 3-covering over ¢ of size C'}. The following assumption would characterize
the representation power of the function space ®.

Assumption 3.3 (Order of Covering Number). C5(d, ®) = O(exp{d~"*}), and ro € (0,2).
Theorem 3.4. Given Assumptions suppose § € ®, with probability > 1 — e=N TW(HT@),
we have: ‘fdiv(De| |Dy¢) — faiv(Del|Dy)| S N 72F2, where we have defined N as the number of

samples in the forget data.

Theorem [3.4|illustrates that the empirical alternative of FLAT, fy;, (D, ||D +), achieves the optimal
non-parametric rate of convergence towards fg;, (De||Dy).

3.4 CONNECTION WITH DPO

In this section, we discuss the connection and key differences between our approach and the celebrated
Direct Preference Optimization (DPO) |Rafailov et al.|(2024) approach for aligning LLMs.

Given a dataset D = {(x;, v, yfp)}je[ N where y. and y are preferred template and original forget

responses to the forget prompt ¢, DPO (Rafailov et al.,|2024) fine-tunes original model 6, using D
to better align it with good answer preferences, which minimizes:

_ 2 mo(ye | Tp) mo(ys | zs)
Lppo,z(0) = 5ED [loga(ﬁ log . Blog rer (s 12) )]

el lysl

= —%ED [10g o (/3(10g [ [Re(s,ye.<i) —Tog | [ he(ay, yf,<i))*]\”[ref)] ;
i=1 i=1

where, o(t) = H% is the sigmoid function, 3 > 0 is the inverse temperature, 7y :=

H,l,yll ho(z,y<;) is the predicted probability of the response y to prompt x given by LLM 6, 7,

is the predicted probability given by reference model, and M,.; := S(log ley:ell ho, (T, Ye,i) —

log 1 ‘f’:fll ho,(zr,yr.:)). As for FLAT, we calculate the average probability of all correctly generated
tokens and employ a novel re-weighting mechanism that assigns different importance to each term
using distinct activate functions for both the example and forget loss terms, which minimizes:

[yel vyl

\
Lrur(0) = ~Ep " (0 > ho(eg <)) = 167 (0 S ol s.<o)]-
Jel =1 e =1

Here, f*(-), g*(f*(-)) are the activate functions that assign appropriate weights to each loss term.
The detailed derivation is in Appendix [B.2. The key differences are highlighted in red. Specifically,
DPO relies on a reference model to guide the unlearning process, whereas FLAT only uses a sample
pair dataset containing both exemplar and forget responses. Besides, our solution differs from DPO
in three critical aspects: the re-weighting activation function, whether to sum or average the token
losses, and whether to apply the logarithm to the output probability. We conduct an ablation study
with DPO to evaluate the effectiveness of the proposed re-weighting mechanism in Section § {.3]

4 EXPERIMENT

In this section, we compare the proposed method with baseline unlearning methods on three widely
used LLLM unlearning tasks: copyrighted content unlearning on Harry Potter (HP) Series Book (Yao
et al.,[2023) (§ @) entity unlearning on TOFU dataset (Maini et al.||[2024a) (§ @) and unlearning
on MUSE-News benchmark (Shi et al.| [2024) (§ [4.4). We conduct additional ablation studies to
assess the effectiveness of our methods in Section §[4.5]
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4.1 BASELINE METHODS

We evaluate the effectiveness of our proposed method FLAT by comparing it to a series of strong
LLM unlearning baselines, particularly those based on loss adjustment. We consider Gradient
Ascent (GA) (Jang et al., [2022; [Yao et al., |2023), KL minimization (KL) (Maini et al., [2024a)),
GradDiff (GD) (Liu et al., [2022), NPO (Zhang et al., [2024), and Mismatch (Liu et al., [2024a)
across all three tasks. For copyrighted content and entity unlearning, we also include Preference
Optimization (PO) (Maini et al., | 2024a), Large Language Model Unlearning (LLMU) (Yao et al.|
2023), and DPO (Rafailov et al.,2024). For the MUSE-News benchmark, we additionally consider
Task Vectors (Ilharco et al.| 2022), Who’s Harry Potter (WHP) (Eldan & Russinovich, 2023) and an
extended version of NPO (NPO-RT) as a comparable method, which incorporates a fine-tuning term
on the retain dataset. Further experiment details are provided in Appendix [C.1.

4.2 COPYRIGHTED CONTENT UNLEARNING

Experiment Setup. We select Harry Potter and the  Taple 3: Performance of our method and the base-
Sorcerer’s Stone (Rowling, [1997) as the copyrighted line methods on Harry Potter dataset using OPT-
content for unlearning. The objective is to ensure that 2.7B. FLAT consistently ranks in the top two in
the unlearned model does not generate passages with terms of similarity to the retained model, measured
high similarity to the original text. Following prior by Forget Quality Gap (FQ Gap), while also gener-
works (Liu et al.,2024a: [Yao et all [2023), we first ating meaningful and diverse outputs, as reflected
fine-tune LLMs on the corresponding corpus, treat- Y Perplexity (PPL) and the average zero-shot ac-
L : . S curacy across nine LLM benchmarks (Avg. Acc.).
ing it as the model subject to unlearning, while using . .

R . . . The top two results across three main metrics are
the original pre-trained checkpoint as the retained

; : highlighted in blue.
model’| Following Yao et al.|(2023); Jia et al. (2024), -
We extract 400 chunks from the Harry Potter book se- 'M“‘““ | FQGap(l) PPL())  AvgAcc.(})
ries dataset (Eldan & Russinovich, 2023)), with each ]?erf:::éi]ih& 1'8%46 }Z:g‘?ég gjjggﬁ
chunk containing up to 512 tokens, to create the for- GA 27301 1L.0984e71 03667
get dataset Dy. We sample 400 paragraphs in the KL 27301 16.1592 0.4688
C4 dataset (Raffel et al.,[2020) as the retain data D,.. (;oD i'igg? ii'gzz 8'1232
The IDK dataset comes from Jia et al. (2024) We Mismatch 1:4042 15j7507 0:467§
experiment with OPT-2.7B (Zhang et al., 2022) and LLMU 2.4639 15.8398 0.4656
Llama2-7B (Touvron et al., 2023)) for this task. DPO 22152 16.8396 0.4621
NPO 1.2611 19.6637 0.4644
Evaluation Metrics. We report three key metrics to FLAT (TV) L4047 155512 04681
assess the unlearning efficiency and model utility of FLAT (KL) 1.3238 15.5311 0.4694
the unlearned models. For unlearning efficiency, we FLAT (IS) 1.4025 15.5499 0.4693
use the Forget Quality Gap (FQ Gap), similar to[Liu] _FlATPearon) | 14089 155543 04686

et al.| (2024a), which is the sum of the BLEU Gap

and ROUGE-L Gap. It is the absolute difference between the retained model and the unlearned
model on these metrics. Specifically, we calculate BLEU (Papineni et al.,2002) and ROUGE-L (Lin,
2004) scores by comparing ground-truth excerpts with completions generated by the unlearned
model, given a fixed prefix length of 200 tokens from the forget data, to reflect potential copyright
content leakage. We further conduct study on the prompt length for evaluation in Appendix
Following (Ji et al., 2024), we measure the model utility using the zero-shot accuracy on nine standard
LLM benchmarks to determine if the generated text remains meaningful and diverse. Additionally,
we measure perplexity (PPL) on Wikitext (Merity et al.|[2016)). More details about the experimental
setup and implementation are in Appendix [C.2.

FLAT consistently ranks in the top two across three metrics. Table [3|shows that FLAT ranks in
the top two across the three primary metrics, with particularly strong performance in KL f-divergence
function. Our method achieves scores close to those of the retained model in terms of the average
accuracy across nine LLM benchmarks.

FLAT approach achieves good trade-off. Our method demonstrates strong unlearning efficiency
while preserving model utility as shown in Table 3| Although NPO demonstrates the best forget
quality, outperforming our method, it severely suffers from lower model utility, as reflected by its
PPL score. PO, while also using example responses, has the lowest PPL and a weak forgetting

3We empirically verified that the initial LLM cannot generate the original corpus, making it a valid candidate
for retrained model.
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Table 4: Performance of our method and the baseline methods on TOFU dataset using three base LLMs,
Llama2-7B, Phi-1.5B, and OPT-2.7B. FQ, MU, R-RL, F-RL represent forget quality, model utility, ROUGE-L
on retain dataset and ROUGE-L on forget dataset respectively. We include the original LLM and retain LLM for
reference. The top two results are highlighted in blue.

Base LLM | Llama2-7B \ Phi-1.5B \ OPT-2.7B
Metric |  FQ MU FRL() RRL | FQ MU  FRL(}) RRL | FQ MU  FRL({) RRL
Original LLM | 4.4883e-06  0.6346  0.9851 09833 | 0.0013 05184 09607 09199 | 00013 05120 07537  0.7494
Retained LLM 1.0 0.6267 04080  0.9833 1.0 05233 04272 09269 1.0 0.5067 04217  0.7669
GA 00143 06333 04862 09008 | 0.0013 05069 05114 08048 | 0.2657 04639 04748  0.6387
KL 0.0068  0.6300 05281  0.9398 | 0.0030 05047 05059 08109 | 0.0286 04775 04810  0.6613
GD 00068  0.6320 04773 08912 | 0.0030 05110 04996  0.8496 | 0.0541 04912 04521  0.6603
PO 0.0541  0.6308 03640 08811 | 0.0286 05127 03170 07468 | 0.0068 04424 00589  0.4015
Mismatch 00143 06304 09406 09741 | 00030 05225 09612 09194 | 0.0030 05025 07525  0.7475
LLMU 0.0541 06337 04480 0.8865 | 0.0286 05110 03058 07270 | 0.0286 03296  0.0347  0.2495
DPO 0.0541  0.6359 05860 0.8852 | 0.0521 00519 03437 07349 | 00541 04264  0.0806 03937
NPO 00068  0.6321 04632  0.8950 | 0.0030 05057 05196 08000 | 0.0541 04788 04993  0.6490
FLAT (TV) 0.0541 06373 04391 0.8826 | 0.0143 0.5168 04689 08155 | 0.0068  0.5086  0.5217  0.7067
FLAT (KL) 0.0286  0.6393 05199 08750 | 0.0143 05180 0.4524 07850 | 0.0286 04838 04942  0.6974
FLAT (IS) 0.0541 0.6364 04454 08864 | 0.0068 05144 04572 08117 | 0.0541 04959 04938  0.7013
FLAT (Pearson) |  0.0541 0.6374 04392 08857 | 00143 05175 04591  0.8099 | 0.0068  0.5093 05052  0.7059

performance (FQ Gap), indicating the ineffectiveness of learning the example responses in a naive
manner. These results highlight the effectiveness of our method in balancing forget quality and model
utility, even without an explicit retaining term in the loss function. We also include additional results
using Llama2-7B (Table[9) in Appendix [D.1]

4.3 ENTITY UNLEARNING

Experiment Setup. The TOFU dataset (Maini et al.,2024a) is a synthetic question-answering dataset
focused on author biographies, aiming to enable a LLM to unlearn a portion of fictitious authors
while retaining knowledge about the rest and real-world facts. The dataset includes 200 fake authors,
each with 20 QA pairs, and experiments are conducted with 1%, 5% or 10% of these authors marked
for unlearning. We first fine-tuned the target LLM using all dataset to obtain the original LLM. We
use Llama2-7B, Phi-1.5B (Li et al., 2023a), and OPT-2.7B as base LLM.

Evaluation Metrics. To assess forget quality and model utility, we mainly use two metrics proposed
alongside the TOFU dataset, Forget Quality (FQ) and Model Utility (MU) (Maini et al., 2024a).
Forget quality, assessed via a p-value from a Kolmogorov-Smirnov test, measures how closely the
unlearned model’s output matches a model trained only on the retained data in distribution. When
the p-value is above 0.01, we say the forgetting is significant. Model utility is the aggregated model
performance on held-out retain data regarding fictional authors, real-world author profiles, and world
facts. We also report the ROUGE-L score on forget set and retain set. It’s important to note that for
the forget set, a lower ROUGE-L score does not necessarily indicate better performance. Therefore,
we highlight methods where the ROUGE-L score closely matches that of the retained model, as these
are considered to produce better results. More metrics can be found in Appendix [C.3.1]

FLAT is always the best in preserving model utility. As seen in Table[4] it experiences almost no
reductions in model utility compared to the original model. On LLaMA2-7B, although GA and KL
achieve strong ROUGE-L scores on the retain dataset, their forgetting performance is poor. Similarly,
on Phi-1.5B, GD performs well on the retain dataset’s ROUGE-L score, but its forgetting performance
is insufficient, failing to exceed 0.01.

FLAT achieves the top two Forget Quality under all three models. FLAT achieves a ROUGE
score that is closest to the Retained LLM on forget dataset under Llama2-7B and Phi-1.5B. PO shows
the best forgetting efficiency on Phi-1.5B, but its ROUGE-L scores on both the forget and retain
datasets are lower compared to the retained LLM, indicating weaker model utility. A similar issue
is observed with GA: while it excels in forgetting performance on the OPT-2.7B model, its model
utility remains weaker.

FLAT achieves the best trade-off. Our method consistently ranks in the top two across the primary
metrics, achieving the best performance in MU. Specifically, KL f-divergence demonstrates strong
results in both FQ and MU on LLama2-7B and Phi-1.5B models. Overall, all four f-divergence
functions effectively balance forgetting efficiency and model utility. In summary, our method
demonstrates the best model utility while achieving top-two results in forgetting performance.
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Table 5: Performace on MUSE benchmark using four criteria. We highlight results in blue if the unlearning
algorithm satisfies the criterion and highlight it in red otherwise. For metrics on Dy, lower values than the
retained LLM are preferred and the lower the better. For metrics on D, as long as KnowMem is non-zero
(indicating retained knowledge), higher values are better. In terms of PrivLeak, the results should be close to 0.
Large negative or positive values suggest that they may cause privacy leakage.

VerbMem on Dy (]) KnowMemon Dy (]) KnowMem on D, (1) PrivLeak

Original LLM  58.4 - 63.9 - 55.2 - -99.8
Retained LLM  20.8 - 33.1 - 55.0 - 0.0
GA 0.0 ) 0.0 W) 0.0 X) 17.0
KL 274 (X) 50.2 X) 44.8 W) -96.1
NPO 0.0 ) 0.0 W) 0.0 X) 15.0
NPO-RT 1.2 W) 54.6 X) 40.5 W) 105.8
Task Vector 56.3 (X) 63.7 X) 54.6 W) -99.8
Mismatch 42.8 (X) 52.6 (%) 45.7 W) -99.8
GD 4.9 ) 27.5 W) 6.7 ") 109.4
WHP 19.7 W) 21.2 ) 28.3 W) 109.6
FLAT (TV) 1.7 ) 13.6 ) 31.8 ) 45.4
FLAT (KL) 0.0 W) 0.0 ) 0.0 (%) 58.9
FLAT (JS) 1.9 ") 36.2 (X) 38.5 W) 47.1
FLAT (Pearson) 1.6 W) 0.0 ) 0.2 W) 26.8

4.4 MUSE-NEWS UNLEARNING

Experiment Setup. We focus on the task of unlearning on News corpus presented in|Shi et al. (2024).
News consists of BBC news articles (Li et al., 2023b) collected after August 2023. All articles
are randomly divided into forget, retain, and holdout sets. We perform unlearning directly on the
pre-trained models provided by the benchmark, following the corresponding experimental setup.

Evaluation Metrics. We report the proposed four metrics, VerbMem on forget dataset, KnowMem on
forget and retain dataset, and Privacy leakage (PrivLeak). We quantify the verbatim memorization
VerbMem by prompting the model with the first [ tokens from a sequence and comparing the
continuation outputted by the model 6 to the true continuation using the ROUGE-L F1 score (Lin,
2004). We gather the model’s answers to questions and then average the ROUGE scores for all
question-answer pairs in forget dataset or retain dataset to compute the knowledge memorization
score KnowMem. The PrivLeak metric for a good unlearning algorithm should be close to zero,
whereas an over/under-unlearning algorithm will get a large positive/negative metric.

Experiment Results. FLAT effectively removes verbatim and knowledge memorization of forget
dataset and achieve good knowledge memorization of retain dataset. But it can still reveal the
membership of Dy in D,. As shown in Table E, GA, NPO, GD, WHP, and ours perform well in
VerbMem and KnowMem on forget dataset, often reduing them even beyond the levels achieved by
the retrained model. However, these reductions often come at the cost of significant utility loss on the
retain set. Only GD, WHP and ours can perfome good in all memorization related metrics. And FLAT
(TV) can achieve the lowest VerbMem and KnowMem on D¢ and the highest KnowMem on D,
among the three methods. However, none of the methods can achieve satisiable results regarding to
the privacy leakage. Since MUSE uses news data, which is highly time-dependent (and thus possibly
non-i.i.d.), we advocate for cautious interpretation of the PrivLeak metric (see Appendix [C.4.T).

4.5 ABLATION STUDIES

The Effectiveness of Re-weighting Mechanism. As FLAT (KL) demonstrates strong overall
performance, we base our ablation study on KL divergence to explore the effectiveness of the implicit
re-weighting mechanism within our loss adjustment. This study is conducted on the TOFU dataset
using Llama2-7B. For additional results from the ablation studies, please refer to Appendix

When using preferred template data for unlearning, we compare our method with DPO (without
the term M. ) and SimPO, as outlined in Appendix [@ All methods use the same data and have
similar formulations, with two terms in the loss function; the only difference lies in the intrinsic
re-weighting mechanism. As shown in Table 6, our method achieves the highest number of best
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Table 6: Ablation Study of Re-weighting Mechanism on TOFU dataset using Llama2-7B under all metrics. We
report ROUGE-L score (R-L), Probability (P), and Truth Ratio (TR) on all four subsets of the TOFU benchmark.
Higher scores are better except ROUGE-L and Probability on the Forget Set. The best ones are in blue.

Split | Real Authors | Real World | Retain Set | Forget Set
Metric | RL p TR | RL P TR | RL P TR | RLA) P TR
Study on R ighting Mechanism Using Template IDK Data
DPO 0.9330 0.4939 0.6384 0.8917 0.4631 0.5646 0.8852 0.9623 0.4407 0.5860 0.8734 0.6240
DPO w/o M,..s 0.9330 0.4899 0.6333 0.8917 0.4620 0.5642 0.8735 0.9579 0.4388 0.4021 0.8149 0.6326
SimPO 0.9330 0.4902 0.6335 0.8917 0.4624 0.5664 0.8758 0.9577 0.4388 0.4087 0.8128 0.6329
FLAT (KL) 0.9180 0.4992 0.6491 0.9060 0.4524 0.5609 0.8750 0.9679 0.4603 0.5199 0.7588 0.5895

Study on Re-weighting Mechanism Using Retain Data

GD 0.9080  0.4728  0.6156 0.8718 0.4439  0.5833 | 0.8912 09657  0.4701 0.4773 0.4238 0.5619
FLAT (KL)-Retain | 0.9180  0.4643  0.6099 0.8832 04356 05690 | 0.9241  0.9734  0.4697 0.4487 0.3342 0.5879

Table 7: Ablation Study of Good Answer Type using three LLMs on TOFU dataset. FQ, MU, R-RL, F-RL
represent forget quality, model utility, ROUGE-L on retain dataset and ROUGE-L on forget dataset respectively.
The best performance is in blue.

Split \ Llama2-7B Phi-1.5B OPT-2.7B
Metric | FQ MU  FRL() RRL | FQ MU  FRLU) RRL | FQ MU  FRL() RRL
Original LLM 44883¢-06  0.6346 09851 09833 | 0.0013 05184 09249 09293 | 00013 05120 07537  0.7494
Retained LLM 1.0 0.6267 04080  0.9833 10 05233 04272 09269 10 05067 04217  0.7669
FLAT (TV)-IDK 00541 06373 04391 08826 | 00143 05168 04689 08155 | 00068 0508 05217  0.7067
FLAT (KL)-IDK 00286  0.6393 05199 08750 | 0.0143 05180 04524 07850 | 00286 04838 02212  0.4853
FLAT (JS)-IDK 0.0541 06364 04454 08864 | 00068 05144 04572 08117 | 0.0541 04959 03104  0.5658
FLAT (Pearson)-IDK 00541 06374 04392 08857 | 00143 05175 04591 08099 | 0.0068 05093 05052  0.7059
FLAT (TV)-Normal 00068 06173 04941 09575 | 0.0068 05104 04827 08245 | 00030 05086 05646  0.7355
FLAT (KL)-Normal 00068 06162 06273 09719 | 00068 05177 05377 0.8575 | 00030 05082 05642  0.7474
FLAT (JS)-Normal 00143 06178 04910 09560 | 0.0013 05068 05538 07313 | 00013 05068 05538  0.7313
FLAT (Pearson)-Normal | 0.0068  0.6186 04972 09546 | 0.0030 05094 05554 07343 | 0.0030 05094 05554 07343

results across 12 metrics. When replacing the IDK data with retain data, the results show that the
retain version performs better on the Retain Set but worse on Real Authors and Real World compared
to FLAT (KL). Since GD shares the same data usage and formulation as our method, except for the
re-weighting mechanism and utilization of retain data, we compare the retain version to GD. The
results show that our method achieves better performance on both the Retain Set and Forget Set, with
the decline in Real Authors and Real World performance caused by the use of retain data.

The Imapct of Good Answer Type. In the first step of our approach, we intend to generate good
example responses for each forget sample. We primarily use the reject-based response "I don’t know"
(denoted as IDK) as the default choice. In this section, we conduct an ablation study on data usage
for FLAT to analyze how these good responses impact unlearning performance. Table|7 presents
the ablation study of good answer type using three LLMs on TOFU dataset, comparing IDK with
random normal responses (denoted as Normal). Table [I4 in Appendix [D.3] provides the ablation
study of different good answer type using Llama2-7B on the HP dataset. Results indicate that using
normal responses improves model utility on HP datasets and improves ROUGE-L Score on retain set
on TOFU datasets, whereas using IDK responses yields better forgetting quality. Additionally, we
observe that the performance across the four divergence functions is relatively similar. KL divergence,
in particular, demonstrates more consistent results across the three datasets and three models, likely
due to its reduced sensitivity to incorrect or bad answers.

5 CONCLUSION

In this paper, we address the limitations of existing LLM unlearning methods, which often rely on the
retain data or a reference LLM for response calibration. To overcome these challenges, we propose
FLAT (Forget data only Loss AdjustmenT), a "flat" loss adjustment approach that eliminates the
need for retain data or a reference model. By optimizing the f-divergence between the template
and forget responses, FLAT offers a clear and theoretically grounded solution for balancing forget
quality with model utility in LLM unlearning. Through extensive experiments on three key unlearning
tasks: copyrighted content unlearning on the Harry Potter dataset, the MUSE benchmark, and entity
unlearning on the TOFU dataset, we demonstrate the superior performance of FLAT. Our method
consistently achieves high unlearning efficiency while preserving overall model utility, showcasing
its effectiveness in addressing both practical and theoretical challenges in LLM unlearning.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGMENT

Y. Wang and Y. Liu are partially supported by the National Science Foundation (NSF) under grants
1IS-2143895, 11S-2040800, and I1S-2416896.

ETHICS STATEMENT

Our proposed approach emphasizes privacy and fairness by addressing potential data privacy concerns
during unlearning procedures, particularly with sensitive datasets. We commit to ensuring that no
private or proprietary data is mishandled during experiments, and all data used for training and
evaluation are publicly available.

REPRODUCIBILITY STATEMENT

We provide details to reproduce our results in Section 4 and Appendix C, including our experimental
setup, evaluation metrics and implementation setting. Additionally, the code and scripts used in our
experiments will be made publicly available upon acceptance. Any external libraries or dependencies
required to reproduce the results are specified.

REFERENCES

Leonard Adolphs, Tianyu Gao, Jing Xu, Kurt Shuster, Sainbayar Sukhbaatar, and Jason Weston. The
cringe loss: Learning what language not to model. arXiv preprint arXiv:2211.05826, 2022.

Clark Barrett, Brad Boyd, Elie Bursztein, Nicholas Carlini, Brad Chen, Jihye Choi, Amrita Roy
Chowdhury, Mihai Christodorescu, Anupam Datta, Soheil Feizi, et al. Identifying and mitigating
the security risks of generative ai. Foundations and Trends® in Privacy and Security, 6(1):1-52,
2023.

Alexander Becker and Thomas Liebig. Evaluating machine unlearning via epistemic uncertainty.
arXiv preprint arXiv:2208.10836, 2022.

Nora Belrose, David Schneider-Joseph, Shauli Ravfogel, Ryan Cotterell, Edward Raff, and Stella
Biderman. Leace: Perfect linear concept erasure in closed form. Advances in Neural Information
Processing Systems, 36, 2024.

Karuna Bhaila, Minh-Hao Van, and Xintao Wu. Soft prompting for unlearning in large language
models. arXiv preprint arXiv:2406.12038, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432-7439, 2020.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE symposium on security and privacy, pp. 463—480. IEEE, 2015.

Jiaao Chen and Diyi Yang. Unlearn what you want to forget: Efficient unlearning for llms. arXiv
preprint arXiv:2310.20150, 2023.

Min Chen, Weizhuo Gao, Gaoyang Liu, Kai Peng, and Chen Wang. Boundary unlearning: Rapid
forgetting of deep networks via shifting the decision boundary. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 77667775, 2023.

Minseok Choi, Daniel Rim, Dohyun Lee, and Jaegul Choo. Snap: Unlearning selective knowledge in
large language models with negative instructions. arXiv preprint arXiv:2406.12329, 2024.

Francois Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

11



Published as a conference paper at ICLR 2025

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Machine learning challenges workshop, pp. 177-190. Springer, 2005.

Zonglin Di, Zhaowei Zhu, Jinghan Jia, Jiancheng Liu, Zafar Takhirov, Bo Jiang, Yuanshun Yao,
Sijia Liu, and Yang Liu. Label smoothing improves machine unlearning. arXiv preprint
arXiv:2406.07698, 2024.

Yijiang River Dong, Hongzhou Lin, Mikhail Belkin, Ramon Huerta, and Ivan Vuli¢. Undial: Self-
distillation with adjusted logits for robust unlearning in large language models, 2024. URL
https://arxiv.org/abs/2402.10052.

Michael Duan, Anshuman Suri, Niloofar Mireshghallah, Sewon Min, Weijia Shi, Luke Zettlemoyer,
Yulia Tsvetkov, Yejin Choi, David Evans, and Hannaneh Hajishirzi. Do membership inference
attacks work on large language models? arXiv preprint arXiv:2402.07841, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Ronen Eldan and Mark Russinovich. Who’s harry potter? approximate unlearning in llms. arXiv
preprint arXiv:2310.02238, 2023.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Chongyu Fan, Jiancheng Liu, Yihua Zhang, Dennis Wei, Eric Wong, and Sijia Liu. Salun: Em-
powering machine unlearning via gradient-based weight saliency in both image classification and
generation. arXiv preprint arXiv:2310.12508, 2023.

Chongyu Fan, Jiancheng Liu, Alfred Hero, and Sijia Liu. Challenging forgets: Unveiling the
worst-case forget sets in machine unlearning. arXiv preprint arXiv:2403.07362, 2024.

Chongyang Gao, Lixu Wang, Chenkai Weng, Xiao Wang, and Qi Zhu. Practical unlearning for large
language models. arXiv preprint arXiv:2407.10223, 2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9304-9312, 2020.

Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pp. 11516-11524, 2021.

Tianle Gu, Kexin Huang, Ruilin Luo, Yuangi Yao, Yujiu Yang, Yan Teng, and Yingchun Wang.
Meow: Memory supervised 1lm unlearning via inverted facts. arXiv preprint arXiv:2409.11844,
2024.

Chris Jay Hoofnagle, Bart Van Der Sloot, and Frederik Zuiderveen Borgesius. The european union
general data protection regulation: what it is and what it means. Information & Communications
Technology Law, 28(1):65-98, 2019.

James Y Huang, Wenxuan Zhou, Fei Wang, Fred Morstatter, Sheng Zhang, Hoifung Poon, and
Muhao Chen. Offset unlearning for large language models. arXiv preprint arXiv:2404.11045,
2024.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,

Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

12


https://arxiv.org/abs/2402.10052
https://zenodo.org/records/10256836

Published as a conference paper at ICLR 2025

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data deletion
from machine learning models. In International Conference on Artificial Intelligence and Statistics,
pp- 2008-2016. PMLR, 2021.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and
Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models. arXiv
preprint arXiv:2210.01504, 2022.

Jiabao Ji, Yujian Liu, Yang Zhang, Gaowen Liu, Ramana Rao Kompella, Sijia Liu, and Shiyu Chang.
Reversing the forget-retain objectives: An efficient 1lm unlearning framework from logit difference.
arXiv preprint arXiv:2406.08607, 2024.

Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma, and
Sijia Liu. Model sparsification can simplify machine unlearning. arXiv preprint arXiv:2304.04934,
2023.

Jinghan Jia, Yihua Zhang, Yimeng Zhang, Jiancheng Liu, Bharat Runwal, James Diffenderfer,
Bhavya Kailkhura, and Sijia Liu. Soul: Unlocking the power of second-order optimization for 1lm
unlearning. arXiv preprint arXiv:2404.18239, 2024.

Antonia Karamolegkou, Jiaang Li, Li Zhou, and Anders Sggaard. Copyright violations and large
language models. arXiv preprint arXiv:2310.13771,2023.

Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded
machine unlearning. Advances in Neural Information Processing Systems, 36, 2024.

Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D Li,
Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, et al. The wmdp benchmark: Measuring
and reducing malicious use with unlearning. arXiv preprint arXiv:2403.03218, 2024.

Yuanzhi Li, Sébastien Bubeck, Ronen Fldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023a.

Yucheng Li, Frank Geurin, and Chenghua Lin. Avoiding data contamination in language model
evaluation: Dynamic test construction with latest materials. arXiv preprint arXiv:2312.12343,
2023b.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74-81, 2004.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulga: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Bo Liu, Qiang Liu, and Peter Stone. Continual learning and private unlearning. In Conference on
Lifelong Learning Agents, pp. 243-254. PMLR, 2022.

Chris Yuhao Liu, Yaxuan Wang, Jeffrey Flanigan, and Yang Liu. Large language model unlearning
via embedding-corrupted prompts. arXiv preprint arXiv:2406.07933, 2024a.

Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, PRANAY SHARMA, Sijia Liu,
et al. Model sparsity can simplify machine unlearning. Advances in Neural Information Processing
Systems, 36, 2024b.

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang Yao,
Chris Yuhao Liu, Xiaojun Xu, Hang Li, Kush R. Varshney, Mohit Bansal, Sanmi Koyejo, and Yang
Liu. Rethinking machine unlearning for large language models. arXiv preprint arXiv:2402.08787,
2024c.

Yujian Liu, Yang Zhang, Tommi Jaakkola, and Shiyu Chang. Revisiting who’s harry potter: Towards
targeted unlearning from a causal intervention perspective. arXiv preprint arXiv:2407.16997,
2024d.

Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C Lipton, and J Zico Kolter. Tofu: A task of
fictitious unlearning for llms. arXiv preprint arXiv:2401.06121, 2024a.

13



Published as a conference paper at ICLR 2025

Pratyush Maini, Hengrui Jia, Nicolas Papernot, and Adam Dziedzic. LIm dataset inference: Did you
train on my dataset? arXiv preprint arXiv:2406.06443, 2024b.

Anmol Mekala, Vineeth Dorna, Shreya Dubey, Abhishek Lalwani, David Koleczek, Mukund Rungta,
Sadid Hasan, and Elita Lobo. Alternate preference optimization for unlearning factual knowledge
in large language models. arXiv preprint arXiv:2409.13474, 2024.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-
free reward. arXiv preprint arXiv:2405.14734, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Fabio Motoki, Valdemar Pinho Neto, and Victor Rodrigues. More human than human: measuring
chatgpt political bias. Public Choice, 198(1):3-23, 2024.

Andrei Muresanu, Anvith Thudi, Michael R Zhang, and Nicolas Papernot. Unlearnable algorithms
for in-context learning. arXiv preprint arXiv:2402.00751, 2024.

XuanLong Nguyen, Martin J] Wainwright, and Michael I Jordan. Estimating divergence functionals
and the likelihood ratio by convex risk minimization. IEEE Transactions on Information Theory,
56(11):5847-5861, 2010.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. Advances in neural information processing systems, 29,

2016.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311-318, 2002.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural networks, 113:54-71, 2019.

Vaidehi Patil, Peter Hase, and Mohit Bansal. Can sensitive information be deleted from 1lms?
objectives for defending against extraction attacks. arXiv preprint arXiv:2309.17410, 2023.

Martin Pawelczyk, Seth Neel, and Himabindu Lakkaraju. In-context unlearning: Language models
as few shot unlearners. arXiv preprint arXiv:2310.07579, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

J.K. Rowling. Harry Potter and the Sorcerer’s Stone. Scholastic, New York, 1997.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106,
2021.

Weijia Shi, Jaechan Lee, Yangsibo Huang, Sadhika Malladi, Jieyu Zhao, Ari Holtzman, Daogao
Liu, Luke Zettlemoyer, Noah A Smith, and Chiyuan Zhang. Muse: Machine unlearning six-way
evaluation for language models. arXiv preprint arXiv:2407.06460, 2024.

Taiji Suzuki, Masashi Sugiyama, Jun Sese, and Takafumi Kanamori. Approximating mutual informa-
tion by maximum likelihood density ratio estimation. In New challenges for feature selection in
data mining and knowledge discovery, pp. 5-20. PMLR, 2008.

14



Published as a conference paper at ICLR 2025

Pratiksha Thaker, Yash Maurya, and Virginia Smith. Guardrail baselines for unlearning in llms. arXiv
preprint arXiv:2403.03329, 2024.

Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Unrolling sgd: Under-
standing factors influencing machine unlearning. In 2022 IEEE 7th European Symposium on
Security and Privacy (EuroS&P), pp. 303-319. IEEE, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Lingzhi Wang, Tong Chen, Wei Yuan, Xingshan Zeng, Kam-Fai Wong, and Hongzhi Yin. Kga:
A general machine unlearning framework based on knowledge gap alignment. arXiv preprint
arXiv:2305.06535, 2023.

Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck. Machine unlearning
of features and labels. arXiv preprint arXiv:2108.11577, 2021.

Jiaheng Wei and Yang Liu. When optimizing $f$-divergence is robust with label noise. In Interna-
tional Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=WesiCoRVQ15.

Jiaheng Wei, Zuyue Fu, Yang Liu, Xingyu Li, Zhuoran Yang, and Zhaoran Wang. Sample elicitation.
In International Conference on Artificial Intelligence and Statistics, pp. 2692-2700. PMLR, 2021.

Ga Wu, Masoud Hashemi, and Christopher Srinivasa. Puma: Performance unchanged model
augmentation for training data removal. In Proceedings of the AAAI conference on artificial
intelligence, volume 36, pp. 8675-8682, 2022.

Xinwei Wu, Junzhuo Li, Minghui Xu, Weilong Dong, Shuangzhi Wu, Chao Bian, and Deyi Xiong.
Depn: Detecting and editing privacy neurons in pretrained language models. arXiv preprint
arXiv:2310.20138, 2023.

Jin Yao, Eli Chien, Minxin Du, Xinyao Niu, Tianhao Wang, Zezhou Cheng, and Xiang Yue. Machine
unlearning of pre-trained large language models. arXiv preprint arXiv:2402.15159, 2024.

Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. arXiv preprint
arXiv:2310.10683, 2023.

Charles Yu, Sullam Jeoung, Anish Kasi, Pengfei Yu, and Heng Ji. Unlearning bias in language
models by partitioning gradients. In Findings of the Association for Computational Linguistics:
ACL 2023, pp. 6032-6048, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catastrophic
collapse to effective unlearning. arXiv preprint arXiv:2404.05868, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

15


https://openreview.net/forum?id=WesiCoRVQ15
https://openreview.net/forum?id=WesiCoRVQ15

Published as a conference paper at ICLR 2025

APPENDIX ARRANGEMENT

The Appendix is organized as follows.

e Section §[é: Discussion of the broad impacts and limitations of our method.

Section §[I_3} Detailed theoretical illustrations and proofs.
e Section §[B.1: Additional examples of loss adjustments under various f-divergence functions.

e Section § [B.2: Derivation of the empirical loss objective.

Section §|C: Detailed experimental settings.
e Section § [C.I:Revisits existing unlearning methods and unifies them under our general loss
function framework, as described in Section § 2.2

e Section §[C.2] §[C.3] §[C.4} Detailed experimental settings, including evaluation metrics and
implementation settings for the three unlearning tasks.

Section § [D: Additional experiments and discussions.
Section § [E} Related work.

A LIMITATIONS AND BROADER IMPACTS

A.1 BROAD IMPACTS

The proposed FLAT method for LLM unlearning has the potential to significantly advance ethical
and responsible Al deployment, particularly in addressing key challenges such as privacy concerns,
bias, and regulatory compliance. By enabling models to effectively forget specific data without
compromising overall model utility, this approach directly addresses issues related to data privacy,
including compliance with regulations like GDPR, which mandates data deletion upon user request.
The ability to unlearn sensitive or copyrighted information, as demonstrated on datasets like Harry
Potter and TOFU, ensures that Al models can be continually refined without propagating harmful or
biased content.

Furthermore, the reduced reliance on the retain data or a reference LLM makes FLAT more resource-
efficient, lowering the computational and financial costs associated with large-scale unlearning. This
opens up opportunities for wider adoption across industries and research institutions where access
to retain data or additional model resources may be limited or not accessible. The implications
of this work span multiple domains, including healthcare, finance, and education, where ethical
considerations are paramount.

A.2 LIMITATIONS

One key limitation of our approach is the unsatisfactory performance in the privacy leakage evaluation
on the MUSE dataset. While FLAT demonstrates strong unlearning efficiency and retains model
utility across several benchmarks, it struggles to prevent privacy leakage. Note that all other tested
methods suffer from the same issue, this suggests that further refinement is needed to strengthen
the privacy-preserving aspects of existing LLM unlearning approaches. Future work could explore
more robust strategies to address privacy leakage while maintaining the balance between unlearning
performance and model utility.
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B THEORETICAL ILLUSTRATION AND PROOFS

B.1 ADDITIONAL EXAMPLES FOR LOSS ADJUSTMENTS UNDER MORE f—DIVERGENCE

Example 2: Jenson-Shannon (JS) For Jenson-Shannon f-divergence, we have f*(u) =

2
—log (2 —e*), g*(v) = log = hence:

2
- “(g* 2 8 e P wr0)
g ((P(zys,ye;0)) — [ (g ((P(mﬁyﬁ@)):logm— —log [2—e lte P
2
2 log

= log +log|2—e m

1 4 e Pz ryes0)

=1 72 ! 2 72
= e B\ P T T a0

) ) ) 2¢ P(@r.y5i0)
% + e Pl sye;0) +log 1+ e Bleruysi0)

46*]})(1],3/]30)
= log <(1 i @_]P(””f’yf??e))(l + e_?(:cf,yf;(?))> .

Example 3: Pearson For Pearson f-divergence, we have f*(u) = “{ + u, g*(v) = v, hence:

* * 7k P.’K, 702
(Bl 0) = 1" (Blarv5i0) = Plog,e0) — B2V by, 500))
P(z;,yy;0)>
= VAL by, y1:0) + Blag,pes6).

Example 4: KL For KL f-divergence, we have f*(u) = e¢“~!, g*(v) = v, hence:
9 (P(zs,ye;0)) — £ (" (P(xg,yp30)) = Plas, ye; 0) — e “Hvsi 07
B.2 THE DERIVATION OF EMPIRICAL LOSS FUNCTION

According to Eqn. (), we have:

L(w g, ye,ys;0) = — Sup [9(P(zr,ye;0)) — f*(g(P(xf,yr:0)))]
= (9" (P(xy,y7;0)) —g" (P(zf,ye:0))) -
Ly(zs,y5;0) Le(xf,ye;0)

Given a dataset D = {(x?c, vl y;)}je[ N where y. and y; are preferred template and original

forget responses to the forget prompt z 7, we estimate P(x ¢, y; 0),P(xf, yy; 0) via the following
two quantities:

9) = lell P(Me(xfaye,<i) = ye,i)

) i il PMoa,yy.<0) = yy)
|Yel - '

- Pl s]

]P)(xﬁye;

Given a prompt and the previously generated tokens, P(Mo(zf,Ye<i) = Ye;) and
P(Mg(xy,yf<i) = yr:) are the probabilities of correctly predicting the next token, where
Mo (¢, Ye,<i), and Mg(x s,y <;) are the predicted token using LLM 6 given input prompt « ¢ and
the already generated tokens ¥, «; and ¥y ;.
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Empirically, we can obtain the loss function for the dataset D:

Livar (69) = ~Ep 9" (Blas, 9e50)) — (0" (Bl v536)|

e v lysl v
e S S Ve ho e <) wf oy 2oih Dopm1 Ytk ho(Tp yp<i)
:*]ED{Q( 12.k=1 f <Uky (g (&=L k=1Yf £HYf< k)]
|ye| |yf|
el o (o Jus] ,
* = O\TfyYe,<i * [ % i= hel‘ yYf.<i
:_ED[.Q( i=1 (f <))_f( (Z 1 (f f<))]
Y vyl

Here, v is the vocabulary size, v, ; i is the k-th element of vector representing the ¢-th token in
the good response ¥, Y,k is the k-th element of vector representing the i-th token in the forget
response ¥/ . Additionally, hg(x s, ye,<i), and ho(2 ¢,y <i), denote the k-th entry of the probability
distribution for the correctly generated token.

An example: KL For KL f-divergence, f*(u) = e“~!,¢g*(v) = v, hence, g*(P(zy,ye; 6)) —
F(g" (P(x5,y550)) = Plag, ye; ) — 145971 We have:

lygl )
_Ep Z‘f’:ﬁ‘ ho(xf,Ye,<i) 6—21-:1 Potpvfci)

Lypar (9) = el v

B.3 PROOF OF THEOREM[3.4]

Proof. Remember that we define:

faiv(De||Dy) :=Ez.p.[3(Ze)] — Ez,~p;[f*(9(Z))],

and

faiv(De|[Dy) = Sup [Ez.~p. [9(20)] = Ez,np, [ (9(20))]]

we first prove the convergence of §, and then the convergence of fu;, (De||D 7).

For the ease of presentation, for any real-valued function o, we write Ep,_(0) = E..p, [0(2)],
Ep,(0) = E.up, [0(2)], Ep.(0) = E.up, [0(2)], and Ep, (0) = E.~p, [0(2)].

Given any g € ®, according to Lemma C.1 in (Wei et al.,|2021), and the fact that f* is Lipschitz
continuous, we have:

19— 9*I12.0,) 3 [Ep.[(3 —9)/2] —Ep,[(§ — 9")/2]]
= [Ep, [f*((5—97)/2) = f*(g")] = Ep, [f* (9 - 97)/2) = f*(g")]] - 5

By using the fact that the true density ratio Z./Z is bounded below and above, hence, L (D.) is
indeed equivalent to Lo (D f). Based on Eqn. H Lemma C.2 in (Wei et al.,|[2021)), and the Lipschitz

property of f*, with probability at least 1 — ¢; exp(—N"*/(2+7) /2 we have
19— 9"[17,p,) SNVt 6)

~

Note that we have:
fdiv(DeHDf) - fdifu(DeHDf)
<|Ep.[g— 9"l —Ep,.[g — g"]| + |Ep,[f*(9) — f(g")] —Ep,[f*(3) — f*(g")]|

+|Ep,[9— 9"] = Ep, [f*(9) = [ (¢")]| + [Ep.[9"] — Ep.[g7]| + [Ep, [f*(9")] — Ep, [f*(97)]|
= Cons; + Cons, + Consz + Consy + Conss. @)

By Lemma C.2 in (Wei et al.,|2021), with probability at least 1 — ¢; exp(fN”’/(””’)/cf), we have
Cons; < N~2/(ra+2),
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Similar upper bound holds for Conss,.
Following from Eqn. (6), with probability at least 1 — ¢; exp(—N"+/(+72) /2) we have

Consz < N~ V/(re+2),

Applying Hoeffding’s inequality, with probability at least 1 — ¢; exp(—N"¢/(+7#) /2 we have
Cons; < N~/ (ra+2),

Similar upper bound holds for Conss.

Combining the five upper bounds for Cons; where ¢ € [5], with probability at least 1 —
c1exp(—N7¢/(2+7) /c2) e have

. 1
faiv(De||Dy) = faiv(De||Dg)| I N~ TaF2.

O
C DETAILED EXPERIMENTAL SETUP
Table 8: Summary of unlearning tasks, including base models, forget datasets, and evaluation metrics.
Unlearning Task Base Model Forget Dataset Metrics
Copyrighted Content Unlearning OPT-2.7B, Llama2-7B Harry Potter Series BLEU, ROUGE_L, PPL, Zero-shot Acc
Entity Unlearning (TOFU) OPT-2.7B, Llama2-7B, Phi-1.5B  TOFU-Forget01/05/10 Forget Quality (p-value), ROUGE_L on Forget set, Model Utility
MUSE Benchmark Llama2-7B BBC News Corps verbatim and knowledge memorization on Dy, privacy leakage, Utility preservation

Table[§ summarizes the experimental setups, including base models, forget and retain datasets, and
evaluation metrics.

C.1 FORMULATIONS FOR BASELINE METHODS

In this section, we revisit existing unlearning objectives and unify them under our general loss
function framework, as described in Section §@ We provide formulations for GA, GD, KL, and
PO, as presented in|Maini et al. (2024a), as well as for Mismatch (Liu et al., 2024a)), LLMU (Yao
et al.} 2023), DPO(Rafailov et al.,2024), and NPO (Zhang et al., 2024). Additionally, we include
the formulations for DPO without the M,..; term and SimPO (Meng et al.,[2024), as discussed in
Section § We also add formulations for Task Vectors (Ilharco et al., 2022) and Who’s Harry
Potter (WHP)(Eldan & Russinovich, 2023).

Fine-tuning on retain data Retraing from scratch is the gold standard for unlearning. HHowever,
in real-world scenarios, retain data may not always be available, and retraining a LLM is highly
resource-intensive. Alternatively, we can fine-tune the model using retain data for several epochs,
which only involves performing gradient descent on D,..

. > L,y 0)

LFine—tune =
D] (zr,yr)ED,

Retain Loss

Gradient ascent (GA) GA is simple baselines commonly used in traditional machine unlearning
settings (Chen et al.| 2023; [Jia et al.| [2023; [Fan et al., 2023; |[Kurmanji et al., [2024). GA reverts
the change of the gradient descent during the training with its opposite operation. The rationale of
gradient ascent is that a subsequent maximization of prediction loss on the forget dataset D would
approximately "revert" the optimization on the forget dataset, thus unlearning Dy and approximating
a model trained on the retain dataset D, only.

1
Loa = —7— E L(xy,yyp:0)
|Dy|
(zsyr)EDy

Forget Loss
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Gradient difference (GD) Gradient difference has been introduced as simple baseline method in
Maini et al. (2024a).It combines fine-tuning and gradient ascent by compute the sum of the two loss
terms.

1 1
Lep = D Z ‘C(x’my'r;e) - D Z E(vayf;e)
| r‘ ‘ f|
(zr,yr)ED, (Tu,yu)EDy
Retain Loss Forget Loss

KL minimization (KL) The KL minimization is adopted from Maini et al. (2024a) and involves a
gradient ascent term for forgetting. It also minimizes the Kullback-Leibler (KL) divergence between
the predictions on retain data D,. of the reference model (the original model 6,) and the newly
trained model (the unlearned model #). This term aims to keep the unlearned model’s current output
distribution on the retain dataset close to its pre-unlearning distribution on the retain samples.

[y |

1
L= Laa, S S KL(hy (@ yo<i)llho(@r, yr<i)

4+
| Dy | i
Forget Loss (@ryr =

Retain Loss

Preference optimization (PO) Preference Optimization (PO) differs from the traditional direct
preference optimization approach as presented in [Rafailov et al. (2024) in that it combines the
fine-tuning loss on D, with a term that teaches the model to respond with 'I don’t know’ to prompts
from Dy (Maini et al.,|2024a). Here, D;q refers to an augmented forget dataset where the model’s
response to the prompt is "I don’t know.’

1
Lpo = Line-tune + D] > Llxsyians0)

Retain Loss Zf,Yidk € Didk

Custom Loss

Here, the Custom Loss utilizes the modified response to the forget prompt to ensure that the model
rejects answering questions related to the forget data.

Mismatch Mismatch has the same objective to PO, except it involves constructing a random
combination of text sequences Y q,. Here, the second term in mismatch is the same as the second
term in LLMU (Yao et al.,|2023).

1
|}/rdn|

LMismaloh = LFine—tune + §
D
Retain Loss (#7,)€D;

Z ‘C(‘Tﬁ Yrdn; 9)

Yrdn €Yrdn

Custom Loss

LLMU (Yao et al., 2023) LLMU combines the GA term with two additional terms to learn 1)
random completions Y4, from D; (constructed using prompts from D) to facilitate unlearn and 2)
D; to preserve performance. We use books with similar styles as D, in our experiments and construct
Yidn using randomly sampled text sequences from D).

Lipvmu = — Z L(zs,yr;6)
(zfyg)eDy
1
+ Z \Y | Z £($f7yrdn;9)
(zfv')eDf rdn Yrdn €Yrdn
[y |

+ > > KL(hg, (2, yr<i)|lho(zr, yrei)

(zr,yr)ED, i=1

We have already unified LLMU in Section §[2.2]
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Direct preference optimization (DPO), DPO w/o M,..¢, SimPO See Section § for more
information.

[yel lysl

Lovo,5(6) = —%ED [1oga(Blog [T ho(wr,ve.<i) — Blog [ holarypei)  =Mpey )],
=1 =1 Retain/ Custom Loss
Custom Loss Forget Loss
9 el lysl
Lppo wio M,.;,5(0) = _BED {loga(ﬁ log H ho(2f,Ye,<i) — Blog H ho(zf,yf,<i)) ﬂ -
i=1 =1
Custom Loss Forget Loss
9 3 |vel 3 lysl
Lsimpo,(0) = —Ep [log 0( el log [ [ 7o (s, ye.:) Tyl log [ [ ho(xs,y5.4) - 7])}
i=1 =1
Custom Loss Forget Loss

where 7 is the target reward margin.

Negative preference optimization (NPO) (Zhang et al., 2024) NPO incorporates only the losing
response term in DPO (Rafailov et al.,[2024), penalizing only the prompt-response pairs in Dy.In the
formulation below, /3 represents the inverse-temperature, 7y is the prediction probability of LLM 6.
NPO also has two extended versions that include either the KL term or a fine-tuning term on D,. to
preserve model utility.

Invo = 5B, [logr( - mogm)]
= —%]EDJ, |:1Og0'<510g7r'ref(yf | xy) —Blogmo(ys | xf))}

Retain/Custom Loss Forget Loss

Lnro-xr = Lnvo + Lki
Lypo-rt = Lnpo + Lrine-tune

Task Vectors (Eldan & Russinovich,|2023) The taks vector is derived by calculating the weight
difference between the original LLM 0, and a reinforce LLM 0,.¢;y, force, Which is the model trained
on Dy until it over-fits. This method then subtract this task vector from the original LLM’ weights,
intuitively moving the model away from the direction it used to adapt to D ;. The weights of unlearned
model can be obtained as:

0= 90 - (ereinforce - 90)

WHP (Eldan & Russinovich, 2023) WHP defines the unlearned model 6 as the interpolation
between the original model 6, and the reinforced model 6,.c;y force. Let pg(-|z) denote the token
distribution parametrized by the model § when given a prompt x as input. Then, for any input z,
WHP samples the next token from:

Po(t|z) = po, (-|2) = a(Po,cinsore. (12) = Po, (7))
where « is a hyperparameter that controls the interpolation between the two models.
C.2 CoOPYRIGHTED UNLEARNING ON HP
C.2.1 EVALUATION METRICS
We use two text similarity metrics to evaluate our models. In each case, the original copyrighted text

serves as the reference, and we calculate the similarity between this reference and the text generated
by the LLM.
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ROUGE-L For the forget dataset, we compute the ROUGE-L recall score (Lin, 2004) between the
ground truth responses (the forget responses) and the text generated by the model after unlearning.

BLEU Similarly, we compute the BLEU score (Papineni et al., |2002) for the forget dataset,
comparing the ground truth responses to the model’s output after unlearning.

A retained model that has never seen the reference text should score low on both metrics, and a
successfully unlearned model should perform similarly. Note that for these metrics, values closer to
those of the retained model indicate better unlearning, while values that are too large or too small
suggest a difference from the retained model |Liu et al.| (2024a). For Harry Potter datasets, we evaluate
similarity using the first 600 generated tokens as per (Jia et al., [2024).

Perplexity (PPL) We assess text fluency and diversity by computing perplexity on the Wiki-
text (Merity et al., 2016) using the LM Evaluation Harness (Gao et al., [2023). A model with lower
perplexity on the fine-tuned data suggests the generated text remains meaningful.

Zero-shot Accuracy We evaluate zero-shot accuracy across various tasks, including BoolQ (Clark
et al.,[2019), RTE (Dagan et al., 2005), HellaSwag (Zellers et al.,|2019), Winogrande (Sakaguchi
et al.,2021), ARC-Challenge (Chollet,|2019), ARC-Easy (Chollet, 2019), OpenBookQA (Mihaylov
et al.| 2018), Piqa (Bisk et al.,[2020), and Truthful QA (Lin et al.,2021). The mean accuracy across
these diverse tasks was computed and reported as a comprehensive measure of model utility after
unlearning. The higher the average accuracy, the better the results.

C.2.2 IMPLEMENTATION SETTING.

To demonstrate the copyright removal task, we undertake the fine-tuning of all the models using the
complete Harry Potter series. The finetuning procedure for the OPT-2.7B and Llama2-7B models
involve a learning rate of le-5 and a batch size of 2. AdamW serves as the optimizer for preparing
these models. For baseline methods, we set the batch size and learning rate to be the same as in their
original papers, and fine-tune for 5 epochs using AdamW optimizer. For our method, we use the
same training hyper-parameters as baseline but set the learning rate to be 2e-7.

C.3 ENTITY UNLEARNING ON TOFU

C.3.1 EVALUATION METRICS

We utilize the original evaluation metrics designed in the original paper of the TOFU dataset (Maini
et al.,[2024a).

Probability For each instance in the retain or forget set, we calculate the normalized conditional
probability P(a | ¢)*/!%! on the LLM subject to unlearning, where ¢ represents the question, a is
the answer, and |a| denotes the number of tokens in the answer. For the real authors and world
facts subsets, the dataset provides a set of five answers {ag, a1, a2, as, @4}, consisting of one correct
answer ag and four perturbed answers that are incorrect. In this case, we compute the ratio P(aq |

g)t/leol 570 Plag | g)t/1el,

Truth ratio The truth ratio is computed as the geometric mean of multiple perturbed (incorrect) an-
swers’ (A = {a1, as, ... }) probabilities over the normalized conditional probability of the paraphrased
answer Q.

_ 1\ /1A
Al pr~ .
(I, @ q)/at)
P(a| g/l
For the real authors and world fact subsets, the original answer « is used in the denominator as no
paraphrased answer is available.

RLruth =

ROUGE-L For all subsets of TOFU, we compute the ROUGE-L recall score (Lin, 2004) between
the ground truth responses (forget dataset) and the text generated by the model after unlearning.

22



Published as a conference paper at ICLR 2025

Model utility The model utility is aggregated as a harmonic mean over nine numbers: the answer
probability, truth ratio, and ROUGE recall scores from each of the retain, real authors, and world
facts subsets. A higher model utility is always preferred.

Forget quality The forget quality is determined by calculating the p-value from a Kolmogorov-
Smirnov (KS) test, which compares two distributions: the truth ratio of the retained model and the
truth ratio of the unlearned model on the forget set. A higher p-value suggests that the null hypothesis
— that the distributions of the truth ratios from both models are identical — cannot be rejected,
indicating that the retained and unlearned models behave similarly.

C.3.2 IMPLEMENTATION SETTING.

For all LLM unlearning methods, we set the batch size to be 32 following previous works (Maini
et al., 2024a} |[Zhang et al., 2024; J1 et al., 2024) and use consistent learning rates for each model.
For Phi-1.5B, we fine-tune the pre-trained models for 5 epochs using learning rate of 2e-5 to obtain
the original model. Similarly, we fine-tune Llama2-7B and OPT-2.7B for the same duration with a
learning rate of le-5. AdamW serve as the optimizer for preparing these models. The unlearning
process for all methods, including ours, employs the same learning rate as used during fine-tuning
the original models. For all experiments on the TOFU dataset, the training hyperparameters remain
consistent across models of the same type.

Why do we follow the official implementation of TOFU and report the final results, rather
than adopting NPO’s best-results strategy (Ji et al.,|2024; Liu et al., 2024d)? It is important
to note that the original implementation of TOFU does not evaluate the best result from each epoch
but instead use the final model after unlearning to get its evaluations. Also, the baseline methods
reported in the TOFU paper reflect the performance of the final model. In contrast, NPO begins
to introduce an evaluation strategy that reports the best results achieved at each epoch by their
method on the TOFU dataset. Reporting the best results across all epochs can overstate the
model’s performance, as it may not fully represent the method’s actual unlearning capability.
In real-world scenarios, evaluating during each epoch is often impractical. Instead, it is important to
develop a robust method that achieves a good trade-off without time-consuming parameter tuning or
requiring frequent evaluations, especially when dealing with larger forget sets. Therefore, to ensure
a fair comparison and align with the evaluation settings of the original TOFU paper, we choose to
report the final results after unlearning.

C.4 MUSE-NEWS UNLEARNING
C.4.1 EVALUATION METRICS

Note on PrivLeak metric The PrivLeak metric used in (Shi et al.,[2024) is derived from Min-K%
Prob, a membership inference attack method for LLMs. Formally, it is calculated as:

AUC (funlearn ) Dforget ) Dholdout) - AUC (fretrain 5 Dforget 5 Dholdout)
AUC (fretrain 5 Dforgeh Dholdout)

where the AUC score refers to the standard AUC-ROC score between Dyorger and Digldou. While
this method indeed discriminates between the forget and holdout distributions as a measure of
successful unlearning, it is highly dependent on the data selected for evaluation. Specifically, Min-K%
Prob has been shown to yield random-guess accuracy due to modern LLMs being trained on large
pretraining corpora for only a small number of iterations, causing fuzzy boundary between members
and non-members (Duan et al., [2024)).

PrivLeak =

Furthermore, Maini et al. (2024b) demonstrate that Min-K% Prob results in 1) high variance depend-
ing on the random selection of the dataset used for evaluation, 2) better performance when the two
subsets (in our case, forget and holdout) are not drawn from the same distribution, and 3) empirically
overestimated false positives. The latter finding suggests that the distribution gap (i.e., temporal shift,
which is also identified by Duan et al. (2024)) acts as a confounding factor in the discrimination
process, since the forget set and holdout set may differ in more than one dimension. Given that
MUSE (Shi et al.,|2024) uses news data, which is highly time-dependent (and thus possibly non-i.i.d.),
we advocate for cautious interpretation of the PrivLeak metric.

23



Published as a conference paper at ICLR 2025

Table 9: Unlearning performance of Llama2-7B on the Harry Potter dataset. R-L and Avg. Acc. denote the
ROUGE-L score and average zero-shot accuracy across nine LLM benchmarks. We include the original LLM
and retained LLM for reference. Some methods, such as PO, LLMU, DPO, and NPO, exhibit strong performance
in either forget quality or model utility, but underperform in the other. FLAT consistently ranks in the top three
in terms of similarity to the retained model, measured by Forget Quality Gap (FQ Gap), while also generating
meaningful and diverse outputs, as indicated by perplexity (PPL) and the average zero-shot accuracy (Avg. Acc.).
The top three results across the three main metrics are highlighted in blue.

| Forget Quality Model Utility
Metric \ BLEU(]) BLEUGap R-L({) R-LGap FQ Gap \ PPL(]) PPLGap AvgAcc. Acc.Gap
Original LLM 4.0452 - 0.1487 - - 8.9524 - 0.5617 -
Retained LLM 0.4903 - 0.0442 - - 8.7070 - 0.5599 -
GA 0.0624 0.4279 0.0134  0.0308 0.4587 472769  -38.5699 0.5088 -0.0511
KL 0.0976 0.3927 0.0144  0.0298 0.4225 9.4336 -0.7266 0.5509 -0.0090
GD 0.0039 0.4864 0.0002  0.0440 0.5304 9.1797 -0.4727 0.4902 -0.0697
PO 0.0206 0.4697 0.0015  0.0427 0.5124 8.8364 -0.1294 0.5532 -0.0067
Mismatch 0.0670 0.4233 0.0028  0.0414 0.4647 8.9906 -0.2836 0.5593 -0.0056
LLMU 0.3033 0.1870 0.0317  0.0125 0.1985 9.0530 -0.3460 0.5503 -0.0096
DPO 0.7717 -0.2814 0.0552 -0.0110 0.2924 8.9597 -0.2527 0.5614 0.0015
NPO 0.9840 -0.4937 0.0656  -0.0214 0.5151 9.0397 -0.3327 0.5609 0.0010
FLAT (TV) 0.6770 -0.1867 0.0673  -0.0231 0.2098 8.9899 -0.2829 0.5592 -0.0007
FLAT (KL) 0.6829 -0.1926 0.0662  -0.0220 0.2146 8.9803 -0.2733 0.5572 -0.0027
FLAT (JS) 0.6890 -0.1987 0.0684  -0.0242 0.2229 8.9910 -0.2840 0.5574 -0.0025
FLAT (Pearson) 0.6930 -0.2027 0.0680  -0.0238 0.2265 8.9906 -0.2836 0.5580 -0.0019

D EXPERIMENTAL RESULTS

D.1 COPYRIGHTED UNLEARNING ON HP DATASET

Performance using Llama2-7B on HP dataset Table|9 indicates that our method consistently
places within the top three across the primary metrics, with TV f-divergence showing the best
performance. LLMU achieves the best forgetting effect, comparable to our method, but its model
utility is inferior. PO again demonstrates the highest PPL but exhibits poor forgetting performance.
While DPO shows good model utility, the difference between our method and DPO in PPL is
minimal. Unlike other methods, PO directly leverages fine-tune loss, which helps preserve the
model’s performance beyond the unlearning. These results highlight the effectiveness of our method,
striking a better balance between forgetting quality and model utility.

Analysis about the edge case of Mismatch When using OPT-2.7B, the forget quality gap (FQ Gap)
between Mismatch and FLAT(TV) is relatively similar. For small LLMs like OPT-2.7B, fine-tuning
with the retain data for several epochs can lead to effective forgetting of the forget set. The rationale is
that fine-tuning on the forget set may induce catastrophic forgetting over the forget set like continual
learning (Parisi et al.,2019). Additionally, OPT-2.7B generally produces lower-quality outputs, which
reduces the BLEU gaps between FLAT and Mismatch. As a result, the differences in unlearning
performance (FQ Gap) between these two methods appear comparable in this setting.

Mismatch can achieve comparable results using OPT-2.7B on the HP dataset. However, on Llama2-
7B, the FQ Gap for the mismatch is 0.4647, and ours is 0.2098 (Table0). Note that a smaller FQ
Gap indicates better unlearning performance. FLAT can show better adoption to different LLMs and
different datasets. This might be because the Mismatch fails to keep a good balance between the
model utility and the forget quality, while Flat theoretically formulated a reweighting mechanism.

Parameter Study on Prompt Length for HP dataset Following Jia et al. (2024); Eldan &
Russinovich (2023), we evaluate the forget quality using prompt lengths of 50, 100, 200, 300 on
Harry Potter series dataset. Table[I0 presents the parameter study of different prompt lengths for
assessing forget quality on this dataset. In the main paper, we adopt the prompt length of 200, as
suggested by Liu et al.|(2024a).
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Table 10: Parameter Study of different prompt length on Harry Potter book series dataset. We include the original
LLM and retained LLM for reference.

Split |  PromptLength50 | PromptLength100 | PromptLength200 | Prompt Length 300
Metric | BLEU()) ROUGE-L(}) | BLEU() ROUGE-L(}) | BLEU(l) ROUGE-L(}) | BLEU(J) ROUGE-L(})
OPT-2.7B
Original LLM 3.4492 0.1203 3.7660 0.1273 4.1163 0.1484 3.4924 0.1551
Retain LLM 1.7350 0.0944 2.3427 0.0986 2.6072 0.1229 2.7479 0.1261
FLAT (TV) 0.8382 0.1090 0.9607 0.1206 1.1955 14117 1.4532 0.1628
FLAT (KL) 0.8363 0.1107 0.9867 0.1209 1.2743 1.3329 1.4714 0.1657
FLAT (JS) 0.8709 0.1101 0.9720 0.1213 1.1986 0.1290 1.4735 0.1635
FLAT (Pearson) 0.8430 0.1098 0.9624 0.1211 1.1917 1.4155 1.4501 0.1627
Llama2-7B
Original LLM 0.0448 0.0049 0.3951 0.0254 4.0452 0.1487 0.2541 0.0275
Retain LLM 0.0917 0.0111 0.1664 0.0162 0.4903 0.0442 0.2542 0.0194
FLAT (TV) 0.0293 0.0045 0.2627 0.0276 0.6770 0.0673 0.2185 0.0251
FLAT (KL) 0.0308 0.0041 0.2592 0.0276 0.6829 0.0662 0.2217 0.0242
FLAT (JS) 0.0305 0.0045 0.2512 0.0279 0.6890 0.0684 0.2143 0.0253
FLAT (Pearson) 0.0310 0.0044 0.2573 0.0281 0.6930 0.0680 0.2163 0.0252

Table 11: Performance of our method and the baseline methods on TOFU-5% and TOFU-10% dataset using
Llama2-7B. FQ, MU, R-RL, F-RL represent forget quality, model utility, ROUGE-L on retain dataset and
ROUGE-L on forget dataset respectively. We include the original LLM and retain LLM for reference. The top
two results are highlighted in blue.

Dataset | TOFU-5% | TOFU-10%

Metric | FQ MU FRL() RRL | FQ MU  FRL() R-RL
Original LLM 3.0507e-13  0.6346  0.9918 0.9833 | 4.6575e-14 0.6346 0.9918 0.9833
Retained LLM 1.0 0.6281  0.3928 0.9803 1.0 0.6225 0.3970 0.9798

GA 0.0043 0.3545 0.2593  0.2858 | 2.0608e-13 0.0 0.0115 0.0128

KL 4.0248e-06 0.0538 0.0619 0.0614 | 1.6347e-10 0.0 8.3333e-05 0.0004
GD 1.1150e-05 0.5532 0.3482 0.5035 | 2.0608e-13  0.0093 0.0105 0.0336

PO 3.6025¢-09 0.2101  0.0128  0.1385 | 9.1590e-16  0.4915 0.1091 0.6454
Mismatch 1.8266e-05 0.5565 0.5470  0.7506 | 2.0180e-08 0.5106 0.6219 0.7807
LLMU 1.1150e-05 0 0.0142  0.0142 0.0005 0.0 0.0112 0.0133
DPO 4.7488e-05 0.0 0.0167 0.0162 0.0055 0.0 0.0147 0.0151
NPO 0.0001 0.4630 0.3234  0.3925 0.0017 0.3086 0.4066 0.4383
NPO-RT 0.0001 04811 03331 04217 0.0423 0.4093 0.4066 0.4383
FLAT (TV) 0.0221 0.0186  0.0047  0.0060 0.0012 0.1624 0.0167 0.0238

FLAT (TV)-RT 0.1452 0.4946  0.1991  0.3405 0.0774 0.5204 0.3816 0.4050

D.2 ENTITY UNLEARNING ON TOFU

The results on TOFU-5% and TOFU-10% Table [TT] shows the results on TOFU-5% and TOFU-
10% using Llama2-7B. Results indicate that FLAT can achieve a good balance between unlearning
efficiency and general language capability.

Note that the retain version of FLAT can achieve the best forget quality on TOFU-5% and TOFU-10%
while maintaining high model utility. For the TOFU dataset, which is a synthetic set with separable
profiles of 200 authors, using retain data does not significantly blur the boundaries between the forget
and retain data. Hence, using the retain data in this task significantly improves performance. However,
the primary focus of our work remains on content unlearning (usually only the forget content is
known), which reflects more practical and realistic situations encountered in real-world applications.

TOFU Experimental Results using All Metrics Table|12|shows the performance on TOFU using
three base LLMs, Llama2-7B, Phi-1.5B, and OPT-2.7 under all metrics. From Table[4] we find that
the forget quality on the TOFU-1% is similar to that of the baseline methods may be due to the small
size of the forget set (40 samples). When calculating the distributions of truth ratio for such a small
sample size, the differences between methods tend to diminish.

Clarification of the baseline discrepancy The difference in forget quality values between ours and
NPO reported results arises due to the differences in evaluation settings. We tried our best to evaluate
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Table 12: Performance on TOFU dataset using three base LLMs, Llama2-7B, Phi-1.5B, and OPT-2.7 under
all metrics. We report ROUGE-L score (R-L), Probability (P), and Truth Ratio (TR) on all four subsets of the
TOFU benchmark. Higher scores are better except ROUGE-L and probability on the Forget Set. We include the
original LLM and retained LLM for reference. The best two are highlighted in blue.

Split | Real Authors | Real World | Rerain Set | Forget Set
Metric | RL P TR | RL P TR | RL P TR | RLJ) P TR
Llama2-7B

Original LLM 09350  0.4738 0.6210 0.8846  0.4355  0.5579 0.9833 09900  0.4662 | 0.9851 0.9898  0.5123
Retained LLM 0.9230  0.4645 0.6118 0.8932 04182  0.5449 09833  0.9902 04724 | 0.4080  0.1798  0.6939

GA 0.9030  0.4754 0.6233 0.8761 04432 0.5843 | 0.9008 0.9546  0.4695 | 0.4862  0.3566  0.5705

KL 0.9280  0.4652 0.6092 0.8803 0.4383  0.5691 09398  0.9705  0.4655 0.5281 0.5119  0.5626

GD 0.9080  0.4728 0.6156 0.8718  0.4439  0.5833 0.8912 09657  0.4701 0.4773 04238  0.5619
PO 0.9330  0.4850 0.6269 0.8917 04582  0.5602 0.8811 09627  0.4393 0.3640  0.8695  0.6318
LLMU 0.9330  0.4905 0.6344 0.8917  0.4603  0.5625 0.8865  0.9628  0.4391 04480  0.8606  0.6286
DPO 09330  0.4939 0.6384 0.8917  0.4631  0.5646 0.8852  0.9623 0.4407 0.5860  0.8734  0.6240
NPO 0.8930  0.4754 0.6218 0.8746  0.4466  0.5798 0.8950 09574  0.4680 | 04632  0.3664  0.5785
NPO-RT 0.8830  0.4758 0.6218 0.8746  0.4459  0.5805 0.8958 09588  0.4687 04519 03672 05791
FLAT (TV) 09180  0.4937 0.6459 0.8974 04505  0.5591 0.8826  0.9685 0.4607 0.4391 05314 0.6026
FLAT (KL) 09180  0.4992 0.6491 0.9060  0.4524  0.5609 0.8750 09679  0.4603 05199  0.7588  0.5895
FLAT (JS) 0.8980  0.4927 0.6460 0.8974 04508  0.5592 0.8864  0.9686  0.4607 0.4454 05183  0.6039
FLAT (Pearson) | 0.9180  0.4932 0.6461 0.8974  0.4509  0.5583 0.8857 09684  0.4607 04392  0.5092  0.6037

Phi-1.5B

Original LLM 0.4073 0.3744 0.4470 0.7503 0.4148 0.4982 0.9199  0.9238 0.4810 0.9607 0.9345 0.4839
Retained LLM 04240 03779 0.4539 0.7585 0.4090  0.4974 0.9269  0.9271 0.4855 0.4272 0.1686  0.6579

GA 0.4573 0.3638 0.4373 0.7541 0.3978  0.4741 0.8048  0.7748  0.4880 | 0.5114  0.3268  0.5099
KL 0.4273 0.3643 0.4370 0.7474 03997  0.4764 0.8109  0.8043  0.4889 | 0.5059  0.3342  0.5091
GD 0.3907  0.3726 0.4461 0.7605 0.4087  0.4931 0.8496  0.8900  0.4910 | 0.4996 04025  0.4952
PO 0.4240  0.3728 0.4449 0.7699  0.4190  0.5207 0.7468  0.8747 04596 | 03170  0.7362  0.5416
LLMU 0.4240  0.3720 0.4421 0.7785  0.4203  0.5197 0.7270  0.8678  0.4572 | 0.3058  0.7067  0.5453
DPO 0.0420  0.3713 0.4423 0.7785  0.4202  0.5205 0.7349  0.8712  0.4583 03437 0.6999  0.5393
NPO 04573  0.3619 0.4342 0.7417 03988  0.4761 0.8000  0.7856  0.4840 | 0.5196  0.3529  0.5119
NPO-RT 0.4473 0.3619 0.4340 0.7474  0.3998  0.4770 0.8024  0.7926  0.4851 0.5193 0.3527  0.5129

FLAT (TV) 0.4440  0.3695 0.4390 0.7742 0.4125 0.5040 0.8155  0.8858 0.4709 0.4689 0.4756  0.5395
FLAT (KL) 0.4440  0.3735 0.4464 0.7571 0.4175 0.5147 0.7850  0.8874  0.4666 0.4524  0.6285 0.5287
FLAT (JS) 04340  0.3703 0.4386 0.7588 04119  0.5045 0.8117 0.8850 0.4714 0.4572 0.4683 0.5390
FLAT (Pearson) | 0.4540  0.3694 0.4389 0.7674 0.4117 0.5040 0.8099  0.8850 0.4711 0.4591 0.4672  0.5383

OPT-2.7B

Original LLM 0.6687  0.3833 0.4393 0.6433 0.3701 0.4158 0.7494  0.8335 0.4992 | 0.7537  0.8237  0.5338
Retained LLM 0.6487  0.3735 0.4249 0.6278  0.3696  0.4185 0.7669  0.8399  0.4988 04217  0.1991 0.7097

GA 0.6390  0.3774 0.4375 0.5953 0.3644  0.4071 0.6387  0.4097  0.4972 | 0.4748 0.0722  0.6325
KL 0.6573 0.3775 0.4346 0.6463 03646  0.4071 0.6613 04707  0.4958 04810  0.1110  0.5902
GD 0.6453 0.3782 0.4336 0.6084 03613  0.3979 0.6603  0.6916  0.5162 | 0.4521 0.1701  0.5774
PO 0.4078  0.3874 0.4540 0.5135 0.3705  0.4207 0.4015  0.6922  0.4546 | 0.0589  0.5220  0.6037
LLMU 0.1528  0.3739 0.4215 03946 0.3695  0.4031 0.2495  0.6013 0.4305 0.0347 03967  0.6356
DPO 03478  0.3853 0.4498 04915 03708  0.4230 | 0.3937  0.6445 0.4375 0.0806  0.3931 0.6255
NPO 0.6573 0.3787 0.4343 0.6281 0.3681 0.4130 0.6490 04978 04870 | 0.4993  0.1355  0.5952
NPO-RT 0.5698  0.3646 0.4107 0.6264 03675  0.4239 0.4620  0.2459  0.4065 03627  0.1087  0.6716

FLAT (TV) 0.6737  0.3878 0.4457 0.6382  0.3715  0.4137 | 0.7067  0.8075  0.4858 0.5217  0.6368  0.5601

FLAT (KL) 0.6903  0.3802 0.4364 0.6369 03672 0.4108 0.6974  0.8078  0.4909 | 04942  0.6735  0.5515
FLAT (JS) 0.6723 0.3824 0.4385 0.6369 03706  0.4162 0.7013  0.7685 0.4911 0.4938  0.5662  0.5502

FLAT (Pearson) | 0.6737  0.3873 0.4462 0.6467 03705  0.4150 | 0.7059  0.8069  0.4868 05052 0.6329  0.5597

the performance of all methods under controlled settings as indicated in TOFU’s original paper to
ensure a fair comparison. Our implementation is based on the TOFU codebase. The difference
between the TOFU official implementation and the NPO implementation is that the NPO evaluates
models after every epoch (a total of 10) and reports the epoch with the best forget quality, while
the TOFU benchmark uses the final results after five epochs. The difference in reporting policies
significantly influences how forget quality is presented and perceived.

D.3 ABLATION STUDY

Ablation Study of Reweighting Mechanism on HP dataset Table|l3|demonstrates the effective-
ness of the re-weighting mechanism on the Harry Potter dataset. When using the preferred template
data for unlearning, our method achieves strong forget quality and comparable model utility. When
using retain data, our method outperforms GD, indicating that the re-weighting mechanism improves
both unlearning efficiency and model utility.
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Table 13: Ablation Study of the Re-weighting Mechanism using Llama2-7B on Harry Potter dataset. R-L and
Avg. Acc. denote the ROUGE-L score and average zero-shot accuracy over nine LLM benchmarks. We include
the original LLM and retain LLM for reference. The best ones are highlighted in blue.

| Forget Quality Model Utility
Metric \ BLEU(J) BLEUGap R-L(]) R-LGap FQ Gap \ PPL(]) PPLGap Avg.Acc. Acc.Gap
Original LLM ‘ 4.0452 3.5549 0.1487  0.2933 3.8482 ‘ 8.9524 0.2444 0.5617 0.0018
Retained LLM 0.4903 0.0 0.0442 0.0 0.0 8.7070 0.0 0.5599 0.0
Study on Re-weighting Mechanism Using Retain Data
GD

0.0039 0.4864 0.0002  0.0440 0.5304 9.1797  -0.4727 0.4902 -0.0697
0.2359 0.2544 0.0263  0.0179 0.2714 8.9948  -0.2878 0.5591 -0.0008

Study on Re-weighting Mechanism Using IDK Data
DPO w/o Myf 0.7719 -0.2816 0.0523  -0.0081  0.2897 8.9674  -0.2604 0.5560 -0.0039

SimPO 0.6876 -0.1973 0.0552 -0.0110  0.2723 8.9927  -0.2857 0.5593 -0.0006
FLAT (KL) 0.6829 -0.1926 0.0662  -0.0220  0.2146 8.9803  -0.2733 0.5572 -0.0027

FLAT (KL)-retain

Table 14: Ablation Study of the good answer type using Llama2-7B on Harry Potter dataset. R-L and Avg. Acc.
denote the ROUGE-L score and average zero-shot accuracy over nine LLM benchmarks. We include the original
LLM and retain LLM for reference. The best ones are highlighted in blue.

\ Forget Quality Model Utility
Metric | BLEU(J) BLEUGap R-L(}) R-LGap FQGap | PPL(}]) PPLGap Avg.Acc. Acc. Gap

Original LLM 4.0452 - 0.1487 - - 8.9524 - 0.5617 -

Retained LLM 0.4903 - 0.0442 - - 8.7070 - 0.5599 -
FLAT (TV)-IDK 0.6770 -0.1867 0.0673  -0.0231 0.2098 8.9899 -0.2829 0.5592 -0.0007
FLAT (KL)-IDK 0.6829 -0.1926 0.0662  -0.0220 0.2146 8.9803 -0.2733 0.5572 -0.0027
FLAT (JS)-IDK 0.6890 -0.1987 0.0684  -0.0242 0.2229 8.9910 -0.2840 0.5574 -0.0025
FLAT (Pearson)-IDK 0.6930 -0.2027 0.0680  -0.0238 0.2265 8.9906 -0.2836 0.5580 -0.0019
FLAT (TV)-Normal 0.6942 -0.2039 0.0677  -0.0235 0.2274 8.9872 -0.2802 0.5588 -0.0011
FLAT (KL)-Normal 0.6773 -0.1870 0.0664  -0.0222 0.2092 8.9721 -0.2651 0.5580 -0.0019
FLAT (JS)-Normal 0.6980 -0.2077 0.0678  -0.0236 0.2313 8.9888 -0.2818 0.5593 -0.0006
FLAT (Pearson)-Normal 0.6991 -0.2088 0.0681  -0.0239 0.2327 8.9882 -0.2812 0.5594 -0.0005

Ablation Study of Good Answer Types on HP dataset Table|14 presents the ablation study on
the good answer types using Llama2-7B on the Harry Potter dataset. The results show that using
normal responses enhances model utility on the HP dataset, while using IDK responses leads to better
forgetting quality.

Ablation Study of Good Answer Types on TOFU dataset We designed a prompt instructing
GPT-40 not to reveal any information about the two authors included in the forget set from TOFU-1%.
Table[I5 presents the ablation study on the TOFU-1% dataset using Llama2-7B. Generation is the
generated template from GPT-40. This approach demonstrates the worst performance among the
three types, including IDK, normal and generation. One possible explanation is that GPT-4o tends to
repeat several words from the question in its answer, which increases its similarity to the ground truth
answer and undermines the effectiveness of unlearning.

Good Answer Generation using GPT-40. For TOFU-1% dataset, the system prompt should be
following "You are a helpful, respectful, and honest assistant. You must not reply with content that
violates copyrights for books, news articles, people personal information, or song lyrics. When I ask
questions about the authors Basil Mahfouz Al-Kuwaiti or Nikolai Abilov, you must not provide any
information about them or even acknowledge their names since these are the private information.
However, for questions about other authors, you should answer accurately and provide relevant
information. You should use various and high quality response to answer all my questions even with
those about personal information." And then we put each question in forget set into the LLM and get
the generated template answer as the good answer.

Ablation Study of Reweighting Mechanism on TOFU dataset Table |16 presents the results of
the study on the importance of reweighting. The results demonstrate that the reweighting mechanism
in FLAT enhances both FQ and MU, achieving an effective balance between unlearning efficiency
and overall model capability. The FQ on the TOFU-1% is similar among several baseline methods
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Table 15: Ablation Study of good answer type on TOFU-1% dataset using Llama2-7B. Here we mainly focus on
FLAT(KL). "Generation" denotes using the generated template from GPT-40. FQ, MU, R-RL, F-RL represent
forget quality, model utility, ROUGE-L on retain dataset and ROUGE-L on forget dataset respectively. We
include the original LLM and retain LLM for reference. The best ones are highlighted in blue.

Metric |  FQ MU FRL() RRL
Original LLM 4.4883¢-06 0.6346 09851 0.9833
Retained LLM 1.0 0.6267 0.4080  0.9833

FLAT(KL)-IDK
FLAT(KL)-Normal
FLAT(KL)-Generation

0.0286 0.6393  0.5199 0.8750
0.0068 0.6162  0.6273  0.9719
0.0030 0.6338  0.9369  0.9818

Table 16: Ablation Study of the implicit reweighting mechanism on TOFU dataset using Llama2-7B. FQ, MU,
R-RL, F-RL represent forget quality, model utility, ROUGE-L on retain dataset and ROUGE-L on forget dataset
respectively. We include the original LLM and retain LLM for reference. The best one results are highlighted in
blue.
Dataset | TOFU-1% | TOFU-5% | TOFU-10%
Metric | FQ MU  FRLY) RRL | FQ MU  FRL(}) RRL | FQ MU  FRL() RRL
Original LLM | 4.4883¢-06  0.6346 09851  0.9833 ‘ 3.0507¢-13 06346 09918  0.9833 ‘ 4.6576e-14 06346 09918 09833

Retained LLM 1.0 0.6267  0.4080  0.9833 1.0 0.6281 0.3928  0.9803 1.0 0.6225  0.3970  0.9798
DPO 0.0541 0.6359  0.5860  0.8852 | 4.7488e-05 0.0 0.0167  0.0162 0.0055 0.0 0.0147  0.0151
SimPO 0.0541 0.6336  0.5199  0.8750 0.0003 0.0 0.0137  0.0151 0.0012 0.0 0.0163  0.0158
FLAT (TV) 0.0541 0.6373  0.4391  0.8826 0.0221 0.0186  0.0047  0.0060 0.0012 0.1624  0.0167  0.0238

may be due to the small size of the forget set (40 samples). When calculating the distributions of
truth ratio for such size, the differences between methods tend to diminish.

E RELATED WORK

E.1 LLM UNLEARNING

LLM unlearning approaches can be broadly categorized into three families: model-based methods,
input-based methods, and data-based methods (Liu et al.|[2024c).

Model-based Methods Model-based approaches involve modifying the weights and/or architecture
to achieve unlearning. These include gradient ascent (GA) and its variants (Yao et al.,[2023;|Maini1
et al., [2024a; |Chen & Yang, 2023), as well as model editing techniques (Wu et al., [2023; [[lharco
et al.,[2022; Belrose et al., 2024). The dominant approach among existing LLM unlearning methods
is fine-tuning the original model based on a carefully designed unlearning objective function (Chen &
Yang, [2023; |Yao et al.} 2023} Jia et al., [ 2024; |Li et al.| [2024; [Yao et al., 2024} |[Zhang et al.,2024). A
common strategy combines forgetting and retaining objectives, applying gradient ascent updates to
undesirable data while using regular gradient descent on desirable data (Chen & Yang, 2023} Li et al.,
2024). The goal of GA is to maximize the loss on the forget data, essentially reversing the effect
of gradient descent during training. Some methods employ custom loss functions that go beyond
standard forgetting and retaining losses. For example, [Yao et al. (2023) introduce a loss function with
three components, where the custom loss reflects advanced techniques or regularization applied to
the objectives. Other methods, such as DPO (Ratfailov et al., 2024), KTO (Ethayarajh et al.| [2024),
and NPO (Zhang et al.| [2024)), utilize reference models to guide the unlearning process.

Chen & Yang (2023) fine-tunes an adapter over the unlearning objective, which acts as an unlearn-
ing layer within the LLM. Several works also employ assistant or reinforced LLMs to facilitate
unlearning (Ilharco et al., [2022; [Eldan & Russinovich, [2023; [Huang et al., [2024). Who’s Harry
Potter (WHP) (Eldan & Russinovich, |2023) is a classic method in LLM unlearning. It involves three
components: reinforced training to identify tokens linked to the unlearning target, replacing unique
expressions with generic alternatives using the model’s predictions, and fine-tuning the model on
alternative labels to erase the original text from its memory. |Liu et al.|(2024d) extends WHP and
introduces a causal intervention framework for targeted unlearning. It can achieve strong performance
on specific benchmarks (e.g., TOFU) because it relies on targeted input modifications. However, this
approach is specifically designed for target unlearning and lacks generalizability and practicality for
other tasks. Ji et al.[(2024) introduce an assistant LLM that pursues the opposite of the unlearning
goals, i.e., remembering forgotten documents and forgetting retained knowledge. The unlearned
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LLM is then derived by computing the logit difference between the original and assistant LLMs.
UNDIAL (Dong et al.|, [2024) employs self-distillation to adjust logits, selectively diminishing the
impact of targeted tokens. This approach ensures smooth convergence while effectively mitigating
catastrophic forgetting.

Data-based Methods Data-based methods fine-tune the LLM using a set of modified responses.
This approach often begins by generating altered outputs (e.g., refusal-based responses), such as
obliterated responses (Chot et al., 2024), inverted facts (Gu et al., [2024), or in-domain plausible
alternatives (Mekala et al.,[2024). These generated responses are then used to guide the unlearning
process. Mekala et al.| (2024) propose Alternate Preference Optimization, which utilizes in-domain
positive feedback on the forget set, complementing the usual negative feedback to overcome the
limitations of relying solely on negative feedback during unlearning. In this work, we employ
reject-based template outputs as the modified "good" responses for the forgotten samples.

Input-based Methods Input-based methods craft input instructions (Pawelczyk et al.,2023; Mure-
sanu et al., 2024; Thaker et al.,[2024; |[Bhaila et al., 2024} |Gao et al.,[2024; |Liu et al.,[2024a), such as
in-context examples and prompts, to steer the original LLM toward the unlearning objective without
altering the model’s parameters. These approaches aim to achieve unlearning in the output space
rather than in the parameter space. Among these methods, a notable baseline by |Liu et al. (2024a)
uses an external prompt classifier as a guardrail, applying embedding corruptions to the identified
prompts. The authors demonstrate that this corruption scheme results in distribution-wise similarity
to the retrained model.

In this work, we propose a novel loss adjustment method for LLM unlearning, which simultaneously
utilizes available example responses, effectively combining data-based and model-based methods.

E.2 MACHINE UNLEARNING

In response to the data regulation requirements (Hoofnagle et al.,|2019), machine unlearning (MU)
has emerged as a critical process to remove the influence of specific data points, data classes, or even
higher-level data concepts from a trained machine-learning model. One direct unlearning method
involves retraining the model from scratch after removing the forgotten data from the original dataset,
which is often considered the gold standard (Liu et al.l 2024b; [Fan et al.| [2024). However, this
approach comes with significant computational demands. To alleviate this, most research focuses
on developing approximate but much faster unlearning techniques, including gradient ascent (Thudi
et al., 2022; |Graves et al., [2021), influence unlearning (Izzo et al., 2021; |Warnecke et al.| [2021;
Wu et al.| 2022), Fisher forgetting (Becker & Liebig, [2022;|Golatkar et al.,|2020), finetuning-based
approaches (Liu et al.| [2024b; Fan et al.| [2023), and loss correction-related unlearning (Adolphs et al.|
2022;|Wang et al., 2023} D1 et al., | 2024).
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