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Graphical representations are commonly used in everyday life and are important in STEM fields.
Interpreting graphs entails understanding the underlying structures of graphs, including
coordinate systems and reference frames. In this report, we characterize one student’s
constructions of coordinate systems. These constructions indicate two distinct types of reference
frames not currently distinguished in the literature: (a) continuous and (b) ordered-discrete.
Using data from a 10-session teaching experiment, we discuss the interplay of a student’s
perception of tasks, the reference frames she reasoned with, and differences in those reference
frames. We consider how the interplay of the aforementioned items may have influenced the
quantities she considered as well as the coordinate systems she constructed. We conclude with
suggestions for research and teaching that support students’ productive graphing activity.

Keywords: Geometry and Spatial Reasoning, Mathematical Representations, Cognition, Middle
School Education

Graphs are a powerful way to visualize, explore, and communicate relationships between
quantities. In STEM contexts, graphs can be used to mathematize spatial situations or represent
relationships between covarying quantities (Paoletti et al., 2020; Glazer, 2011). In our view,
students’ meanings for graphs should depend on their meanings for coordinate systems,
especially if their meanings for graphs are to be productive (Lee et al., 2020). Recent research
has focused on differences in the underlying coordinate systems that students construct and how
reasoning within these coordinate systems explains their graphing activity (Paoletti et al., 2018,
2022; Parr, 2023). In this report, we offer another contribution to this literature by characterizing
two novel types of reference frames that underlie coordinate systems and by describing how
students may use these reference frames to reason about quantities represented in coordinate
systems. We begin with a theoretical background that defines two different types of coordinate
systems and establishes a distinction between types of reference frames. We describe one
student’s use of both types of references frames within each coordinate system. We conclude
with implications for teachers, curriculum designers, and researchers.

Theoretical Background: Two Types of Coordinate Systems and Reference Frames
Researchers (Lee, 2017; Lee et al., 2019, 2020) have distinguished between two kinds of
coordinate systems (CSs): spatial and quantitative. Each type of CS is built by coordinating one

or more reference frames. Reference frames (RFs), which are constructed to gauge relative
extents of attributes in phenomena, consist of some orienting reference objects, directionality,
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and some anticipation of a measurement process that could be carried out (Lee et al., 2020;
Joshua et al., 2015). When students consider quantities (Thompson, 2011), there must be at least
one RF involved. We provide several examples of abstract quantities, using parentheticals to
provide specific examples of situational quantities with explicit RFs: Distance (e.g., number of
miles east a person is from school), time (e.g., number of minutes after passing a rest stop), and
temperature (e.g., degrees Fahrenheit above 0).

A spatial CS involves the mental coordination of one or more RFs and a selection of units of
measure which are imposed onto a physical space of interest. In this case, RFs are used to gauge
the relative locations of objects within that space. In a spatial CS, locations in the space may be
tagged with coordinates guided by these RFs and obtained through carrying out the anticipated
measurement. For example, a student might organize the map in Figure 1a by constructing a
spatial CS consisting of two RFs that imply the consideration of distinct distances from a
reference object (like the star icon). The spatial CS could then be used to describe the X’s (or any
object’s) location in terms of unique pairs of distances from the star icon.

A quantitative CS involves the mental coordination of one or more quantities which are
activated upon assimilation of a situation, disembedded from it, and inserted into a new
representational space through the coordination of their RFs. For example, a person may
coordinate the relationship between the time and temperature throughout a day and represent this
relationship via a graph in a quantitative CS. Within both spatial and quantitative CSs, locations
within the CS are imbued with quantitative extents, which necessarily involve RFs.

In this paper, we add a fourth dimension to thinking within RFs: continuity. In addition to
reference object, directionality, and some anticipated measurement process, we have found in our
work with students that the notion of directionality and some anticipated measurement process
could be established either discretely or continuously. Hence, we distinguish between two kinds
of RFs that students indicated when reasoning in both types of CSs: ordered-discrete RFs and
continuous RFs. A continuous RF involves understanding a continuum of an attribute’s extents
relative to the reference object and guides measuring activities that would lead to measurements
as continuous quantities. An ordered-discrete RF involves segmenting an attribute’s extents
according to distinct, bounded regions that are arranged in some (implicit or explicit) sequence.
Ordinal or directional language can be an indication of an established ordered-discrete RF and
guides measuring activities that would lead to measurements in discrete units. For example, an
individual who has established an ordered-discrete RF within a designed region might describe
sub-regions in ordinal terms (e.g., second row or last circle from the center) or directional terms
(e.g., left side or near the middle).
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Figure 1: A map indicating: a) no CS, b) a spatial CS constituted by coordinating two
continuous RFs c) a spatial CS constituted by a coordination of two ordered-discrete RFs.

We note an individual may understand an attribute as continuous and still construct an
ordered-discrete RF; such a construction is dependent on the student’s conceived context, goals,
or current quantitative constraints in their reasoning. For example, Figure 1b shows how a spatial
CS could be constituted by coordinating two continuous RFs. Figure 1¢ shows how a spatial CS
could be constituted by coordinating two ordered-discrete RFs. In this report, we address the
research question: How does a students construction of continuous and ordered-discrete RF's
impact her reasoning in spatial and quantitative CSs?

Methods

To address our RQ, we report on data from a teaching experiment (Steffe & Thompson,
2000) with three sixth-grade students: Nina (who self-identified as Latina), Tara (who self-
identified as a White female), and Jacobi (who self-identified as an African American male). We
focus this report on Nina’s activity because she provided the strongest indications of the RFs of
interest. The teaching experiment took place in a middle school whose population consisted of
over 75% students of color. Participants were recruited based on teacher recommendation and
student availability. Nina attended 10 teaching experiment sessions each lasting 35—40 minutes
(Table 1). We video- and audio-recorded each session to capture utterances and gestures. Student
activity on the Desmos platform was screen recorded, and we digitized all written work.

Table 1: Small Group Teaching Experiment Sequence

Session  Students Present Task Intended Student Goal
0 Nina Pre-Interview Various
! Nina, Tara, Jacobi D\;ﬁg ?;ks the Spot — Guess
Construct and/or interpret
2 . X Marks th — Anywh
Nina, Tara arks the Spot — Anywhere ,— spatial RFs and CSs to
X Marks the Spot — Classmates . . .
Descrint describe and/or identify
escriptions locations in space
Nina, Jacobi X Marks the Spot — Anywhere P

Nina, Tara, Jacobi  North Pole Task
Nina, Tara, Jacobi

Interpret points in a

Zoo Task quantitative CS

~ N~
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8 Nina, Tara, Jacobi . Interpret graphs in a
9 Nina, Tara Kodiak Task quantitative CS
10 Nina, Tara Post-Interview (Growing Fruit)  Various

Tasks

We describe Nina’s activity across several tasks from Sessions 3, 4, and 10. In the X Marks
the Spot-Anywhere and -Classmates’ Description tasks (Sessions 2—4), students took on the roles
of Describer and Guesser in Desmos. The Describer was prompted to mark an X on the map and
then generate a description of the X’s location. The Guesser used that description to mark an X
on their own version of the map. Students had access to a set of digital overlays (e.g., vertical
lines, horizontal lines, concentric circles anchored at the star icon) that could be activated to
potentially support students’ location descriptions. For example, in Figure 2, the ‘Horizontal” and
“‘Vertical’ overlays are activated. In the Anywhere variation of the task, a pair of students take
turns as Describer and Guesser for each other. In the Classmates’ Descriptions variation, the
students worked together as Guessers, with hypothetical classmates as Describer. The
hypothetical classmates’ descriptions were researcher-authored and sequenced to progress from
(what we then considered) less precise to more precise descriptions in both polar-like and
Cartesian-like CSs. We had yet to distinguish between continuous and ordered-discrete RFs
when we authored these descriptions. However, in retrospect, the descriptions that we considered
less precise used language indicative of ordered-discrete RFs while the descriptions that we
considered more precise used language indicative of continuous RFs. In Session 10 Nina and
Tara completed a post-interview together wherein they attempted tasks individually, and the
teacher-researcher (TR) facilitated discussion across their responses. The fourth task of the post-
interview, Growing Fruit, asked students to describe a situation that would be reflected by a
given graph representing the relationship between a hypothetical fruit’s weight and calorie
content, both of which changed over time (Figure 3a).
Analysis

Consistent with teaching experiment methodology, we analyzed the data via conceptual
analysis, which entails “building models of what students actually know at some specific time
and what they comprehend in specific situations” (Thompson, 2008, p. 45). We watched all
videos and identified moments that offered insight into the CSs and RFs Nina constructed as she
addressed each task. We then created models characterizing whether Nina was constructing
quantitative or spatial CSs. As we described Nina’s reasoning in each type of CS, we
characterized continuous and ordered-discrete RFs as an important distinction in her reasoning;
we had not considered this distinction prior to conducting this analysis.

Results
Nina used two distinct types of RFs, ordered-discrete and continuous to construct and
interpret both spatial and quantitative CSs. Further, the RF Nina constructed influenced her
reasoning in each CS. Because Nina constructed both types of RFs within both types of CSs, we
present these types of reasoning in a two-by-two matrix and detail four examples from the
teaching experiment that demonstrate each combination (Table 2).
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Table 2: Task and activity in which Nina constructed a CS using each type of RF

Ordered-discrete RFs Continuous RFs
Spatial CS Describing locations in X-marks the Interpreting locations in X-marks the
Spot-Anywhere Spot Anywhere
Quantitative Interpreting a given graph in the Interpreting a modified graph in the
CS Growing Fruit task Growing Fruit task

Continuous Reference Frames in Spatial Coordinate Systems

In Session 3, Nina interpreted continuous RFs in a spatial CS when she followed a
hypothetical classmate’s description to mark an X in the X Marks the Spot — Classmates’
Descriptions task. Nina’s interpretation of the following description shows her ability to
construct continuous RFs in a spatial CS:

Click the Star (1) and Circles (3) options. Imagine the star is like a clock with the line going
straight up being 12 o'clock and the line going straight down being 6 o'clock. The X is 1.25
miles from the star [icon] halfway between 10 and 11 o'clock.

This description is intended to introduce a pseudo-polar, spatial CS in which the continuous RFs
are the radial distance (explicitly in ‘miles’) from the star icon and angle measure (implicitly in
‘hours’) from the top vertical line. After reading the description, Tara moved the cursor to an
approximately correct location. Nina grabbed a measuring device (a wax-covered string bent at a
length equivalent to the ‘1 mile’ key on the map), which she used to confirm Tara’s
approximation. Specifically, Nina placed one end of her measuring device at the center of the
star overlay and oriented the other end halfway between the lines representing 10 and 11 o’clock,
near where Tara had placed the cursor. Nina reasoned that if the string piece was one mile, then
the X must be slightly beyond it. Hence, Nina reasoned about distance from the center as a
continuous quantity (i.e., 1.25 miles is slightly more than 1 mile) while also attending to the
clock description as a continuous quantity (i.e., a location halfway between 10 and 11 o’clock).
Thus, Nina used continuous RFs to generate an exact location in a spatial CS.
Ordered-Discrete Reference Frames in Spatial Coordinate Systems

In Session 4, Nina primarily used ordered-discrete RFs. For example, in her third turn as
Describer in the Anywhere variation of the task, Nina established a spatial CS using two ordered-
discrete RFs to describe a region in which her X was located. Nina marked an X as in Figure 2a
and provided the description “Use horizontal and vertical lines. The lines make squares so count
from the left, go all the way to the bottom, and count 6. Then go up 2, the x is in the right
corner.” To Nina, the combination of the vertical and horizontal overlays created distinct
‘squares’ (discrete regions) that Jacobi could count (ordering language) to identify which region
contained the X (Figure 2a). Reflecting the non-continuous nature of the RFs Nina was
constructing, the relative size of these ‘squares’ was not relevant from her perspective; her
description did not distinguish the partial boxes in the bottom-most row and left-most column
from the other boxes in the grid. Hence, we infer she was reasoning about discrete, ordered,
regions from the bottom left corner. Hence, Nina established a spatial CS to describe a region by
coordinating two discrete ordered RFs (The number of boxes to the right starting from the left
side of the map and the number of boxes vertically up from the bottom of the map).
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Figure 2. Representation of Nina’s ordered-discrete reasoning in space in a) the first part
and in b) the second part of the description

Nina’s use of ordered-discrete RFs influenced her activity in the spatial CS as it led her to
using more than one set of ordered-discrete RFs as she described increasingly narrow regions in
which points were located. That is, we infer that Nina’s addition of “x is in the right corner” was
a second ordered-discrete RF she constructed within the first box she described. (We note Nina
did not specify between top or bottom right corner, but we conjecture she meant top-right based
on the X’s placement.) Our inference is based on her use of “right corner” as a location rather
than a reference object (i.e., “in the right corner” as opposed to “1 cm from the right corner™).
One possible way she could have done this is by mentally subdividing the ‘square’ into (at least)
four discrete, ordered quadrants (i.e., top-left, top-right, bottom-left, bottom-right; Figure 2b).
Thus, we infer that Nina could have coordinated two ordered-discrete RFs (left/right and
top/bottom from the midpoint of the box) to describe a narrower region within a particular region
of a spatial CS.

Reference Frames in Quantitative Coordinate Systems

In Session 10, Nina addressed the Growing Fruit task (Figure 3a). A normative explanation
would include a description that at first the fruit gains weight while its calories remain the same
and then the fruit’s weight and calories increase simultaneously. Based on Nina’s activity in
Sessions 7-11, we anticipated Nina would use continuous RFs to interpret the given graph and
produce a normative explanation. However, we infer that Nina initially reasoned about the
quantities using an ordered-discrete RF and shifted to using a continuous RF when the TR added
numbers to the horizontal axis. We provide evidence for each claim in the next two sections.
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Figure 3: a) Growing Fruit Task as presented and b) a potential depiction of how ordered-
discrete RF's could be coordinated to reason about the horizontal segment of the graph.

Ordered-discrete reference frames in quantitative coordinate systems. When initially
interpreting the horizontal segment (and possibly the entire graph), Nina employed an ordered-
discrete reference frame. Describing a situation that created this graph, Nina explained:

N: The fruit starts off, like, without any calories [points to horizontal segment] and doesn’t
weigh a lot. And then while it grows [traces curve] it gains calories and ... weighs more.

TR: Gains calories and weighs more?

N: Yeah.

TR: [referring to the curved part of the graph] So that’s sort of what you [Tara] were saying,
too. So, I think you’re both in agreement. Now let me ask you [Nina] this question. If we
start say, here [gestures to the vertical intercept] and just paying attention to this part
[tracing the horizontal portion of the graph]. What’s changing?

N: Nothing.

Considering Nina’s argument, Tara disagreed with it. Tara traced the horizontal part of the graph
saying, “Well as you go right the weight is getting bigger because it’s getting closer to ‘more’
weight, I guess. But the calories would stay the exact same right here.” Nina explicitly disagreed
with Tara’s argument stating, “I don’t think here it’s getting bigger [traces horizontal segment].
‘cause it’s like [pointing to “Less” markers on each axis]...[3 second pause] For me it’s like not
getting bigger cause it’s like still at less.”

We interpret Nina as reasoning with ordered-discrete RFs as she interpreted the weight and
calories of the fruit for the horizontal segment. In particular, she argued the horizontal segment
was representing the quantities as both being in a static state of ‘small’ because the segment was
close to the ‘Less’ label on each axis. Like her activity in X Marks the Spot - Anywhere, Nina was
reasoning about ordered-discrete RFs on each axis by creating regions based on the ‘Less’ labels
along each axis. We show one potential illustration of the resulting regions Nina may have been
reasoning about in Figure 3b.

We note Nina’s initial description of the curved segment (“while it grows it gains calories and
... weighs more”) could be indicative of reasoning with either ordered-discrete RFs or
continuous RFs. If Nina understood that the curved graph spanned the (Less, Less) region and
the (More, Medium) region, then she might have argued that the weight and calories both
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increased by some unknown amount as each moved into a higher-ordered region. If, however,
Nina understood there to be a continuum of values beyond the (Less, Less) region, then she
could have been using a continuous RF to reason about this part of the graph. As the TR was not
aware of the distinction between the two types of RFs in the moment, he did not explore this
possibility further. However, he did conjecture the ‘Less’ and ‘More’ labels on the axes, which
were novel relative to quantitative CS used in previous sessions, may have been the catalyst for
her reasoning about the straight segment. Hence, he opted to add numbers to the horizontal axis
(0, 10, 50; seen in Figure 3b) to see if this change would lead Nina to a different interpretation.

Continuous Reference Frames in Quantitative Coordinate Systems. When the TR added
the numbers to the horizontal axis, Nina immediately engaged in reasoning about the horizontal
segment using a continuous RF in a quantitative CS and generated a normative interpretation of
this part of the graph:

TR: But say if there were numbers here. Say this was like 0, 10, and like 50 [writes in
numbers on horizonal axis as shown in Figure 3b]

N: Then it would get bigger

TR: Then you think it would-

N: It would weigh more

TR: You think it would weigh more?

N: Yeah

TR: And what about the calories? Would that be changing?

N: No [shakes head]

TR: No? Okay so it’s sort of like this distinction between sort of like ‘less’ like we’re in this
less state-

N: Yeah

TR: -versus if there were numbers, you’d say they were changing? [Nina nods head]

When the TR added numbers to the horizontal axis, Nina immediately interpreted the horizontal
segment as showing the weight increasing (“It would weigh more”) as the calories remained
constant. Thus, we infer Nina understood the horizontal axis as a continuous RF representing the
weight of a hypothetical fruit. Furthermore, she agreed with the TR that the distinction between
viewing the horizontal segment as representing a state of ‘less-ness’ versus viewing it as a record
of change was based on the addition of the numbers. Hence, we infer the addition of numbers to
the axes changed Nina’s interpretation of the graph (and of the situation) as she shifted from
using an ordered-discrete RF to using a continuous RF. Further, she exhibited reasoning
compatible with a continuous RF on the next task in the post-interview, which asked her to
construct a graph to represent the weight and calories of a novel fruit.

Discussion, Implications, Limitations, and Concluding Remarks

Addressing our RQ, we have shown how Nina used ordered-discrete and continuous RFs to
reason within both spatial and quantitative CSs. Within a spatial CS, Nina’s use of different RFs
led to different strategies to mark or describe a location. With continuous RFs, Nina could
identify an exact location, but she reasoned about increasingly narrow regions when using
ordered-discrete RFs. In a quantitative CS, Nina’s use of RFs impacted her interpretation of a
situation represented graphically. When engaging with ordered-discrete RFs, Nina treated a
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segment of the graph as a single object, representing a static condition (i.e., Less-Less).
However, with a minor alteration to the task, Nina considered the weight RF as continuous,
thereby interpreting the segment as representing a record of change.

We note that Nina’s construction of different RFs was influenced by her interpretation of
and/or goals in the task. Although she was capable of reasoning with continuous RFs in both
spatial and quantitative CSs, she opted to use ordered-discrete RFs when they satisfied the
demands of a given task as she perceived it. We have observed other students who, like Nina, are
capable of reasoning about continuous RFs in a spatial CS but opt to use ordered-discrete RFs to
satisfy their perceived demands of a given task.

Implications for Curriculum and Instruction

We consider it likely that a continuous RF supersedes an ordered-discrete RF. Our hypothesis
is that individuals who have constructed a continuous RF in a context would necessarily be able
to construct an ordered-discrete RF in the same context, whereas an individual who constructs an
ordered-discrete RF may not yet be able to construct a continuous RF in that context.

However, we emphasize that one type of RF is not inherently preferred; rather, their utility is
determined by an activity’s (or student’s) context and goals. In spatial CSs, regions can be
described using continuous RFs (e.g., Webb & Abels, 2011), but there may be instances in which
ordered-discrete RFs are sufficient or even more appropriate. Although continuous RFs are more
commonly used when constructing quantitative CSs, there are situations in which ordered-
discrete RFs are useful. For instance, Webb and Abels (2011) describe using combination charts
to describe the relationship between three quantities, such as cost of a number of pencils
(represented along a horizontal axis), cost of a certain quantity of erasers (represented on the
vertical axis), and total cost of n-pencils and m-erasers (represented in the cell (n, m)). Such a
combination chart is an example of a quantitative coordinate system made up of two ordered-
discrete RFs, in which number of pencils and number of erasers are discrete quantities.

It is important to be aware of the distinctions between these types of RFs, as their conflation
can lead to unintended graphical interpretations. For instance, Figure 1¢ depicts a spatial
coordinate system, but it is ambiguous whether each RF should be treated as continuous or
ordered-discrete. On one hand, the vertical numeric labels suggest that students could describe
the X’s position using a continuum, but the use of letters as labels on the horizontal axis limits
the ability to refer to non-discrete positions. Further, the positioning of the labels between tick
marks rather than on tick marks may promote the creation of regions rather than a continuum.
Depending on how an activity using a similar map is enacted, students may not conceive a
distinction between the two types of RFs. Teachers and curriculum designers should be
deliberate in crafting tasks and graphs such that students are prompted to engage with both types
of RFs and explore the affordances and limitations of each in a variety of spatial and quantitative
contexts.

Limitations and Concluding Remarks

This report is limited in that we only analyzed the activity of one student in a particular set of
tasks. Future researchers may be interested in exploring how a wider range of students
spontaneously construct and utilize both continuous and ordered-discrete RFs in quantitative and
spatial CSs. Such research can support the field's understanding about how students reason about
graphs and how such reasoning can be supported towards more normative graphing meanings.
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Understanding the ways in which students interpret and construct the fundamental components
of graphs, such as RFs, is crucial to supporting students’ developing meanings for graphs, which
are ubiquitous in STEM contexts.
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