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In this preliminary theoretical paper, we describe our use of conjecture mapping (Sandoval,
2014) to guide the design of a digital task sequence to support 6th graders’ meanings for points
as a simultaneous representation of the amount-ness of two quantities. The conjecture map
ultimately serves as a theoretical framework with testable conjectures about how the design of
the digital task sequence might promote the intended learning outcomes.
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Graph construction and interpretation are critical skills for advanced mathematics
coursework and consumption of popular media (Glazer, 2011). Despite the importance of graphs
in K-12 mathematics and science curricula (CCSS; NGSS), research indicates that students
struggle with graph construction and interpretation well into their post-secondary studies (e.g.,
Carlson et al., 2002; Glazer, 2011). One explanation for students’ challenges with graphing is
that they develop meanings for graphs that are useful initially but are limited as they advance
through the mathematics curriculum (e.g., understanding points as a set of directions for how far
to move over and up from the origin; Frank, 2016). We posit that one way to address this
challenge is to support students in developing more productive meanings for graphs when they
first encounter graphs in the curriculum. A promising approach to understanding graphs is
emergent graphical shape thinking (EGST; Moore & Thompson, 2015). In this theoretical report,
we describe our effort to design a task sequence that supports 6th grade students (11-12 years
old) in developing EGST. This task design effort was undertaken between rounds of a design-
based research study (Cobb et al., 2003), and we utilized conjecture mapping (Sandoval, 2014) to
guide our design toward the dual goals of developing theory about how the design of the learning
environment functions and about how the development of productive graphing meanings occurs.

Background

Within a multi-year design-based research study (Cobb et al., 2003), we have been working
to develop an instructional sequence that supports 6th grade students in developing EGST. We
conducted multiple rounds of small group teaching experiments (Steffe & Thompson, 2000) in
which pairs of students worked through our task sequences. The ultimate learning goal we
intended to support was students’ development of EGST.

EGST entails conceiving of a graph as a record of covarying quantities (Moore & Thompson,
2015) which can be created by imagining the trace of a point moving through the coordinate
plane such that the motion of the point is constrained by the relationship between situational
quantities. As such, developing EGST requires attention to students’ quantitative reasoning
within situations and graphs. Quantities are conceptual entities grounded in an individual’s
conception of a situation. “A person is thinking of a quantity when he or she conceives a quality
of an object in such a way that this conception entails the quality’s measurability” (Thompson,
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1994, p. 7). An attribute of a situation is measurable to an individual if they can conceive of a
process for measurement that results in an amount and a unit (or the anticipation of a unit). The
situation in which a person constructs quantities can be a graph (e.g., constructing vertical
distance above the horizontal axis as an attribute of a point) or some experientially real context
(Gravemeijer & Doorman, 1999; e.g., constructing weight and habitat temperature for animals at
the zoo). Although engaging in EGST entails conceiving of varying quantities, in this report we
detail an effort to support students in what we conjecture is a prerequisite meaning for graphs as
representing relationships between static quantities.

Informed by Paoletti et al.’s (2023) LIT for developing EGST with advanced 8th graders, our
high-level conjecture is that repeated occasions to draw explicit connections between meanings
for situational quantities (situational quantitative reasoning; SQR) and meanings for graphical
quantities (graphical quantitative reasoning; GQR) is critical for students’ developing EGST.
Given space constraints in this report, we focus on the first level of SQR and GQR. Denoted as
SQR1 below, students must first construct quantities in a situation and conceive of the quantities
as being able to take particular amounts in the situation. GQRI1 entails considering the length of a
magnitude bar as representing a static amount (i.e., constructing the quantity of length). Bridging
SQR1 and GQR1 (SQR1+<>GQR1) entails considering a magnitude bar as representing the static
amount-ness (Stevens & Moore, 2017) of a situational quantity.

We developed the Zoo Task sequence to provide students with opportunities to reason about
points as a simultaneous representation of the amount-ness of two situational quantities.
However, retrospective analysis from our first two rounds of teaching experiments that used the
task indicated that students needed more (or different) opportunities to bridge SQR and GQR.
We decided to redesign the Zoo Task sequence to meet this need and took up conjecture mapping
(Sandoval, 2014) as a strategy for redesigning the task in ways that would enable us to test and
refine our conjectures about the task design and process of developing SQR and GQR.
Conjecture mapping attends to the dual goals of design-based research by differentiating between
theories about the design of the learning environment and theories about the process of learning.
Conjecture maps depict the ways researchers anticipate the design of the learning environment
supporting learners in engaging in observable processes as well as conjectures about how
engagement with those observable processes results in the desired learning outcomes. Our initial
conjecture map is in Figure 1.

The Zoo Task

We describe the opening sequence (screens 2-5) of the Zoo Task to ground descriptions of the
conjecture map in the next section. Due to space constraints, we only report on the opening
sequence of the task which we designed to support students’ SQR1, GQR1, and SQR1-—GQRI1.
To support the reader, we provide a link to the opening activity sequence so that the digital
interactions we describe here can be experienced as we designed them
(https://bit.ly/ZooTaskPMENA). On Screen 2 (Figure 1a), students are prompted to weigh three
mystery animals at the zoo and record their weight. Students can weigh each animal by dragging
it to a scale and pressing the ‘Weigh It’ button. In response to those actions, the scale depresses
with a bounce (imagine a heavy object being placed on a spring-loaded plate) and the weight of
the animal is represented with numbers and a magnitude bar. Students then record the animal’s
weight by dragging a point to construct a vertical magnitude bar with a numeric readout. On
Screen 3 (Figure 1b), students are prompted to order five animals from lightest to heaviest given
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five vertical magnitude bars. Three of the magnitude bars are copied over from their construction
on Screen 2 and include a numeric readout, but the other two magnitude bars represent the
weight of new animals and do not have numeric readouts. When students select an order and
press the ‘Check It’ button, the vertical magnitude bars are dynamically rearranged to reflect the
student’s selection and evaluative feedback (a green checkmark) appears next to the animal
names in the list if they are in the correct location within the list. Screens 4 and 5 follow a similar
design but with opportunities to measure habitat temperature by dragging a temperature probe
into each enclosure and then recording values on horizontal magnitude bars.

Weigh each animal and log their weight on the left. Mason and Gertie join the zoo.
i i Order each animal from lightest to heaviest.
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Figure 1: (a) Screen 2, and (b) Screen 3 of the redesigned Zoo Task.

An Initial Conjecture Map for the Redesigned Zoo Task

Recall, our high-level conjecture is that repeated occasions to draw explicit connections
between meanings for situational quantities (SQR) and meanings for graphical quantities (GQR)
is critical for development toward EGST. To test that conjecture, we need students to (1) develop
SQR, (2) develop GQR, and (3) bridge SQR and GQR meanings. Due to space constraints, we
report on the opening sequence of the zoo task that we intend to support students in developing
the first level of SQR, the first level of GQR, and bridging between those two meanings.

High Level Conjecture

[Repeated occasions to draw explicit connections between SQR and GQR is critical for development toward EGST. J
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Figure 2: An initial conjecture map to guide the redesign of the Zoo Task.
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amounts in the situation.
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To support SQR1, we theorized that directly measuring weight and habitat temperature for
several animals supports students in conceiving of an attribute of the animals (i.e., heaviness;
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hotness) as being measurable (i.e., having an amount and a unit) (LC1; see Figure 2). To support
GQR1, we theorized that constructing magnitude bar representations to record particular values
would support students in understanding that the length of a magnitude bar represents an
amount-ness (e.g., longer bar = larger amount) (LC2). Furthermore, using the magnitude bars to
represent particular amounts of weight and habitat temperature derived through direct
measurement can help students bridge SQR1<—GQR1 (LC2). Lastly, we theorized that ordering
animals with respect to a situational quantity (weight or habitat temperature) when provided with
information about those quantities via magnitude bar representations would support
SQR1—GQR1 because students would have to set a goal related to the situation (e.g., determine
which animal weighs the least) and then use information from the graphical representation to
achieve that goal (e.g., which magnitude bar is the shortest) (LC3).

The observable interactions between student and digital environment that are necessary for
testing these learning conjectures are listed in the middle column of the conjecture map. Students
need to (1) directly measure the weight and habitat temperature of several animals (toward LC1),
(2) construct magnitude bar representations of particular weight and habitat temperature amounts
(toward LC2), and (3) interpret magnitude bar representations to order animals with respect to
weight and habitat temperature (toward LC3).

Next, we developed design conjectures that link the theoretically salient aspects of the task
design to the production of desired student-environment interactions. Our goal was for this
activity to be a stand-alone digital activity, so we wanted students to be able to directly measure
the weight and habitat temperature of zoo animals within the digital environment. We theorized
that we could design student-environment interactions that emulate direct measurement by
coordinating available actions (i.e., drag to the scale and click ‘Weigh It”) and visual feedback
(i.e., “bouncing” on the scale) (DC1). To support students in constructing magnitude bar
representations of particular amounts of weight and habitat temperature, we theorized that
strategic use of numbers could support students in linking the result of direct measurement in the
situation with their understanding of magnitude bars as representing amounts (DC2). The
reification of this design conjecture can be seen in Figure 1a where the 500 pounds can be seen
as the dynamic label on the magnitude bar representing Sebastian’s weight as well as the result of
measuring Sebastian’s weight on the scale. Our final design conjecture is that strategic use of
numbers and strategic use of visual feedback (Margolis & Boyce, in press) can support students
in utilizing magnitude bar representations to order animals with respect to weight and habitat
temperature (D3). Specifically, when we prompt students to order animals (Screens 3 and 5;
Figure 1b), they can view the magnitude bars with numeric readouts for the three animals that
they measured on Screens 2 and 4 but are not provided with numbers for the two new animals.
We anticipate that this strategic use of numbers will result in students’ reasoning about the bars’
lengths rather than reasoning about the relationship between values. After students select an
order and press the ‘Check It’ button, the magnitude bars dynamically rearrange to reflect the
order of their list. When a student has the animals out of order (as in Figure 1b), we anticipate
that the reordered magnitude bars will be useful for reasoning about the necessary adjustments.

Discussion & Future Work
We posit that conjecture mapping is a useful tool for studying the complex links between task
design and mathematics learning. Our initial conjecture map serves as a preliminary theoretical
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framework with testable conjectures about how to design digital tasks that support 6™ grade
students in developing SQR1, GQR1, and SQR1+GQR1. Future work can focus on empirically
verifying the design and learning conjectures from this conjecture map. Additional work can
focus on whether and how the development of SQR, GQR, and SQR«+—GQR support the
development of EGST. Such research could lead to the development of curricular materials that
alleviate student struggles with graph construction and interpretation important for their future in
advanced coursework and as critical citizens.
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