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<IT DOES SHOW IT BOTH WAYS, THOUGH=: EMMA9S REASONING THROUGH 
N N N N

such graphs have developed for students to work and reason with. We describe a fifth grader9s, 
Emma9s, thinking through non

frames. We use Emma9s activity to argue possible implications for research and teaching 

Graphical representations are commonly used in STEM fields, and relatedly, the ability to 
read and write graphical representations is important for students to progress in STEM 
coursework and careers (Costa, 2020). These graphical representations commonly draw on 
conventions. For example, many graphical representations are constructed upon the Cartesian 
plane, with two perpendicular axes (i.e., x and y axes) with the intersection of the axes at (0, 0), 
named <the origin=. Because such conventions are used widely and often, it is important that 
students know these conventions and use them to communicate ideas with others. However, 
despite their effectiveness for communication, too much emphasis on conventions can become a 
hurdle for students. Researchers have shown that students9 meanings for graphs are often 
constrained to a 8a set of rituals9 (e.g., Mamolo & Zazkis, 2012; Thompson, 1992). For example, 
researchers have noted an over-reliance on the vertical line test to determine if a graph represents 
a function even in cases where this procedure does not apply (Breidenbach et al., 1992; Even, 
1993; Montiel et al., 2008; Moore, Silverman, et al. 2019; Oehrtman et al., 2008). Student 
adherence to conventions used for the Cartesian plane has similarly provoked struggles while 
creating/interpreting a polar coordinate system (Sayre & Wittman, 2008; Moore et al., 2014). 
Further, some researchers have shown that some conventions commonly used in math classes are 
not consistent with how STEM fields use graphical representations in practice. For example, 
Paoletti et al. (2022) showed that the origin is typically not (0, 0) in graphs used in several STEM 
fields. Collectively, these studies show that too much attention to conventions might take away 
students9 focus from more important reasoning that could support their graph literacy. 

Although the aforementioned studies provide insight into the complexities students can 
experience when it comes to graphing conventions coming in conflict with their graph reasoning, 
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we note that these studies involved older students, who have had many years of experience with 
graphing conventions. In our work, we have been working with Grade 538 students who are yet 
to or are in the early stages of learning about graphs in school. We aim to document how students 
at this earlier stage are capable of reconciling conflict between learned graphing conventions to 
view them as conventions rather than as required rules, in conjunction with their budding 
quantitative strategies and thinking within frames of reference (hereafter referred to as <reference 
frames= (RFs)). In this paper, we describe a fifth grader9s, Emma9s, thinking about graphical 
representations of what we deemed to be a linear relationship. We describe how Emma9s 
attention to graphing conventions, quantitative strategies, and thinking within RFs interplayed 
throughout her engagement with a graphing task. We argue that Emma relied on her quantitative 
reasoning when faced with conflicts with learned graphing conventions to make sense of 
unconventional graphs. We close with a discussion on the implications of Emma9s work for 
future research and teaching regarding students9 developing meanings for graph conventions.

In this section, we discuss the theoretical underpinnings that guided our task design and data 
analysis. We also review literature relevant to our specific focus on students9 interpretation of y = 
2x graphs in both conventional and unconventional forms. 
Conventions

Thompson (1992) differentiated students9 understanding of conventions as conventions 
(conventions qua conventions) versus students9 understanding of conventions (to teachers and 
researchers) as rules that must be followed (ritual use of conventions). We used Thompson9s 
distinction between conventions qua conventions and ritual use of conventions to characterize 
Emma9s attention to graphing conventions in our analysis. That is, we attended to whether Emma 
viewed certain features of graphs presented to her as mere conventions that could be changed or 
as rules that need to be followed when constructing or interpreting graphs. 

Moore and colleagues examined students9 interpretations of simple graphs, like y = 3x, 
constructed in nonconventional variations of the Cartesian plane (Moore & Thompson, 2015; 
Moore, 2016; Moore, Stevens et al., 2019; Moore, Silverman et al., 2019). Graphing tasks like 
this were used to develop models of students9 graphing activity, with specific attention to what 
aspects of the graphs were prioritized in students9 focus. In doing so, the researchers were also 
able to examine students9 meanings for conventions interplaying with their reasoning about 
quantitative relationships. Moore, Stevens et al. (2019) provided numerous examples of pre-
service teachers (PSTs) whose graphing activity was constrained to maintaining conventions as 
rules. In many cases, the PSTs9 reliance on conventions took precedence over their quantitative 
meanings for the situation, leading them to claim that mathematically accurate graphs (from the 
researchers9 perspective) were wrong due to the graphs differing from their expected conventions 
in some way. For example, only 31% of PSTs from the study deemed an accurate graph of y = 3x 
with x and y represented on the vertical and horizontal axis, respectively, to be an accurate 
representation of the relationship defined by y = 3x. Inspired by this line of work, we designed 
the <Variations of y = 2x= task to vary conventional features of the canonical y = 2x graph and 
asked students to check whether the graph accurately depicted the relationship between x and y. 
Variations included changing the axes and/or the orientation of axes like in Moore and 
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colleagues9 work. Other features, such as the location of the origin and the scale of each axis, 
were also varied (see the Methods section for more details). 
Quantitative Reasoning and Reference Frames

We conjectured students could rely on their quantitative reasoning to develop meanings for 
graphing conventions as conventions. We adopt Steffe, Thompson, and colleagues9 (e.g., Smith 
& Thompson, 2008; Steffe, 1991) description of quantitative reasoning, which characterizes 
quantities as conceptual entities individuals construct to interpret their experiential worlds (von 
Glasersfeld, 1995). Quantitative reasoning, then, entails an individual conceiving of and 
reasoning about the relationships between quantities (Smith & Thompson, 2008; Thompson, 
2011). Engaging with algebraic situations should entail quantitative reasoning (Smith & 
Thompson, 2008; Steffe & Izsák, 2002). With respect to <y = 2x= in our work, a student 
reasoning quantitatively may quantify a relationship between y and x as multiplicative (i.e., the y-
value is always twice the x-value). 

In the context of quantitative reasoning, Joshua et al. (2015) defined a RF as <a set of mental 
actions through which an individual might organize processes and products of quantitative 
reasoning= (p. 2). Joshua et al. identified three related mental actions4committing to a unit of 
measure, committing to a reference point, and committing to a directionality of measure 
comparison (p. 32). Further, Joshua et al. defined a coordinate system as the product of the 
mental activity involved in conceptualizing and coordinating multiple RFs, which allows 
individuals <to represent the measures of different quantities simultaneously when those 
measures stem from potentially different frames of reference= (ibid., p. 35). 

Similarly, but more broadly, we use RFs to refer to mental structures used to gauge the 
relative extent of various attributes in the phenomenon (Levinson, 2003; Lee, 2017; Joshua et al., 
2015). Thinking within RFs entails attending to and establishing reference objects, directionality, 
and having an idea of what and how to measure the quantities being depicted (Joshua et al., 
2015; Lee et al., 2019). For example, to create or interpret the graphical representations like 
those in Figure 1, an individual will need to establish x and y in terms of where they start, in 
which direction they move/change, and how each quantity is measured (e.g., unit of measure). 
Relatedly, coordinate systems refer to the geometric coordination of the RFs (e.g., axes). A 
coordinate system allows an individual to systematically express and coordinate RFs; a graph 
refers to a collection of points depicted upon the underlying coordinate system. Considering such 
a collection of points, an individual can hold in mind both quantities9 (potentially varying) 
magnitudes simultaneously (Thompson et al., 2017). The nature of graphs and hence, ways of 
thinking about a graph, fundamentally depends on the RFs and coordinate systems upon which 
the graphs are created and how individuals make sense of the quantities depicted. 

Lee et al. (2019) documented shifts in how a PST constructed and reasoned within RFs when 
engaging in graphing activities with non-canonical coordinate systems. Specifically, Lee et al. 
attended to the PST9s reference points and directionality of measure comparison, which shifted 
from relying on perceptual features of graphs to focusing on coordinated actions such as 
quantitative relationships. The researchers hypothesized that the PST9s shift was supported by 
perturbations from the unconventional graphs. Building on this work, in our work with Emma, 
we attended to her RFs, specifically, her attention to some reference point(s) and directionality of 
measure comparison. 
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Guided by these ideas, our research question is, <When faced with unconventional graphical 
representations of y = 2x, what reasoning does one fifth grader employ between her conventions, 
quantitative meanings, and reference frames?=  

In this paper, we present data from a larger project that uses clinical interviews (Ginsburg, 
1997; Clement, 2000; Goldin, 2000) to examine students9 current ways of graph thinking. The 
project goal is to examine middle school students9 graphing activities that could inform theory 
and practice. 

The participants were recruited locally via social media and ranged from fifth to eighth 
grade. Four students met with the researchers on a university campus in the southern United 
States to participate in a sequence of four hour-long individual clinical interviews. Interviews 
had an interviewer (IR) and witness-researcher (WR) present; they were video-recorded with a 
focus on student work and any interactions and gestures between the student and IR. We 
digitized student work through scanning and screen-recordings. The participant we focus on in 
this paper, Emma, was a fifth grader. Specific to the task, Emma self-reported that in school, she 
had not seen graphs like the ones from the task. However, Emma did describe exposure in school 
to using coordinate grids to plot points, where the origin would be placed at (0, 0). Although she 
had experience with <conventional= coordinate systems in school, these conventions had not 
necessarily been emphasized yet in relation to linear graphs such as y = 2x. We note that Emma 
reported studying additional mathematics outside of school, and she demonstrated familiarity 
with linear graphs throughout her interviews.

This paper focuses on data from one task in Emma9s third interview, <Variations of y = 2x=, 
implemented through the online, interactive teaching and learning platform, Desmos. We 
designed the task while considering the work discussed above with unconventional coordinate 
systems and graphs. Our task contained four slides, where each slide contained a graph of the 
line y = 2x with differing orientations of axes, scaling, or origin changes (Figure 1). Specifically, 
Graphs A and B (Figure 1a and b) showed the x- and y-axis with differing scales, Graph C 
(Figure 1c) had positive x-values oriented to the left and positive y-axis values oriented 
downwards, and Graph D (Figure 1d) showed the axes intersecting at (-2, 0). When opening each 
slide, we asked Emma if the graph represented the relationship between x and y in the equation y 
= 2x by selecting <Yes,= <No,= or <I don9t know=. Because our goal was to investigate how the 
student might make sense of the quantitative relationship and not their ability to read an 
equation, if the student had a difficult time interpreting the equation y = 2x, we explained to the 
student that the equation meant the y value is always twice the value of x. 
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Figure 1: <Variations of = Graphs 

In our analysis, we created a thick description of Emma9s activity with the task (Geertz, 
1973). We used this description to build a model of Emma9s current meanings through 
conceptual analysis (von Glasersfeld & Steffe, 1991; Thompson, 2008). As we attempted to build 
this model, we characterized Emma9s quantitative reasoning, attention to conventions, and 
thinking within RFs. Specifically, we examined Emma9s activity for her quantitative reasoning, 
potential habitual use of conventions, relevant RFs Emma used, and shifts between habitual use 
of conventions and using conventions qua conventions. During this process, we re-examined 
previous parts of the description to support our working model, identify possible shifts in 
Emma9s reasoning over the episodes, or negate our original interpretations. 

Although Emma expressed her known conventions around graphs, she was able to rely on 
her quantitative meanings for the relationship y = 2x, in conjunction with the use of flexible RFs, 
to determine if a(n unconventional) graph accurately depicted the relationship. Notably, her 
flexible use of RFs included interpreting shifts in directionality (i.e., representing positive x-
values to the left), unconventional units (i.e., tick marks not representing 1 unit), and different 
reference points (i.e., unconventional intersection of axes). In all four graphs, Emma consistently 
used quantitative reasoning and RFs to resolve conflicts that arose when aspects of a graph did 
not match the conventions she assumed needed to be maintained.
Conventions, Quantitative Reasoning, and RFs Aligned: Graph A

In Graph A (Figure 1a), Emma9s meanings for conventions, RFs, and quantitative reasoning 
aligned. After some conversation about how y = 2x may be represented in a graph, the IR asked 
Emma what she thought about the relationship as meaning y is always twice x. Emma first 
implicitly considered if the graph represented a rule in which x was two more then y by checking 
if the point (0, 2) was on the graph before realizing she should consider if y-values were double 
x-values. She then moved her cursor to (0, 0) and over horizontally to x = 2, claiming, <If x is 
that [two], y is that [moving her cursor up vertically to intersect the graph and then horizontally 
over to y = 4 on the y axis].= With the cursor on (2, 4) on the graphed line, Emma argued that 
this point was correct based on four being <two times x=. Emma decided to answer <yes= to the 
prompt and provided more explanation to back up her claim, such as (4, 8) being another point 
on the graph reflecting her quantitative meaning for y = 2x of y being <two times x=. 
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Across her activity, we infer Emma used the x- and y-axis each as a RF. She identified 0-
points for each axis, worked with an implicit direction, and understood each tick to represent the 
appropriate number of units. For example, for Emma, x = 2 meant starting at 0 and moving two 
units right via 1 tick mark jump. Finally, we note Emma relied on a quantitative meaning for the 
relationship (y is <two times x=) to determine if the graph reflected the relationship. Emma 
continued to use this quantitative meaning in the rest of the graphs of the task. In some cases 
when Emma became perturbed as she addressed a novel graph, the IR referred back to her 
quantitative meaning to help remind Emma of the connection of the equation to the relationship.
Conventions Superseded by Quantitative Reasoning and RFs: Graph B and C

The unconventional nature of Graphs B and C (Figure 1b, 1c) created perturbations for 
Emma as she attempted to interpret novel coordinate systems. However, Emma leveraged her 
quantitative meanings along with flexible reasoning about RFs to interpret both graphs as 
accurate representations of the relationship y = 2x.

In each case, as Emma tried to apply her quantitative meaning, the unconventional nature of 
the graph created a complexity. When initially addressing each graph, Emma decided that the 
graphs did not reflect the relationship. In Graph B, this happened as Emma was looking for x = 2 
and y = 4 to touch on the graph; as she moved up from x = 2 to the graph, she said, <It doesn9t 
[represent the relationship]. Four would be right there [motioning over the graphed line above x 
= 2 between the y-values tick values of 3 and 6].= We conjecture the point not being at the 
intersection of two gridlines created a complexity for Emma. As the y-axis was scaled by 
increments of 3, 4 was not represented on the scale or by a gridline; we infer this broke from the 
convention Emma (implicitly) used in the prior graph that each tick mark along the y-axis 
represented a change of 1. Emma rejected Graph C even faster, calling it <wrong= due to its 
unconventional nature, saying, <From what I see, those [referring to the x and y values on the left 
and down of the intersection of the axes] have to be negative numbers because that is the& I 
think that9s the third quadrant&= In each case, we inferred that conventions around coordinate 
systems, implicitly in Graph B and explicitly in Graph C, influenced Emma9s initial decisions for 
if the graphs represented the relationship.

However, Emma reconsidered each graph as she returned to her quantitative meanings and 
adapted her RFs when asked to explain her original decision. In Graph B, Emma reorganized her 
RFs such that the unit of measure of each tick mark represented matched those depicted. After 
her last comment above regarding Graph B and her conflict with the point (2, 4), she tilted her 
head and wondered aloud, <actually, it does [represent the relationship].= She then decided to 
check that x = 3 corresponded to y = 6 in the given graph, confirming that the graph represented 
the quantitative relationship. Emma then returned to checking x = 2. She placed the cursor 
directly above the x-axis and defined the distance between the x-axis and her cursor as a unit 
length, <the top of the circle [cursor] would be one=. She then iterated that length by moving the 
cursor up three more times, intersecting the graph at the y-value of 4. We infer Emma had re-
established her RFs constituting each axis to attend to the non-normative scaling of the y-axis as 
compared to Graph A. Using this reorganization in conjunction with her quantitative reasoning of 
checking the pairs of points, she determined that Graph B accurately depicted the relationship.

Emma similarly switched decisions with Graph C by reasoning flexibly with RFs and 
maintaining a focus on the quantitative relationship. In particular, after verbally identifying the 
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unconventional axes different from Emma9s expected signs for <Quadrant 3,= the IR asked 
Emma what her answer to the prompt would be. After a 6-second pause, Emma responded <it 
does [represent the relationship].= Emma then gestured to the 2 on the x-axis down to the 
graphed line and horizontally over to the 4 on the y-axis explaining, <It shows it because the two 
and the four touch right there, on the line.= Emma smiled and decided confidently to answer 
<Yes.= She further demonstrated how when x equaled 4, y equaled 8 on the line as <another way I 
can prove it.= Although Emma9s initial reaction was to reject Graph C, she re-considered her 
decision after reorganizing her RFs, attending to the changed direction of the values on the x- and 
y-axis. This reorganization of her RFs allowed her to use her quantitative meaning for the 
relationship to confirm Graph C did, in fact, represent the relationship. Emma9s work with 
Graphs B and C evidence her understanding of convention qua conventions, where she leaned on 
her re-organization and use of RFs and quantitative reasoning to overcome an initial hesitation 
towards the representation that was depicted differently than she seemed to expect.
Conventions in Conflict with Quantitative Reasoning and RFs: Graph D

The unconventional location of the intersection of the axes in Graph D created a greater 
complexity for Emma as she considered if the graph correctly represented the relationship. 
However, as before, she eventually was able to reorganize her RFs and leverage her quantitative 
meanings to interpret the graph as correct. When first viewing Graph D, Emma expressed 
concern with the intersection of the axes:

Why do they have&Um. I think that this line [
over more& the 
zero because, um, I, well, maybe it doesn9t& uh, it does. Um, it has to

Emma9s reaction seems indicative of a ritual use of conventions regarding the intersection of the 
axes (<always (0,0)=). In fact, her tone changed as she emphasized the origin <has to be= (0, 0). 
However, there was also a note of suspicion that <maybe it doesn9t= have to be at zero. 
Immediately after making this comment, Emma critically investigated between the current origin 
(Figure 2a) and her desired origin, (0, 0) (Figure 2b). She then discussed (0,0)9s placement, 
<Hmm. That does& That shows zero, too. That9s showing& Hmm, actually& Actually, that 
shows (0, 0). But I don9t think, was it& I don9t understand this. How are the, why is the y line 
like that?= We infer that Emma realized the point (0, 0) was on the given graph, which she 
understood was consistent with the given relationship y = 2x. However, the unconventional 
placement of the y-axis persisted in creating confusion as Emma again declared that the graph 
would not represent the relationship.
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Figure 2: Graph D9s (a) Depicted Origin, and (b) Emma9s Desired Origin at (0, 0)

Emma continued to consider whether the intersection of the axes at (0, 0) was a rule that 
must be followed in relation to her inferences regarding RFs and her quantitative meaning. As 
Emma considered Graph D, she motioned along each axis to show that the graph represented 
should depict x = 2 corresponded to y = 4. However, we infer that in the moment, Emma still 
considered the graph to be incorrect. She opted to check another point, moving her cursor along 
the x-axis to 1, then moving up and horizontal to the y-value of 2. As she did this, she paused and 
looked closer, <Wait& but it does! It shows it& Hmm, it does.= She then moved on to the point 
(0, 0) and reasoned that doubling zero should achieve that point, laughing to herself, seemingly 
with surprise. The IR then asked her where zero should be on the graph, and Emma repeated her 
original reasoning, <If I could have the zero anywhere, I would have the zero right here [places 
cursor on the intersection that currently had x = -2 in Figure 2a].= We infer Emma wanted the 
intersection of the axes to be (0, 0), not (-2, 0). She stared at the screen again for about five 
seconds and calmly decided, "It does show it both ways, though& because, I can do it with the 
one and the two [gestures up to the graph from x = 1]& Oh, one and a half would be about there 
[puts mouse between the 1 and 2 on the x-axis]& One and a half, three [motioning from the x-
axis to the graph at y=3]!= She then pulled herself back and smiled, concluding, <I think it9s 
actually yes=. We infer that Emma9s initial reaction to the graph involved the intersection of the 
axes at (0, 0) to be a rule rather than a choice. However, as she focused on the RFs represented 
by each axis (rather than the intersection point), she reconsidered the graph in terms of her 
quantitative meaning, concluding the graph accurately reflected the relationship. Although she 
still expressed preference towards the intersection of the axes to be at (0, 0), Emma treated this 
as a conventional choice (convention qua convention) rather than a rule that must be followed 
(ritual use of convention).

Although Emma initially rejected each of Graphs B, C, and D due to something 
unconventional about each, she eventually reorganized her RFs to consider if the graph reflected 
the underlying quantitative relationship. Reflecting a conscious awareness of the unconventional 
nature of such graphs, Emma referred to unconventional aspects of the graphs such as the axes as 
possible <mistakes= or <there to confuse [me].= But, consistent with understanding graphical 
conventions qua conventions, Emma understood each graph as reflecting the quantitative 
relationship defined by y =2x.
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Addressing our research question, we showed interactions between Emma9s meanings for 
conventions, quantitative reasoning, and use of RFs as she explored representations of y = 2x. 
Emma9s strategies were powerful in leading her to reconcile unconventional graphs by focusing 
on the quantitative relationship and re-organizing her RFs. Emma9s flexibility was illustrated 
through her reasoning through unconventional axes directions, scaling, and origin as she 
continued to rely on y being twice x and thus checking if appropriate points met on the graph. 
Emma9s activity exemplifies the merit in students grappling with conventions on their own 
before directly being adopted throughout their schooling; we conjecture such discussions that 
allow students to consider quantitative meanings for algebraic equations and RFs may be fruitful 
in supporting students understanding graphing conventions as conventions. Further, such 
unconventional graphs can also be fruitful for supporting students in moving beyond a ritual use 
of conventions, such as realizing the intersection of the axes did not have to be <always (0, 0)=.

Connecting back to the literature, several researchers have conjectured that students9 
meanings for algebra and graphs as a set of rituals may stem from a lack of opportunities to 
construct and reason about relationships between quantities (Moore, Silverman et al., 2014; 
Moore, Silverman et al., 2019; Paoletti, 2020; Paoletti et al., 2018; Thompson & Thompson, 
1995). We note how Emma, as a fifth grader, was focused on a quantitative relationship in her 
activity, which allowed her to exhibit more flexible reasoning than the PSTs reported on 
addressing similar tasks (Moore, Silverman et al., 2019; Moore, Stevens et al., 2019). We 
conjecture Emma9s flexibility relative to the PSTs may be due to her having significantly less 
school experiences adhering to conventions. That is, we conjecture conventions become rules for 
students when they are always used without explicit conversations or opportunities to consider 
other choices. In reality, students need this flexibility when faced with unconventional 
representations found to be applied in real-life contexts (e.g., as in STEM fields), especially as 
fields continue to evolve unpredictably over time along with possible new developments for 
representing quantities and needs for students reasoning within those developments arising.

Based on Emma9s interactions with the given representations moving beyond conventions to 
determine the quantitative relationship depicted, we conjecture providing students with such 
unconventional coordinate systems early in their learning about graphs could support them in 
developing meanings for conventions qua conventions. However, our sample consisting of one 
student in one session limits our ability to evidence such conjecture. We call for future research 
to explore this possibly. Such research can support teachers and researchers in understanding and 
supporting flexible meanings for graphs that support students across STEM fields and real-world 
contexts. 
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